ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Information

  • Patent Application
  • 20220407020
  • Publication Number
    20220407020
  • Date Filed
    April 12, 2022
    2 years ago
  • Date Published
    December 22, 2022
    2 years ago
Abstract
A heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of Formula I
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of Formula I




embedded image


In Formula I:

m is 1 or 2;


moieties A, C, and D are each independently a monocyclic ring or a polycyclic fused ring structure, both comprising 5-membered and/or 6-membered aromatic rings;


each of RA, RB, RC, RD, and RE independently represents mono to the maximum allowable substitution, or no substitution;


each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, boryl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;


wherein if moiety A is a monocyclic 6-membered ring, then the RA para to N of ring A is not an aryl group;


wherein LA and LB are different; and


at least one of R1 and R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof; and


two adjacent RB, one RA and one RB, one RE and one RD, or two adjacent R1, R2, and RE can be joined to forma ring.


In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —OR, radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “selenyl” refers to a —SeRs radical.


The term “sulfanyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2,2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of Formula I




embedded image


In Formula I:

m is 1 or 2;


moieties A, C, and D are each independently a monocyclic ring or a polycyclic fused ring structure, both comprising 5-membered and/or 6-membered aromatic rings;


each of RA, RB, RC, RD, and RE independently represents mono to the maximum allowable substitution, or no substitution;


each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of the general substituents defined herein;


wherein if moiety A is a monocyclic 6-membered ring, then the RA para to N of ring A is not an aryl group;


wherein LA and LB are different; each two LA when m is 2 or two LB when m is 1 can be same or different; and


at least one of R1 and R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof; and


two adjacent RB, one RA and one RB, one RE and one RD, or two adjacent R1, R2, and RE can be joined to form a ring.


In some embodiments, m in Formula I is 1, and the compound can have a structure of




embedded image


In some embodiments, m in Formula I is 2, and the compound can have a structure of




embedded image


In some embodiments of Formula I, one or both of R1 and R2 can be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, two adjacent RBs can be joined to form a ring. In some embodiments, one RA and one RB can be joined to form a ring. In some embodiments, one RE and one RD can be joined to form a ring. In some embodiments, two adjacent R1, R2, and RE can be joined to form a ring.


In some embodiments, each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of the preferred general substituents defined herein. In some embodiments, each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of the more preferred general substituents defined herein. In some embodiments, each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of the Most Preferred General Substituents defined herein.


In some embodiments, moiety D is monocyclic.


In some embodiments, R1 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof. In some embodiments, R1 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof, and R2 is hydrogen or deuterium. In some embodiments, R1 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof, while R2 is hydrogen or deuterium, and RE is H or D. In any of these embodiments, R1 can be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof. In some embodiments, R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof, and R1 is hydrogen or deuterium. In some embodiments, R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof, while R1 is hydrogen or deuterium, and RE is H or D. In any of these embodiments, R2 can be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, at least one of R1 and R2 is a substituted or unsubstituted group selected from the group consisting of phenyl, pyridine, pyrimidine, pyridazine, pyrazine, and triazine. In some such embodiments, R1, R2, or both can independently be further substituted by deuterium, alkyl, and partially or fully deutemted alkyl.


In some embodiments, R1 is a substituted or unsubstituted group selected from the group consisting of phenyl, pyridine, pyrimidine, pyridazine, pyrazine, and triazine. In some such embodiments, R1 can independently be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, R2 is a substituted or unsubstituted group selected from the group consisting of phenyl, pyridine, pyrimidine, pyridazine, pyrazine, and triazine. In some such embodiments, R2 can be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, each of R1 and R2 is independently a substituted or unsubstituted group selected from the group consisting of phenyl, pyridine, pyrimidine, pyridazine, pyrazine, and triazine. In some such embodiments, R1, R2, or both can independently be further substituted by deuterium, alkyl, and partially or fully deuterated alkyl.


In some embodiments, R1 and R2 together comprise a total of 6 or more carbon atoms. In some embodiments, R1 and R2 together comprise from 6 to 21 carbon atoms.


In some embodiments, at least one of R1 and R2 is a para-substituted 6-membered ring. In some such embodiments, the para-substitution comprises at least 3 carbon atoms. In some such embodiments, the para-substitution comprises at least 4 carbon atoms, or at least 5 carbon atoms, or at least 6 carbon atoms, or at least 7 carbon atoms, or at least 8 carbon atoms, or at least 9 carbon atoms, or at least 10 carbon atoms, or at least 11 carbon atoms, or at least 12 carbon atoms, or at least 13 carbon atoms, or at least 14 carbon atoms, or at least 15 carbon atoms.


In some embodiments, each of R1 and R2 can independently be further substituted by a moiety selected from the group consisting of the structures in the following LIST 1:




embedded image


embedded image


embedded image


embedded image


In some embodiments, at least one RA is deuterium, alkyl, or a combination of both.


In some embodiments, at least one RB is deuterium, alkyl, or a combination of both.


In some embodiments, at least one RC is deuterium, alkyl, or a combination of both.


In some embodiments, at least one RD is deuterium, alkyl, or a combination of both.


In some embodiments, at least one RE is deuterium, alkyl, or a combination of both.


In some embodiments, moiety D is a polycyclic fused ring structure.


In some embodiments, moiety D is a polycyclic fused ring structure comprising at least three fused rings In some embodiments, the polycyclic fused ring structure has two 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to Ir and the second 6-membered ring is fused to the 5-membered ring. In some embodiments, moiety D is selected from the group consisting of dibenzofuran, dibenzothiophene, dibenzoselenophene, and aza-variants thereof. In some such embodiments, moiety D can be further substituted at the ortho- or meta-position of the O, S, or Se atom by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof. In some such embodiments, the aza-variants contain exact one N atom at the 6-position (ortho to the O, S, or Se) with a substituent at the 7-position (meta to the O, S, or Se).


In some embodiments, moiety D is a polycyclic fused ring structure comprising at least four fused rings. In some embodiments, the polycyclic fused ring structure comprises three 6-membered rings and one 5-membered ring. In some such embodiments, the 5-membered ring is fused to the ring coordinated to Ir, the second 6-membered ring is fused to the 5-membered ring, and the third 6-membered ring is fused to the second 6-membered ring. In some such embodiments, the third 6-membered ring is further substituted by a substituent selected from the group consisting of deuterium, fluorine, nitrile, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


In some embodiments, moiety D is a polycyclic fused ring structure comprising at least five fused rings. In some embodiments, the polycyclic fused ring structure comprises four 6-membered rings and one 5-membered ring or three 6-membered rings and two 5-membered rings. In some embodiments comprising two 5-membered rings, the 5-membered rings are fused together. In some embodiments comprising two 5-membered rings, the 5-membered rings are separated by at least one 6-membered ring. In some embodiments with one 5-membered ring, the 5-membered ring is fused to the ring coordinated to Ir, the second 6-membered ring is fused to the 5-membered ring, the third 6-membered ring is fused to the second 6-membered ring, and the fourth 6-membered ring is fused to the third-6-membered ring.


In some embodiments, moiety A is pyridine.


In some embodiments, moiety A is imidazole or benzimidazole. In some such embodiments, the N of the imidazole moiety not coordinated to Ir is substituted by aryl, aryl-substituted aryl, or alkyl-substituted aryl, which can be partially or fully deuterated. In some such embodiments, the substitution is on the one or both of the ortho positions of the carbon atom which is attached to the N of the imidazole moiety not coordinated to Ir.


In some embodiments, moiety C comprises a 5-membered ring. In some such embodiments, moiety C is selected from the group consisting of thiophene, benzothiophene, furan, benzofuran, and dibenzofuran.


In some embodiments, the ligand LA is selected from the group consisting of:




embedded image


Xa is selected from the group consisting of O, S, NR, CR′R″, and SiR′R″;


Xb is selected from the group consisting of O, S, and NR; and


each of R, R′, and R″ is independently hydrogen or a substituent selected from the group consisting of the General Substituents defined herein.


In some embodiments, ligand LA is selected from LAi, wherein i is an integer from 1 to 79, and each LAi is defined by the structures of the following LIST 2:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, ligand LB is selected from the group consisting of LB1-1 to LB399-39 that follow the naming convention LBk-h, wherein k is an integer from 1 to 399, and his an integer from 1 to 39; and wherein each of LBk-1 to LBk-39 is defined by the structure in the following LIST 3:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein, for each k, RF and RG are defined in the following LIST 4:

















k
RF
RG









 1
R1
R1



 2
R1
R2



 3
R1
R3



 4
R1
R4



 5
R1
R5



 6
R1
R6



 7
R1
R7



 8
R1
R8



 9
R1
R9



 10
R1
R10



 11
R1
R11



 12
R1
R12



 13
R1
R13



 14
R1
R14



 15
R1
R15



 16
R1
R16



 17
R1
R17



 18
R1
R18



 19
R1
R19



 20
R1
R20



 21
R1
R21



 22
R1
R22



 23
R1
R23



 24
R1
R24



 25
R1
R25



 26
R1
R26



 27
R1
R27



 28
R1
R28



 29
R1
R29



 30
R1
R30



 31
R1
R31



 32
R1
R32



 33
R1
R33



 34
R1
R34



 35
R1
R35



 36
R1
R36



 37
R1
R37



 38
R1
R38



 39
R1
R39



 40
R1
R40



 41
R1
R41



 42
R1
R42



 43
R1
R43



 44
R1
R44



 45
R1
R45



 46
R1
R46



 47
R1
R47



 48
R1
R48



 49
R1
R49



 50
R1
R50



 51
R1
R51



 52
R1
R52



 53
R1
R53



 54
R1
R54



 55
R1
R55



 56
R1
R56



 57
R1
R57



 58
R1
R58



 59
R1
R59



 60
R1
R60



 61
R1
R61



 62
R1
R62



 63
R1
R63



 64
R1
R64



 65
R1
R65



 66
R1
R66



 67
R1
R67



 68
R2
R1



 69
R3
R1



 70
R4
R1



 71
R5
R1



 72
R6
R1



 73
R7
R1



 74
R8
R1



 75
R9
R1



 76
R10
R1



 77
R11
R1



 78
R12
R1



 79
R13
R1



 80
R14
R1



 81
R15
R1



 82
R16
R1



 83
R17
R1



 84
R18
R1



 85
R19
R1



 86
R20
R1



 87
R21
R1



 88
R22
R1



 89
R23
R1



 90
R24
R1



 91
R25
R1



 92
R26
R1



 93
R27
R1



 94
R28
R1



 95
R29
R1



 96
R30
R1



 97
R31
R1



 98
R32
R1



 99
R33
R1



100
R34
R1



101
R35
R1



102
R36
R1



103
R37
R1



104
R38
R1



105
R39
R1



106
R40
R1



107
R41
R1



108
R42
R1



109
R43
R1



110
R44
R1



111
R45
R1



112
R46
R1



113
R47
R1



114
R48
R1



115
R49
R1



116
R50
R1



117
R51
R1



118
R52
R1



119
R53
R1



120
R54
R1



121
R55
R1



122
R56
R1



123
R57
R1



124
R58
R1



125
R59
R1



126
R60
R1



127
R61
R1



128
R62
R1



129
R63
R1



130
R64
R1



131
R65
R1



132
R66
R1



133
R67
R1



134
R26
R1



135
R26
R2



136
R26
R3



137
R26
R4



138
R26
R5



139
R26
R6



140
R26
R7



141
R26
R8



142
R26
R9



143
R26
R10



144
R26
R11



145
R26
R12



146
R26
R13



147
R26
R14



148
R26
R15



149
R26
R16



150
R26
R17



151
R26
R18



152
R26
R19



153
R26
R20



154
R26
R21



155
R26
R22



156
R26
R23



157
R26
R24



158
R26
R25



159
R26
R26



160
R26
R27



161
R26
R28



162
R26
R29



163
R26
R30



164
R26
R31



165
R26
R32



166
R26
R33



167
R26
R34



168
R26
R35



169
R26
R36



170
R26
R37



171
R26
R38



172
R26
R39



173
R26
R40



174
R26
R41



175
R26
R42



176
R26
R43



177
R26
R44



178
R26
R45



179
R26
R46



180
R26
R47



181
R26
R48



182
R26
R49



183
R26
R50



184
R26
R51



185
R26
R52



186
R26
R53



187
R26
R54



188
R26
R55



189
R26
R56



190
R26
R57



191
R26
R58



192
R26
R59



193
R26
R60



194
R26
R61



195
R26
R62



196
R26
R63



197
R26
R64



198
R26
R65



199
R26
R66



200
R26
R67



201
R1
R26



202
R2
R26



203
R3
R26



204
R4
R26



205
R5
R26



206
R6
R26



207
R7
R26



208
R8
R26



209
R9
R26



210
R10
R26



211
R11
R26



212
R12
R26



213
R13
R26



214
R14
R26



215
R15
R26



216
R16
R26



217
R17
R26



218
R18
R26



219
R19
R26



220
R20
R26



221
R21
R26



222
R22
R26



223
R23
R26



224
R24
R26



225
R25
R26



226
R27
R26



227
R28
R26



228
R29
R26



229
R30
R26



230
R31
R26



231
R32
R26



232
R33
R26



233
R34
R26



234
R35
R26



235
R36
R26



236
R37
R26



237
R38
R26



238
R39
R26



239
R40
R26



240
R41
R26



241
R42
R26



242
R43
R26



243
R44
R26



244
R45
R26



245
R46
R26



246
R47
R26



247
R48
R26



248
R49
R26



249
R50
R26



250
R51
R26



251
R52
R26



252
R53
R26



253
R54
R26



254
R55
R26



255
R56
R26



256
R57
R26



257
R58
R26



258
R59
R26



259
R60
R26



260
R61
R26



261
R62
R26



262
R63
R26



263
R64
R26



264
R65
R26



265
R66
R26



266
R67
R26



267
R30
R1



268
R30
R2



269
R30
R3



270
R30
R4



271
R30
R5



272
R30
R6



273
R30
R7



274
R30
R8



275
R30
R9



276
R30
R10



277
R30
R11



278
R30
R12



279
R30
R13



280
R30
R14



281
R30
R15



282
R30
R16



283
R30
R17



284
R30
R18



285
R30
R19



286
R30
R20



287
R30
R21



288
R30
R22



289
R30
R23



290
R30
R24



291
R30
R25



292
R30
R26



293
R30
R27



294
R30
R28



295
R30
R29



296
R30
R30



297
R30
R31



298
R30
R32



299
R30
R33



300
R30
R34



301
R30
R35



302
R30
R36



303
R30
R37



304
R30
R38



305
R30
R39



306
R30
R40



307
R30
R41



308
R30
R42



309
R30
R43



310
R30
R44



311
R30
R45



312
R30
R46



313
R30
R47



314
R30
R48



315
R30
R49



316
R30
R50



317
R30
R51



318
R30
R52



319
R30
R53



320
R30
R54



321
R30
R55



322
R30
R56



323
R30
R57



324
R30
R58



325
R30
R59



326
R30
R60



327
R30
R61



328
R30
R62



329
R30
R63



330
R30
R64



331
R30
R65



332
R30
R66



333
R30
R67



334
R1
R30



335
R2
R30



336
R3
R30



337
R4
R30



338
R5
R30



339
R6
R30



340
R7
R30



341
R8
R30



342
R9
R30



343
R10
R30



344
R11
R30



345
R12
R30



346
R13
R30



347
R14
R30



348
R15
R30



349
R16
R30



350
R17
R30



351
R18
R30



352
R19
R30



353
R20
R30



354
R21
R30



355
R22
R30



356
R23
R30



357
R24
R30



358
R25
R30



359
R26
R30



360
R27
R30



361
R28
R30



362
R29
R30



363
R31
R30



364
R32
R30



365
R33
R30



366
R34
R30



367
R35
R30



368
R36
R30



369
R37
R30



370
R38
R30



371
R39
R30



372
R40
R30



373
R41
R30



374
R42
R30



375
R43
R30



376
R44
R30



377
R45
R30



378
R46
R30



379
R47
R30



380
R48
R30



381
R49
R30



382
R50
R30



383
R51
R30



384
R52
R30



385
R53
R30



386
R54
R30



387
R55
R30



388
R56
R30



389
R57
R30



390
R58
R30



391
R59
R30



392
R60
R30



393
R61
R30



394
R62
R30



395
R63
R30



396
R64
R30



397
R65
R30



398
R66
R30



399
R67
R30











wherein R1 to R67 have the structures in the following LIST 5:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a Formula Ir(LAi)(LBk-h)2, or a Formula Ir(LAi)2(LBk-h), wherein i is an integer from 1 to 79, and k is an integer from 1 to 399, and his an integer from 1 to 39; and each structure of LAi and LBk-h is as defined herein.


In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 6:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another aspect, the compound is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound having a structure of Formula I described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen, deuterium, or halogen) that are replaced by deuterium atoms.


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the OLED comprises an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer can comprise a compound of Formula I as described herein.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the emissive layer can comprise two hosts, a first host and a second host. In some embodiments, the first host is a hole transporting host, and the second host is an electron transporting host. In some embodiments, the first host and the second host can form an exciplex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound of Formula I as described herein.


In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for interventing layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.


The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.


The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.


In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.


In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a pluraility of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer , and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer can comprise a compound of Formula I as described herein.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP, also referred to as organic vapor jet deposition (OVID)), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbmnched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from -40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


embedded image


b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphoric acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image


wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image


wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, US06517957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image


wherein Met is a metal; (Y103-Y104)is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image


wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, US7154114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9466803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, US06699599, US06916554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image


wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image


wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image


wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


E. Experimental Data
SYNTHESIS EXAMPLES
Synthesis Example 1



embedded image


embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III)

A mixture of 5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)pyridine (35.2 g, 133 mmol, 2.1 equiv) and iridium(III) chloride hydrate (20 g, 63.2 mmol, 1.0 equiv) in diglyme (550 mL) and water (82 mL) was sparged with nitrogen for 30 minutes then heated at reflux over the weekend for 48 hours. The cooled reaction mixture was filtered, the solid washed with methanol (2×150 mL) and dried in a vacuum oven at 60° C. for 16 hours to afford di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III) (43 g, 90% yield) as a yellow solid.


[Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2(MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (15.92 g, 61.9 mmol, 2.2 equiv) in methanol (147 mL) was added to a solution of di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III) (42.6 g, 28.2 mmol, 1.0 equiv) in dichloromethane (733 mL) in a flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at room temperature (RT) overnight. Stirring was stopped and the solids allowed to settle for 1 hour to aid filtration. The reaction mixture was filtered through a short (˜2 inch) silica gel pad, rinsing the flask and pad with dichloromethane (1.0 L) until no yellow color remained on the pad. The filtrate was concentrated under reduced pressure and the solid dried under vacuum at 40° C. for 4 hours to give [Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2—(MeOH)2]trifluoromethanesulfonate)(49.6 g, 94% yield) as a yellow solid.


Mer-Bis[5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl]-[4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-(2-phenyl-2′-yl)pyridin-1-yl]-iridium(III)

A solution of [Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2(MeOH)2]trifluoromethane-sulfonate (8 g, 8.56 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-phenylpyridine (2.86 g, 9.42 mmol, 1.1 equiv) and triethylamine (5.97 mL, 42.8 mmol, 5.0 equiv) in acetone (245 mL) was heated at 50° C. for 48 hours. Liquid chromatography-mass spectrometry (LC-MS) analysis showed compound mer (69%). The cooled reaction mixture was concentrated under reduced pressure. A solution of the residue in dichloromethane (20 mL) was filtered to remove dark insoluble material. The filtrate was passed through a pad of Celite (100 g), rinsing with dichloromethane (100 mL) and the filtrate concentrated under reduced pressure. The solid was dissolved in 20% methanol in dichloromethane (100 mL) then precipitated by addition of methanol (100 mL). The suspension was stirred for 15 minutes, the fine yellow solid filtered and washed with methanol (200 mL). The solid was dried in a vacuum oven at 50° C. for overnight to give compound mer-complex (8.1 g, 85% LCMS purity, 90% Q-NMR purity), as a yellow solid.


Bis[5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)pyridin-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-(2-phenyl-2′-yl)pyridin-1-yl]iridium(III)

The meridonal isomer was converted to the facial isomer via photoisomerization


Purification

Crude compound after photoreaction (8.0 g, 87.8% purity), containing residual mer-isomer, (1.8%) was filtered through a pad of basic alumina (100 g), eluting with dichloromethane (1 L). The filtrate was concentrated under reduced pressure. The residue was purified on a Biotage automated chromatography system (2 stacked 100 g Biotage silica gel cartridges), eluting with 12-100% tetrahydrofuran in heptanes, to give a sticky yellow solid. The solid (5 g) was dissolved in dichloromethane (5 mL) then precipitated by addition of methanol (100 mL). The solid was filtered, washed with methanol (50 mL) and dried in a vacuum oven at 50° C. overnight to give fac compound (4.1 g, 99.8% UPLC purity) as a yellow solid. The solid was precipitated from dichloromethane in hexanes (5 mL/100 mL) then dried in a vacuum oven at 50° C. overnight to give bis[5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)pyridin-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-(2-phenyl-2′-yl)pyridine-1-yl]iridium(III) (3.9 g, 45% yield, 99.8% UPLC purity), as a yellow solid.


Synthesis Example 2



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III)

A mixture of 1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-1H-benzo[d]imidazole (5.3 g, 11.54 mmol, 2.2 equiv) and iridium(III) chloride hydrate (1.66 g, 5.24 mmol, 1.0 equiv) in 2-ethoxyethanol (80 mL) and water (26 mL) was heated at 102° C. for 70 hours. The cooled reaction mixture was filtered, the solid washed with methanol (3×50 mL) then dried in a vacuum oven at ˜50° C. for a few hours to give di-μ-chloro-tetrakis-[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.76 g, 79% yield) as a yellow solid.


[Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (1.16 g, 4.55 mmol, 2.2 equiv) in methanol (15 mL) was added in one portion to a solution of di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.75 g, 2.06 mmol, 1.0 equiv) in dichloromethane (75 mL) and the flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at RT overnight under nitrogen. The reaction mixture was filtered through a ˜1 inch pad of silica gel, rinsing with dichloromethane (2×100 mL) then a 5:1 mixture of dichloromethane and methanol (2×100 mL). The filtrate was concen-trated under reduced pressure and the residue dried in a vacuum oven at 50° C. overnight to give [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2]trifluoromethane-sulfonate (5.3 g, 97% yield) as a yellow-greenish solid.


Bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]imidazol-3-yl]-[(2-(dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)pyridin-1-yl)iridium(III)

A mixture of [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2]trifluoromethane-sulfonate (5.0 g, 3.77 mmol, 1.0 equiv) and 2-(dibenzo[b,d]furan-4-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)pyridine (1.49 g, 3.77 mmol, 1.0 equiv) in ethanol (70 mL) was heated at 78° C. for 2 hours then 2,6-lutidine (0.404 g, 3.77 mmol, 1.0 equiv) added. The reaction mixture was heated at 78° C. for 27 hours, cooled to room temperature then concentrated under reduced pressure. The residue was dissolved in dichloromethane (˜40 mL) and the solution loaded onto a Biotage automated chromatography system (2 stacked 220 g and one 330 g silica gel cartridges), eluting with a gradient of 0-25% toluene in hexanes. The recovered product (3.3 g) was filtered through basic alumina (450 g), eluting with 50% dichloromethane in hexanes. The obtained solid (3.2 g) was dissolved in dichloromethane (40 mL) then precipitated with methanol (260 mL) to give bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]imidazol-3-yl]-[(2-(dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2,6-d2)pyridin-1-yl)-iridium(III) (3.1 g, 54% yield, 99.7% UPLC purity) as a red-orange solid.


Synthesis Example 3



embedded image


embedded image


[Ir(4,5-bis(methyl-d3)-2-(6-(methyl-d3)[1,1′-biphenyl]-4′-yl)pyridin-1-yl)(−1H))2-[MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (195 g, 758 mmol, 2.2 equiv) in methanol (1800 mL) was added to a solution of di-μ-chloro-tetrakis[k2(C2,N)-4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl]diiridiium(III) (545 g, 345 mmol, 1.0 equiv) in dichloromethane (9000 mL) in a flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at RT overnight then filtered through silica gel (˜1 kg), washing with dichloromethane (4 L). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. over two days to give [Ir(4,5-bis-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl)(1H))2(MeOH)2] trifluoromethanesulfonate (661 g, 99% yield) as a yellow solid.


mer-Bis[4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl]-[4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzo-furan-10-yl)-9′-yl)pyridin-1-yl]iridium(III)

A 250 mL, 4-neck flask was charged with [Ir(4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-bi-phenyl]-4′-yl)pyridin-1-yl)(1H))2(MeOH)2] trifluoromethanesulfonate (4.25 g, 4.39 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-(naphtho[1,2-b]benzofuran-10-yl)pyridine (2.15 g, 4.83 mmol, 1.1 equiv) and acetone (137 mL). After stirring for several minutes, triethylamine (1.83 mL, 13.2 mmol, 3.0 equiv) was added then the reaction mixture heated at 50° C. for 22 hours. The reaction mixture was cooled to room temperature. Dichloromethane was added to dissolve most solids and the mixture filtered through Celite® (diatomaceous earth)(5 g). The filtrate was concentrated under reduced pressure to give an orange solid which was triturated with 20% dichloromethane in methanol (100 mL) at 35° C. for one hour. The cooled suspension was filtered and the solid dried in a vacuum oven overnight at 50° C. to give mer-complex (5.44 g, >100% yield) as an orange solid.


Bis[4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2,6-d2)-2-((naphtho[1,2-b]benzofuran-10-yl)-9′-yl)pyridin-1-yl]Iridium(III) (2021-ADS-UDC-Ir984)

The meridonal isomer was converted to the facial isomer via photoisomerization. Solvent wet crude after photoreaction (4.74 g) was filtered through basic alumina (100 g) atop silica gel (20 g), eluting with dichloromethane (1.0 L). Product fractions were concentrated under reduced pressure. The residue was purified on a Biotage automated chromatography system (2 stacked, 350 g HC cartridges), eluting with 0-30% tetrahydrofuran in hexanes. Clean product fractions were saved. Mixed fractions were combined into two batches based on impurity profiles and re-purified using similar conditions. All pure fractions were concentrated under reduced pressure. The orange solid was dissolved in dichloromethane (50 mL), precipitated with methanol (50 mL), filtered and dried in a vacuum oven overnight at 50° C. to give bis[4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzofuran-10-yl)-9′-yl)pyridin-1-yl]Iridium(III) (2.69 g, 51% yield, 99.9% UPLC purity) as an orange solid.


Synthesis Example 4



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III)

A mixture of 1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-1H-benzo[d]imidazole (5.3 g, 11.54 mmol, 2.2 equiv) and iridium(III) chloride hydrate (1.66 g, 5.24 mmol, 1.0 equiv) in 2-ethoxyethanol (80 mL) and water (26 mL) was heated at 102° C. for 70 hours. The cooled reaction mixture was filtered, the solid washed with methanol (3×50 mL) then dried in a vacuum oven at ˜50° C. for a few hours to give di-μ-chloro-tetrakis-[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.76 g, 79% yield) as a yellow solid.


[Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d] imidazol-3-yl)(1H)2(MeOH)2] trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (1.16 g, 4.55 mmol, 2.2 equiv) in methanol (15 mL) was added in one portion to a solution of di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.75 g, 2.06 mmol, 1.0 equiv) in dichloromethane (75 mL) and the flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at RT overnight under nitrogen. The reaction mixture was filtered through a ˜1 inch pad of silica gel, rinsing with dichloromethane (2×100 mL) then dichloromethane in methanol (5:1, 2×100 mL). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. overnight to give [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1)2(MeOH)2]trifluoromethane-sulfonate (5.3 g, 97% yield) as a yellow-greenish solid.


Bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]imidazol-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzofuran-10-yl)-4′-yl)pyridin-1-yl]Iridium(III)

A 500 mL 4-neck flask was charged with [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2] trifluoromethanesulfonate (4.40 g, 3.35 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2,6-d2)-2-(naphtho[1,2-b]benzofuran-10-yl)pyridine (lot # KRM2021-2-088, 1.49 g, 3.35 mmol, 1.0 equiv) and ethanol (167 mL). 2,6-Lutidine (0.388 mL, 3.35 mmol, 1.0 equiv) was added then the reaction mixture heated at 75° C. for 15.5 hours. LCMS analysis indicated 75% conversion. The reaction mixture was cooled to RT, the suspension filtered and the solid rinsed with methanol (20 mL). The crude orange solid (3.95 g) was purified on a Biotage automated chromatography system (2 stacked 350 g silica gel cartridges), eluting with 0-30% tetrahydrofuran in hexanes, to give two batches of mixed fractions. Each batch was re-purified separately on a Biotage automated chromatography system (4 stacked 100 g silica gel cartridges), eluting with 0-20% tetrahydrofuran in hexanes. Purest product fractions were concentrated under reduced pressure. The residue was dissolved in dichloromethane (100 mL) and precipitated with methanol (50 mL) to give an orange solid (99.0% UPLC purity). The material was divided into two equal parts and each re-chromato-graphed on a Biotage system (4 stacked 100 g silica gel cartridges), eluting with 10-30% toluene in hexanes containing 5% dichloromethane. Pure fractions were concentrated under reduced pressure. The residue was precipitated from dichloromethane (120 mL) with methanol (100 mL) then filtered. The solid was dried in a vacuum oven overnight at 50° C. to give bis[1-(2,6-bis(propan-2-yl-d7)-phenyl)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]imidazol-1-yl]-[4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-]benzofuran-10-yl)-4′-yl)pyridin-1-yl]Iridium(III) (2.29 g, 43% yield, 99.6% UPLC purity) as an orange solid.


Synthesis Example 5



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III)

A mixture of 1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-1H-benzo[d]imidazole (5.3 g, 11.54 mmol, 2.2 equiv) and iridium(III) chloride hydrate (1.66 g, 5.24 mmol, 1.0 equiv) in 2-ethoxyethanol (80 mL) and water (26 mL) was heated at 102° C. for 70 hours. The cooled reaction mixture was filtered, the solid washed with methanol (3×50 mL) then dried in a vacuum oven at ˜50° C. for a few hours to give di-μ-chloro-tetrakis-[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.76 g, 79% yield) as a yellow solid.


[Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (1.16 g, 4.55 mmol, 2.2 equiv) in methanol (15 mL) was added in one portion to a solution of di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III) (4.75 g, 2.06 mmol, 1.0 equiv) in dichloromethane (75 mL) and the flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at room temperature overnight under nitrogen. The reaction mixture was filtered through a ˜1 inch pad of silica gel, rinsing with dichloromethane (2×100 mL) then dichloromethane in methanol (5:1, 2×100 mL). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. overnight to give [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2] trifluoromethane-sulfonate (5.3 g, 97% yield) as a yellow-greenish solid.


Bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]imidazol-3-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2-(phenyl-2′-yl)pyridin-1-yl]iridium(III)

A mixture of [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-2′-yl)-1H-benzo[d]imidazole-3-yl)(1H)2(MeOH)2] trifluoromethanesulfonate (3.94 g, 2.97 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-phenylpyridine (0.9 g, 2.97 mmol, 1.0 equiv) and 2,6-lutidine (0.318 g, 2.97 mmol, 1.0 equiv) in ethanol (55 mL) was heated at 78° C. for 19 hours. The cooled reaction mixture was concentrated under reduced pressure to give ˜4 g of crude material. The material was purified in 2 portions on a Büchi automated chromatography system (7 stacked 120 g silica gel cartridges), eluting with a gradient of 0-4% acetone in hexanes. The recovered product (1.8 g) was filtered through basic alumina (550 g), eluting with 50-100% dichloromethane in hexanes. The obtained solid (1.7 g) was dissolved in dichloromethane (4 mL) and precipitated with methanol (200 mL). The solid was filtered and dried in a vacuum oven at ˜50° C. overnight to give bis[1-(2,6-bis-(propan-2-yl-d7)phenyl)-(2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)-1H-benzo[d]-imidazol-3-yl]-[4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-(phenyl-2′-yl)pyridin-1-yl]iridium(III) (1.67 g, 40% yield, 99.9% UPLC purity) as a red orange solid.


Synthesis Example 6



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III)

A mixture of 5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)pyridine (30.6 g, 115 mmol, 2.1 equiv) and iridium(III) chloride hydrate (17.4 g, 55 mmol, 1.0 equiv) in diglyme (500 mL) and water (75 mL) was sparged with nitrogen for 15 minutes then heated at reflux for 48 hours. The cooled reaction mixture was filtered, the solid washed with methanol (2×100 mL) and dried in a vacuum oven at 50° C. for 16 hours to afford di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III) (31.2 g, 75% yield) as a yellow solid.


[Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2(MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (12.4 g, 48.3 mmol, 2.2 equiv) in methanol (80 mL) was added to a solution of di-μ-chloro-tetrakis[k2(C2,N)-5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-4′-yl)pyridin-1-yl]diiridiium(III) (33.0 g, 21.8 mmol, 1.0 equiv) in methylene chloride (525 mL) in a flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at RT for 16 hours then filtered through a ˜1 inch pad of silica gel pad topped a ˜0.5 inch with Celite, rinsing with methylene chloride (1.0 L). The filtrate was concentrated under reduced pressure and the residue was re-dissolved in methylene chloride (150 mL) and methanol (50 mL). The solution was added dropwise to hexanes (1.0 L) and the flask rinsed with a small volume of methylene chloride. The precipitate was filtered and the precipitation method repeated. The solid obtained was dried under vacuum at 50° C. for 16 hours to give [Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2(MeOH)2]trifluoromethanesulfonate (28.8 g, 71% yield) as a yellow solid.


mer-Bis[(5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-pyridin-1-yl)]-[2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)pyridin-1-yl]iridium(III)

A nitrogen flushed 250 mL 4-neck flask was charged with [Ir((5-(methyl-d3)-2-((6-(methyl-d3)-[1,1′-bi-phenyl]-3-yl)-4′-yl)pyridin-1-yl](−1H))2(MeOH)2]trifluoromethanesulfonate (5.5 g, 5.89 mmol, 1.0 equiv), 2-(dibenzo[b,d]furan-4-yl)-4-(4-(2,2-di-methylpropyl-1,1-d2)phenyl)pyridine (2.56 g, 6.48 mmol, 1.1 equiv) and acetone (120 mL). The reaction mixture was sparged with nitrogen for 15 minutes and the flask wrapped in foil to exclude light. Triethylamine (2.46 mL, 17.66 mmol, 3.0 equiv) was added then the reaction mixture heated at 50° C. for 17 hours. The reaction mixture was cooled to RT then filtered through a pad of Celite® (15 g), rinsing with dichloromethane (50 mL). The filtrate was concentrated under reduced pressure. The residue was triturated with 10% dichloromethane in methanol (30 mL). The solid was filtered and washed with methanol (20 mL) to give (7.4 g, 72% Q NMR purity) as a bright orange solid.


Bis[(5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-pyridin-1-yl)][2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)pyridin-1-yl]iridium(III)

The meridonal isomer was converted to the facial isomer via photoisomerization. Crude product after photoreaction (˜8 g) was dissolved in dichloromethane (50 mL) and passed through a pad of silica gel (40 g) topped with basic alumina (190 g), eluting with 50% dichloromethane in hexanes (1 L). Product fractions were concentrated under reduced pressure. The residue was dissolved in dichloro-methane (65 mL), adsorbed onto Celite® (16 g) and purified on a Biotage Isolera automated chromatography system (3 stacked 100 g Biotage silica gel cartridges), eluting with 0-20% tetrahydrofuran in hexanes. Pure product fractions were concentrated under reduced pressure. The residue was dissolved in dichloromethane (20 mL) and precipitated with methanol (30 mL). The solid was were filtered, washed with methanol (30 mL) and dried in a vacuum oven at 50° C. overnight to give bis[(5-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)-pyridin-1-yl)][2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)-phenyl-2,6-d2)pyridin-1-yl]iridium(III) (3.9 g, 49% yield, 99.8% UPLC purity) as a bright yellow solid.


Synthesis Example 7



embedded image


[Ir(4,5-bis(methyl-d3)-2-(6-(methyl-d3)[1,1′-biphenyl]-4′-yl)pyridin-1-yl)(−1H))2(MeOH)2] trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (195 g, 758 mmol, 2.2 equiv) in methanol (1800 mL) was added to a solution of di-μ-chloro-tetrakis[k2(C2,N)-4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl)pyridin-1-yl]diiridiium(III) (545 g, 345 mmol, 1.0 equiv) in dichloromethane (9000 mL) in a flask wrapped with aluminum foil to exclude light. The reaction mixture was stirred at RT overnight then filtered through a pad of silica gel (˜1 kg), washing with dichloromethane (4 L). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. over two days to give [Ir(4,5-bis-(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-4′-yl]pyridin-1-yl)(1H))2(MeOH)2]trifluoromethane-sulfonate) (661 g, 99% yield) as a yellow solid.


Mer-Bis[(4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)pyridin-1-yl)]-[2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-)pyridin-1-yl]iridium(III)

A nitrogen flushed 250 mL 4-neck flask was charged with [Ir(4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-bipheny]-3-yl)pyridine(−H))2(MeOH)2] trifluoromethanesulfonate (6.0 g, 6.20 mmol, 1.0 equiv), 2-(dibenzo[b,d]furan-4-yl)-4-(4-(2,2-di-methylpropyl-1,1-d2)phenyl)pyridine (2.70 g, 6.82 mmol, 1.1 equiv) and acetone (125 mL). The mixture was sparged with nitrogen for 15 minutes and the flask wrapped in foil to exclude light. Triethylamine (2.59 mL, 18.6 mmol, 3.0 equiv) was added then the reaction mixture heated at 50° C. overnight. After 20 hours, the reaction mixture was cooled to RT and filtered through a pad of Celite® (10 g), rinsing with dichloromethane (20 mL). The filtrate was concentrated under reduced pressure and the residue triturated with 10% dichloromethane in methanol (50 mL). The solid was filtered and washed with methanol (50 mL) to give solvent wet mer-complex (9.5 g, 74.4% QNMR purity) as an orange solid.


Bis[(4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)pyridin-1-yl)]-[2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2,6-d2)pyridin-1-yl]iridium(III))

The meridonal isomer was converted to the facial isomer via photoisomerization.


Purification:

Crude product after photo isomerization (8 g) was partially purified by chromatography on silica gel (˜40 g) topped with basic alumina (˜250 g), eluting with 50% dichloromethane in hexanes (1 L). Product fractions were concentrated under reduced pressure. The residue was dissolved in dichloromethane (50 mL) and adsorbed onto Celite® (14 g). The adsorbed material was purified on a Biotage Isolera automated chromatography system (3 stacked 100 g HC Biotage silica gel cartridges), eluting with 30-50% toluene in hexanes. Pure product fractions were concentrated under reduced pressure. The residue was dissolved in dichloromethane (15 mL) and precipitated with methanol (50 mL). The solid was, washed with methanol (30 mL) and dried under vacuum at 50° C. overnight to give bis[(4,5-bis(methyl-d3)-2-(6-(methyl-d3)-[1,1′-biphenyl]-3-yl)pyridin-1-yl)]-[2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl-2,6-d2)-pyridin-1-yl]iridium(III) (3.8 g, 47.5% yield, >99.9% UPLC purity) as a bright yellow solid.


Synthesis Example 8



embedded image


[Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3)phenyl)pyridine(−1H))2(MeOH)2](tri-fluoromethanesulfonate)

To a solution of di-μ-chloro-tetrakis [κ2(C2,N)-4,5-bis(inethyl-d3)-2-(4-(methyl-d3)-phenyl)pyridine]diiridium(III) (106 g 122 mmol, 1.0 equiv) in dichloromethane (2.0 L) was added a solution of silver trifluoromethanesulfonate (69.3 g, 270 mmol, 2.2 equiv) in methanol (500 mL) added. The flask was wrapped with foil to exclude light then the reaction mixture was stirred overnight at RT under nitrogen. The reaction mixture was filtered through a pad of silica gel (300 g) topped with Celite® (20 g), rinsing with dichloromethane (1.0 L). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven to give [Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3)phenyl)pyridine(−1H))2-(MeOH)2]trifluoromethanesulfonate (˜162.5 g, 81% yield) as a yellow solid.


mer-Bis[4,5-bis(methyl-d3)-2-(4-(methyl-d3)phen-2′-yl)pyridin-1-yl]-[4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzofuran-10-yl)-9′-yl)pyridin-1-yl]Iridium(III)

A 250 mL, 4-neck flask was charged with [Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3) phenyl)pyridine(−1H))2-(MeOH)2]trifluoromethanesulfonate (4.00 g, 4.90 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-(naphtho[1,2-b]benzofuran-10-yl)pyridine (2.40 g, 5.39 mmol, 1.1 equiv) and acetone (153 mL) then the mixture was stirred for several minutes under a nitrogen atmosphere. Triethylamine (2.05 mL, 14.7 mmol, 3.0 equiv) was added then the reaction mixture heated at 50° C. for 18 hours. The reaction mixture was removed from heat and allowed to cool to RT. The reaction mixture was filtered through a pad of Celite® (5 g), rinsing with dichloromethane (1.0 L). The filtrate was concentrated to give a red-orange solid which was triturated with 20% dichloromethane in methanol (100 mL) at 35° C. for one hour. The suspension was cooled to RT, filtered and the solid rinsed with methanol (50 mL). The solid was dried in a vacuum oven overnight at 50° C. to give mer-complex (4.47 g) as an orange solid.


Bis[4,5-bis(methyl-d3)-2-(4-(methyl-d3)phen-2′-yl)pyridin-1-yl]-[4-(4-(2,2-di-methylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzofuran-10-yl)-9′-yl)pyridin-1-yl]Iridium(III)

The meridonal isomer was converted to the facial isomer via photoisomerization.


Purification:

Crude compound after photoreaction (˜5.0 g, wet) was filtered through a 1 inch pad of basic alumina atop a 1 inch pad of silica gel (1×1 inch), eluting with dichloromethane (1.0 L). Product fractions were concentrated under reduced pressure to give a red-orange solid. The recovered material was purified on a Biotage automated chromatography system (2 stacked 350 g silica gel cartridges), eluting with 0-30% tetrahydrofuran in hexanes. Cleanest product fractions concentrated under reduced pressure. The solid was precipitated from dichloromethane (50 mL) with methanol (50 mL) to give, after drying in a vacuum oven overnight at 50° C., bis[4,5-bis(methyl-d3)-2-(4-(methyl-d3)phen-2′-yl)pyridin-1-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-((naphtho[1,2-b]benzo-furan-10-yl)-9′-yl)pyridin-1-yl]iridium(III) (2.63 g, 51% yield, 99.5% UPLC purity) as an orange solid.


Synthesis Example 9



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III)

A mixture of 1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl)-1H-benzo[d]imidazole (7 g, 18.21 mmol, 2.2 equiv) and iridium(III) chloride hydrate (2.62 g, 8.28 mmol, 1.0 equiv) in 2-ethoxyethanol (90 mL) and DIUF water (30 mL) was heated at 102° C. for 70 hours. The cooled reaction mixture was filtered, the solid washed with methanol (3×50 mL) then dried in a vacuum oven for a few hours at ˜50° C. to give di-μ-chloro-tetrakis[k2 (C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imid-azol-3-yl]diiridium (III) (7.08 g, 86% yield) as a yellow solid.


[Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2]trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (1.85 g, 7.21 mmol, 2.2 equiv) in methanol (18 mL) was added in one portion to a solution of di-μ-chloro-tetra-kis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium (III) (7 g, 3.26 mmol, 1.0 equiv) in dichloro-methane (90 mL) and the flask wrapped with foil to exclude light. The reaction mixture was stirred at RT overnight under nitrogen. The reaction mixture was filtered through a short (˜1 inch) pad of silica gel, rinsing with dichloromethane (2×100 mL) then a 5:1 mixture of dichloromethane and methanol (2×100 mL). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. overnight to give [Ir(1-(2,6-bis-(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl)-(1H)2(MeOH)2] trifluoromethanesulfonate (7.9 g, 103% yield) as a yellow-greenish solid.


Bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl]-[(2-(dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethyl-propyl-1,1-d2)phenyl)pyridin-1-yl)iridium(III)

A mixture of [Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl)(1H)2(MeOH)2] trifluoromethanesulfonate (2.6 g, 2.21 mmol, 1.0 equiv) and 2-(dibenzo[b,d]furan-4-yl)-4-(4-(2,2-dimethyl-propyl-1,1-d2)phenyflpyridine (0.876 g, 2.21 mmol, 1.0 equiv) in ethanol (40 mL) was heated at 78° C. for 2 hours then 2,6-lutidine (0.237 g, 2.21 mmol, 1.0 equiv) added. The reaction mixture was heated at 78° C. for 30 hours, cooled to room temperature then concentrated under reduced pressure. The residue was dissolved in toluene (˜20 mL) then loaded on to a Biotage automated chromatography system (2 stacked 220 g and one 330 g silica gel cartridges), eluting with a gradient of 0-25% toluene in hexanes. The recovered product (2.2 g, 73% yield) was filtered through basic alumina (450 g), eluting with 50% dichloromethane in hexanes. The recovered solid (2.1 g) was dissolved in dichloromethane (40 mL) then precipitated with methanol (260 mL) to give bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imid-azol-3-yl]-[(2-(dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)-phenyl)pyridin-1-yl)iridium(III) (1.98 g, 99.6% UPLC purity) as a red-orange solid.


Synthesis Example 10



embedded image


[Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3)phenyl)pyridine(—1H))2(MeOH)2]tri-fluoromethanesulfonate


To a solution of di-μ-chloro-tetrakis [κ2(C2,N)-4,5-bis(methyl-d3)-2-(4-(methyl-d3)-phenyl)pyridine]diiridium(III) (106 g 122 mmol, 1.0 equiv) in dichloromethane (2.0 L), in a flask wrapped with foil to exclude light, was added a solution of silver trifluoromethanesulfonate (69.3 g, 270 mmol, 2.2 equiv) in methanol (500 mL). The reaction mixture was stirred overnight at RT under nitrogen. The reaction mixture was filtered through a pad of silica gel pad (300 g) topped with Celite® (20 g), rinsing with dichloromethane (1.0 L). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven to give [Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3)phenyl)pyridine(−1H))2(MeOH)2] trifluoromethanesulfonate (˜162.5 g, 81% yield) as a yellow solid.


Mer-Bis[2-(4-(methyl-d3)phenyl-2′-yl)-4,5-bis(methyl-d3)pyridin-1-yl][2-((di-benzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-pyridin-1-yl]iridium(III)

A nitrogen flushed 500 mL 4-neck flask was charged with [Ir(4,5-bis(methyl-d3)-2-(4-(methyl-d3)phenyl)-pyridine(−H))2(MeOH)2](trifluoromethanesulfonate) (6.5 g, 7.97 mmol, 1.0 equiv) and 2-(dibenzo[b,d]furan-4-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-pyridine (3.5 g, 8.85 mmol, 1.1 equiv) and acetone (160 mL). The mixture was sparged with nitrogen for 15 minutes and the flask wrapped in foil to exclude light. Triethylamine (3.33 mL, 23.9 mmol, 3.0 equiv) was added then the reaction mixture was heated at 50° C. overnight. After 18 hours, the reaction mixture was cooled to RT, filtered through a pad of Celite® (20 g) and the filtrate was concentrated under reduced pressure. The residue was triturated with 10% dichloromethane in methanol (60 mL). The solid was filtered and washed with methanol (50 mL) to give mer-complex (7.2 g, 88% HPLC purity, 87% Q NMR purity) as an orange solid.


Bis[2-(4-(methyl-d3)phenyl-2′-yl)-4,5-bis(methyl-d3)pyridin-1-yl][2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)pyridin-1-yl]iridium(III)

The meridonal isomer was converted to the facial isomer via photoisomerization.


Purification

Crude product after photo reaction (˜8 g) was filtered through a 2 inch pad of silica gel (˜50 g) topped with a 6 inch pad of basic alumina (˜200 g), eluting with 50% dichloromethane in hexanes (1 L). Product fractions were concentrated under reduced pressure. The residue was dissolved in dichloromethane, adsorbed onto Celite® (14.7 g) and purified on a Biotage Isolera automated chromatography system (3 stacked 100 g Biotage HC silica gel cartridges), eluting with 0-17% tetrahydrofuran in hexanes. Pure product fractions were concentrated under reduced pressure. The residue was dissolved dichloromethane (20 mL) and precipitated with methanol (50 mL). The solid was filtered and washed with methanol (30 mL) to give bis[2-(4-(methyl-d3)phenyl-2′-yl)-4,5-bis(methyl-d3)-pyridin-1-yl][2-((dibenzo[b,d]furan-4-yl)-3′-yl)-4-(4-(2,2-di-methylpropyl-1,1-d2)-phenyl)pyridin-1-yl]iridium(III) (2.9 g, 36% yield, 99.8% UPLC purity) as a bright yellow solid.


Synthesis Example 11



embedded image


Di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium(III)

A mixture of 1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl)-1H-benzo-[d]imidazole (7 g, 18.21 mmol, 2.2 equiv) and iridium(III) chloride hydrate (2.62 g, 8.28 mmol, 1.0 equiv) in 2-ethoxyethanol (90 mL) and water (30 mL) was heated at 102° C. for 70 hours. The cooled reaction mixture was filtered, the solid washed with methanol (3×50 mL) then dried in a vacuum oven for a few hours at ˜50° C. to give di-μ-chloro-tetrakis[k2(C2,N)-1-(2,6-bis-(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imid-azol-3-yl]-diiridium (III) (7.08 g, 86% yield) as a yellow solid.


[Ir(1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo-[d]imidazol-3-yl)(1H)2(MeOH)2] trifluoromethanesulfonate

A solution of silver trifluoromethanesulfonate (1.85 g, 7.21 mmol, 2.2 equiv) in methanol (18 mL) was added in one portion to a solution of di-μ-chloro-tetrakis-[k2(C2,N)-1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl]diiridium (III) (7 g, 3.26 mmol, 1.0 equiv) in dichloro-methane (90 mL) and the flask wrapped with foil to exclude light. The reaction mixture was stirred at RT overnight under nitrogen. The reaction mixture was filtered through a short (˜1 inch) pad of silica gel, rinsing with dichloromethane (2×100 mL) then a 5:1 mixture of dichloromethane and methanol (2×100 mL). The filtrate was concentrated under reduced pressure and the residue dried in a vacuum oven at 50° C. overnight to give [Ir(1-(2,6-bis-(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl)-(1H)2(MeOH)2]trifluoromethanesulfonate (7.9 g, 103% yield) as a yellow-green solid.


Bis[1-(2,6-bis(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo-[d]imidazol-3-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-(phenyl-2′-yl)pyri-din-1-yl]iridium(III)

A mixture of [Ir(1-(2,6-bis-(propan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl)-(1H)2-[MeOH)2] trifluoromethanesulfonate (2.63 g, 2.24 mmol, 1.0 equiv), 4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-phenylpyridine (0.68 g, 2.24 mmol, 1.0 equiv) and 2,6-lutidine (0.24 g, 2.24 mmol, 1.0 equiv) in ethanol (40 mL) was heated at 78° C. for 40 hours. The cooled reaction mixture was concentrated under reduced pressure. The residue was purified on a Büchi automated chromatography system (220 g and 330 g stacked silica gel cartridges), eluting with a gradient of 0-20-25% dichloromethane in hexanes. The recovered product (1.7 g, 98% UPLC purity) was re-purified on a Büchi automated chromatography system (6 stacked 120 g silica gel cartridges), eluting with a gradient of 0-20-25% dichloromethane in hexanes. The recovered product (1.4 g) was filtered through basic alumina (450 g), eluting with 50% dichloromethane in hexanes. The recovered solid (1.3 g) was dissolved in dichloromethane (2 mL) and precipitated with methanol (250 mL). The solid was filtered and dried in a vacuum oven at ˜50° C. overnight to give bis[1-(2,6-bis(pro-pan-2-yl-d7)phenyl)-2-(4-(methyl-d3)phenyl-2′-yl)-1H-benzo[d]imidazol-3-yl][4-(4-(2,2-dimethylpropyl-1,1-d2)phenyl)-2-(phenyl-2′-yl)pyridin-1-yl]iridium(III) (1.25 g, 44% yield, 99.9% UPLC purity) as a red-orange solid.


Device Fabrications

All device examples were fabricated by high vacuum (<10−7 Torr) thermal evaporation (VTE). The anode electrode was 800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiQ (8-quinolinolato lithium) followed by 1000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.


The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of HATCN as the hole injection layer (HIL), 450 Å of hole transport material HTM as the hole transport layer (HTL), 50 Å of EBL as an electron blocking layer (EBL), 400 Å of 10 wt % emitter doped in a host as the emissive layer (EML) wherein the host comprised a 60/40 wt % mixture of H1/H2, and 350 Å of 35% ETM in LiQ as the electron transport layer (ETL). As used herein, HATCN, HTM, EBL, H1, H2, and ETM have the following structures.




embedded image


Device structure is shown in the Table 1 and the chemical structures of the device materials are shown below.




embedded image









TABLE 1







Device example layer structure









Layer
Material
Thickness [Å]












Anode
ITO
1,150


HIL
HAT-CN
100


HTL
HTM
450


EBL
EBL
50


EML
H1/H2 (6:4): Emitter (wt % as
400



noted in Table 2)



ETL
Liq:ETM 35%
350


EIL
Liq
10


Cathode
Al
1,000
















TABLE 2







Device Performance of Inventive Examples


(YD) vs Comparison Examples (CE)














Maximum emission
At 1,000 nits












Example
Emitter
wt %
wavelength [nm]
EQE (%)
LE [cd/A]





Example 1
YD1
10
559
29.0
96.2


Example 2
CE1
10
558
27.6
91.7


Example 3
YD2
10
561
29.8
97.9


Example 4
CE2
10
561
27.7
90.5


Example 5
YD3
10
561
30.6
101.6 


Example 6
CE3
10
562
28.5
92.3


Example 7
YD4
10
558
26.7
91.3


Example 8
CE4
10
561
26.6
89.0









It can be seen from the device data in Table 2 that the inventive emitter compounds (YD1 to YD4) all have better EQE and higher luminance efficacy (LE) than their counterpart comparative compounds (CE1 to CE4) under same device testing conditions. The inventive emitter compounds were unexpectedly more efficient than their comparative compounds, and these increases were beyond any value that could be attributed to experimental error and the observed improvements were significant.

Claims
  • 1. A heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of
  • 2. The compound of claim 1, wherein each R1, R2, RA, RB, RC, RD, and RE is independently hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.
  • 3. The compound of claim 1, wherein R1 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof.
  • 4. The compound of claim 1, wherein R2 is selected from the group consisting of aryl, heteroaryl, cycloalkyl, heterocycloalkyl, and combinations thereof.
  • 5. The compound of claim 1, wherein at least one of R1 and R2 is a substituted or unsubstituted group selected from the group consisting of phenyl, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • 6. The compound of claim 1, wherein at least one of R1 and R2 is a para-substituted 6-membered ring.
  • 7. The compound of claim 1, wherein each of R1 and R2 can be further independently substituted by a moiety selected from the group consisting of:
  • 8. The compound of claim 1, wherein at least one RA, one RB, one RC, one RD, or one RE is deuterium, alkyl, or a combination of both.
  • 9. The compound of claim 1, wherein moiety D is a monocyclic aromatic ring, or a polycyclic fused aromatic ring structure.
  • 10. The compound of claim 1, wherein moiety A is pyridine, imidazole or benzimidazole.
  • 11. The compound of claim 1, wherein moiety C comprises a 5-membered ring.
  • 12. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:
  • 13. The compound of claim 1, wherein the ligand LA is selected from LAi, wherein i is an integer from 1 to 79, and LA1 to LA79 have the following structures:
  • 14. The compound of claim 13, ligand LB is selected from the group consisting of LB1-1 to LB399-39 defined by naming convention LBk-h, wherein k is an integer from 1 to 399, and his an integer from 1 to 39; wherein each of LBk-1 to LBk-39 is defined as follows:
  • 15. The compound of claim 14, wherein the compound has a Formula Ir(LA1)(LBk-h)2, or a Formula Ir(LAi)2(LBk-h).
  • 16. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 17. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of
  • 18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).
  • 19. The OLED of claim 18, wherein the host is selected from the group consisting of:
  • 20. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a heteroleptic compound having a Formula Ir(LA)m(LB)3-m, having a structure of
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Applications No. 63/195,451, filed on Jun. 1, 2021, No. 63/214,086, filed on Jun. 23, 2021, No. 63/182,350, filed on Apr. 30, 2021, and No. 63/178,673, filed on Apr. 23, 2021, the entire contents of which are incorporated herein by reference

Provisional Applications (4)
Number Date Country
63178673 Apr 2021 US
63182350 Apr 2021 US
63195451 Jun 2021 US
63214086 Jun 2021 US