Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11925103
  • Patent Number
    11,925,103
  • Date Filed
    Tuesday, May 14, 2019
    4 years ago
  • Date Issued
    Tuesday, March 5, 2024
    a month ago
Abstract
A compound capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature that includes at least one aromatic ring and at least one substituent R where each of the at least one R is of Formula I
Description
FIELD

The present invention relates to compounds for use as emitters, and devices, such as organic light emitting diodes, including the same.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY

Disclosed herein are novel alkyl substitutions for making transition metal dopants for improving their thermal properties. The alkyl substitutions lower the sublimation temperature of the compounds and improve their thermal stability.


A compound capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature is disclosed. The compound comprises at least one aromatic ring and at least one substituent R. Each of the at least one R is of Formula I




embedded image



where; R1 is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, and cycloheteroalkyl; R2 to R4 are each independently selected from the group consisting of alkyl, cycloalkyl, heteroalky, and cycloheteroalkyl; R5 is H or deuterium; at least one of R1 to R4 comprises a chemical structure selected from the group consisting of a tertiary carbon atom, cycloalkyl, and cycloheteroalkyl; and any two of R2 to R4 can join together to form a ring.


An OLED comprising the compound of the present disclosure in an organic layer therein is also disclosed.


A consumer product comprising the OLED is also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from −40 degree C. to +80 degree C.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each R can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group is optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group is optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, 0, S or N. Additionally, the heteroalkyl or heterocycloalkyl group is optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group is optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group is optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group is optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group is optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group is optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents no substitution, R′, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


A compound capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature is disclosed. The compound comprises at least one aromatic ring and at least one substituent R. Each of the at least one R is of Formula I




embedded image



where; R1 is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, and cycloheteroalkyl; R2 to R4 are each independently selected from the group consisting of alkyl, cycloalkyl, heteroalky, and cycloheteroalkyl; R5 is H or deuterium; at least one of R1 to R4 comprises a chemical structure selected from the group consisting of a tertiary carbon atom, cycloalkyl, and cycloheteroalkyl; and any two of R2 to R4 can join together to form a ring.


In some embodiments, at least one of R2 to R4 comprises cycloalkyl or cycloheteroalkyl. In some embodiments, at least one of R1 to R4 is cycloalkyl or cycloheteroalkyl. In some embodiments, the at least one substituent R is directly bonded to the at least one aromatic ring.


In some embodiments, the compound is capable of emitting light from a triplet excited state to a ground singlet state at room temperature.


In some embodiments, the compound is a metal coordination complex having a metal-carbon bond. In some embodiments, the metal is selected from the group consisting of Ir, Rh, Re, Ru, Os, Pt, Pd, Au, and Au. In some embodiments, the metal is Ir or Pt. Preferably, Ir is Ir(III) and Pt is and Pt(II).


In some embodiments, R1 is selected from the group consisting of hydrogen, deuterium, alkyl, and cycloalkyl. In some embodiments, each R2 to R4 is independently selected from the group consisting of alkyl, and cycloalkyl. In some embodiments, R1 is H or deuterium.


In some embodiments, R1 is substituted or unsubstituted tert-butyl. In some embodiments, R2 and R3 are each methyl. In some embodiments, R4 is methyl. In some embodiments, R4 is cyclopentyl or cyclohexyl.


In some embodiments of the compound, the compound has the formula M(L1)x(L2)y(L3)z; where L1, L2, and L3 can be the same or different; where x is 1, 2, or 3; where y is 0, 1, or 2; where z is 0, 1, or 2; where x+y+z is the oxidation state of the metal M; where L1, L2, and L3 are each independently selected from the group consisting of:




embedded image


embedded image


embedded image



where L2 and L3 each can also independently be




embedded image



where each Y1 to Y13 are independently selected from the group consisting of carbon and nitrogen; where Y′ is selected from the group consisting of B Re, N Re, P Re, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; where Re and Rf are optionally fused or joined to form a ring; where each Rx, Ry, RZ, Re and Rf is independently selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; where each Ra, Rb, Rc, and Rd can independently represent from mono substitution to the maximum possible number of substitutions, or no substitution; where each Ra, Rb, Rc, and Rd, is independently hydrogen or a substituent selected from the general substituent group defined herein; where any two adjacent substituents of Ra, Rb, Rc, and Rd are optionally fused or joined to form a ring or form a multidentate ligand; and where at least one of the Ra, Rb, Rc, Rd, Rx, Ry, and Rz includes at least one substituent R defined herein, so that in the compound, at least one ligand (can be any one of L1, L2, or L3) comprises at least one substituent R defined herein.


In some embodiments, at least one of the Ra, Rb, Rc, and Rd in at least one of L1 includes at least one substitutent R defined herein.


In some embodiments of the compound having the formula M(L1)x(L2)y(L3)z as defined above, the compound has the formula Ir(L′)2(L2) and at least one of L1 and L2 comprises at least one substituent R defined herein. In some embodiments of the compound having formula Ir(L1)2(L2), L1 has a formula selected from the group consisting of:




embedded image



where X is C or N; and


where L2 has the formula




embedded image



where Ra, Rc, Rx, Ry, and Rz are as defined above and at least one of L1 and L2 comprises at least one substituent R defined herein. In some embodiments, L2 has the formula:




embedded image



where, Rh, Ri, Rj, and Rk are independently selected from group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof; at least one of Rh, Ri, Rj, and Rk has at least two carbon atoms; and Rg is selected from group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some embodiments where the compound has the formula Ir(L1)2(L2), L1 and L2 are different and each is independently selected from the group consisting of:




embedded image



where Ra and Rc are as defined above and at least one of L1 and L2 comprises at least one substituent R defined herein.


In some embodiments where the compound has the formula Ir(L1)2(L2), L1 and L2 are different and each is independently selected from the group consisting of:




embedded image


embedded image


where Ra, Rb, and Rc are as defined above and at least one of L1 and L2 comprises at least one substituent R defined herein.


In some embodiments where the compound is a metal coordination complex having a metal-carbon bond, the compound has the formula of Pt(L1)2 where L1 comprises at least one substituent R, or Pt(L1)(L2) where at least one of L1 and L2 comprises at least one substituent R. In some embodiments, L1 is connected to the other L1 or L2 to form a tetradentate ligand.


In some embodiments where the compound has the formula M(L1)x(L2)y(L3)z as defined above, at least one of L1, L2, and L3 is ligand LA selected from the Ligand Group A consisting of:




embedded image


embedded image


embedded image



where, X is C or N, Y1 and Y2 is independently selected from the group consisting of C and Si, G is an aromatic ring, and each R1 to R6 is independently selected from the group consisting of hydrogen, R defined herein, deuterium, alkyl, cycloalkyl, heteroalkyl, arylalkyl, aryl, heteroaryl, and combinations thereof, where the ligand LA comprises at least one substituent R.


In some embodiments where at least one of L1, L2, and L3 is ligand LA selected from the Ligand Group A, the others of L1, L2, and L3 can be selected from the structures in Ligand Group B consisting of the following structures LB1 through LB468:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



structures in Ligand Group C consisting of LC1 through LC1260 based on a structure of Formula X




embedded image



wherein R1, R2, and R3 are defined as:


















Ligand
R1
R2
R3









LC1
RD1
RD1
H



LC2
RD2
RD2
H



LC3
RD3
RD3
H



LC4
RD4
RD4
H



LC5
RD5
RD5
H



LC6
RD6
RD6
H



LC7
RD7
RD7
H



LC8
RD8
RD8
H



LC9
RD9
RD9
H



LC10
RD10
RD10
H



LC11
RD11
RD11
H



LC12
RD12
RD12
H



LC13
RD13
RD13
H



LC14
RD14
RD14
H



LC15
RD15
RD15
H



LC16
RD16
RD16
H



LC17
RD17
RD17
H



LC18
RD18
RD18
H



LC19
RD19
RD19
H



LC20
RD20
RD20
H



LC21
RD21
RD21
H



LC22
RD22
RD22
H



LC23
RD23
RD23
H



LC24
RD24
RD24
H



LC25
RD25
RD25
H



LC26
RD26
RD26
H



LC27
RD27
RD27
H



LC28
RD28
RD28
H



LC29
RD29
RD29
H



LC30
RD30
RD30
H



LC31
RD31
RD31
H



LC32
RD32
RD32
H



LC33
RD33
RD33
H



LC34
RD34
RD34
H



LC35
RD35
RD35
H



LC36
RD40
RD40
H



LC37
RD41
RD41
H



LC38
RD42
RD42
H



LC39
RD64
RD64
H



LC40
RD66
RD66
H



LC41
RD68
RD68
H



LC42
RD76
RD76
H



LC43
RD1
RD2
H



LC44
RD1
RD3
H



LC45
RD1
RD4
H



LC46
RD1
RD5
H



LC47
RD1
RD6
H



LC48
RD1
RD7
H



LC49
RD1
RD8
H



LC50
RD1
RD9
H



LC51
RD1
RD10
H



LC52
RD1
RD11
H



LC53
RD1
RD12
H



LC54
RD1
RD13
H



LC55
RD1
RD14
H



LC56
RD1
RD15
H



LC57
RD1
RD16
H



LC58
RD1
RD17
H



LC59
RD1
RD18
H



LC60
RD1
RD19
H



LC61
RD1
RD20
H



LC62
RD1
RD21
H



LC63
RD1
RD22
H



LC64
RD1
RD23
H



LC65
RD1
RD24
H



LC66
RD1
RD25
H



LC67
RD1
RD26
H



LC68
RD1
RD27
H



LC69
RD1
RD28
H



LC70
RD1
RD29
H



LC71
RD1
RD30
H



LC72
RD1
RD31
H



LC73
RD1
RD32
H



LC74
RD1
RD33
H



LC75
RD1
RD34
H



LC76
RD1
RD35
H



LC77
RD1
RD40
H



LC78
RD1
RD41
H



LC79
RD1
RD42
H



LC80
RD1
RD64
H



LC81
RD1
RD66
H



LC82
RD1
RD68
H



LC83
RD1
RD76
H



LC84
RD2
RD1
H



LC85
RD2
RD3
H



LC86
RD2
RD4
H



LC87
RD2
RD5
H



LC88
RD2
RD6
H



LC89
RD2
RD7
H



LC90
RD2
RD8
H



LC91
RD2
RD9
H



LC92
RD2
RD10
H



LC93
RD2
RD11
H



LC94
RD2
RD12
H



LC95
RD2
RD13
H



LC96
RD2
RD14
H



LC97
RD2
RD15
H



LC98
RD2
RD16
H



LC99
RD2
RD17
H



LC100
RD2
RD18
H



LC101
RD2
RD19
H



LC102
RD2
RD20
H



LC103
RD2
RD21
H



LC104
RD2
RD22
H



LC105
RD2
RD23
H



LC106
RD2
RD24
H



LC107
RD2
RD25
H



LC108
RD2
RD26
H



LC109
RD2
RD27
H



LC110
RD2
RD28
H



LC111
RD2
RD29
H



LC112
RD2
RD30
H



LC113
RD2
RD31
H



LC114
RD2
RD32
H



LC115
RD2
RD33
H



LC116
RD2
RD34
H



LC117
RD2
RD35
H



LC118
RD2
RD40
H



LC119
RD2
RD41
H



LC120
RD2
RD42
H



LC121
RD2
RD64
H



LC122
RD2
RD66
H



LC123
RD2
RD68
H



LC124
RD2
RD76
H



LC125
RD3
RD4
H



LC126
RD3
RD5
H



LC127
RD3
RD6
H



LC128
RD3
RD7
H



LC129
RD3
RD8
H



LC130
RD3
RD9
H



LC131
RD3
RD10
H



LC132
RD3
RD11
H



LC133
RD3
RD12
H



LC134
RD3
RD13
H



LC135
RD3
RD14
H



LC136
RD3
RD15
H



LC137
RD3
RD16
H



LC138
RD3
RD17
H



LC139
RD3
RD18
H



LC140
RD3
RD19
H



LC141
RD3
RD20
H



LC142
RD3
RD21
H



LC143
RD3
RD22
H



LC144
RD3
RD23
H



LC145
RD3
RD24
H



LC146
RD3
RD25
H



LC147
RD3
RD26
H



LC148
RD3
RD27
H



LC149
RD3
RD28
H



LC150
RD3
RD29
H



LC151
RD3
RD30
H



LC152
RD3
RD31
H



LC153
RD3
RD32
H



LC154
RD3
RD33
H



LC155
RD3
RD34
H



LC156
RD3
RD35
H



LC157
RD3
RD40
H



LC158
RD3
RD41
H



LC159
RD3
RD42
H



LC160
RD3
RD64
H



LC161
RD3
RD66
H



LC162
RD3
RD68
H



LC163
RD3
RD76
H



LC164
RD4
RD5
H



LC165
RD4
RD6
H



LC166
RD4
RD7
H



LC167
RD4
RD8
H



LC168
RD4
RD9
H



LC169
RD4
RD10
H



LC170
RD4
RD11
H



LC171
RD4
RD12
H



LC172
RD4
RD13
H



LC173
RD4
RD14
H



LC174
RD4
RD15
H



LC175
RD4
RD16
H



LC176
RD4
RD17
H



LC177
RD4
RD18
H



LC178
RD4
RD19
H



LC179
RD4
RD20
H



LC180
RD4
RD21
H



LC181
RD4
RD22
H



LC182
RD4
RD23
H



LC183
RD4
RD24
H



LC184
RD4
RD25
H



LC185
RD4
RD26
H



LC186
RD4
RD27
H



LC187
RD4
RD28
H



LC188
RD4
RD29
H



LC189
RD4
RD30
H



LC190
RD4
RD31
H



LC191
RD4
RD32
H



LC192
RD4
RD33
H



LC193
RD4
RD34
H



LC194
RD4
RD35
H



LC195
RD4
RD40
H



LC196
RD4
RD41
H



LC197
RD4
RD42
H



LC198
RD4
RD64
H



LC199
RD4
RD66
H



LC200
RD4
RD68
H



LC201
RD4
RD76
H



LC202
RD4
RD1
H



LC203
RD7
RD5
H



LC204
RD7
RD6
H



LC205
RD7
RD8
H



LC206
RD7
RD9
H



LC207
RD7
RD10
H



LC208
RD7
RD11
H



LC209
RD7
RD12
H



LC210
RD7
RD13
H



LC211
RD7
RD14
H



LC212
RD7
RD15
H



LC213
RD7
RD16
H



LC214
RD7
RD17
H



LC215
RD7
RD18
H



LC216
RD7
RD19
H



LC217
RD7
RD20
H



LC218
RD7
RD21
H



LC219
RD7
RD22
H



LC220
RD7
RD23
H



LC221
RD7
RD24
H



LC222
RD7
RD25
H



LC223
RD7
RD26
H



LC224
RD7
RD27
H



LC225
RD7
RD28
H



LC226
RD7
RD29
H



LC227
RD7
RD30
H



LC228
RD7
RD31
H



LC229
RD7
RD32
H



LC230
RD7
RD33
H



LC231
RD7
RD34
H



LC232
RD7
RD35
H



LC233
RD7
RD40
H



LC234
RD7
RD41
H



LC235
RD7
RD42
H



LC236
RD7
RD64
H



LC237
RD7
RD66
H



LC238
RD7
RD68
H



LC239
RD7
RD76
H



LC240
RD8
RD5
H



LC241
RD8
RD6
H



LC242
RD8
RD9
H



LC243
RD8
RD10
H



LC244
RD8
RD11
H



LC245
RD8
RD12
H



LC246
RD8
RD13
H



LC247
RD8
RD14
H



LC248
RD8
RD15
H



LC249
RD8
RD16
H



LC250
RD8
RD17
H



LC251
RD8
RD18
H



LC252
RD8
RD19
H



LC253
RD8
RD20
H



LC254
RD8
RD21
H



LC255
RD8
RD22
H



LC256
RD8
RD23
H



LC257
RD8
RD24
H



LC258
RD8
RD25
H



LC259
RD8
RD26
H



LC260
RD8
RD27
H



LC261
RD8
RD28
H



LC262
RD8
RD29
H



LC263
RD8
RD30
H



LC264
RD8
RD31
H



LC265
RD8
RD32
H



LC266
RD8
RD33
H



LC267
RD8
RD34
H



LC268
RD8
RD35
H



LC269
RD8
RD40
H



LC270
RD8
RD41
H



LC271
RD8
RD42
H



LC272
RD8
RD64
H



LC273
RD8
RD66
H



LC274
RD8
RD68
H



LC275
RD8
RD76
H



LC276
RD11
RD5
H



LC277
RD11
RD6
H



LC278
RD11
RD9
H



LC279
RD11
RD10
H



LC280
RD11
RD12
H



LC281
RD11
RD13
H



LC282
RD11
RD14
H



LC283
RD11
RD15
H



LC284
RD11
RD16
H



LC285
RD11
RD17
H



LC286
RD11
RD18
H



LC287
RD11
RD19
H



LC288
RD11
RD20
H



LC289
RD11
RD21
H



LC290
RD11
RD22
H



LC291
RD11
RD23
H



LC292
RD11
RD24
H



LC293
RD11
RD25
H



LC294
RD11
RD26
H



LC295
RD11
RD27
H



LC296
RD11
RD28
H



LC297
RD11
RD29
H



LC298
RD11
RD30
H



LC299
RD11
RD31
H



LC300
RD11
RD32
H



LC301
RD11
RD33
H



LC302
RD11
RD34
H



LC303
RD11
RD35
H



LC304
RD11
RD40
H



LC305
RD11
RD41
H



LC306
RD11
RD42
H



LC307
RD11
RD64
H



LC308
RD11
RD66
H



LC309
RD11
RD68
H



LC310
RD11
RD76
H



LC311
RD13
RD5
H



LC312
RD13
RD6
H



LC313
RD13
RD9
H



LC314
RD13
RD10
H



LC315
RD13
RD12
H



LC316
RD13
RD14
H



LC317
RD13
RD15
H



LC318
RD13
RD16
H



LC319
RD13
RD17
H



LC320
RD13
RD18
H



LC321
RD13
RD19
H



LC322
RD13
RD20
H



LC323
RD13
RD21
H



LC324
RD13
RD22
H



LC325
RD13
RD23
H



LC326
RD13
RD24
H



LC327
RD13
RD25
H



LC328
RD13
RD26
H



LC329
RD13
RD27
H



LC330
RD13
RD28
H



LC331
RD13
RD29
H



LC332
RD13
RD30
H



LC333
RD13
RD31
H



LC334
RD13
RD32
H



LC335
RD13
RD33
H



LC336
RD13
RD34
H



LC337
RD13
RD35
H



LC338
RD13
RD40
H



LC339
RD13
RD41
H



LC340
RD13
RD42
H



LC341
RD13
RD64
H



LC342
RD13
RD66
H



LC343
RD13
RD68
H



LC344
RD13
RD76
H



LC345
RD14
RD5
H



LC346
RD14
RD6
H



LC347
RD14
RD9
H



LC348
RD14
RD10
H



LC349
RD14
RD12
H



LC350
RD14
RD15
H



LC351
RD14
RD16
H



LC352
RD14
RD17
H



LC353
RD14
RD18
H



LC354
RD14
RD19
H



LC355
RD14
RD20
H



LC356
RD14
RD21
H



LC357
RD14
RD22
H



LC358
RD14
RD23
H



LC359
RD14
RD24
H



LC360
RD14
RD25
H



LC361
RD14
RD26
H



LC362
RD14
RD27
H



LC363
RD14
RD28
H



LC364
RD14
RD29
H



LC365
RD14
RD30
H



LC366
RD14
RD31
H



LC367
RD14
RD32
H



LC368
RD14
RD33
H



LC369
RD14
RD34
H



LC370
RD14
RD35
H



LC371
RD14
RD40
H



LC372
RD14
RD41
H



LC373
RD14
RD42
H



LC374
RD14
RD64
H



LC375
RD14
RD66
H



LC376
RD14
RD68
H



LC377
RD14
RD76
H



LC378
RD22
RD5
H



LC379
RD22
RD6
H



LC380
RD22
RD9
H



LC381
RD22
RD10
H



LC382
RD22
RD12
H



LC383
RD22
RD15
H



LC384
RD22
RD16
H



LC385
RD22
RD17
H



LC386
RD22
RD18
H



LC387
RD22
RD19
H



LC388
RD22
RD20
H



LC389
RD22
RD21
H



LC390
RD22
RD23
H



LC391
RD22
RD24
H



LC392
RD22
RD25
H



LC393
RD22
RD26
H



LC394
RD22
RD27
H



LC395
RD22
RD28
H



LC396
RD22
RD29
H



LC397
RD22
RD30
H



LC398
RD22
RD31
H



LC399
RD22
RD32
H



LC400
RD22
RD33
H



LC401
RD22
RD34
H



LC402
RD22
RD35
H



LC403
RD22
RD40
H



LC404
RD22
RD41
H



LC405
RD22
RD42
H



LC406
RD22
RD64
H



LC407
RD22
RD66
H



LC408
RD22
RD68
H



LC409
RD22
RD76
H



LC410
RD26
RD5
H



LC411
RD26
RD6
H



LC412
RD26
RD9
H



LC413
RD26
RD10
H



LC414
RD26
RD12
H



LC415
RD26
RD15
H



LC416
RD26
RD16
H



LC417
RD26
RD17
H



LC418
RD26
RD18
H



LC419
RD26
RD19
H



LC420
RD26
RD20
H



LC421
RD26
RD21
H



LC422
RD26
RD23
H



LC423
RD26
RD24
H



LC424
RD26
RD25
H



LC425
RD26
RD27
H



LC426
RD26
RD28
H



LC427
RD26
RD29
H



LC428
RD26
RD30
H



LC429
RD26
RD31
H



LC430
RD26
RD32
H



LC431
RD26
RD33
H



LC432
RD26
RD34
H



LC433
RD26
RD35
H



LC434
RD26
RD40
H



LC435
RD26
RD41
H



LC436
RD26
RD42
H



LC437
RD26
RD64
H



LC438
RD26
RD66
H



LC439
RD26
RD68
H



LC440
RD26
RD76
H



LC441
RD35
RD5
H



LC442
RD35
RD6
H



LC443
RD35
RD9
H



LC444
RD35
RD10
H



LC445
RD35
RD12
H



LC446
RD35
RD15
H



LC447
RD35
RD16
H



LC448
RD35
RD17
H



LC449
RD35
RD18
H



LC450
RD35
RD19
H



LC451
RD35
RD20
H



LC452
RD35
RD21
H



LC453
RD35
RD23
H



LC454
RD35
RD24
H



LC455
RD35
RD25
H



LC456
RD35
RD27
H



LC457
RD35
RD28
H



LC458
RD35
RD29
H



LC459
RD35
RD30
H



LC460
RD35
RD31
H



LC461
RD35
RD32
H



LC462
RD35
RD33
H



LC463
RD35
RD34
H



LC464
RD35
RD40
H



LC465
RD35
RD41
H



LC466
RD35
RD42
H



LC467
RD35
RD64
H



LC468
RD35
RD66
H



LC469
RD35
RD68
H



LC470
RD35
RD76
H



LC471
RD40
RD5
H



LC472
RD40
RD6
H



LC473
RD40
RD9
H



LC474
RD40
RD10
H



LC475
RD40
RD12
H



LC476
RD40
RD15
H



LC477
RD40
RD16
H



LC478
RD40
RD17
H



LC479
RD40
RD18
H



LC480
RD40
RD19
H



LC481
RD40
RD20
H



LC482
RD40
RD21
H



LC483
RD40
RD23
H



LC484
RD40
RD24
H



LC485
RD40
RD25
H



LC486
RD40
RD27
H



LC487
RD40
RD28
H



LC488
RD40
RD29
H



LC489
RD40
RD30
H



LC490
RD40
RD31
H



LC491
RD40
RD32
H



LC492
RD40
RD33
H



LC493
RD40
RD34
H



LC494
RD40
RD41
H



LC495
RD40
RD42
H



LC496
RD40
RD64
H



LC497
RD40
RD66
H



LC498
RD40
RD68
H



LC499
RD40
RD76
H



LC500
RD41
RD5
H



LC501
RD41
RD6
H



LC502
RD41
RD9
H



LC503
RD41
RD10
H



LC504
RD41
RD12
H



LC505
RD41
RD15
H



LC506
RD41
RD16
H



LC507
RD41
RD17
H



LC508
RD41
RD18
H



LC509
RD41
RD19
H



LC510
RD41
RD20
H



LC511
RD41
RD21
H



LC512
RD41
RD23
H



LC513
RD41
RD24
H



LC514
RD41
RD25
H



LC515
RD41
RD27
H



LC516
RD41
RD28
H



LC517
RD41
RD29
H



LC518
RD41
RD30
H



LC519
RD41
RD31
H



LC520
RD41
RD32
H



LC521
RD41
RD33
H



LC522
RD41
RD34
H



LC523
RD41
RD42
H



LC524
RD41
RD64
H



LC525
RD41
RD66
H



LC526
RD41
RD68
H



LC527
RD41
RD76
H



LC528
RD64
RD5
H



LC529
RD64
RD6
H



LC530
RD64
RD9
H



LC531
RD64
RD10
H



LC532
RD64
RD12
H



LC533
RD64
RD15
H



LC534
RD64
RD16
H



LC535
RD64
RD17
H



LC536
RD64
RD18
H



LC537
RD64
RD19
H



LC538
RD64
RD20
H



LC539
RD64
RD21
H



LC540
RD64
RD23
H



LC541
RD64
RD24
H



LC542
RD64
RD25
H



LC543
RD64
RD27
H



LC544
RD64
RD28
H



LC545
RD64
RD29
H



LC546
RD64
RD30
H



LC547
RD64
RD31
H



LC548
RD64
RD32
H



LC549
RD64
RD33
H



LC550
RD64
RD34
H



LC551
RD64
RD42
H



LC552
RD64
RD64
H



LC553
RD64
RD66
H



LC554
RD64
RD68
H



LC555
RD64
RD76
H



LC556
RD66
RD5
H



LC557
RD66
RD6
H



LC558
RD66
RD9
H



LC559
RD66
RD10
H



LC560
RD66
RD12
H



LC561
RD66
RD15
H



LC562
RD66
RD16
H



LC563
RD66
RD17
H



LC564
RD66
RD18
H



LC565
RD66
RD19
H



LC566
RD66
RD20
H



LC567
RD66
RD21
H



LC568
RD66
RD23
H



LC569
RD66
RD24
H



LC570
RD66
RD25
H



LC571
RD66
RD27
H



LC572
RD66
RD28
H



LC573
RD66
RD29
H



LC574
RD66
RD30
H



LC575
RD66
RD31
H



LC576
RD66
RD32
H



LC577
RD66
RD33
H



LC578
RD66
RD34
H



LC579
RD66
RD42
H



LC580
RD66
RD68
H



LC581
RD66
RD76
H



LC582
RD68
RD5
H



LC583
RD68
RD6
H



LC584
RD68
RD9
H



LC585
RD68
RD10
H



LC586
RD68
RD12
H



LC587
RD68
RD15
H



LC588
RD68
RD16
H



LC589
RD68
RD17
H



LC590
RD68
RD18
H



LC591
RD68
RD19
H



LC592
RD68
RD20
H



LC593
RD68
RD21
H



LC594
RD68
RD23
H



LC595
RD68
RD24
H



LC596
RD68
RD25
H



LC597
RD68
RD27
H



LC598
RD68
RD28
H



LC599
RD68
RD29
H



LC600
RD68
RD30
H



LC601
RD68
RD31
H



LC602
RD68
RD32
H



LC603
RD68
RD33
H



LC604
RD68
RD34
H



LC605
RD68
RD42
H



LC606
RD68
RD76
H



LC607
RD76
RD5
H



LC608
RD76
RD6
H



LC609
RD76
RD9
H



LC610
RD76
RD10
H



LC611
RD76
RD12
H



LC612
RD76
RD15
H



LC613
RD76
RD16
H



LC614
RD76
RD17
H



LC615
RD76
RD18
H



LC616
RD76
RD19
H



LC617
RD76
RD20
H



LC618
RD76
RD21
H



LC619
RD76
RD23
H



LC620
RD76
RD24
H



LC621
RD76
RD25
H



LC622
RD76
RD27
H



LC623
RD76
RD28
H



LC624
RD76
RD29
H



LC625
RD76
RD30
H



LC626
RD76
RD31
H



LC627
RD76
RD32
H



LC628
RD76
RD33
H



LC629
RD76
RD34
H



LC630
RD76
RD42
H



LC631
RD1
RD1
RD1



LC632
RD2
RD2
RD1



LC633
RD3
RD3
RD1



LC634
RD4
RD4
RD1



LC635
RD5
RD5
RD1



LC636
RD6
RD6
RD1



LC637
RD7
RD7
RD1



LC638
RD8
RD8
RD1



LC639
RD9
RD9
RD1



LC640
RD10
RD10
RD1



LC641
RD11
RD11
RD1



LC642
RD12
RD12
RD1



LC643
RD13
RD13
RD1



LC644
RD14
RD14
RD1



LC645
RD15
RD15
RD1



LC646
RD16
RD16
RD1



LC647
RD17
RD17
RD1



LC648
RD18
RD18
RD1



LC649
RD19
RD19
RD1



LC650
RD20
RD20
RD1



LC651
RD21
RD21
RD1



LC652
RD22
RD22
RD1



LC653
RD23
RD23
RD1



LC654
RD24
RD24
RD1



LC655
RD25
RD25
RD1



LC656
RD26
RD26
RD1



LC657
RD27
RD27
RD1



LC658
RD28
RD28
RD1



LC659
RD29
RD29
RD1



LC660
RD30
RD30
RD1



LC661
RD31
RD31
RD1



LC662
RD32
RD32
RD1



LC663
RD33
RD33
RD1



LC664
RD34
RD34
RD1



LC665
RD35
RD35
RD1



LC666
RD40
RD40
RD1



LC667
RD41
RD41
RD1



LC668
RD42
RD42
RD1



LC669
RD64
RD64
RD1



LC670
RD66
RD66
RD1



LC671
RD68
RD68
RD1



LC672
RD76
RD76
RD1



LC673
RD1
RD2
RD1



LC674
RD1
RD3
RD1



LC675
RD1
RD4
RD1



LC676
RD1
RD5
RD1



LC677
RD1
RD6
RD1



LC678
RD1
RD7
RD1



LC679
RD1
RD8
RD1



LC680
RD1
RD9
RD1



LC681
RD1
RD10
RD1



LC682
RD1
RD11
RD1



LC683
RD1
RD12
RD1



LC684
RD1
RD13
RD1



LC685
RD1
RD14
RD1



LC686
RD1
RD15
RD1



LC687
RD1
RD16
RD1



LC688
RD1
RD17
RD1



LC689
RD1
RD18
RD1



LC690
RD1
RD19
RD1



LC691
RD1
RD20
RD1



LC692
RD1
RD21
RD1



LC693
RD1
RD22
RD1



LC694
RD1
RD23
RD1



LC695
RD1
RD24
RD1



LC696
RD1
RD25
RD1



LC697
RD1
RD26
RD1



LC698
RD1
RD27
RD1



LC699
RD1
RD28
RD1



LC700
RD1
RD29
RD1



LC701
RD1
RD30
RD1



LC702
RD1
RD31
RD1



LC703
RD1
RD32
RD1



LC704
RD1
RD33
RD1



LC705
RD1
RD34
RD1



LC706
RD1
RD35
RD1



LC707
RD1
RD40
RD1



LC708
RD1
RD41
RD1



LC709
RD1
RD42
RD1



LC710
RD1
RD64
RD1



LC711
RD1
RD66
RD1



LC712
RD1
RD68
RD1



LC713
RD1
RD76
RD1



LC714
RD2
RD1
RD1



LC715
RD2
RD3
RD1



LC716
RD2
RD4
RD1



LC717
RD2
RD5
RD1



LC718
RD2
RD6
RD1



LC719
RD2
RD7
RD1



LC720
RD2
RD8
RD1



LC721
RD2
RD9
RD1



LC722
RD2
RD10
RD1



LC723
RD2
RD11
RD1



LC724
RD2
RD12
RD1



LC725
RD2
RD13
RD1



LC726
RD2
RD14
RD1



LC727
RD2
RD15
RD1



LC728
RD2
RD16
RD1



LC729
RD2
RD17
RD1



LC730
RD2
RD18
RD1



LC731
RD2
RD19
RD1



LC732
RD2
RD20
RD1



LC733
RD2
RD21
RD1



LC734
RD2
RD22
RD1



LC735
RD2
RD23
RD1



LC736
RD2
RD24
RD1



LC737
RD2
RD25
RD1



LC738
RD2
RD26
RD1



LC739
RD2
RD27
RD1



LC740
RD2
RD28
RD1



LC741
RD2
RD29
RD1



LC742
RD2
RD30
RD1



LC743
RD2
RD31
RD1



LC744
RD2
RD32
RD1



LC745
RD2
RD33
RD1



LC746
RD2
RD34
RD1



LC747
RD2
RD35
RD1



LC748
RD2
RD40
RD1



LC749
RD2
RD41
RD1



LC750
RD2
RD42
RD1



LC751
RD2
RD64
RD1



LC752
RD2
RD66
RD1



LC753
RD2
RD68
RD1



LC754
RD2
RD76
RD1



LC755
RD3
RD4
RD1



LC756
RD3
RD5
RD1



LC757
RD3
RD6
RD1



LC758
RD3
RD7
RD1



LC759
RD3
RD8
RD1



LC760
RD3
RD9
RD1



LC761
RD3
RD10
RD1



LC762
RD3
RD11
RD1



LC763
RD3
RD12
RD1



LC764
RD3
RD13
RD1



LC765
RD3
RD14
RD1



LC766
RD3
RD15
RD1



LC767
RD3
RD16
RD1



LC768
RD3
RD17
RD1



LC769
RD3
RD18
RD1



LC770
RD3
RD19
RD1



LC771
RD3
RD20
RD1



LC772
RD3
RD21
RD1



LC773
RD3
RD22
RD1



LC774
RD3
RD23
RD1



LC775
RD3
RD24
RD1



LC776
RD3
RD25
RD1



LC777
RD3
RD26
RD1



LC778
RD3
RD27
RD1



LC779
RD3
RD28
RD1



LC780
RD3
RD29
RD1



LC781
RD3
RD30
RD1



LC782
RD3
RD31
RD1



LC783
RD3
RD32
RD1



LC784
RD3
RD33
RD1



LC785
RD3
RD34
RD1



LC786
RD3
RD35
RD1



LC787
RD3
RD40
RD1



LC788
RD3
RD41
RD1



LC789
RD3
RD42
RD1



LC790
RD3
RD64
RD1



LC791
RD3
RD66
RD1



LC792
RD3
RD68
RD1



LC793
RD3
RD76
RD1



LC794
RD4
RD5
RD1



LC795
RD4
RD6
RD1



LC796
RD4
RD7
RD1



LC797
RD4
RD8
RD1



LC798
RD4
RD9
RD1



LC799
RD4
RD10
RD1



LC800
RD4
RD11
RD1



LC801
RD4
RD12
RD1



LC802
RD4
RD13
RD1



LC803
RD4
RD14
RD1



LC804
RD4
RD15
RD1



LC805
RD4
RD16
RD1



LC806
RD4
RD17
RD1



LC807
RD4
RD18
RD1



LC808
RD4
RD19
RD1



LC809
RD4
RD20
RD1



LC810
RD4
RD21
RD1



LC811
RD4
RD22
RD1



LC812
RD4
RD23
RD1



LC813
RD4
RD24
RD1



LC814
RD4
RD25
RD1



LC815
RD4
RD26
RD1



LC816
RD4
RD27
RD1



LC817
RD4
RD28
RD1



LC818
RD4
RD29
RD1



LC819
RD4
RD30
RD1



LC820
RD4
RD31
RD1



LC821
RD4
RD32
RD1



LC822
RD4
RD33
RD1



LC823
RD4
RD34
RD1



LC824
RD4
RD35
RD1



LC825
RD4
RD40
RD1



LC826
RD4
RD41
RD1



LC827
RD4
RD42
RD1



LC828
RD4
RD64
RD1



LC829
RD4
RD66
RD1



LC830
RD4
RD68
RD1



LC831
RD4
RD76
RD1



LC832
RD4
RD1
RD1



LC833
RD7
RD5
RD1



LC834
RD7
RD6
RD1



LC835
RD7
RD8
RD1



LC836
RD7
RD9
RD1



LC837
RD7
RD10
RD1



LC838
RD7
RD11
RD1



LC839
RD7
RD12
RD1



LC840
RD7
RD13
RD1



LC841
RD7
RD14
RD1



LC842
RD7
RD15
RD1



LC843
RD7
RD16
RD1



LC844
RD7
RD17
RD1



LC845
RD7
RD18
RD1



LC846
RD7
RD19
RD1



LC847
RD7
RD20
RD1



LC848
RD7
RD21
RD1



LC849
RD7
RD22
RD1



LC850
RD7
RD23
RD1



LC851
RD7
RD24
RD1



LC852
RD7
RD25
RD1



LC853
RD7
RD26
RD1



LC854
RD7
RD27
RD1



LC855
RD7
RD28
RD1



LC856
RD7
RD29
RD1



LC857
RD7
RD30
RD1



LC858
RD7
RD31
RD1



LC859
RD7
RD32
RD1



LC860
RD7
RD33
RD1



LC861
RD7
RD34
RD1



LC862
RD7
RD35
RD1



LC863
RD7
RD40
RD1



LC864
RD7
RD41
RD1



LC865
RD7
RD42
RD1



LC866
RD7
RD64
RD1



LC867
RD7
RD66
RD1



LC868
RD7
RD68
RD1



LC869
RD7
RD76
RD1



LC870
RD8
RD5
RD1



LC871
RD8
RD6
RD1



LC872
RD8
RD9
RD1



LC873
RD8
RD10
RD1



LC874
RD8
RD11
RD1



LC875
RD8
RD12
RD1



LC876
RD8
RD13
RD1



LC877
RD8
RD14
RD1



LC878
RD8
RD15
RD1



LC879
RD8
RD16
RD1



LC880
RD8
RD17
RD1



LC881
RD8
RD18
RD1



LC882
RD8
RD19
RD1



LC883
RD8
RD20
RD1



LC884
RD8
RD21
RD1



LC885
RD8
RD22
RD1



LC886
RD8
RD23
RD1



LC887
RD8
RD24
RD1



LC888
RD8
RD25
RD1



LC889
RD8
RD26
RD1



LC890
RD8
RD27
RD1



LC891
RD8
RD28
RD1



LC892
RD8
RD29
RD1



LC893
RD8
RD30
RD1



LC894
RD8
RD31
RD1



LC895
RD8
RD32
RD1



LC896
RD8
RD33
RD1



LC897
RD8
RD34
RD1



LC898
RD8
RD35
RD1



LC899
RD8
RD40
RD1



LC900
RD8
RD41
RD1



LC901
RD8
RD42
RD1



LC902
RD8
RD64
RD1



LC903
RD8
RD66
RD1



LC904
RD8
RD68
RD1



LC905
RD8
RD76
RD1



LC906
RD11
RD5
RD1



LC907
RD11
RD6
RD1



LC908
RD11
RD9
RD1



LC909
RD11
RD10
RD1



LC910
RD11
RD12
RD1



LC911
RD11
RD13
RD1



LC912
RD11
RD14
RD1



LC913
RD11
RD15
RD1



LC914
RD11
RD16
RD1



LC915
RD11
RD17
RD1



LC916
RD11
RD18
RD1



LC917
RD11
RD19
RD1



LC918
RD11
RD20
RD1



LC919
RD11
RD21
RD1



LC920
RD11
RD22
RD1



LC921
RD11
RD23
RD1



LC922
RD11
RD24
RD1



LC923
RD11
RD25
RD1



LC924
RD11
RD26
RD1



LC925
RD11
RD27
RD1



LC926
RD11
RD28
RD1



LC927
RD11
RD29
RD1



LC928
RD11
RD30
RD1



LC929
RD11
RD31
RD1



LC930
RD11
RD32
RD1



LC931
RD11
RD33
RD1



LC932
RD11
RD34
RD1



LC933
RD11
RD35
RD1



LC934
RD11
RD40
RD1



LC935
RD11
RD41
RD1



LC936
RD11
RD42
RD1



LC937
RD11
RD64
RD1



LC938
RD11
RD66
RD1



LC939
RD11
RD68
RD1



LC940
RD11
RD76
RD1



LC941
RD13
RD5
RD1



LC942
RD13
RD6
RD1



LC943
RD13
RD9
RD1



LC944
RD13
RD10
RD1



LC945
RD13
RD12
RD1



LC946
RD13
RD14
RD1



LC947
RD13
RD15
RD1



LC948
RD13
RD16
RD1



LC949
RD13
RD17
RD1



LC950
RD13
RD18
RD1



LC951
RD13
RD19
RD1



LC952
RD13
RD20
RD1



LC953
RD13
RD21
RD1



LC954
RD13
RD22
RD1



LC955
RD13
RD23
RD1



LC956
RD13
RD24
RD1



LC957
RD13
RD25
RD1



LC958
RD13
RD26
RD1



LC959
RD13
RD27
RD1



LC960
RD13
RD28
RD1



LC961
RD13
RD29
RD1



LC962
RD13
RD30
RD1



LC963
RD13
RD31
RD1



LC964
RD13
RD32
RD1



LC965
RD13
RD33
RD1



LC966
RD13
RD34
RD1



LC967
RD13
RD35
RD1



LC968
RD13
RD40
RD1



LC969
RD13
RD41
RD1



LC970
RD13
RD42
RD1



LC971
RD13
RD64
RD1



LC972
RD13
RD66
RD1



LC973
RD13
RD68
RD1



LC974
RD13
RD76
RD1



LC975
RD14
RD5
RD1



LC976
RD14
RD6
RD1



LC977
RD14
RD9
RD1



LC978
RD14
RD10
RD1



LC979
RD14
RD12
RD1



LC980
RD14
RD15
RD1



LC981
RD14
RD16
RD1



LC982
RD14
RD17
RD1



LC983
RD14
RD18
RD1



LC984
RD14
RD19
RD1



LC985
RD14
RD20
RD1



LC986
RD14
RD21
RD1



LC987
RD14
RD22
RD1



LC988
RD14
RD23
RD1



LC989
RD14
RD24
RD1



LC990
RD14
RD25
RD1



LC991
RD14
RD26
RD1



LC992
RD14
RD27
RD1



LC993
RD14
RD28
RD1



LC994
RD14
RD29
RD1



LC995
RD14
RD30
RD1



LC996
RD14
RD31
RD1



LC997
RD14
RD32
RD1



LC998
RD14
RD33
RD1



LC999
RD14
RD34
RD1



LC1000
RD14
RD35
RD1



LC1001
RD14
RD40
RD1



LC1002
RD14
RD41
RD1



LC1003
RD14
RD42
RD1



LC1004
RD14
RD64
RD1



LC1005
RD14
RD66
RD1



LC1006
RD14
RD68
RD1



LC1007
RD14
RD76
RD1



LC1008
RD22
RD5
RD1



LC1009
RD22
RD6
RD1



LC1010
RD22
RD9
RD1



LC1011
RD22
RD10
RD1



LC1012
RD22
RD12
RD1



LC1013
RD22
RD15
RD1



LC1014
RD22
RD16
RD1



LC1015
RD22
RD17
RD1



LC1016
RD22
RD18
RD1



LC1017
RD22
RD19
RD1



LC1018
RD22
RD20
RD1



LC1019
RD22
RD21
RD1



LC1020
RD22
RD23
RD1



LC1021
RD22
RD24
RD1



LC1022
RD22
RD25
RD1



LC1023
RD22
RD26
RD1



LC1024
RD22
RD27
RD1



LC1025
RD22
RD28
RD1



LC1026
RD22
RD29
RD1



LC1027
RD22
RD30
RD1



LC1028
RD22
RD31
RD1



LC1029
RD22
RD32
RD1



LC1030
RD22
RD33
RD1



LC1031
RD22
RD34
RD1



LC1032
RD22
RD35
RD1



LC1033
RD22
RD40
RD1



LC1034
RD22
RD41
RD1



LC1035
RD22
RD42
RD1



LC1036
RD22
RD64
RD1



LC1037
RD22
RD66
RD1



LC1038
RD22
RD68
RD1



LC1039
RD22
RD76
RD1



LC1040
RD26
RD5
RD1



LC1041
RD26
RD6
RD1



LC1042
RD26
RD9
RD1



LC1043
RD26
RD10
RD1



LC1044
RD26
RD12
RD1



LC1045
RD26
RD15
RD1



LC1046
RD26
RD16
RD1



LC1047
RD26
RD17
RD1



LC1048
RD26
RD18
RD1



LC1049
RD26
RD19
RD1



LC1050
RD26
RD20
RD1



LC1051
RD26
RD21
RD1



LC1052
RD26
RD23
RD1



LC1053
RD26
RD24
RD1



LC1054
RD26
RD25
RD1



LC1055
RD26
RD27
RD1



LC1056
RD26
RD28
RD1



LC1057
RD26
RD29
RD1



LC1058
RD26
RD30
RD1



LC1059
RD26
RD31
RD1



LC1060
RD26
RD32
RD1



LC1061
RD26
RD33
RD1



LC1062
RD26
RD34
RD1



LC1063
RD26
RD35
RD1



LC1064
RD26
RD40
RD1



LC1065
RD26
RD41
RD1



LC1066
RD26
RD42
RD1



LC1067
RD26
RD64
RD1



LC1068
RD26
RD66
RD1



LC1069
RD26
RD68
RD1



LC1070
RD26
RD76
RD1



LC1071
RD35
RD5
RD1



LC1072
RD35
RD6
RD1



LC1073
RD35
RD9
RD1



LC1074
RD35
RD10
RD1



LC1075
RD35
RD12
RD1



LC1076
RD35
RD15
RD1



LC1077
RD35
RD16
RD1



LC1078
RD35
RD17
RD1



LC1079
RD35
RD18
RD1



LC1080
RD35
RD19
RD1



LC1081
RD35
RD20
RD1



LC1082
RD35
RD21
RD1



LC1083
RD35
RD23
RD1



LC1084
RD35
RD24
RD1



LC1085
RD35
RD25
RD1



LC1086
RD35
RD27
RD1



LC1087
RD35
RD28
RD1



LC1088
RD35
RD29
RD1



LC1089
RD35
RD30
RD1



LC1090
RD35
RD31
RD1



LC1091
RD35
RD32
RD1



LC1092
RD35
RD33
RD1



LC1093
RD35
RD34
RD1



LC1094
RD35
RD40
RD1



LC1095
RD35
RD41
RD1



LC1096
RD35
RD42
RD1



LC1097
RD35
RD64
RD1



LC1098
RD35
RD66
RD1



LC1099
RD35
RD68
RD1



LC1100
RD35
RD76
RD1



LC1101
RD40
RD5
RD1



LC1102
RD40
RD6
RD1



LC1103
RD40
RD9
RD1



LC1104
RD40
RD10
RD1



LC1105
RD40
RD12
RD1



LC1106
RD40
RD15
RD1



LC1107
RD40
RD16
RD1



LC1108
RD40
RD17
RD1



LC1109
RD40
RD18
RD1



LC1110
RD40
RD19
RD1



LC1111
RD40
RD20
RD1



LC1112
RD40
RD21
RD1



LC1113
RD40
RD23
RD1



LC1114
RD40
RD24
RD1



LC1115
RD40
RD25
RD1



LC1116
RD40
RD27
RD1



LC1117
RD40
RD28
RD1



LC1118
RD40
RD29
RD1



LC1119
RD40
RD30
RD1



LC1120
RD40
RD31
RD1



LC1121
RD40
RD32
RD1



LC1122
RD40
RD33
RD1



LC1123
RD40
RD34
RD1



LC1124
RD40
RD41
RD1



LC1125
RD40
RD42
RD1



LC1126
RD40
RD64
RD1



LC1127
RD40
RD66
RD1



LC1128
RD40
RD68
RD1



LC1129
RD40
RD76
RD1



LC1130
RD41
RD5
RD1



LC1131
RD41
RD6
RD1



LC1132
RD41
RD9
RD1



LC1133
RD41
RD10
RD1



LC1134
RD41
RD12
RD1



LC1135
RD41
RD15
RD1



LC1136
RD41
RD16
RD1



LC1137
RD41
RD17
RD1



LC1138
RD41
RD18
RD1



LC1139
RD41
RD19
RD1



LC1140
RD41
RD20
RD1



LC1141
RD41
RD21
RD1



LC1142
RD41
RD23
RD1



LC1143
RD41
RD24
RD1



LC1144
RD41
RD25
RD1



LC1145
RD41
RD27
RD1



LC1146
RD41
RD28
RD1



LC1147
RD41
RD29
RD1



LC1148
RD41
RD30
RD1



LC1149
RD41
RD31
RD1



LC1150
RD41
RD32
RD1



LC1151
RD41
RD33
RD1



LC1152
RD41
RD34
RD1



LC1153
RD41
RD42
RD1



LC1154
RD41
RD64
RD1



LC1155
RD41
RD66
RD1



LC1156
RD41
RD68
RD1



LC1157
RD41
RD76
RD1



LC1158
RD64
RD5
RD1



LC1159
RD64
RD6
RD1



LC1160
RD64
RD9
RD1



LC1161
RD64
RD10
RD1



LC1162
RD64
RD12
RD1



LC1163
RD64
RD15
RD1



LC1164
RD64
RD16
RD1



LC1165
RD64
RD17
RD1



LC1166
RD64
RD18
RD1



LC1167
RD64
RD19
RD1



LC1168
RD64
RD20
RD1



LC1169
RD64
RD21
RD1



LC1170
RD64
RD23
RD1



LC1171
RD64
RD24
RD1



LC1172
RD64
RD25
RD1



LC1173
RD64
RD27
RD1



LC1174
RD64
RD28
RD1



LC1175
RD64
RD29
RD1



LC1176
RD64
RD30
RD1



LC1177
RD64
RD31
RD1



LC1178
RD64
RD32
RD1



LC1179
RD64
RD33
RD1



LC1180
RD64
RD34
RD1



LC1181
RD64
RD42
RD1



LC1182
RD64
RD64
RD1



LC1183
RD64
RD66
RD1



LC1184
RD64
RD68
RD1



LC1185
RD64
RD76
RD1



LC1186
RD66
RD5
RD1



LC1187
RD66
RD6
RD1



LC1188
RD66
RD9
RD1



LC1189
RD66
RD10
RD1



LC1190
RD66
RD12
RD1



LC1191
RD66
RD15
RD1



LC1192
RD66
RD16
RD1



LC1193
RD66
RD17
RD1



LC1194
RD66
RD18
RD1



LC1195
RD66
RD19
RD1



LC1196
RD66
RD20
RD1



LC1197
RD66
RD21
RD1



LC1198
RD66
RD23
RD1



LC1199
RD66
RD24
RD1



LC1200
RD66
RD25
RD1



LC1201
RD66
RD27
RD1



LC1202
RD66
RD28
RD1



LC1203
RD66
RD29
RD1



LC1204
RD66
RD30
RD1



LC1205
RD66
RD31
RD1



LC1206
RD66
RD32
RD1



LC1207
RD66
RD33
RD1



LC1208
RD66
RD34
RD1



LC1209
RD66
RD42
RD1



LC1210
RD66
RD68
RD1



LC1211
RD66
RD76
RD1



LC1212
RD68
RD5
RD1



LC1213
RD68
RD6
RD1



LC1214
RD68
RD9
RD1



LC1215
RD68
RD10
RD1



LC1216
RD68
RD12
RD1



LC1217
RD68
RD15
RD1



LC1218
RD68
RD16
RD1



LC1219
RD68
RD17
RD1



LC1220
RD68
RD18
RD1



LC1221
RD68
RD19
RD1



LC1222
RD68
RD20
RD1



LC1223
RD68
RD21
RD1



LC1224
RD68
RD23
RD1



LC1225
RD68
RD24
RD1



LC1226
RD68
RD25
RD1



LC1227
RD68
RD27
RD1



LC1228
RD68
RD28
RD1



LC1229
RD68
RD29
RD1



LC1230
RD68
RD30
RD1



LC1231
RD68
RD31
RD1



LC1232
RD68
RD32
RD1



LC1233
RD68
RD33
RD1



LC1234
RD68
RD34
RD1



LC1235
RD68
RD42
RD1



LC1236
RD68
RD76
RD1



LC1237
RD76
RD5
RD1



LC1238
RD76
RD6
RD1



LC1239
RD76
RD9
RD1



LC1240
RD76
RD10
RD1



LC1241
RD76
RD12
RD1



LC1242
RD76
RD15
RD1



LC1243
RD76
RD16
RD1



LC1244
RD76
RD17
RD1



LC1245
RD76
RD18
RD1



LC1246
RD76
RD19
RD1



LC1247
RD76
RD20
RD1



LC1248
RD76
RD21
RD1



LC1249
RD76
RD23
RD1



LC1250
RD76
RD24
RD1



LC1251
RD76
RD25
RD1



LC1252
RD76
RD27
RD1



LC1253
RD76
RD28
RD1



LC1254
RD76
RD29
RD1



LC1255
RD76
RD30
RD1



LC1256
RD76
RD31
RD1



LC1257
RD76
RD32
RD1



LC1258
RD76
RD33
RD1



LC1259
RD76
RD34
RD1



LC1260
RD76
RD42
RD1










wherein RD1 to RD81 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and structures in Ligand Group D consisting of LD1 through LD50:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of the compound, the at least one R is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of the compound where the at least one R is selected from the group consisting of RA1 to RA79, LA is selected from the group consisting of: LA1 to LA332 based on the structure of




embedded image



wherein R1, R2, X, and G are defined as follows:





















Ligand
R1
R2
X
G
Ligand
R1
R2
X
G







LA1
RA1
H
CH
G1
LA2
RA2
H
CH
G1


LA3
RA3
H
CH
G1
LA4
RA4
H
CH
G1


LA5
RA5
H
CH
G1
LA6
RA6
H
CH
G1


LA7
RA7
H
CH
G1
LA8
RA8
H
CH
G1


LA9
RA9
H
CH
G1
LA10
RA10
H
CH
G1


LA11
RA11
H
CH
G1
LA12
RA12
H
CH
G1


LA13
RA13
H
CH
G1
LA14
RA14
H
CH
G1


LA15
RA15
H
CH
G1
LA16
RA16
H
CH
G1


LA17
RA17
H
CH
G1
LA18
RA18
H
CH
G1


LA19
RA19
H
CH
G1
LA20
RA20
H
CH
G1


LA21
RA21
H
CH
G1
LA22
RA22
H
CH
G1


LA23
RA23
H
CH
G1
LA24
RA24
H
CH
G1


LA25
RA25
H
CH
G1
LA26
RA26
H
CH
G1


LA27
RA27
H
CH
G1
LA28
RA28
H
CH
G1


LA29
RA29
H
CH
G1
LA30
RA30
H
CH
G1


LA31
RA31
H
CH
G1
LA32
RA32
H
CH
G1


LA33
RA33
H
CH
G1
LA34
RA34
H
CH
G1


LA35
RA35
H
CH
G1
LA36
RA36
H
CH
G1


LA37
RA37
H
CH
G1
LA38
RA38
H
CH
G1


LA39
RA39
H
CH
G1
LA40
RA40
H
CH
G1


LA41
RA41
H
CH
G1
LA42
RA42
H
CH
G1


LA43
RA43
H
CH
G1
LA44
RA44
H
CH
G1


LA45
RA45
H
CH
G1
LA46
RA46
H
CH
G1


LA47
RA47
H
CH
G1
LA48
RA48
H
CH
G1


LA49
RA49
H
CH
G1
LA50
RA50
H
CH
G1


LA51
RA51
H
CH
G1
LA52
RA52
H
CH
G1


LA53
RA53
H
CH
G1
LA54
RA54
H
CH
G1


LA55
RA55
H
CH
G1
LA56
RA56
H
CH
G1


LA57
RA57
H
CH
G1
LA58
RA58
H
CH
G1


LA59
RA59
H
CH
G1
LA60
RA60
H
CH
G1


LA61
RA61
H
CH
G1
LA62
RA1
RB1
CH
G1


LA63
RA1
RB2
CH
G1
LA64
RA1
RB3
CH
G1


LA65
RA1
RB4
CH
G1
LA66
RA1
RB5
CH
G1


LA67
RA1
RB6
CH
G1
LA68
RA1
RB7
CH
G1


LA69
RA1
RB8
CH
G1
LA70
RA1
RB9
CH
G1


LA71
RA1
RB10
CH
G1
LA72
RA1
RB11
CH
G1


LA73
RA1
RB12
CH
G1
LA74
RA1
RB13
CH
G1


LA75
RA1
RB14
CH
G1
LA76
RA1
RB15
CH
G1


LA77
RA1
RB16
CH
G1
LA78
RA1
RB17
CH
G1


LA79
RA1
RB18
CH
G1
LA80
RA1
RB19
CH
G1


LA81
RA1
RB20
CH
G1
LA82
RA1
RB21
CH
G1


LA83
RA1
RB22
CH
G1
LA84
RA1
RB23
CH
G1


LA85
RA1
RB24
CH
G1
LA86
RA1
RB25
CH
G1


LA87
RA1
RB26
CH
G1
LA88
RA1
RB27
CH
G1


LA89
RA1
RB28
CH
G1
LA90
RA1
RB29
CH
G1


LA91
RA1
RB30
CH
G1
LA92
RA1
RB31
CH
G1


LA93
RA1
RB32
CH
G1
LA94
RA1
RB33
CH
G1


LA95
RA1
RB34
CH
G1
LA96
RA1
RB35
CH
G1


LA97
RA1
RB36
CH
G1
LA98
RA1
RB37
CH
G1


LA99
RA1
RB38
CH
G1
LA100
RA1
RB39
CH
G1


LA101
RA1
RB40
CH
G1
LA102
RA1
RB41
CH
G1


LA103
RA1
RB42
CH
G1
LA104
RA1
RB43
CH
G1


LA105
RA1
RB44
CH
G1
LA106
RA1
RB45
CH
G1


LA107
RA1
RB46
CH
G1
LA108
RA1
RB47
CH
G1


LA109
RA1
RB48
CH
G1
LA110
RA1
RB49
CH
G1


LA111
RA1
RB50
CH
G1
LA112
RA1
RB51
CH
G1


LA113
RA1
RB52
CH
G1
LA114
RA1
RB53
CH
G1


LA115
RA1
RB54
CH
G1
LA116
RA1
RB55
CH
G1


LA117
RA1
RB56
CH
G1
LA118
RA1
RB57
CH
G1


LA119
RA1
RB58
CH
G1
LA120
RA1
RB59
CH
G1


LA121
RA1
RB60
CH
G1
LA122
RA1
H
CH
G2


LA123
RA1
H
CH
G3
LA124
RA1
H
CH
G4


LA125
RA1
H
CH
G5
LA126
RA1
H
CH
G6


LA127
RA1
H
CH
G7
LA128
RA1
H
CH
G8


LA129
RA1
H
CH
G9
LA130
RA1
H
CH
G10


LA131
RA1
H
CH
G11
LA132
RA1
H
CH
G12


LA133
RA1
H
CH
G13
LA134
RA1
H
CH
G14


LA135
RA1
H
CH
G15
LA136
RA1
H
CH
G16


LA137
RA1
H
CH
G17
LA138
RA1
H
CH
G18


LA139
RA1
H
CH
G19
LA140
RA1
H
CH
G20


LA141
RA1
H
CH
G21
LA142
RA1
H
CH
G22


LA143
RA1
H
CH
G23
LA144
RA1
H
CH
G24


LA145
RA1
H
CH
G25
LA146
RA1
H
CH
G26


LA147
RA1
H
CH
G27
LA148
RA1
H
CH
G28


LA149
RA1
H
CH
G29
LA150
RA1
H
CH
G30


LA151
RA1
H
CH
G31
LA152
RA1
H
CH
G32


LA153
RA1
H
CH
G33
LA154
RA1
H
CH
G34


LA155
RA1
H
CH
G35
LA156
RA1
H
CH
G36


LA157
RA1
H
CH
G37
LA158
RA1
H
CH
G38


LA159
RA1
H
CH
G39
LA160
RA1
H
CH
G40


LA161
RA1
H
CH
G41
LA162
RA1
H
CH
G42


LA163
RA1
H
CH
G43
LA164
RA1
H
CH
G44


LA165
RA1
H
CH
G45
LA166
RA1
H
CH
G46


LA167
RA1
H
CH
G47
LA168
RA1
H
CH
G48


LA169
RA1
H
CH
G49
LA170
RA1
H
CH
G50


LA171
RA1
H
CH
G51
LA172
RA1
H
CH
G52


LA173
RA1
H
CH
G53
LA174
RA1
H
CH
G54


LA175
RA1
H
CH
G55
LA176
RA1
H
CH
G56


LA177
RA1
H
CH
G57
LA178
RA1
H
CH
G58


LA179
RA1
H
CH
G59
LA180
RA1
H
CH
G60


LA181
RA1
H
CH
G61
LA182
RA1
H
CH
G62


LA183
RA1
H
CH
G63
LA184
RA1
H
CH
G64


LA185
RA1
H
CH
G65
LA186
RA1
H
CH
G66


LA187
RA1
H
CH
G67
LA188
RA1
H
CH
G68


LA189
RA1
H
CH
G69
LA190
RA1
H
CH
G70


LA191
RA1
H
CH
G71
LA192
RA1
H
CH
G72


LA193
RA1
H
CH
G73
LA194
RA1
H
CH
G74


LA195
RA1
H
CH
G75
LA196
RA1
H
CH
G76


LA197
RA1
H
CH
G77
LA198
RA1
H
CH
G78


LA199
RA1
H
CH
G79
LA200
RA1
H
CH
G80


LA201
RA1
H
CH
G81
LA202
RA1
H
CH
G82


LA203
RA1
H
CH
G83
LA204
RA1
H
CH
G84


LA205
RA1
H
CH
G85
LA206
RA1
H
CH
G86


LA207
RA1
H
CH
G87
LA208
RA1
H
CH
G88


LA209
RA1
H
CH
G89
LA210
RA1
H
CH
G90


LA211
RA1
H
CH
G91
LA212
RA1
H
CH
G92


LA213
RA1
H
CH
G93
LA214
RA1
H
CH
G94


LA215
RA1
H
CH
G95
LA216
RA1
H
CH
G96


LA217
RA1
H
CH
G97
LA218
RA1
H
CH
G98


LA219
RA1
H
CH
G99
LA220
RA1
H
CH
G100


LA221
RA1
H
CH
G101
LA222
RA1
H
CH
G102


LA223
RA1
H
CH
G103
LA224
RA1
H
CH
G104


LA225
RA1
H
CH
G105
LA226
RA1
H
CH
G106


LA227
RA31
RB1
N
G1
LA228
RA31
RB2
N
G2


LA229
RA31
RB3
N
G3
LA230
RA31
RB4
N
G4


LA231
RA31
RB5
N
G5
LA232
RA31
RB6
N
G6


LA233
RA31
RB7
N
G7
LA234
RA31
RB8
N
G8


LA235
RA31
RB9
N
G9
LA236
RA31
RB10
N
G10


LA237
RA31
RB11
N
G11
LA238
RA31
RB12
N
G12


LA239
RA31
RB13
N
G13
LA240
RA31
RB14
N
G14


LA241
RA31
RB15
N
G15
LA242
RA31
RB16
N
G16


LA243
RA31
RB17
N
G17
LA244
RA31
RB18
N
G18


LA245
RA31
RB19
N
G19
LA246
RA31
RB20
N
G20


LA247
RA31
RB21
N
G21
LA248
RA31
RB22
N
G22


LA249
RA31
RB23
N
G23
LA250
RA31
RB24
N
G24


LA251
RA31
RB25
N
G25
LA252
RA31
RB26
N
G26


LA253
RA31
RB27
N
G27
LA254
RA31
RB28
N
G28


LA255
RA31
RB29
N
G29
LA256
RA31
RB30
N
G30


LA257
RA31
RB31
N
G31
LA258
RA31
RB32
N
G32


LA259
RA31
RB33
N
G33
LA260
RA31
RB34
N
G34


LA261
RA31
RB35
N
G35
LA262
RA31
RB36
N
G36


LA263
RA31
RB37
N
G37
LA264
RA31
RB38
N
G38


LA265
RA31
RB39
N
G39
LA266
RA31
RB40
N
G40


LA267
RA31
RB41
N
G41
LA268
RA31
RB42
N
G42


LA269
RA31
RB43
N
G43
LA270
RA31
RB44
N
G44


LA271
RA31
RB45
N
G45
LA272
RA31
RB46
N
G46


LA273
RA31
RB47
N
G47
LA274
RA31
RB48
N
G48


LA275
RA31
RB49
N
G49
LA276
RA31
RB50
N
G50


LA277
RA31
RB51
N
G51
LA278
RA31
RB52
N
G52


LA279
RA31
RB53
N
G53
LA280
RA31
RB54
N
G54


LA281
RA31
RB55
N
G55
LA282
RA31
RB56
N
G56


LA283
RA31
RB57
N
G57
LA284
RA31
RB58
N
G58


LA285
RA31
RB59
N
G59
LA286
RA31
RB60
N
G60


LA287
RA31
RB61
N
G61
LA288
RA31
RB62
N
G62


LA289
RA31
RB63
N
G63
LA290
RA31
RB64
N
G64


LA291
RA31
RB65
N
G65
LA292
RA31
RB66
N
G66


LA293
RA31
RB67
N
G67
LA294
RA31
RB68
N
G68


LA295
RA31
RB69
N
G69
LA296
RA31
RB70
N
G70


LA297
RA31
RB71
N
G71
LA298
RA31
RB72
N
G72


LA299
RA31
RB73
N
G73
LA300
RA31
RB74
N
G74


LA301
RA31
RB75
N
G75
LA302
RA31
RB76
N
G76


LA303
RA31
RB77
N
G77
LA304
RA31
RB78
N
G78


LA305
RA31
RB79
N
G79
LA306
RA31
RB80
N
G80


LA307
RA31
RB81
N
G81
LA308
RA31
RB82
N
G82


LA309
RA31
RB83
N
G83
LA310
RA31
RB84
N
G84


LA311
RA31
RB85
N
G85
LA312
RA31
RB86
N
G86


LA313
RA31
RB87
N
G87
LA314
RA31
RB88
N
G88


LA315
RA31
RB89
N
G89
LA316
RA31
RB90
N
G90


LA317
RA31
RB91
N
G91
LA318
RA31
RB92
N
G92


LA319
RA31
RB93
N
G93
LA320
RA31
RB94
N
G94


LA321
RA31
RB95
N
G95
LA322
RA31
RB96
N
G96


LA323
RA31
RB97
N
G97
LA324
RA31
RB98
N
G98


LA325
RA31
RB99
N
G99
LA326
RA31
RB100
N
G100


LA327
RA31
RB101
N
G101
LA328
RA31
RB102
N
G102


LA329
RA31
RB103
N
G103
LA330
RA31
RB104
N
G104


LA331
RA31
RB105
N
G105
LA332
RA31
RB106
N
G106










LA333 to LA772 based on the structure of




embedded image



wherein R3, R4, X, and G are defined as follows:





















Ligand
R3
R4
X
G
Ligand
R3
R4
X
G







LA333
RA1
H
CH
G2
LA334
RA2
H
CH
G2


LA335
RA3
H
CH
G2
LA336
RA4
H
CH
G2


LA337
RA5
H
CH
G2
LA338
RA6
H
CH
G2


LA339
RA7
H
CH
G2
LA340
RA8
H
CH
G2


LA341
RA9
H
CH
G2
LA342
RA10
H
CH
G2


LA343
RA11
H
CH
G2
LA344
RA12
H
CH
G2


LA345
RA13
H
CH
G2
LA346
RA14
H
CH
G2


LA347
RA15
H
CH
G2
LA348
RA16
H
CH
G2


LA349
RA17
H
CH
G2
LA350
RA18
H
CH
G2


LA351
RA19
H
CH
G2
LA352
RA20
H
CH
G2


LA353
RA21
H
CH
G2
LA354
RA22
H
CH
G2


LA355
RA23
H
CH
G2
LA356
RA24
H
CH
G2


LA357
RA25
H
CH
G2
LA358
RA26
H
CH
G2


LA359
RA27
H
CH
G2
LA360
RA28
H
CH
G2


LA361
RA29
H
CH
G2
LA362
RA30
H
CH
G2


LA363
RA31
H
CH
G2
LA364
RA32
H
CH
G2


LA365
RA33
H
CH
G2
LA366
RA34
H
CH
G2


LA367
RA35
H
CH
G2
LA368
RA36
H
CH
G2


LA369
RA37
H
CH
G2
LA370
RA38
H
CH
G2


LA371
RA39
H
CH
G2
LA372
RA40
H
CH
G2


LA373
RA41
H
CH
G2
LA374
RA42
H
CH
G2


LA375
RA43
H
CH
G2
LA376
RA44
H
CH
G2


LA377
RA45
H
CH
G2
LA378
RA46
H
CH
G2


LA379
RA47
H
CH
G2
LA380
RA48
H
CH
G2


LA381
RA49
H
CH
G2
LA382
RA50
H
CH
G2


LA383
RA51
H
CH
G2
LA384
RA52
H
CH
G2


LA385
RA53
H
CH
G2
LA386
RA54
H
CH
G2


LA387
RA55
H
CH
G2
LA388
RA56
H
CH
G2


LA389
RA57
H
CH
G2
LA390
RA58
H
CH
G2


LA391
RA59
H
CH
G2
LA392
RA60
H
CH
G2


LA393
RA61
H
CH
G2
LA394
RA1
RB1
CH
G2


LA395
RA1
RB2
CH
G2
LA396
RA1
RB3
CH
G2


LA397
RA1
RB4
CH
G2
LA398
RA1
RB5
CH
G2


LA399
RA1
RB6
CH
G2
LA400
RA1
RB7
CH
G2


LA401
RA1
RB8
CH
G2
LA402
RA1
RB9
CH
G2


LA403
RA1
RB10
CH
G2
LA404
RA1
RB11
CH
G2


LA405
RA1
RB12
CH
G2
LA406
RA1
RB13
CH
G2


LA407
RA1
RB14
CH
G2
LA408
RA1
RB15
CH
G2


LA409
RA1
RB16
CH
G2
LA410
RA1
RB17
CH
G2


LA411
RA1
RB18
CH
G2
LA412
RA1
RB19
CH
G2


LA413
RA1
RB20
CH
G2
LA414
RA1
RB21
CH
G2


LA415
RA1
RB22
CH
G2
LA416
RA1
RB23
CH
G2


LA417
RA1
RB24
CH
G2
LA418
RA1
RB25
CH
G2


LA419
RA1
RB26
CH
G2
LA420
RA1
RB27
CH
G2


LA421
RA1
RB28
CH
G2
LA422
RA1
RB29
CH
G2


LA423
RA1
RB30
CH
G2
LA424
RA1
RB31
CH
G2


LA425
RA1
RB32
CH
G2
LA426
RA1
RB33
CH
G2


LA427
RA1
RB34
CH
G2
LA428
RA1
RB35
CH
G2


LA429
RA1
RB36
CH
G2
LA430
RA1
RB37
CH
G2


LA431
RA1
RB38
CH
G2
LA432
RA1
RB39
CH
G2


LA433
RA1
RB40
CH
G2
LA434
RA1
RB41
CH
G2


LA435
RA1
RB42
CH
G2
LA436
RA1
RB43
CH
G2


LA437
RA1
RB44
CH
G2
LA438
RA1
RB45
CH
G2


LA439
RA1
RB46
CH
G2
LA440
RA1
RB47
CH
G2


LA441
RA1
RB48
CH
G2
LA442
RA1
RB49
CH
G2


LA443
RA1
RB50
CH
G2
LA444
RA1
RB51
CH
G2


LA445
RA1
RB52
CH
G2
LA446
RA1
RB53
CH
G2


LA447
RA1
RB54
CH
G2
LA448
RA1
RB55
CH
G2


LA449
RA1
RB56
CH
G2
LA450
RA1
RB57
CH
G2


LA451
RA1
RB58
CH
G2
LA452
RA1
RB59
CH
G2


LA453
RA1
RB60
CH
G2
LA454
RA1
H
N
G2


LA455
RA2
H
N
G2
LA456
RA3
H
N
G2


LA457
RA4
H
N
G2
LA458
RA5
H
N
G2


LA459
RA6
H
N
G2
LA460
RA7
H
N
G2


LA461
RA8
H
N
G2
LA462
RA9
H
N
G2


LA463
RA10
H
N
G2
LA464
RA11
H
N
G2


LA465
RA12
H
N
G2
LA466
RA13
H
N
G2


LA467
RA14
H
N
G2
LA468
RA15
H
N
G2


LA469
RA16
H
N
G2
LA470
RA17
H
N
G2


LA471
RA18
H
N
G2
LA472
RA19
H
N
G2


LA473
RA20
H
N
G2
LA474
RA21
H
N
G2


LA475
RA22
H
N
G2
LA476
RA23
H
N
G2


LA477
RA24
H
N
G2
LA478
RA25
H
N
G2


LA479
RA26
H
N
G2
LA480
RA27
H
N
G2


LA481
RA28
H
N
G2
LA482
RA29
H
N
G2


LA483
RA30
H
N
G2
LA484
RA31
H
N
G2


LA485
RA32
H
N
G2
LA486
RA33
H
N
G2


LA487
RA34
H
N
G2
LA488
RA35
H
N
G2


LA489
RA36
H
N
G2
LA490
RA37
H
N
G2


LA491
RA38
H
N
G2
LA492
RA39
H
N
G2


LA493
RA40
H
N
G2
LA494
RA41
H
N
G2


LA495
RA42
H
N
G2
LA496
RA43
H
N
G2


LA497
RA44
H
N
G2
LA498
RA45
H
N
G2


LA499
RA46
H
N
G2
LA500
RA47
H
N
G2


LA501
RA48
H
N
G2
LA502
RA49
H
N
G2


LA503
RA50
H
N
G2
LA504
RA51
H
N
G2


LA505
RA52
H
N
G2
LA506
RA53
H
N
G2


LA507
RA54
H
N
G2
LA508
RA55
H
N
G2


LA509
RA56
H
N
G2
LA510
RA57
H
N
G2


LA511
RA58
H
N
G2
LA512
RA59
H
N
G2


LA513
RA60
H
N
G2
LA514
RA61
H
N
G2


LA515
RA1
RB1
N
G2
LA516
RA1
RB2
N
G2


LA517
RA1
RB3
N
G2
LA518
RA1
RB4
N
G2


LA519
RA1
RB5
N
G2
LA520
RA1
RB6
N
G2


LA521
RA1
RB7
N
G2
LA522
RA1
RB8
N
G2


LA523
RA1
RB9
N
G2
LA524
RA1
RB10
N
G2


LA525
RA1
RB11
N
G2
LA526
RA1
RB12
N
G2


LA527
RA1
RB13
N
G2
LA528
RA1
RB14
N
G2


LA529
RA1
RB15
N
G2
LA530
RA1
RB16
N
G2


LA531
RA1
RB17
N
G2
LA532
RA1
RB18
N
G2


LA533
RA1
RB19
N
G2
LA534
RA1
RB20
N
G2


LA535
RA1
RB21
N
G2
LA536
RA1
RB22
N
G2


LA537
RA1
RB23
N
G2
LA538
RA1
RB24
N
G2


LA539
RA1
RB25
N
G2
LA540
RA1
RB26
N
G2


LA541
RA1
RB27
N
G2
LA542
RA1
RB28
N
G2


LA543
RA1
RB29
N
G2
LA544
RA1
RB30
N
G2


LA545
RA1
RB31
N
G2
LA546
RA1
RB32
N
G2


LA547
RA1
RB33
N
G2
LA548
RA1
RB34
N
G2


LA549
RA1
RB35
N
G2
LA550
RA1
RB36
N
G2


LA551
RA1
RB37
N
G2
LA552
RA1
RB38
N
G2


LA553
RA1
RB39
N
G2
LA554
RA1
RB40
N
G2


LA555
RA1
RB41
N
G2
LA556
RA1
RB42
N
G2


LA557
RA1
RB43
N
G2
LA558
RA1
RB44
N
G2


LA559
RA1
RB45
N
G2
LA560
RA1
RB46
N
G2


LA561
RA1
RB47
N
G2
LA562
RA1
RB48
N
G2


LA563
RA1
RB49
N
G2
LA564
RA1
RB50
N
G2


LA565
RA1
RB51
N
G2
LA566
RA1
RB52
N
G2


LA567
RA1
RB53
N
G2
LA568
RA1
RB54
N
G2


LA569
RA1
RB55
N
G2
LA570
RA1
RB56
N
G2


LA571
RA1
RB57
N
G2
LA572
RA1
RB58
N
G2


LA573
RA1
RB59
N
G2
LA574
RA1
RB60
N
G2


LA575
H
RA1
CH
G2
LA576
H
RA2
CH
G2


LA577
H
RA3
CH
G2
LA578
H
RA4
CH
G2


LA579
H
RA5
CH
G2
LA580
H
RA6
CH
G2


LA581
H
RA7
CH
G2
LA582
H
RA8
CH
G2


LA583
H
RA9
CH
G2
LA584
H
RA10
CH
G2


LA585
H
RA11
CH
G2
LA586
H
RA12
CH
G2


LA587
H
RA13
CH
G2
LA588
H
RA14
CH
G2


LA589
H
RA15
CH
G2
LA590
H
RA16
CH
G2


LA591
H
RA17
CH
G2
LA592
H
RA18
CH
G2


LA593
H
RA19
CH
G2
LA594
H
RA20
CH
G2


LA595
H
RA21
CH
G2
LA596
H
RA22
CH
G2


LA597
H
RA23
CH
G2
LA598
H
RA24
CH
G2


LA599
H
RA25
CH
G2
LA600
H
RA26
CH
G2


LA601
H
RA27
CH
G2
LA602
H
RA28
CH
G2


LA603
H
RA29
CH
G2
LA604
H
RA30
CH
G2


LA605
H
RA31
CH
G2
LA606
H
RA32
CH
G2


LA607
H
RA33
CH
G2
LA608
H
RA34
CH
G2


LA609
H
RA35
CH
G2
LA610
H
RA36
CH
G2


LA611
H
RA37
CH
G2
LA612
H
RA38
CH
G2


LA613
H
RA39
CH
G2
LA614
H
RA40
CH
G2


LA615
H
RA41
CH
G2
LA616
H
RA42
CH
G2


LA617
H
RA43
CH
G2
LA618
H
RA44
CH
G2


LA619
H
RA45
CH
G2
LA620
H
RA46
CH
G2


LA621
H
RA47
CH
G2
LA622
H
RA48
CH
G2


LA623
H
RA49
CH
G2
LA624
H
RA50
CH
G2


LA625
H
RA51
CH
G2
LA626
H
RA52
CH
G2


LA627
H
RA53
CH
G2
LA628
H
RA54
CH
G2


LA629
H
RA55
CH
G2
LA630
H
RA56
CH
G2


LA631
H
RA57
CH
G2
LA632
H
RA58
CH
G2


LA633
H
RA59
CH
G2
LA634
H
RA60
CH
G2


LA635
H
RA61
CH
G2
LA636
H
RA1
N
G2


LA637
H
RA2
N
G2
LA638
H
RA3
N
G2


LA639
H
RA4
N
G2
LA640
H
RA5
N
G2


LA641
H
RA6
N
G2
LA642
H
RA7
N
G2


LA643
H
RA8
N
G2
LA644
H
RA9
N
G2


LA645
H
RA10
N
G2
LA646
H
RA11
N
G2


LA647
H
RA12
N
G2
LA648
H
RA13
N
G2


LA649
H
RA14
N
G2
LA650
H
RA15
N
G2


LA651
H
RA16
N
G2
LA652
H
RA17
N
G2


LA653
H
RA18
N
G2
LA654
H
RA19
N
G2


LA655
H
RA20
N
G2
LA656
H
RA21
N
G2


LA657
H
RA22
N
G2
LA658
H
RA23
N
G2


LA659
H
RA24
N
G2
LA660
H
RA25
N
G2


LA661
H
RA26
N
G2
LA662
H
RA27
N
G2


LA663
H
RA28
N
G2
LA664
H
RA29
N
G2


LA665
H
RA30
N
G2
LA666
H
RA31
N
G2


LA667
H
RA32
N
G2
LA668
H
RA33
N
G2


LA669
H
RA34
N
G2
LA670
H
RA35
N
G2


LA671
H
RA36
N
G2
LA672
H
RA37
N
G2


LA673
H
RA38
N
G2
LA674
H
RA39
N
G2


LA675
H
RA40
N
G2
LA676
H
RA41
N
G2


LA677
H
RA42
N
G2
LA678
H
RA43
N
G2


LA679
H
RA44
N
G2
LA680
H
RA45
N
G2


LA681
H
RA46
N
G2
LA682
H
RA47
N
G2


LA683
H
RA48
N
G2
LA684
H
RA49
N
G2


LA685
H
RA50
N
G2
LA686
H
RA51
N
G2


LA687
H
RA52
N
G2
LA688
H
RA53
N
G2


LA689
H
RA54
N
G2
LA690
H
RA55
N
G2


LA691
H
RA56
N
G2
LA692
H
RA57
N
G2


LA693
H
RA58
N
G2
LA694
H
RA59
N
G2


LA695
H
RA60
N
G2
LA696
H
RA61
N
G2


LA697
RB1
RA1
CH
G2
LA698
RB2
RA1
CH
G2


LA699
RB3
RA1
CH
G2
LA700
RB4
RA1
CH
G2


LA701
RB5
RA1
CH
G2
LA702
RB6
RA1
CH
G2


LA703
RB7
RA1
CH
G2
LA704
RB8
RA1
CH
G2


LA705
RB9
RA1
CH
G2
LA706
RB10
RA1
CH
G2


LA707
RB11
RA1
CH
G2
LA708
RB12
RA1
CH
G2


LA709
RB13
RA1
CH
G2
LA710
RB14
RA1
CH
G2


LA711
RB15
RA1
CH
G2
LA712
RB16
RA1
CH
G2


LA713
RB17
RA1
CH
G2
LA714
RB18
RA1
CH
G2


LA715
RB19
RA1
CH
G2
LA716
RB20
RA1
CH
G2


LA717
RB21
RA1
CH
G2
LA718
RB22
RA1
CH
G2


LA719
RB23
RA1
CH
G2
LA720
RB24
RA1
CH
G2


LA721
RB25
RA1
CH
G2
LA722
RB26
RA1
CH
G2


LA723
RB27
RA1
CH
G2
LA724
RB28
RA1
CH
G2


LA725
RB29
RA1
CH
G2
LA726
RB30
RA1
CH
G2


LA727
RB31
RA1
CH
G2
LA728
RB32
RA1
CH
G2


LA729
RB33
RA1
CH
G2
LA730
RB34
RA1
CH
G2


LA731
RB35
RA1
CH
G2
LA732
RB36
RA1
CH
G2


LA733
RB37
RA1
CH
G2
LA734
RB38
RA1
CH
G2


LA735
RB39
RA1
CH
G2
LA736
RB40
RA1
CH
G2


LA737
RB41
RA1
CH
G2
LA738
RB42
RA1
CH
G2


LA739
RB43
RA1
CH
G2
LA740
RB44
RA1
CH
G2


LA741
RB45
RA1
CH
G2
LA742
RB46
RA1
CH
G2


LA743
RB47
RA1
CH
G2
LA744
RB48
RA1
CH
G2


LA745
RB49
RA1
CH
G2
LA746
RB50
RA1
CH
G2


LA747
RB51
RA1
CH
G2
LA748
RB52
RA1
CH
G2


LA749
RB53
RA1
CH
G2
LA750
RB54
RA1
CH
G2


LA751
RB55
RA1
CH
G2
LA752
RB56
RA1
CH
G2


LA753
RB57
RA1
CH
G2
LA754
RB58
RA1
CH
G2


LA755
RB59
RA1
CH
G2
LA756
RB60
RA1
CH
G2


LA757
RB1
RA1
CH
G91
LA758
RB1
RA1
CH
G92


LA759
RB1
RA1
CH
G93
LA760
RB1
RA1
CH
G94


LA761
RB1
RA1
CH
G95
LA762
RB1
RA1
CH
G96


LA763
RB1
RA1
CH
G97
LA764
RB1
RA1
CH
G98


LA765
RB1
RA1
CH
G99
LA766
RB1
RA1
CH
G100


LA767
RB1
RA1
CH
G101
LA768
RB1
RA1
CH
G102


LA769
RB1
RA1
CH
G103
LA770
RB1
RA1
CH
G104


LA771
RB1
RA1
CH
G105
LA772
RB1
RA1
CH
G106










LA773 to LA1212 based on the structure of




embedded image



where R2, R3, R4, and G are defined as follows:





















Ligand
R2
R3
R4
G
Ligand
R2
R3
R4
G







LA773
RA1
H
H
G2
LA774
RA2
H
H
G2


LA775
RA3
H
H
G2
LA776
RA4
H
H
G2


LA777
RA5
H
H
G2
LA778
RA6
H
H
G2


LA779
RA7
H
H
G2
LA780
RA8
H
H
G2


LA781
RA9
H
H
G2
LA782
RA10
H
H
G2


LA783
RA11
H
H
G2
LA784
RA12
H
H
G2


LA785
RA13
H
H
G2
LA786
RA14
H
H
G2


LA787
RA15
H
H
G2
LA788
RA16
H
H
G2


LA789
RA17
H
H
G2
LA790
RA18
H
H
G2


LA791
RA19
H
H
G2
LA792
RA20
H
H
G2


LA793
RA21
H
H
G2
LA794
RA22
H
H
G2


LA795
RA23
H
H
G2
LA796
RA24
H
H
G2


LA797
RA25
H
H
G2
LA798
RA26
H
H
G2


LA799
RA27
H
H
G2
LA800
RA28
H
H
G2


LA801
RA29
H
H
G2
LA802
RA30
H
H
G2


LA803
RA31
H
H
G2
LA804
RA32
H
H
G2


LA805
RA33
H
H
G2
LA806
RA34
H
H
G2


LA807
RA35
H
H
G2
LA808
RA36
H
H
G2


LA809
RA37
H
H
G2
LA810
RA38
H
H
G2


LA811
RA39
H
H
G2
LA812
RA40
H
H
G2


LA813
RA41
H
H
G2
LA814
RA42
H
H
G2


LA815
RA43
H
H
G2
LA816
RA44
H
H
G2


LA817
RA45
H
H
G2
LA818
RA46
H
H
G2


LA819
RA47
H
H
G2
LA820
RA48
H
H
G2


LA821
RA49
H
H
G2
LA822
RA50
H
H
G2


LA823
RA51
H
H
G2
LA824
RA52
H
H
G2


LA825
RA53
H
H
G2
LA826
RA54
H
H
G2


LA827
RA55
H
H
G2
LA828
RA56
H
H
G2


LA829
RA57
H
H
G2
LA830
RA58
H
H
G2


LA831
RA59
H
H
G2
LA832
RA60
H
H
G2


LA833
RA61
H
H
G2
LA834
RA1
RB1
H
G2


LA835
RA1
RB2
H
G2
LA836
RA1
RB3
H
G2


LA837
RA1
RB4
H
G2
LA838
RA1
RB5
H
G2


LA839
RA1
RB6
H
G2
LA840
RA1
RB7
H
G2


LA841
RA1
RB8
H
G2
LA842
RA1
RB9
H
G2


LA843
RA1
RB10
H
G2
LA844
RA1
RB11
H
G2


LA845
RA1
RB12
H
G2
LA846
RA1
RB13
H
G2


LA847
RA1
RB14
H
G2
LA848
RA1
RB15
H
G2


LA849
RA1
RB16
H
G2
LA850
RA1
RB17
H
G2


LA851
RA1
RB18
H
G2
LA852
RA1
RB19
H
G2


LA853
RA1
RB20
H
G2
LA854
RA1
RB21
H
G2


LA855
RA1
RB22
H
G2
LA856
RA1
RB23
H
G2


LA857
RA1
RB24
H
G2
LA858
RA1
RB25
H
G2


LA859
RA1
RB26
H
G2
LA860
RA1
RB27
H
G2


LA861
RA1
RB28
H
G2
LA862
RA1
RB29
H
G2


LA863
RA1
RB30
H
G2
LA864
RA1
RB31
H
G2


LA865
RA1
RB32
H
G2
LA866
RA1
RB33
H
G2


LA867
RA1
RB34
H
G2
LA868
RA1
RB35
H
G2


LA869
RA1
RB36
H
G2
LA870
RA1
RB37
H
G2


LA871
RA1
RB38
H
G2
LA872
RA1
RB39
H
G2


LA873
RA1
RB40
H
G2
LA874
RA1
RB41
H
G2


LA875
RA1
RB42
H
G2
LA876
RA1
RB43
H
G2


LA877
RA1
RB44
H
G2
LA878
RA1
RB45
H
G2


LA879
RA1
RB46
H
G2
LA880
RA1
RB47
H
G2


LA881
RA1
RB48
H
G2
LA882
RA1
RB49
H
G2


LA883
RA1
RB50
H
G2
LA884
RA1
RB51
H
G2


LA885
RA1
RB52
H
G2
LA886
RA1
RB53
H
G2


LA887
RA1
RB54
H
G2
LA888
RA1
RB55
H
G2


LA889
RA1
RB56
H
G2
LA890
RA1
RB57
H
G2


LA891
RA1
RB58
H
G2
LA892
RA1
RB59
H
G2


LA893
RA1
RB60
H
G2
LA894
RA1
H
H
G1


LA895
RA2
H
H
G1
LA896
RA3
H
H
G1


LA897
RA4
H
H
G1
LA898
RA5
H
H
G1


LA899
RA6
H
H
G1
LA900
RA7
H
H
G1


LA901
RA8
H
H
G1
LA902
RA9
H
H
G1


LA903
RA10
H
H
G1
LA904
RA11
H
H
G1


LA905
RA12
H
H
G1
LA906
RA13
H
H
G1


LA907
RA14
H
H
G1
LA908
RA15
H
H
G1


LA909
RA16
H
H
G1
LA910
RA17
H
H
G1


LA911
RA18
H
H
G1
LA912
RA19
H
H
G1


LA913
RA20
H
H
G1
LA914
RA21
H
H
G1


LA915
RA22
H
H
G1
LA916
RA23
H
H
G1


LA917
RA24
H
H
G1
LA918
RA25
H
H
G1


LA919
RA26
H
H
G1
LA920
RA27
H
H
G1


LA921
RA28
H
H
G1
LA922
RA29
H
H
G1


LA923
RA30
H
H
G1
LA924
RA31
H
H
G1


LA925
RA32
H
H
G1
LA926
RA33
H
H
G1


LA927
RA34
H
H
G1
LA928
RA35
H
H
G1


LA929
RA36
H
H
G1
LA930
RA37
H
H
G1


LA931
RA38
H
H
G1
LA932
RA39
H
H
G1


LA933
RA40
H
H
G1
LA934
RA41
H
H
G1


LA935
RA42
H
H
G1
LA936
RA43
H
H
G1


LA937
RA44
H
H
G1
LA938
RA45
H
H
G1


LA939
RA46
H
H
G1
LA940
RA47
H
H
G1


LA941
RA48
H
H
G1
LA942
RA49
H
H
G1


LA943
RA50
H
H
G1
LA944
RA51
H
H
G1


LA945
RA52
H
H
G1
LA946
RA53
H
H
G1


LA947
RA54
H
H
G1
LA948
RA55
H
H
G1


LA949
RA56
H
H
G1
LA950
RA57
H
H
G1


LA951
RA58
H
H
G1
LA952
RA59
H
H
G1


LA953
RA60
H
H
G1
LA954
RA61
H
H
G1


LA955
RA1
RB1
H
G1
LA956
RA1
RB2
H
G1


LA957
RA1
RB3
H
G1
LA958
RA1
RB4
H
G1


LA959
RA1
RB5
H
G1
LA960
RA1
RB6
H
G1


LA961
RA1
RB7
H
G1
LA962
RA1
RB8
H
G1


LA963
RA1
RB9
H
G1
LA964
RA1
RB10
H
G1


LA965
RA1
RB11
H
G1
LA966
RA1
RB12
H
G1


LA967
RA1
RB13
H
G1
LA968
RA1
RB14
H
G1


LA969
RA1
RB15
H
G1
LA970
RA1
RB16
H
G1


LA971
RA1
RB17
H
G1
LA972
RA1
RB18
H
G1


LA973
RA1
RB19
H
G1
LA974
RA1
RB20
H
G1


LA975
RA1
RB21
H
G1
LA976
RA1
RB22
H
G1


LA977
RA1
RB23
H
G1
LA978
RA1
RB24
H
G1


LA979
RA1
RB25
H
G1
LA980
RA1
RB26
H
G1


LA981
RA1
RB27
H
G1
LA982
RA1
RB28
H
G1


LA983
RA1
RB29
H
G1
LA984
RA1
RB30
H
G1


LA985
RA1
RB31
H
G1
LA986
RA1
RB32
H
G1


LA987
RA1
RB33
H
G1
LA988
RA1
RB34
H
G1


LA989
RA1
RB35
H
G1
LA990
RA1
RB36
H
G1


LA991
RA1
RB37
H
G1
LA992
RA1
RB38
H
G1


LA993
RA1
RB39
H
G1
LA994
RA1
RB40
H
G1


LA995
RA1
RB41
H
G1
LA996
RA1
RB42
H
G1


LA997
RA1
RB43
H
G1
LA998
RA1
RB44
H
G1


LA999
RA1
RB45
H
G1
LA1000
RA1
RB46
H
G1


LA1001
RA1
RB47
H
G1
LA1002
RA1
RB48
H
G1


LA1003
RA1
RB49
H
G1
LA1004
RA1
RB50
H
G1


LA1005
RA1
RB51
H
G1
LA1006
RA1
RB52
H
G1


LA1007
RA1
RB53
H
G1
LA1008
RA1
RB54
H
G1


LA1009
RA1
RB55
H
G1
LA1010
RA1
RB56
H
G1


LA1011
RA1
RB57
H
G1
LA1012
RA1
RB58
H
G1


LA1013
RA1
RB59
H
G1
LA1014
RA1
RB60
H
G1


LA1015
H
RA1
H
G2
LA1016
H
RA2
H
G2


LA1017
H
RA3
H
G2
LA1018
H
RA4
H
G2


LA1019
H
RA5
H
G2
LA1020
H
RA6
H
G2


LA1021
H
RA7
H
G2
LA1022
H
RA8
H
G2


LA1023
H
RA9
H
G2
LA1024
H
RA10
H
G2


LA1025
H
RA11
H
G2
LA1026
H
RA12
H
G2


LA1027
H
RA13
H
G2
LA1028
H
RA14
H
G2


LA1029
H
RA15
H
G2
LA1030
H
RA16
H
G2


LA1031
H
RA17
H
G2
LA1032
H
RA18
H
G2


LA1033
H
RA19
H
G2
LA1034
H
RA20
H
G2


LA1035
H
RA21
H
G2
LA1036
H
RA22
H
G2


LA1037
H
RA23
H
G2
LA1038
H
RA24
H
G2


LA1039
H
RA25
H
G2
LA1040
H
RA26
H
G2


LA1041
H
RA27
H
G2
LA1042
H
RA28
H
G2


LA1043
H
RA29
H
G2
LA1044
H
RA30
H
G2


LA1045
H
RA31
H
G2
LA1046
H
RA32
H
G2


LA1047
H
RA33
H
G2
LA1048
H
RA34
H
G2


LA1049
H
RA35
H
G2
LA1050
H
RA36
H
G2


LA1051
H
RA37
H
G2
LA1052
H
RA38
H
G2


LA1053
H
RA39
H
G2
LA1054
H
RA40
H
G2


LA1055
H
RA41
H
G2
LA1056
H
RA42
H
G2


LA1057
H
RA43
H
G2
LA1058
H
RA44
H
G2


LA1059
H
RA45
H
G2
LA1060
H
RA46
H
G2


LA1061
H
RA47
H
G2
LA1062
H
RA48
H
G2


LA1063
H
RA49
H
G2
LA1064
H
RA50
H
G2


LA1065
H
RA51
H
G2
LA1066
H
RA52
H
G2


LA1067
H
RA53
H
G2
LA1068
H
RA54
H
G2


LA1069
H
RA55
H
G2
LA1070
H
RA56
H
G2


LA1071
H
RA57
H
G2
LA1072
H
RA58
H
G2


LA1073
H
RA59
H
G2
LA1074
H
RA60
H
G2


LA1075
H
RA61
H
G2
LA1076
H
RA1
H
G1


LA1077
H
RA2
H
G1
LA1078
H
RA3
H
G1


LA1079
H
RA4
H
G1
LA1080
H
RA5
H
G1


LA1081
H
RA6
H
G1
LA1082
H
RA7
H
G1


LA1083
H
RA8
H
G1
LA1084
H
RA9
H
G1


LA1085
H
RA10
H
G1
LA1086
H
RA11
H
G1


LA1087
H
RA12
H
G1
LA1088
H
RA13
H
G1


LA1089
H
RA14
H
G1
LA1090
H
RA15
H
G1


LA1091
H
RA16
H
G1
LA1092
H
RA17
H
G1


LA1093
H
RA18
H
G1
LA1094
H
RA19
H
G1


LA1095
H
RA20
H
G1
LA1096
H
RA21
H
G1


LA1097
H
RA22
H
G1
LA1098
H
RA23
H
G1


LA1099
H
RA24
H
G1
LA1100
H
RA25
H
G1


LA1101
H
RA26
H
G1
LA1102
H
RA27
H
G1


LA1103
H
RA28
H
G1
LA1104
H
RA29
H
G1


LA1105
H
RA30
H
G1
LA1106
H
RA31
H
G1


LA1107
H
RA32
H
G1
LA1108
H
RA33
H
G1


LA1109
H
RA34
H
G1
LA1110
H
RA35
H
G1


LA1111
H
RA36
H
G1
LA1112
H
RA37
H
G1


LA1113
H
RA38
H
G1
LA1114
H
RA39
H
G1


LA1115
H
RA40
H
G1
LA1116
H
RA41
H
G1


LA1117
H
RA42
H
G1
LA1118
H
RA43
H
G1


LA1119
H
RA44
H
G1
LA1120
H
RA45
H
G1


LA1121
H
RA46
H
G1
LA1122
H
RA47
H
G1


LA1123
H
RA48
H
G1
LA1124
H
RA49
H
G1


LA1125
H
RA50
H
G1
LA1126
H
RA51
H
G1


LA1127
H
RA52
H
G1
LA1128
H
RA53
H
G1


LA1129
H
RA54
H
G1
LA1130
H
RA55
H
G1


LA1131
H
RA56
H
G1
LA1132
H
RA57
H
G1


LA1133
H
RA58
H
G1
LA1134
H
RA59
H
G1


LA1135
H
RA60
H
G1
LA1136
H
RA61
H
G1


LA1137
RB1
RA1
H
G2
LA1138
RB2
RA1
H
G2


LA1139
RB3
RA1
H
G2
LA1140
RB4
RA1
H
G2


LA1141
RB5
RA1
H
G2
LA1142
RB6
RA1
H
G2


LA1143
RB7
RA1
H
G2
LA1144
RB8
RA1
H
G2


LA1145
RB9
RA1
H
G2
LA1146
RB10
RA1
H
G2


LA1147
RB11
RA1
H
G2
LA1148
RB12
RA1
H
G2


LA1149
RB13
RA1
H
G2
LA1150
RB14
RA1
H
G2


LA1151
RB15
RA1
H
G2
LA1152
RB16
RA1
H
G2


LA1153
RB17
RA1
H
G2
LA1154
RB18
RA1
H
G2


LA1155
RB19
RA1
H
G2
LA1156
RB20
RA1
H
G2


LA1157
RB21
RA1
H
G2
LA1158
RB22
RA1
H
G2


LA1159
RB23
RA1
H
G2
LA1160
RB24
RA1
H
G2


LA1161
RB25
RA1
H
G2
LA1162
RB26
RA1
H
G2


LA1163
RB27
RA1
H
G2
LA1164
RB28
RA1
H
G2


LA1165
RB29
RA1
H
G2
LA1166
RB30
RA1
H
G2


LA1167
RB31
RA1
H
G2
LA1168
RB32
RA1
H
G2


LA1169
RB33
RA1
H
G2
LA1170
RB34
RA1
H
G2


LA1171
RB35
RA1
H
G2
LA1172
RB36
RA1
H
G2


LA1173
RB37
RA1
H
G2
LA1174
RB38
RA1
H
G2


LA1175
RB39
RA1
H
G2
LA1176
RB40
RA1
H
G2


LA1177
RB41
RA1
H
G2
LA1178
RB42
RA1
H
G2


LA1179
RB43
RA1
H
G2
LA1180
RB44
RA1
H
G2


LA1181
RB45
RA1
H
G2
LA1182
RB46
RA1
H
G2


LA1183
RB47
RA1
H
G2
LA1184
RB48
RA1
H
G2


LA1185
RB49
RA1
H
G2
LA1186
RB50
RA1
H
G2


LA1187
RB51
RA1
H
G2
LA1188
RB52
RA1
H
G2


LA1189
RB53
RA1
H
G2
LA1190
RB54
RA1
H
G2


LA1191
RB55
RA1
H
G2
LA1192
RB56
RA1
H
G2


LA1193
RB57
RA1
H
G2
LA1194
RB58
RA1
H
G2


LA1195
RB59
RA1
H
G2
LA1196
RB60
RA1
H
G2


LA1197
RB1
RA1
H
G91
LA1198
RB1
RA1
H
G92


LA1199
RB1
RA1
H
G93
LA1200
RB1
RA1
H
G94


LA1201
RB1
RA1
H
G95
LA1202
RB1
RA1
H
G96


LA1203
RB1
RA1
H
G97
LA1204
RB1
RA1
H
G98


LA1205
RB1
RA1
H
G99
LA1206
RB1
RA1
H
G100


LA1207
RB1
RA1
H
G101
LA1208
RB1
RA1
H
G102


LA1209
RB1
RA1
H
G103
LA1210
RB1
RA1
H
G104


LA1211
RB1
RA1
H
G105
LA1212
RB1
RA1
H
G106









where RB1 to RB60 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein G1 to G106 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of the compound having the formula M(L1)x(L2)y(L3)z, where at least one of L1, L2, and L3 is LA selected from the group consisting of LA1 to LA1212 defined above, the compound is Compound Ax having the formula Ir(LAk)2(LCj);


where x=1212j+k−1212, k is an integer from 1 to 1212, j is an integer from 1 to 1260, and


where LC is selected from the Ligand Group C defined above.


In some embodiments of the compound having the formula M(L1)x(L2)y(L3)z, where x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; x+y+z is the oxidation state of the metal M, and at least one of L1, L2, and L3 is LA selected from the group consisting of LA1 to LA1212, the compound is Compound By having the formula Ir(LAi)3; where y=i; i is an integer from 1 to 1212.


In some embodiments of the compound having the formula M(L1)x(L2)y(L3)z, where x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; x+y+z is the oxidation state of the metal M, and at least one of L1, L2, and L3 is LA selected from the group consisting of LA1 to LA1212, the compound is Compound CZ having the formula Ir(LAi)(LBk)2, where z=468i+k−468, i is an integer from 1 to 1212, and k is an integer from 1 to 468; or


the compound is Compound DO, having the formula Ir(LAi)2(LDk), where O=50i+k−50, i is an integer from 1 to 1212, and k is an integer from 1 to 50; and


where each LBk has structures defined in the Ligand Group B defined above and each LDk has structures defined in the Ligand Group D defined above.


According to another aspect of the present disclosure, an OLED is disclosed, where the OLED comprises: an anode; a cathode; and an organic layer disposed between the anode and the cathode. The organic layer comprises the compound described herein that is capable of functioning as a phosphorescent emitter in an OLED at room temperature.


A consumer product is disclosed that comprises an OLED whose organic layer comprises the inventive compound described herein that is capable of functioning as a phosphorescent emitter in an OLED at room temperature.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


An emissive region in an OLED is also disclosed. The emissive region comprises a compound capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature is disclosed. The compound comprises at least one aromatic ring and at least one substituent R. Each of the at least one R is of Formula I




embedded image



where; R1 is selected from the group consisting of hydrogen, deuterium, alkyl, cycloalkyl, heteroalkyl, and cycloheteroalkyl; R2 to R4 are each independently selected from the group consisting of alkyl, cycloalkyl, heteroalky, and cycloheteroalkyl; R5 is H or deuterium; at least one of R1 to R4 comprises a chemical structure selected from the group consisting of a tertiary carbon atom, cycloalkyl, and cycloheteroalkyl; and any two of R2 to R4 can join together to form a ring


In some embodiments of the emissive region, the compound is an emissive dopant or a non-emissive dopant.


In some embodiments, the emissive region further comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some embodiments, the emissive region further comprises a host, wherein the host is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others).


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter,


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


The organic layer can also include a host. In some embodiments, two or more hosts are preferred. In some embodiments, the hosts used maybe a) bipolar, b) electron transporting, c) hole transporting or d) wide band gap materials that play little role in charge transport. In some embodiments, the host can include a metal complex. The host can be a triphenylene containing benzo-fused thiophene or benzo-fused furan. Any substituent in the host can be an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡C—CnH2n+1, Ar1, Ar1—Ar2, and CnH2n—Ar1, or the host has no substitutions. In the preceding substituents n can range from 1 to 10; and Ar1 and Ar2 can be independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof. The host can be an inorganic compound. For example a Zn containing inorganic material e.g. ZnS.


The host can be a compound comprising at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. The host can include a metal complex. The host can be, but is not limited to, a specific compound selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


Additional information on possible hosts is provided below.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


Combination with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


embedded image



HIL/HTL:


A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X111 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; Lill is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


Host:


The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X111 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is an another ligand, k′ is an integer from 1 to 3.


ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to Y108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


EXPERIMENTAL
Synthesis of Materials



embedded image


Tert-butyl chloride (80 mL, 738 mmol) was added to a solution of ((1-methoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (50 mL, 246 mmol) in DCM (154 mL) at 0° C. Then, ZnCl2(1.677 g, 12.31 mmol) was added, and then the reaction mixture was stirred at r.t. for 5 hrs. Solid was filtered off, and the solvent was removed by a rotary evaporator. The resulting crude product was purified by vacuum distillation to give 23 g of methyl 2,2,3,3-tetramethylbutanoate in 58% yield.




embedded image



Methyl 2,2,3,3-tetramethylbutanoate (25 g, 158 mmol) in THF (100 mL) was added dropwise to a suspension of LiAlH4(7.2 g, 190 mmol) in THF (600 mL) at 0° C. while stirring. After addition, the reaction mixture was stirred at r.t. for 2 hrs. Then cooled the reaction mixture to 0° C., and H2O (10 mL), 15% NaOH (10 mL), and H2O (50 mL) were added sequentially to quench excess LiAlH4. THF was removed, and ether (200 mL) and H2O (200 mL) were added. Organic layer was collected, and the aqueous solution was extracted with ether (100 mL×3). Combined organic layer was washed with brine and dried over Na2SO4. After removal of the solvent, desired alcohol 2,2,3,3-tetramethylbutan-1-ol (19.7 g, 144 mmol, 91% yield) was obtained as white solid.




embedded image


A mixture of 2,2,3,3-tetramethylbutan-1-ol (33.1 g, 254 mmol), triphenylphosphine (80 g, 305 mmol) and imidazole (34.6 g, 508 mmol) in THF (726 mL) was cooled to 0° C. I2 (77 g, 305 mmol) was added to this solution portionwise. After addition, the reaction was heated to reflux for 2.5 hrs. Then the solvent was removed via fractional distillation. Pentane was added to the residue and the mixture was filtered through a silica pad. The organic layer was washed with water, saturated Na2S2O3, brine and then dried over MgSO4. Fractional distillation gave 51 g of 1-iodo-2,2,3,3-tetramethylbutane in 70% yield.




embedded image



Pd(Ph3P)4 (34.0 g, 29.4 mmol) and K2CO3(81 g, 588 mmol) was added to a N2 bubbled solution of 2,5-dibromo-4-methylpyridine (78 g, 309 mmol) and p-tolylboronic acid (40 g, 294 mmol) in acetonitrile (892 mL) and methanol (446 mL). The reaction mixture was then heated to 60° C. for 4 hrs, and LCMS showed disappearance of 113-2. After cooling down to r.t., the solid was filtered off, and the solvent was removed by a rotary evaporator. Water and CH2C12 were added. Organic layer was collected, and the aqueous layer was extracted with CH2C12. After drying over MgSO4, the solvent was removed, and the residue was purified by column chromatography to give 5-bromo-4-methyl-2-(p-tolyl)pyridine (61.7 g, 80%).




embedded image



Zinc dust was pre-activated by washing with 2% HCl. Acid was removed by decant and Zinc was wash three times with water. After filtration, Zinc was washed with water, EtOH, acetone, and ether. Then the solid was collected and dried under high vacuum (<10−5 Torr) at 120° C. for 30 min. and then cooled down to r.t. LiCl was dried under high vacuum (<10−5 Torr) at 120° C. for 1 hr, and then cooled down to r.t. A mixture of Zinc (8.82 g, 135 mmol) and LiCl (5.72, 135 mmol) was heated to 120° C. for 30 minutes under vacuum. After cooling down, THF (187 mL), Bu4NI (8.31 g, 22.49 mmol) and 1,2-dibromoethane (1.292 mL, 14.99 mmol) were added. The mixture was heated to reflux. Foaming was observed and the brown color disappeared. After cooling down to 30° C., a mixture of TMSCl (0.279 mL, 3.75 mmol) and 1-iodo-2,2,3,3-tetramethylbutane (18 g, 75 mmol) in THF (20 mL) was added. The reaction mixture was heated to 60° C. (in oil bath) for 16 hrs. After cooling to r.t., the solids were settled down to the bottom.




embedded image



N2 was bubbled through a mixture of 5-bromo-4-methyl-2-(p-tolyl)pyridine (7.5 g, 28.6 mmol), palladium acetate (0.321 g, 1.43 mmol) and CPhos (1.24 g, 2.86 mmol) in THF (143 mL) for 5 minutes. The reaction mixture was placed in ice bath, and Zinc iodide precursor (190 mL, 35.3 mmol) was added dropwise. After addition, the reaction mixture was heated to reflux for 2 hrs. After cooling down, saturated Na2CO3 and ethyl acetate were added, and the reaction mixture was stirred for 10 minutes. The mixture was then filtered through Celite plug, and organic layer was collected. Aqueous layer was extracted with ethyl acetate. Combined organic layer was washed with brine, and dried over MgSO4. After removal of the solvent, the residue was purified by column chromatography, using heptane: CH2Cl2 from 100:0 to 0:100 to give the desired product in 85% yield. The product was further purified by recrystallization from hexanes: CH2Cl2 (1:1 ratio) to give 99.91% pure product.




embedded image


Di-μ-chloro-tetrakis[κ2(C2,N)-4-((methyl-d3)-2-(4-(methyl-d3)phenyl)-2′-yl)-5-(2,2,3,3-tetramethylbutyl-1,1-d2)pyridin-1-yl]diiridium(III): A mixture of 4-(methyl-d3)-2-(4-(methyl-d3)phenyl)-5-(2,2,3,3-tetramethylbutyl-1,1-d2)pyridine (17.8 g, 58.9 mmol, 2.2 equiv) and iridium(III) chloride hydrate (8 g, 26.8 mmol, 1.0 equiv) in 2-ethoxyethanol (210 mL) and DIUF water (70 mL) was sparged with nitrogen for 10 minutes then heated at reflux (102° C.) for 70 hours. The cooled reaction mixture was filtered. The solid was washed with methanol (4×100 mL) then air-dried to give di-μ-chloro-tetrakis[κ2(C2,N)-4-((methyl-d3)-2-(4′-(methyl-d3)phenyl)-2′-yl)-5-(2,2,3,3-tetramethylbutyl-1,1-d2)pyridine-1-yl]diiridium (III) (12.5 g, 56% yield) as a yellow solid.


[Ir(4-(Methyl-d3)-2-(4′-(methyl-d3)phenyl)-2′-yl)-5-((2,2,3,3-tetramethylbutyl 1,1-d2)pyridin-1-yl)(−1H)2(MeOH)2](trifluoromethanesulfonate): A solution of silver trifluoromethanesulfonate (4.24 g, 16.51 mmol, 2.2 equiv) in methanol (30 mL) was added to a solution of di-μ-chloro-tetrakis[κ2(C2,N)-4-((methyl-d3)-2-(4′-(methyl-d3)phenyl)-2′-yl)-5-(2,2,3,3-tetramethylbutyl-1,1-d2)pyridine-1-yl]diiridium (III) (12.5 g, 7.50 mmol, 1.0 equiv) in dichloromethane (200 mL). The reaction flask was wrapped with aluminum foil then stirred at r.t. for 16 hrs. The reaction mixture was passed through a silica gel pad (80 g), rinsing with dichloromethane (500 mL). The filtrate was concentrated under reduced pressure to give [Ir(4-(methyl-d3)-2-(4′-(methyl-d3)-phenyl)-2′-yl)-5-((2,2,3,3-tetramethylbutyl-1,1-d2)pyridin-1-yl)(−1H)2(MeOH)2]-(trifluoromethanesulfonate) (13.3 g, 94% yield) as a yellow solid.


Bis[4-(methyl-d3)-2-(4′-(methyl-d3)phenyl-2′-yl)-5-(2,2,3,3-tetramethylbutyl-1,1-d2-pyridin-1-yl]-[(4,5-bis(methyl-d3)-2-(naphtho[1,2-b]benzofuran-10-yl)-2′-yl)pyridin-1-yl]iridium(III): A solution of 4,5-bis-(methyl-d3)-2-(naphtho[1,2-b]benzofuran-10-yl)pyridine (2.24 g, 6.80 mmol, 2.0 equiv) in ethanol (85 mL) was sparged with nitrogen for 15 minutes. [Ir(4-(methyl-(d3)-2-(4′-(methyl-d3)phenyl)-2′-yl)-5-((2,2,3,3-tetramethylbutyl-1,1-d2)-pyridin-1-yl)(−1H)2(MeOH)2]-(trifluoromethanesulfonate) (3.43 g, 3.39 mmol, 1.0 equiv) was added and the reaction mixture heated at 75° C. for 7 hours. The reaction mixture was cooled to r.t. and filtered. The solids were combined with those from a front-run reaction (0.49 mmol scale), dissolved-suspended in dichloromethane and purified on an Interchim automated system (220 g silica gel cartridge atop a 60 g basic alumina cartridge), eluting with 65% dichloromethane in heptanes. Product fractions were concentrated under reduced pressure and the recovered material was re-purified twice on an Interchim automated system (4×220 g stacked silica gel cartridges), eluting with 65% toluene in heptanes. Pure product fractions were concentrated under reduce pressure. The residue (1.8 g, 97% LCMS purity) was triturated with toluene (6 volumes) at reflux for 1 hour, cooled and filtered to give bis[4-(methyl-d3)-2-(4′-(methyl-d3)phenyl-2′-yl)-5-tetramethylbutyl-1,1-d2)-pyridin-1-yl]-[(4,5-bis(methyl-d3)-2-(naphtho[1,2-b]benzofuran-10-yl)-2′-yl)pyridin-1-yl]iridium(III) (1.20 g, 99.2% UPLC purity) as a yellow solid.


Experimental Data


The sublimation temperature of the following inventive compound




embedded image



was compared to the sublimation temperature of a known Comparative compound




embedded image



The inventive compound sublimed at 280° C., which was unexpectedly and significantly lower than the sublimation temperature of the comparative compound, which was 291° C., even though the inventive compound has a higher molecular weigh by 294. In OLED manufracturing process, the operation temperature is largely determined by the sublimation temperature of the materials used in the OLEDs. During fabrication, the OLED materials need to be kept above their sublimation temperatures for a long period of time. For materials having high sublimation temperature, this results in a significant energy cost. In addition, high operation temperature also causes more material degradation and tool contamination. Therefore, the inventive compounds of the present disclosure that are useful as emitters in OLEDs are beneficial compared to known emitter compounds such as the Comparative compound because the inventive compounds have significantly lower sublimation temperature.


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound that is a metal coordination complex having a metal-carbon bond, wherein the compound is capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature; wherein the compound has the formula Ir(L1)2(L2);wherein L1 is a ligand LA selected from the group consisting of:
  • 2. The compound of claim 1, wherein the compound is capable of emitting light from a triplet excited state to a ground singlet state at room temperature.
  • 3. A formulation comprising the compound of claim 1.
  • 4. A chemical structure selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule, wherein the chemical structure comprises the compound of claim 1 or a monovalent or polyvalent variant thereof.
  • 5. The compound of claim 1, wherein R has the structure
  • 6. The compound of claim 5, wherein the compound is Compound Do, having the formula Ir(LAr)2(LDk), wherein O=50i+k-50, i is an integer having a value of 33, and k is an integer from 1 to 50; and wherein LDk has the following structures:
  • 7. The compound of claim 5, wherein the compound is Compound Ax having the formula Ir(LAk)2(LCj); wherein x=942j+k−942, k is an integer having a value of 333, j is an integer having a value of 22, and wherein LC is: LC22 based on a structure of Formula X
  • 8. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound that is a metal coordination complex having a metal-carbon bond, wherein the compound that is a metal coordination complex having a metal-carbon bond, wherein the compound is capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature;wherein the compound has the formula Ir(L1)2(L2);wherein L1 is a ligand LA selected from the group consisting of:
  • 9. The OLED of claim 8, wherein the organic layer is an emissive layer and the compound is an emissive dopant or a non-emissive dopant.
  • 10. The OLED of claim 8, wherein the organic layer further comprises a host; wherein the host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 11. The OLED of claim 10, wherein the host material is selected from the group consisting of:
  • 12. A consumer product comprising an organic light-emitting device comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound that is a metal coordination complex having a metal-carbon bond, wherein the compound that is a metal coordination complex having a metal-carbon bond, wherein the compound is capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature;wherein the compound has the formula Ir(L1)2(L2);wherein L1 is a ligand LA selected from the group consisting of:
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/680,614, filed Jun. 5, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (94)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
8945725 Takizawa et al. Feb 2015 B2
9991453 Kita et al. Jun 2018 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030072964 Kwong Apr 2003 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20040214038 Kwong Oct 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070196692 Ise Sep 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Wakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20100237334 Ma Sep 2010 A1
20100270916 Xia Oct 2010 A1
20110049496 Fukuzaki Mar 2011 A1
20120153816 Takizawa Jun 2012 A1
20130082209 Stoessel Apr 2013 A1
20130341609 Ma et al. Dec 2013 A1
20140158993 So et al. Jun 2014 A1
20150263297 Stoessel Sep 2015 A1
20150295187 Boudreault et al. Oct 2015 A1
20160155963 Hwang et al. Jun 2016 A1
20160190485 Boudreault Jun 2016 A1
20160190486 Lin Jun 2016 A1
20180130962 Ji Apr 2018 A1
Foreign Referenced Citations (50)
Number Date Country
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
3067361 Sep 2016 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
20160045508 Apr 2016 KR
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2014189072 Nov 2014 WO
Non-Patent Literature Citations (48)
Entry
Richard J. Lewis, Sr. “Hawley's Condensed Chemical Dictionary, 12th Edition”, John Wiley & Sons, Inc., New York p. 796 (1993.
Shriver et al, Inorganic Chemistry, 2nd Edition, pp. 374-376, W. H. Freeman and Company, New York, 1994.
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi et al., “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota, Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis (dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91: 209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing NCN-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergard et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru Il PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69 (15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Related Publications (1)
Number Date Country
20190372026 A1 Dec 2019 US
Provisional Applications (1)
Number Date Country
62680614 Jun 2018 US