Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 12331237
  • Patent Number
    12,331,237
  • Date Filed
    Wednesday, September 16, 2020
    5 years ago
  • Date Issued
    Tuesday, June 17, 2025
    4 months ago
Abstract
A compound including a first ligand LA of Formula I,
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

In one aspect, the present disclosure provides a compound comprising a first ligand LA of Formula I




embedded image



In Formula I:

    • ring B is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused;
    • X1, X2, and X3 are each independently CRA or N;
    • R is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused or substituted;
    • provided that
    • (1) when ring B is an unfused 6-membered ring, X1 and X2 are N, and X3 is C;
    • (2) when ring B is a fused 6-membered ring, ring B has the structure of Formula II,




embedded image



where:

    • the wavy line indicates the point of connection to ring A;
    • Q1, Q2, Q3, Q4, Q5, and Q6 are each independently C or N; and
    • when proviso (2) applies, at least one of the following conditions is true:
      • (I) at least one of X1, X2, and X3 is N; or
      • (II) R is two or more fused or unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted;
    • RB and RC each independently represent mono to the maximum number of allowable substitutions, or no substitution;
    • each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents disclosed herein, and combinations thereof;
    • LA is coordinated to a metal M through the indicated dashed lines;
    • M is selected from the group consisting of Ir, Os, Pt, Pd, Cu, Ag, and Au;
    • M can be coordinated to other ligands;
    • LA can join with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and
    • any two substituents can be joined or fused to form a ring.


In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[fh]quinoxaline and dibenzo[fh]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound comprising a first ligand LA of Formula I




embedded image



In Formula I:

    • ring B is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused;
    • X1, X2, and X3 are each independently CRA or N;
    • R is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused or substituted;
    • provided that
    • (1) when ring B is an unfused 6-membered ring, X1 and X2 are N, and X3 is C;
    • (2) when ring B is a fused 6-membered ring, ring B has the structure of Formula II,




embedded image



where:

    • the wavy line indicates the point of connection to ring A;
    • Q1, Q2, Q3, Q4, Q5, and Q6 are each independently C or N; and
    • when proviso (2) applies, at least one of the following conditions is true:
      • (I) at least one of X1, X2, and X3 is N; or
      • (II) R is two or more fused or unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted;
    • RB and RC each independently represent mono to the maximum number of allowable substitutions, or no substitution;
    • each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents disclosed herein, and combinations thereof;
    • LA is coordinated to a metal M through the indicated dashed lines;
    • M is selected from the group consisting of Ir, Os, Pt, Pd, Cu, Ag, and Au;
    • M can be coordinated to other ligands;
    • LA can join with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and
    • any two substituents can be joined or fused to form a ring.


In some embodiments, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the preferred general substituents disclosed herein, and combinations thereof. In some embodiments, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the more preferred general substituents disclosed herein, and combinations thereof.


In some embodiments, M is Ir. In some embodiments, M is Pt.


In some embodiments, X1 and X2 are N, and X3 is C. In some embodiments, X1 is N, and X2 and X3 are C. In some embodiments, X1 and X3 are N, and X2 is C. In some embodiments, X1 and X3 are C, and X2 is N.


In some embodiments, R is a substituted or unsubstituted 6-membered aryl or heteroaryl ring. In some embodiments, R is a substituted or unsubstituted 5-membered heteroaryl ring.


In some embodiments, R is a substituted or unsubstituted cyclohexyl ring. In some embodiments, R is a substituted or unsubstituted cyclopentyl ring. In some embodiments, R is selected from the group consisting of imidazole, oxazole, thiazole, pyridine, phenyl, biphenyl, carbazole, benzofuran, benzothiophene, dibenzofuran, and dibenzothiophene.


In some embodiments, R is two or more fused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted. In some embodiments, R is two or more unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further substituted. In some embodiments, R is two or more fused 5-membered or 6-membered aryl or heteroaryl rings, which can be further fused or substituted. In some embodiments, R is two or more unfused 5-membered or 6-membered aryl or heteroaryl rings, which can be further substituted.


In some embodiments, Ring B has the structure of Formula II, and each of Q1, Q2, Q3, Q4, Q5, and Q6 is C. In some embodiments, Ring B has the structure of Formula II, and at least one of Q1, Q2, Q3, Q4, Q5, and Q6 is N.


In some embodiments, Ring B is selected from the group consisting of phenyl, pyridine, pyrazine, pyridazine, pyrimidine, triazine, furan, thiophene, pyrrole, imidazole, oxazole, and thiazole. In some embodiments, Ring B is a 5-membered ring. In some embodiments, Ring B is a fused 5-membered ring


In some embodiments, the compound comprises at least one substituted or unsubstituted phenylpyridine ligand. In some embodiments, the compound comprises at least one substituted or unsubstituted acetyl-acetonate ligand.


In some embodiments, the compound is heteroleptic. In some embodiments, the compound is homoleptic. In some embodiments, the compound is neutral.


In some embodiments, LA has a structure selected from the group consisting of




embedded image


In some embodiments, Ring B has a structure selected from the group consisting of:




embedded image


embedded image


embedded image



wherein n is an integer from 1 to 480 and, for each n, substituents RD, RE, RF, and RG are selected as follows:
















n
RD
RE
RF
RG



















1
R1
R1
R1
R1


2
R2
R1
R1
R1


3
R3
R1
R1
R1


4
R4
R1
R1
R1


5
R5
R1
R1
R1


6
R6
R1
R1
R1


7
R7
R1
R1
R1


8
R8
R1
R1
R1


9
R9
R1
R1
R1


10
R10
R1
R1
R1


11
R11
R1
R1
R1


12
R12
R1
R1
R1


13
R13
R1
R1
R1


14
R14
R1
R1
R1


15
R15
R1
R1
R1


16
R16
R1
R1
R1


17
R17
R1
R1
R1


18
R18
R1
R1
R1


19
R19
R1
R1
R1


20
R20
R1
R1
R1


21
R21
R1
R1
R1


22
R22
R1
R1
R1


23
R23
R1
R1
R1


24
R24
R1
R1
R1


25
R25
R1
R1
R1


26
R26
R1
R1
R1


27
R27
R1
R1
R1


28
R28
R1
R1
R1


29
R29
R1
R1
R1


30
R30
R1
R1
R1


31
R1
R3
R1
R1


32
R2
R3
R1
R1


33
R3
R3
R1
R1


34
R4
R3
R1
R1


35
R5
R3
R1
R1


36
R6
R3
R1
R1


37
R7
R3
R1
R1


38
R8
R3
R1
R1


39
R9
R3
R1
R1


40
R10
R3
R1
R1


41
R11
R3
R1
R1


42
R12
R3
R1
R1


43
R13
R3
R1
R1


44
R14
R3
R1
R1


45
R15
R3
R1
R1


46
R16
R3
R1
R1


47
R17
R3
R1
R1


48
R18
R3
R1
R1


49
R19
R3
R1
R1


50
R20
R3
R1
R1


51
R21
R3
R1
R1


52
R22
R3
R1
R1


53
R23
R3
R1
R1


54
R24
R3
R1
R1


55
R25
R3
R1
R1


56
R26
R3
R1
R1


57
R27
R3
R1
R1


58
R28
R3
R1
R1


59
R29
R3
R1
R1


60
R30
R3
R1
R1


61
R1
R1
R3
R1


62
R2
R1
R3
R1


63
R3
R1
R3
R1


64
R4
R1
R3
R1


65
R5
R1
R3
R1


66
R6
R1
R3
R1


67
R7
R1
R3
R1


68
R8
R1
R3
R1


69
R9
R1
R3
R1


70
R10
R1
R3
R1


71
R11
R1
R3
R1


72
R12
R1
R3
R1


73
R13
R1
R3
R1


74
R14
R1
R3
R1


75
R15
R1
R3
R1


76
R16
R1
R3
R1


77
R17
R1
R3
R1


78
R18
R1
R3
R1


79
R19
R1
R3
R1


80
R20
R1
R3
R1


81
R21
R1
R3
R1


82
R22
R1
R3
R1


83
R23
R1
R3
R1


84
R24
R1
R3
R1


85
R25
R1
R3
R1


86
R26
R1
R3
R1


87
R27
R1
R3
R1


88
R28
R1
R3
R1


89
R29
R1
R3
R1


90
R30
R1
R3
R1


91
R31
R1
R3
R1


92
R32
R1
R3
R1


93
R33
R1
R3
R1


94
R34
R1
R3
R1


95
R35
R1
R3
R1


96
R36
R1
R3
R1


97
R37
R1
R3
R1


98
R38
R1
R3
R1


99
R39
R1
R3
R1


100
R40
R1
R3
R1


101
R41
R1
R3
R1


102
R42
R1
R3
R1


103
R43
R1
R3
R1


104
R44
R1
R3
R1


105
R45
R1
R3
R1


106
R46
R1
R3
R1


107
R47
R1
R3
R1


108
R48
R1
R3
R1


109
R49
R1
R3
R1


110
R50
R1
R3
R1


111
R51
R1
R3
R1


112
R52
R1
R3
R1


113
R53
R1
R3
R1


114
R54
R1
R3
R1


115
R55
R1
R3
R1


116
R56
R1
R3
R1


117
R57
R1
R3
R1


118
R58
R1
R3
R1


119
R59
R1
R3
R1


120
R60
R1
R3
R1


121
R1
R1
R1
R3


122
R2
R1
R1
R3


123
R3
R1
R1
R3


124
R4
R1
R1
R3


125
R5
R1
R1
R3


126
R6
R1
R1
R3


127
R7
R1
R1
R3


128
R8
R1
R1
R3


129
R9
R1
R1
R3


130
R10
R1
R1
R3


131
R11
R1
R1
R3


132
R12
R1
R1
R3


133
R13
R1
R1
R3


134
R14
R1
R1
R3


135
R15
R1
R1
R3


136
R16
R1
R1
R3


137
R17
R1
R1
R3


138
R18
R1
R1
R3


139
R19
R1
R1
R3


140
R20
R1
R1
R3


141
R21
R1
R1
R3


142
R22
R1
R1
R3


143
R23
R1
R1
R3


144
R24
R1
R1
R3


145
R25
R1
R1
R3


146
R26
R1
R1
R3


147
R27
R1
R1
R3


148
R28
R1
R1
R3


149
R29
R1
R1
R3


150
R30
R1
R1
R3


151
R31
R1
R1
R3


152
R32
R1
R1
R3


153
R33
R1
R1
R3


154
R34
R1
R1
R3


155
R35
R1
R1
R3


156
R36
R1
R1
R3


157
R37
R1
R1
R3


158
R38
R1
R1
R3


159
R39
R1
R1
R3


160
R40
R1
R1
R3


161
R41
R1
R1
R3


162
R42
R1
R1
R3


163
R43
R1
R1
R3


164
R44
R1
R1
R3


165
R45
R1
R1
R3


166
R46
R1
R1
R3


167
R47
R1
R1
R3


168
R48
R1
R1
R3


169
R49
R1
R1
R3


170
R50
R1
R1
R3


171
R51
R1
R1
R3


172
R52
R1
R1
R3


173
R53
R1
R1
R3


174
R54
R1
R1
R3


175
R55
R1
R1
R3


176
R56
R1
R1
R3


177
R57
R1
R1
R3


178
R58
R1
R1
R3


179
R59
R1
R1
R3


180
R60
R1
R1
R3


181
R1
R1
R3
R3


182
R2
R1
R3
R3


183
R3
R1
R3
R3


184
R4
R1
R3
R3


185
R5
R1
R3
R3


186
R6
R1
R3
R3


187
R7
R1
R3
R3


188
R8
R1
R3
R3


189
R9
R1
R3
R3


190
R10
R1
R3
R3


191
R11
R1
R3
R3


192
R12
R1
R3
R3


193
R13
R1
R3
R3


194
R14
R1
R3
R3


195
R15
R1
R3
R3


196
R16
R1
R3
R3


197
R17
R1
R3
R3


198
R18
R1
R3
R3


199
R19
R1
R3
R3


200
R20
R1
R3
R3


201
R21
R1
R3
R3


202
R22
R1
R3
R3


203
R23
R1
R3
R3


204
R24
R1
R3
R3


205
R25
R1
R3
R3


206
R26
R1
R3
R3


207
R27
R1
R3
R3


208
R28
R1
R3
R3


209
R29
R1
R3
R3


210
R30
R1
R3
R3


211
R31
R1
R3
R3


212
R32
R1
R3
R3


213
R33
R1
R3
R3


214
R34
R1
R3
R3


215
R35
R1
R3
R3


216
R36
R1
R3
R3


217
R37
R1
R3
R3


218
R38
R1
R3
R3


219
R39
R1
R3
R3


220
R40
R1
R3
R3


221
R41
R1
R3
R3


222
R42
R1
R3
R3


223
R43
R1
R3
R3


224
R44
R1
R3
R3


225
R45
R1
R3
R3


226
R46
R1
R3
R3


227
R47
R1
R3
R3


228
R48
R1
R3
R3


229
R49
R1
R3
R3


230
R50
R1
R3
R3


231
R51
R1
R3
R3


232
R52
R1
R3
R3


233
R53
R1
R3
R3


234
R54
R1
R3
R3


235
R55
R1
R3
R3


236
R56
R1
R3
R3


237
R57
R1
R3
R3


238
R58
R1
R3
R3


239
R59
R1
R3
R3


240
R60
R1
R3
R3


241
R1
R2
R1
R1


242
R2
R2
R1
R1


243
R3
R2
R1
R1


244
R4
R2
R1
R1


245
R5
R2
R1
R1


246
R6
R2
R1
R1


247
R7
R2
R1
R1


248
R8
R2
R1
R1


249
R9
R2
R1
R1


250
R10
R2
R1
R1


251
R11
R2
R1
R1


252
R12
R2
R1
R1


253
R13
R2
R1
R1


254
R14
R2
R1
R1


255
R15
R2
R1
R1


256
R16
R2
R1
R1


257
R17
R2
R1
R1


258
R18
R2
R1
R1


259
R19
R2
R1
R1


260
R20
R2
R1
R1


261
R21
R2
R1
R1


262
R22
R2
R1
R1


263
R23
R2
R1
R1


264
R24
R2
R1
R1


265
R25
R2
R1
R1


266
R26
R2
R1
R1


267
R27
R2
R1
R1


268
R28
R2
R1
R1


269
R29
R2
R1
R1


270
R30
R2
R1
R1


271
R1
R4
R1
R1


272
R2
R4
R1
R1


273
R3
R4
R1
R1


274
R4
R4
R1
R1


275
R5
R4
R1
R1


276
R6
R4
R1
R1


277
R7
R4
R1
R1


278
R8
R4
R1
R1


279
R9
R4
R1
R1


280
R10
R4
R1
R1


281
R11
R4
R1
R1


282
R12
R4
R1
R1


283
R13
R4
R1
R1


284
R14
R4
R1
R1


285
R15
R4
R1
R1


286
R16
R4
R1
R1


287
R17
R4
R1
R1


288
R18
R4
R1
R1


289
R19
R4
R1
R1


290
R20
R4
R1
R1


291
R21
R4
R1
R1


292
R22
R4
R1
R1


293
R23
R4
R1
R1


294
R24
R4
R1
R1


295
R25
R4
R1
R1


296
R26
R4
R1
R1


297
R27
R4
R1
R1


298
R28
R4
R1
R1


299
R29
R4
R1
R1


300
R30
R4
R1
R1


301
R1
R2
R3
R1


302
R2
R2
R3
R1


303
R3
R2
R3
R1


304
R4
R2
R3
R1


305
R5
R2
R3
R1


306
R6
R2
R3
R1


307
R7
R2
R3
R1


308
R8
R2
R3
R1


309
R9
R2
R3
R1


310
R10
R2
R3
R1


311
R11
R2
R3
R1


312
R12
R2
R3
R1


313
R13
R2
R3
R1


314
R14
R2
R3
R1


315
R15
R2
R3
R1


316
R16
R2
R3
R1


317
R17
R2
R3
R1


318
R18
R2
R3
R1


319
R19
R2
R3
R1


320
R20
R2
R3
R1


321
R21
R2
R3
R1


322
R22
R2
R3
R1


323
R23
R2
R3
R1


324
R24
R2
R3
R1


325
R25
R2
R3
R1


326
R26
R2
R3
R1


327
R27
R2
R3
R1


328
R28
R2
R3
R1


329
R29
R2
R3
R1


330
R30
R2
R3
R1


331
R31
R2
R3
R1


332
R32
R2
R3
R1


333
R33
R2
R3
R1


334
R34
R2
R3
R1


335
R35
R2
R3
R1


336
R36
R2
R3
R1


337
R37
R2
R3
R1


338
R38
R2
R3
R1


339
R39
R2
R3
R1


340
R40
R2
R3
R1


341
R41
R2
R3
R1


342
R42
R2
R3
R1


343
R43
R2
R3
R1


344
R44
R2
R3
R1


345
R45
R2
R3
R1


346
R46
R2
R3
R1


347
R47
R2
R3
R1


348
R48
R2
R3
R1


349
R49
R2
R3
R1


350
R50
R2
R3
R1


351
R51
R2
R3
R1


352
R52
R2
R3
R1


353
R53
R2
R3
R1


354
R54
R2
R3
R1


355
R55
R2
R3
R1


356
R56
R2
R3
R1


357
R57
R2
R3
R1


358
R58
R2
R3
R1


359
R59
R2
R3
R1


360
R60
R2
R3
R1


361
R1
R2
R1
R3


362
R2
R2
R1
R3


363
R3
R2
R1
R3


364
R4
R2
R1
R3


365
R5
R2
R1
R3


366
R6
R2
R1
R3


367
R7
R2
R1
R3


368
R8
R2
R1
R3


369
R9
R2
R1
R3


370
R10
R2
R1
R3


371
R11
R2
R1
R3


372
R12
R2
R1
R3


373
R13
R2
R1
R3


374
R14
R2
R1
R3


375
R15
R2
R1
R3


376
R16
R2
R1
R3


377
R17
R2
R1
R3


378
R18
R2
R1
R3


379
R19
R2
R1
R3


380
R20
R2
R1
R3


381
R21
R2
R1
R3


382
R22
R2
R1
R3


383
R23
R2
R1
R3


384
R24
R2
R1
R3


385
R25
R2
R1
R3


386
R26
R2
R1
R3


387
R27
R2
R1
R3


388
R28
R2
R1
R3


389
R29
R2
R1
R3


390
R30
R2
R1
R3


391
R31
R2
R1
R3


392
R32
R2
R1
R3


393
R33
R2
R1
R3


394
R34
R2
R1
R3


395
R35
R2
R1
R3


396
R36
R2
R1
R3


397
R37
R2
R1
R3


398
R38
R2
R1
R3


399
R39
R2
R1
R3


400
R40
R2
R1
R3


401
R41
R2
R1
R3


402
R42
R2
R1
R3


403
R43
R2
R1
R3


404
R44
R2
R1
R3


405
R45
R2
R1
R3


406
R46
R2
R1
R3


407
R47
R2
R1
R3


408
R48
R2
R1
R3


409
R49
R2
R1
R3


410
R50
R2
R1
R3


411
R51
R2
R1
R3


412
R52
R2
R1
R3


413
R53
R2
R1
R3


414
R54
R2
R1
R3


415
R55
R2
R1
R3


416
R56
R2
R1
R3


417
R57
R2
R1
R3


418
R58
R2
R1
R3


419
R59
R2
R1
R3


420
R60
R2
R1
R3


421
R1
R2
R3
R3


422
R2
R2
R3
R3


423
R3
R2
R3
R3


424
R4
R2
R3
R3


425
R5
R2
R3
R3


426
R6
R2
R3
R3


427
R7
R2
R3
R3


428
R8
R2
R3
R3


429
R9
R2
R3
R3


430
R10
R2
R3
R3


431
R11
R2
R3
R3


432
R12
R2
R3
R3


433
R13
R2
R3
R3


434
R14
R2
R3
R3


435
R15
R2
R3
R3


436
R16
R2
R3
R3


437
R17
R2
R3
R3


438
R18
R2
R3
R3


439
R19
R2
R3
R3


440
R20
R2
R3
R3


441
R21
R2
R3
R3


442
R22
R2
R3
R3


443
R23
R2
R3
R3


444
R24
R2
R3
R3


445
R25
R2
R3
R3


446
R26
R2
R3
R3


447
R27
R2
R3
R3


448
R28
R2
R3
R3


449
R29
R2
R3
R3


450
R30
R2
R3
R3


451
R31
R2
R3
R3


452
R32
R2
R3
R3


453
R33
R2
R3
R3


454
R34
R2
R3
R3


455
R35
R2
R3
R3


456
R36
R2
R3
R3


457
R37
R2
R3
R3


458
R38
R2
R3
R3


459
R39
R2
R3
R3


460
R40
R2
R3
R3


461
R41
R2
R3
R3


462
R42
R2
R3
R3


463
R43
R2
R3
R3


464
R44
R2
R3
R3


465
R45
R2
R3
R3


466
R46
R2
R3
R3


467
R47
R2
R3
R3


468
R48
R2
R3
R3


469
R49
R2
R3
R3


470
R50
R2
R3
R3


471
R51
R2
R3
R3


472
R52
R2
R3
R3


473
R53
R2
R3
R3


474
R54
R2
R3
R3


475
R55
R2
R3
R3


476
R56
R2
R3
R3


477
R57
R2
R3
R3


478
R58
R2
R3
R3


479
R59
R2
R3
R3


480
R60
R2
R3
R3









where R1 to R30 have the following structures:




embedded image


embedded image


embedded image


In some embodiments, R in Formula I has a structure selected from the group consisting of




embedded image


embedded image


embedded image



which can be further substituted;


where:

    • each Y is independently selected from the group consisting of S, O, NRCy1, CRCy2RCy3, and SiRCy4RCy5;
    • each Q is independently CRCy or N; and
    • each of RCy, RCy1, RCy2, RCy3, RCy4, and RCy5 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some embodiments, at least one of X1, X2, and X3 is N, and R has the structure of




embedded image



In some such embodiments, RCy is selected from the group consisting of halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl, heteroaryl, partially or fully deutereated variants thereof, partially or fully fluorinated variants thereof, and combinations thereof.


In some embodiments, the ligand LA is selected from the group consisting of LA1-1 to LA3600-344 defined as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein i is an integer from 1 to 3600 and, for each LAi-m, RH, RI, and G are defined as follows:























i
RH
RI
G
i
RH
RI
G
i
RH
RI
G


























1
RH1
RH1
G1
2
RH1
RH11
G1
3
RH1
RH21
G1


4
RH1
RH1
G2
5
RH1
RH11
G2
6
RH1
RH21
G2


7
RH1
RH1
G3
8
RH1
RH11
G3
9
RH1
RH21
G3


10
RH1
RH1
G4
11
RH1
RH11
G4
12
RH1
RH21
G4


13
RH1
RH1
G5
14
RH1
RH11
G5
15
RH1
RH21
G5


16
RH1
RH1
G6
17
RH1
RH11
G6
18
RH1
RH21
G6


19
RH1
RH1
G7
20
RH1
RH11
G7
21
RH1
RH21
G7


22
RH1
RH1
G8
23
RH1
RH11
G8
24
RH1
RH21
G8


25
RH1
RH1
G9
26
RH1
RH11
G9
27
RH1
RH21
G9


28
RH1
RH1
G10
29
RH1
RH11
G10
30
RH1
RH21
G10


31
RH1
RH1
G11
32
RH1
RH11
G11
33
RH1
RH21
G11


34
RH1
RH1
G12
35
RH1
RH11
G12
36
RH1
RH21
G12


37
RH1
RH1
G13
38
RH1
RH11
G13
39
RH1
RH21
G13


40
RH1
RH1
G14
41
RH1
RH11
G14
42
RH1
RH21
G14


43
RH1
RH1
G15
44
RH1
RH11
G15
45
RH1
RH21
G15


46
RH1
RH1
G16
47
RH1
RH11
G16
48
RH1
RH21
G16


49
RH1
RH1
G17
50
RH1
RH11
G17
51
RH1
RH21
G17


52
RH1
RH1
G18
53
RH1
RH11
G18
54
RH1
RH21
G18


55
RH1
RH1
G19
56
RH1
RH11
G19
57
RH1
RH21
G19


58
RH1
RH1
G20
59
RH1
RH11
G20
60
RH1
RH21
G20


61
RH1
RH2
G1
62
RH1
RH12
G1
63
RH1
RH22
G1


64
RH1
RH2
G2
65
RH1
RH12
G2
66
RH1
RH22
G2


67
RH1
RH2
G3
68
RH1
RH12
G3
69
RH1
RH22
G3


70
RH1
RH2
G4
71
RH1
RH12
G4
72
RH1
RH22
G4


73
RH1
RH2
G5
74
RH1
RH12
G5
75
RH1
RH22
G5


76
RH1
RH2
G6
77
RH1
RH12
G6
78
RH1
RH22
G6


79
RH1
RH2
G7
80
RH1
RH12
G7
81
RH1
RH22
G7


82
RH1
RH2
G8
83
RH1
RH12
G8
84
RH1
RH22
G8


85
RH1
RH2
G9
86
RH1
RH12
G9
87
RH1
RH22
G9


88
RH1
RH2
G10
89
RH1
RH12
G10
90
RH1
RH22
G10


91
RH1
RH2
G11
92
RH1
RH12
G11
93
RH1
RH22
G11


94
RH1
RH2
G12
95
RH1
RH12
G12
96
RH1
RH22
G12


97
RH1
RH2
G13
98
RH1
RH12
G13
99
RH1
RH22
G13


100
RH1
RH2
G14
101
RH1
RH12
G14
102
RH1
RH22
G14


103
RH1
RH2
G15
104
RH1
RH12
G15
105
RH1
RH22
G15


106
RH1
RH2
G16
107
RH1
RH12
G16
108
RH1
RH22
G16


109
RH1
RH2
G17
110
RH1
RH12
G17
111
RH1
RH22
G17


112
RH1
RH2
G18
113
RH1
RH12
G18
114
RH1
RH22
G18


115
RH1
RH2
G19
116
RH1
RH12
G19
117
RH1
RH22
G19


118
RH1
RH2
G20
119
RH1
RH12
G20
120
RH1
RH22
G20


121
RH1
RH3
G1
122
RH1
RH13
G1
123
RH1
RH23
G1


124
RH1
RH3
G2
125
RH1
RH13
G2
126
RH1
RH23
G2


127
RH1
RH3
G3
128
RH1
RH13
G3
129
RH1
RH23
G3


130
RH1
RH3
G4
131
RH1
RH13
G4
132
RH1
RH23
G4


133
RH1
RH3
G5
134
RH1
RH13
G5
135
RH1
RH23
G5


136
RH1
RH3
G6
137
RH1
RH13
G6
138
RH1
RH23
G6


139
RH1
RH3
G7
140
RH1
RH13
G7
141
RH1
RH23
G7


142
RH1
RH3
G8
143
RH1
RH13
G8
144
RH1
RH23
G8


145
RH1
RH3
G9
146
RH1
RH13
G9
147
RH1
RH23
G9


148
RH1
RH3
G10
149
RH1
RH13
G10
150
RH1
RH23
G10


151
RH1
RH3
G11
152
RH1
RH13
G11
153
RH1
RH23
G11


154
RH1
RH3
G12
155
RH1
RH13
G12
156
RH1
RH23
G12


157
RH1
RH3
G13
158
RH1
RH13
G13
159
RH1
RH23
G13


160
RH1
RH3
G14
161
RH1
RH13
G14
162
RH1
RH23
G14


163
RH1
RH3
G15
164
RH1
RH13
G15
165
RH1
RH23
G15


166
RH1
RH3
G16
167
RH1
RH13
G16
168
RH1
RH23
G16


169
RH1
RH3
G17
170
RH1
RH13
G17
171
RH1
RH23
G17


172
RH1
RH3
G18
173
RH1
RH13
G18
174
RH1
RH23
G18


175
RH1
RH3
G19
176
RH1
RH13
G19
177
RH1
RH23
G19


178
RH1
RH3
G20
179
RH1
RH13
G20
180
RH1
RH23
G20


181
RH1
RH4
G1
182
RH1
RH14
G1
183
RH1
RH24
G1


184
RH1
RH4
G2
185
RH1
RH14
G2
186
RH1
RH24
G2


187
RH1
RH4
G3
188
RH1
RH14
G3
189
RH1
RH24
G3


190
RH1
RH4
G4
191
RH1
RH14
G4
192
RH1
RH24
G4


193
RH1
RH4
G5
194
RH1
RH14
G5
195
RH1
RH24
G5


196
RH1
RH4
G6
197
RH1
RH14
G6
198
RH1
RH24
G6


199
RH1
RH4
G7
200
RH1
RH14
G7
201
RH1
RH24
G7


202
RH1
RH4
G8
203
RH1
RH14
G8
204
RH1
RH24
G8


205
RH1
RH4
G9
206
RH1
RH14
G9
207
RH1
RH24
G9


208
RH1
RH4
G10
209
RH1
RH14
G10
210
RH1
RH24
G10


211
RH1
RH4
G11
212
RH1
RH14
G11
213
RH1
RH24
G11


214
RH1
RH4
G12
215
RH1
RH14
G12
216
RH1
RH24
G12


217
RH1
RH4
G13
218
RH1
RH14
G13
219
RH1
RH24
G13


220
RH1
RH4
G14
221
RH1
RH14
G14
222
RH1
RH24
G14


223
RH1
RH4
G15
224
RH1
RH14
G15
225
RH1
RH24
G15


226
RH1
RH4
G16
227
RH1
RH14
G16
228
RH1
RH24
G16


229
RH1
RH4
G17
230
RH1
RH14
G17
231
RH1
RH24
G17


232
RH1
RH4
G18
233
RH1
RH14
G18
234
RH1
RH24
G18


235
RH1
RH4
G19
236
RH1
RH14
G19
237
RH1
RH24
G19


238
RH1
RH4
G20
239
RH1
RH14
G20
240
RH1
RH24
G20


241
RH1
RH5
G1
242
RH1
RH15
G1
243
RH1
RH25
G1


244
RH1
RH5
G2
245
RH1
RH15
G2
246
RH1
RH25
G2


247
RH1
RH5
G3
248
RH1
RH15
G3
249
RH1
RH25
G3


250
RH1
RH5
G4
251
RH1
RH15
G4
252
RH1
RH25
G4


253
RH1
RH5
G5
254
RH1
RH15
G5
255
RH1
RH25
G5


256
RH1
RH5
G6
257
RH1
RH15
G6
258
RH1
RH25
G6


259
RH1
RH5
G7
260
RH1
RH15
G7
261
RH1
RH25
G7


262
RH1
RH5
G8
263
RH1
RH15
G8
264
RH1
RH25
G8


265
RH1
RH5
G9
266
RH1
RH15
G9
267
RH1
RH25
G9


268
RH1
RH5
G10
269
RH1
RH15
G10
270
RH1
RH25
G10


271
RH1
RH5
G11
272
RH1
RH15
G11
273
RH1
RH25
G11


274
RH1
RH5
G12
275
RH1
RH15
G12
276
RH1
RH25
G12


277
RH1
RH5
G13
278
RH1
RH15
G13
279
RH1
RH25
G13


280
RH1
RH5
G14
281
RH1
RH15
G14
282
RH1
RH25
G14


283
RH1
RH5
G15
284
RH1
RH15
G15
285
RH1
RH25
G15


286
RH1
RH5
G16
287
RH1
RH15
G16
288
RH1
RH25
G16


289
RH1
RH5
G17
290
RH1
RH15
G17
291
RH1
RH25
G17


292
RH1
RH5
G18
293
RH1
RH15
G18
294
RH1
RH25
G18


295
RH1
RH5
G19
296
RH1
RH15
G19
297
RH1
RH25
G19


298
RH1
RH5
G20
299
RH1
RH15
G20
300
RH1
RH25
G20


301
RH1
RH6
G1
302
RH1
RH16
G1
303
RH1
RH26
G1


304
RH1
RH6
G2
305
RH1
RH16
G2
306
RH1
RH26
G2


307
RH1
RH6
G3
308
RH1
RH16
G3
309
RH1
RH26
G3


310
RH1
RH6
G4
311
RH1
RH16
G4
312
RH1
RH26
G4


313
RH1
RH6
G5
314
RH1
RH16
G5
315
RH1
RH26
G5


316
RH1
RH6
G6
317
RH1
RH16
G6
318
RH1
RH26
G6


319
RH1
RH6
G7
320
RH1
RH16
G7
321
RH1
RH26
G7


322
RH1
RH6
G8
323
RH1
RH16
G8
324
RH1
RH26
G8


325
RH1
RH6
G9
326
RH1
RH16
G9
327
RH1
RH26
G9


328
RH1
RH6
G10
329
RH1
RH16
G10
330
RH1
RH26
G10


331
RH1
RH6
G11
332
RH1
RH16
G11
333
RH1
RH26
G11


334
RH1
RH6
G12
335
RH1
RH16
G12
336
RH1
RH26
G12


337
RH1
RH6
G13
338
RH1
RH16
G13
339
RH1
RH26
G13


340
RH1
RH6
G14
341
RH1
RH16
G14
342
RH1
RH26
G14


343
RH1
RH6
G15
344
RH1
RH16
G15
345
RH1
RH26
G15


346
RH1
RH6
G16
347
RH1
RH16
G16
348
RH1
RH26
G16


349
RH1
RH6
G17
350
RH1
RH16
G17
351
RH1
RH26
G17


352
RH1
RH6
G18
353
RH1
RH16
G18
354
RH1
RH26
G18


355
RH1
RH6
G19
356
RH1
RH16
G19
357
RH1
RH26
G19


358
RH1
RH6
G20
359
RH1
RH16
G20
360
RH1
RH26
G20


361
RH1
RH7
G1
362
RH1
RH17
G1
363
RH1
RH27
G1


364
RH1
RH7
G2
365
RH1
RH17
G2
366
RH1
RH27
G2


367
RH1
RH7
G3
368
RH1
RH17
G3
369
RH1
RH27
G3


370
RH1
RH7
G4
371
RH1
RH17
G4
372
RH1
RH27
G4


373
RH1
RH7
G5
374
RH1
RH17
G5
375
RH1
RH27
G5


376
RH1
RH7
G6
377
RH1
RH17
G6
378
RH1
RH27
G6


379
RH1
RH7
G7
380
RH1
RH17
G7
381
RH1
RH27
G7


382
RH1
RH7
G8
383
RH1
RH17
G8
384
RH1
RH27
G8


385
RH1
RH7
G9
386
RH1
RH17
G9
387
RH1
RH27
G9


388
RH1
RH7
G10
389
RH1
RH17
G10
390
RH1
RH27
G10


391
RH1
RH7
G11
392
RH1
RH17
G11
393
RH1
RH27
G11


394
RH1
RH7
G12
395
RH1
RH17
G12
396
RH1
RH27
G12


397
RH1
RH7
G13
398
RH1
RH17
G13
399
RH1
RH27
G13


400
RH1
RH7
G14
401
RH1
RH17
G14
402
RH1
RH27
G14


403
RH1
RH7
G15
404
RH1
RH17
G15
405
RH1
RH27
G15


406
RH1
RH7
G16
407
RH1
RH17
G16
408
RH1
RH27
G16


409
RH1
RH7
G17
410
RH1
RH17
G17
411
RH1
RH27
G17


412
RH1
RH7
G18
413
RH1
RH17
G18
414
RH1
RH27
G18


415
RH1
RH7
G19
416
RH1
RH17
G19
417
RH1
RH27
G19


418
RH1
RH7
G20
419
RH1
RH17
G20
420
RH1
RH27
G20


421
RH1
RH8
G1
422
RH1
RH18
G1
423
RH1
RH28
G1


424
RH1
RH8
G2
425
RH1
RH18
G2
426
RH1
RH28
G2


427
RH1
RH8
G3
428
RH1
RH18
G3
429
RH1
RH28
G3


430
RH1
RH8
G4
431
RH1
RH18
G4
432
RH1
RH28
G4


433
RH1
RH8
G5
434
RH1
RH18
G5
435
RH1
RH28
G5


436
RH1
RH8
G6
437
RH1
RH18
G6
438
RH1
RH28
G6


439
RH1
RH8
G7
440
RH1
RH18
G7
441
RH1
RH28
G7


442
RH1
RH8
G8
443
RH1
RH18
G8
444
RH1
RH28
G8


445
RH1
RH8
G9
446
RH1
RH18
G9
447
RH1
RH28
G9


448
RH1
RH8
G10
449
RH1
RH18
G10
450
RH1
RH28
G10


451
RH1
RH8
G11
452
RH1
RH18
G11
453
RH1
RH28
G11


454
RH1
RH8
G12
455
RH1
RH18
G12
456
RH1
RH28
G12


457
RH1
RH8
G13
458
RH1
RH18
G13
459
RH1
RH28
G13


460
RH1
RH8
G14
461
RH1
RH18
G14
462
RH1
RH28
G14


463
RH1
RH8
G15
464
RH1
RH18
G15
465
RH1
RH28
G15


466
RH1
RH8
G16
467
RH1
RH18
G16
468
RH1
RH28
G16


469
RH1
RH8
G17
470
RH1
RH18
G17
471
RH1
RH28
G17


472
RH1
RH8
G18
473
RH1
RH18
G18
474
RH1
RH28
G18


475
RH1
RH8
G19
476
RH1
RH18
G19
477
RH1
RH28
G19


478
RH1
RH8
G20
479
RH1
RH18
G20
480
RH1
RH28
G20


481
RH1
RH9
G1
482
RH1
RH19
G1
483
RH1
RH29
G1


484
RH1
RH9
G2
485
RH1
RH19
G2
486
RH1
RH29
G2


487
RH1
RH9
G3
488
RH1
RH19
G3
489
RH1
RH29
G3


490
RH1
RH9
G4
491
RH1
RH19
G4
492
RH1
RH29
G4


493
RH1
RH9
G5
494
RH1
RH19
G5
495
RH1
RH29
G5


496
RH1
RH9
G6
497
RH1
RH19
G6
498
RH1
RH29
G6


499
RH1
RH9
G7
500
RH1
RH19
G7
501
RH1
RH29
G7


502
RH1
RH9
G8
503
RH1
RH19
G8
504
RH1
RH29
G8


505
RH1
RH9
G9
506
RH1
RH19
G9
507
RH1
RH29
G9


508
RH1
RH9
G10
509
RH1
RH19
G10
510
RH1
RH29
G10


511
RH1
RH9
G11
512
RH1
RH19
G11
513
RH1
RH29
G11


514
RH1
RH9
G12
515
RH1
RH19
G12
516
RH1
RH29
G12


517
RH1
RH9
G13
518
RH1
RH19
G13
519
RH1
RH29
G13


520
RH1
RH9
G14
521
RH1
RH19
G14
522
RH1
RH29
G14


523
RH1
RH9
G15
524
RH1
RH19
G15
525
RH1
RH29
G15


526
RH1
RH9
G16
527
RH1
RH19
G16
528
RH1
RH29
G16


529
RH1
RH9
G17
530
RH1
RH19
G17
531
RH1
RH29
G17


532
RH1
RH9
G18
533
RH1
RH19
G18
534
RH1
RH29
G18


535
RH1
RH9
G19
536
RH1
RH19
G19
537
RH1
RH29
G19


538
RH1
RH9
G20
539
RH1
RH19
G20
540
RH1
RH29
G20


541
RH1
RH10
G1
542
RH1
RH20
G1
543
RH1
RH30
G1


544
RH1
RH10
G2
545
RH1
RH20
G2
546
RH1
RH30
G2


547
RH1
RH10
G3
548
RH1
RH20
G3
549
RH1
RH30
G3


550
RH1
RH10
G4
551
RH1
RH20
G4
552
RH1
RH30
G4


553
RH1
RH10
G5
554
RH1
RH20
G5
555
RH1
RH30
G5


556
RH1
RH10
G6
557
RH1
RH20
G6
558
RH1
RH30
G6


559
RH1
RH10
G7
560
RH1
RH20
G7
561
RH1
RH30
G7


562
RH1
RH10
G8
563
RH1
RH20
G8
564
RH1
RH30
G8


565
RH1
RH10
G9
566
RH1
RH20
G9
567
RH1
RH30
G9


568
RH1
RH10
G10
569
RH1
RH20
G10
570
RH1
RH30
G10


571
RH1
RH10
G11
572
RH1
RH20
G11
573
RH1
RH30
G11


574
RH1
RH10
G12
575
RH1
RH20
G12
576
RH1
RH30
G12


577
RH1
RH10
G13
578
RH1
RH20
G13
579
RH1
RH30
G13


580
RH1
RH10
G14
581
RH1
RH20
G14
582
RH1
RH30
G14


583
RH1
RH10
G15
584
RH1
RH20
G15
585
RH1
RH30
G15


586
RH1
RH10
G16
587
RH1
RH20
G16
588
RH1
RH30
G16


589
RH1
RH10
G17
590
RH1
RH20
G17
591
RH1
RH30
G17


592
RH1
RH10
G18
593
RH1
RH20
G18
594
RH1
RH30
G18


595
RH1
RH10
G19
596
RH1
RH20
G19
597
RH1
RH30
G19


598
RH1
RH10
G20
599
RH1
RH20
G20
600
RH1
RH30
G20


601
RH2
RH1
G1
602
RH2
RH11
G1
603
RH2
RH21
G1


604
RH2
RH1
G2
605
RH2
RH11
G2
606
RH2
RH21
G2


607
RH2
RH1
G3
608
RH2
RH11
G3
609
RH2
RH21
G3


610
RH2
RH1
G4
611
RH2
RH11
G4
612
RH2
RH21
G4


613
RH2
RH1
G5
614
RH2
RH11
G5
615
RH2
RH21
G5


616
RH2
RH1
G6
617
RH2
RH11
G6
618
RH2
RH21
G6


619
RH2
RH1
G7
620
RH2
RH11
G7
621
RH2
RH21
G7


622
RH2
RH1
G8
623
RH2
RH11
G8
624
RH2
RH21
G8


625
RH2
RH1
G9
626
RH2
RH11
G9
627
RH2
RH21
G9


628
RH2
RH1
G10
629
RH2
RH11
G10
630
RH2
RH21
G10


631
RH2
RH1
G11
632
RH2
RH11
G11
633
RH2
RH21
G11


634
RH2
RH1
G12
635
RH2
RH11
G12
636
RH2
RH21
G12


637
RH2
RH1
G13
638
RH2
RH11
G13
639
RH2
RH21
G13


640
RH2
RH1
G14
641
RH2
RH11
G14
642
RH2
RH21
G14


643
RH2
RH1
G15
644
RH2
RH11
G15
645
RH2
RH21
G15


646
RH2
RH1
G16
647
RH2
RH11
G16
648
RH2
RH21
G16


649
RH2
RH1
G17
650
RH2
RH11
G17
651
RH2
RH21
G17


652
RH2
RH1
G18
653
RH2
RH11
G18
654
RH2
RH21
G18


655
RH2
RH1
G19
656
RH2
RH11
G19
657
RH2
RH21
G19


658
RH2
RH1
G20
659
RH2
RH11
G20
660
RH2
RH21
G20


661
RH2
RH2
G1
662
RH2
RH12
G1
663
RH2
RH22
G1


664
RH2
RH2
G2
665
RH2
RH12
G2
666
RH2
RH22
G2


667
RH2
RH2
G3
668
RH2
RH12
G3
669
RH2
RH22
G3


670
RH2
RH2
G4
671
RH2
RH12
G4
672
RH2
RH22
G4


673
RH2
RH2
G5
674
RH2
RH12
G5
675
RH2
RH22
G5


676
RH2
RH2
G6
677
RH2
RH12
G6
678
RH2
RH22
G6


679
RH2
RH2
G7
680
RH2
RH12
G7
681
RH2
RH22
G7


682
RH2
RH2
G8
683
RH2
RH12
G8
684
RH2
RH22
G8


685
RH2
RH2
G9
686
RH2
RH12
G9
687
RH2
RH22
G9


688
RH2
RH2
G10
689
RH2
RH12
G10
690
RH2
RH22
G10


691
RH2
RH2
G11
692
RH2
RH12
G11
693
RH2
RH22
G11


694
RH2
RH2
G12
695
RH2
RH12
G12
696
RH2
RH22
G12


697
RH2
RH2
G13
698
RH2
RH12
G13
699
RH2
RH22
G13


700
RH2
RH2
G14
701
RH2
RH12
G14
702
RH2
RH22
G14


703
RH2
RH2
G15
704
RH2
RH12
G15
705
RH2
RH22
G15


706
RH2
RH2
G16
707
RH2
RH12
G16
708
RH2
RH22
G16


709
RH2
RH2
G17
710
RH2
RH12
G17
711
RH2
RH22
G17


712
RH2
RH2
G18
713
RH2
RH12
G18
714
RH2
RH22
G18


715
RH2
RH2
G19
716
RH2
RH12
G19
717
RH2
RH22
G19


718
RH2
RH2
G20
719
RH2
RH12
G20
720
RH2
RH22
G20


721
RH2
RH3
G1
722
RH2
RH13
G1
723
RH2
RH23
G1


724
RH2
RH3
G2
725
RH2
RH13
G2
726
RH2
RH23
G2


727
RH2
RH3
G3
728
RH2
RH13
G3
729
RH2
RH23
G3


730
RH2
RH3
G4
731
RH2
RH13
G4
732
RH2
RH23
G4


733
RH2
RH3
G5
734
RH2
RH13
G5
735
RH2
RH23
G5


736
RH2
RH3
G6
737
RH2
RH13
G6
738
RH2
RH23
G6


739
RH2
RH3
G7
740
RH2
RH13
G7
741
RH2
RH23
G7


742
RH2
RH3
G8
743
RH2
RH13
G8
744
RH2
RH23
G8


745
RH2
RH3
G9
746
RH2
RH13
G9
747
RH2
RH23
G9


748
RH2
RH3
G10
749
RH2
RH13
G10
750
RH2
RH23
G10


751
RH2
RH3
G11
752
RH2
RH13
G11
753
RH2
RH23
G11


754
RH2
RH3
G12
755
RH2
RH13
G12
756
RH2
RH23
G12


757
RH2
RH3
G13
758
RH2
RH13
G13
759
RH2
RH23
G13


760
RH2
RH3
G14
761
RH2
RH13
G14
762
RH2
RH23
G14


763
RH2
RH3
G15
764
RH2
RH13
G15
765
RH2
RH23
G15


766
RH2
RH3
G16
767
RH2
RH13
G16
768
RH2
RH23
G16


769
RH2
RH3
G17
770
RH2
RH13
G17
771
RH2
RH23
G17


772
RH2
RH3
G18
773
RH2
RH13
G18
774
RH2
RH23
G18


775
RH2
RH3
G19
776
RH2
RH13
G19
777
RH2
RH23
G19


778
RH2
RH3
G20
779
RH2
RH13
G20
780
RH2
RH23
G20


781
RH2
RH4
G1
782
RH2
RH14
G1
783
RH2
RH24
G1


784
RH2
RH4
G2
785
RH2
RH14
G2
786
RH2
RH24
G2


787
RH2
RH4
G3
788
RH2
RH14
G3
789
RH2
RH24
G3


790
RH2
RH4
G4
791
RH2
RH14
G4
792
RH2
RH24
G4


793
RH2
RH4
G5
794
RH2
RH14
G5
795
RH2
RH24
G5


796
RH2
RH4
G6
797
RH2
RH14
G6
798
RH2
RH24
G6


799
RH2
RH4
G7
800
RH2
RH14
G7
801
RH2
RH24
G7


802
RH2
RH4
G8
803
RH2
RH14
G8
804
RH2
RH24
G8


805
RH2
RH4
G9
806
RH2
RH14
G9
807
RH2
RH24
G9


808
RH2
RH4
G10
809
RH2
RH14
G10
810
RH2
RH24
G10


811
RH2
RH4
G11
812
RH2
RH14
G11
813
RH2
RH24
G11


814
RH2
RH4
G12
815
RH2
RH14
G12
816
RH2
RH24
G12


817
RH2
RH4
G13
818
RH2
RH14
G13
819
RH2
RH24
G13


820
RH2
RH4
G14
821
RH2
RH14
G14
822
RH2
RH24
G14


823
RH2
RH4
G15
824
RH2
RH14
G15
825
RH2
RH24
G15


826
RH2
RH4
G16
827
RH2
RH14
G16
828
RH2
RH24
G16


829
RH2
RH4
G17
830
RH2
RH14
G17
831
RH2
RH24
G17


832
RH2
RH4
G18
833
RH2
RH14
G18
834
RH2
RH24
G18


835
RH2
RH4
G19
836
RH2
RH14
G19
837
RH2
RH24
G19


838
RH2
RH4
G20
839
RH2
RH14
G20
840
RH2
RH24
G20


841
RH2
RH5
G1
842
RH2
RH15
G1
843
RH2
RH25
G1


844
RH2
RH5
G2
845
RH2
RH15
G2
846
RH2
RH25
G2


847
RH2
RH5
G3
848
RH2
RH15
G3
849
RH2
RH25
G3


850
RH2
RH5
G4
851
RH2
RH15
G4
852
RH2
RH25
G4


853
RH2
RH5
G5
854
RH2
RH15
G5
855
RH2
RH25
G5


856
RH2
RH5
G6
857
RH2
RH15
G6
858
RH2
RH25
G6


859
RH2
RH5
G7
860
RH2
RH15
G7
861
RH2
RH25
G7


862
RH2
RH5
G8
863
RH2
RH15
G8
864
RH2
RH25
G8


865
RH2
RH5
G9
866
RH2
RH15
G9
867
RH2
RH25
G9


868
RH2
RH5
G10
869
RH2
RH15
G10
870
RH2
RH25
G10


871
RH2
RH5
G11
872
RH2
RH15
G11
873
RH2
RH25
G11


874
RH2
RH5
G12
875
RH2
RH15
G12
876
RH2
RH25
G12


877
RH2
RH5
G13
878
RH2
RH15
G13
879
RH2
RH25
G13


880
RH2
RH5
G14
881
RH2
RH15
G14
882
RH2
RH25
G14


883
RH2
RH5
G15
884
RH2
RH15
G15
885
RH2
RH25
G15


886
RH2
RH5
G16
887
RH2
RH15
G16
888
RH2
RH25
G16


889
RH2
RH5
G17
890
RH2
RH15
G17
891
RH2
RH25
G17


892
RH2
RH5
G18
893
RH2
RH15
G18
894
RH2
RH25
G18


895
RH2
RH5
G19
896
RH2
RH15
G19
897
RH2
RH25
G19


898
RH2
RH5
G20
899
RH2
RH15
G20
900
RH2
RH25
G20


901
RH2
RH6
G1
902
RH2
RH16
G1
903
RH2
RH26
G1


904
RH2
RH6
G2
905
RH2
RH16
G2
906
RH2
RH26
G2


907
RH2
RH6
G3
908
RH2
RH16
G3
909
RH2
RH26
G3


910
RH2
RH6
G4
911
RH2
RH16
G4
912
RH2
RH26
G4


913
RH2
RH6
G5
914
RH2
RH16
G5
915
RH2
RH26
G5


916
RH2
RH6
G6
917
RH2
RH16
G6
918
RH2
RH26
G6


919
RH2
RH6
G7
920
RH2
RH16
G7
921
RH2
RH26
G7


922
RH2
RH6
G8
923
RH2
RH16
G8
924
RH2
RH26
G8


925
RH2
RH6
G9
926
RH2
RH16
G9
927
RH2
RH26
G9


928
RH2
RH6
G10
929
RH2
RH16
G10
930
RH2
RH26
G10


931
RH2
RH6
G11
932
RH2
RH16
G11
933
RH2
RH26
G11


934
RH2
RH6
G12
935
RH2
RH16
G12
936
RH2
RH26
G12


937
RH2
RH6
G13
938
RH2
RH16
G13
939
RH2
RH26
G13


940
RH2
RH6
G14
941
RH2
RH16
G14
942
RH2
RH26
G14


943
RH2
RH6
G15
944
RH2
RH16
G15
945
RH2
RH26
G15


946
RH2
RH6
G16
947
RH2
RH16
G16
948
RH2
RH26
G16


949
RH2
RH6
G17
950
RH2
RH16
G17
951
RH2
RH26
G17


952
RH2
RH6
G18
953
RH2
RH16
G18
954
RH2
RH26
G18


955
RH2
RH6
G19
956
RH2
RH16
G19
957
RH2
RH26
G19


958
RH2
RH6
G20
959
RH2
RH16
G20
960
RH2
RH26
G20


961
RH2
RH7
G1
962
RH2
RH17
G1
963
RH2
RH27
G1


964
RH2
RH7
G2
965
RH2
RH17
G2
966
RH2
RH27
G2


967
RH2
RH7
G3
968
RH2
RH17
G3
969
RH2
RH27
G3


970
RH2
RH7
G4
971
RH2
RH17
G4
972
RH2
RH27
G4


973
RH2
RH7
G5
974
RH2
RH17
G5
975
RH2
RH27
G5


976
RH2
RH7
G6
977
RH2
RH17
G6
978
RH2
RH27
G6


979
RH2
RH7
G7
980
RH2
RH17
G7
981
RH2
RH27
G7


982
RH2
RH7
G8
983
RH2
RH17
G8
984
RH2
RH27
G8


985
RH2
RH7
G9
986
RH2
RH17
G9
987
RH2
RH27
G9


988
RH2
RH7
G10
989
RH2
RH17
G10
990
RH2
RH27
G10


991
RH2
RH7
G11
992
RH2
RH17
G11
993
RH2
RH27
G11


994
RH2
RH7
G12
995
RH2
RH17
G12
996
RH2
RH27
G12


997
RH2
RH7
G13
998
RH2
RH17
G13
999
RH2
RH27
G13


1000
RH2
RH7
G14
1001
RH2
RH17
G14
1002
RH2
RH27
G14


1003
RH2
RH7
G15
1004
RH2
RH17
G15
1005
RH2
RH27
G15


1006
RH2
RH7
G16
1007
RH2
RH17
G16
1008
RH2
RH27
G16


1009
RH2
RH7
G17
1010
RH2
RH17
G17
1011
RH2
RH27
G17


1012
RH2
RH7
G18
1013
RH2
RH17
G18
1014
RH2
RH27
G18


1015
RH2
RH7
G19
1016
RH2
RH17
G19
1017
RH2
RH27
G19


1018
RH2
RH7
G20
1019
RH2
RH17
G20
1020
RH2
RH27
G20


1021
RH2
RH8
G1
1022
RH2
RH18
G1
1023
RH2
RH28
G1


1024
RH2
RH8
G2
1025
RH2
RH18
G2
1026
RH2
RH28
G2


1027
RH2
RH8
G3
1028
RH2
RH18
G3
1029
RH2
RH28
G3


1030
RH2
RH8
G4
1031
RH2
RH18
G4
1032
RH2
RH28
G4


1033
RH2
RH8
G5
1034
RH2
RH18
G5
1035
RH2
RH28
G5


1036
RH2
RH8
G6
1037
RH2
RH18
G6
1038
RH2
RH28
G6


1039
RH2
RH8
G7
1040
RH2
RH18
G7
1041
RH2
RH28
G7


1042
RH2
RH8
G8
1043
RH2
RH18
G8
1044
RH2
RH28
G8


1045
RH2
RH8
G9
1046
RH2
RH18
G9
1047
RH2
RH28
G9


1048
RH2
RH8
G10
1049
RH2
RH18
G10
1050
RH2
RH28
G10


1051
RH2
RH8
G11
1052
RH2
RH18
G11
1053
RH2
RH28
G11


1054
RH2
RH8
G12
1055
RH2
RH18
G12
1056
RH2
RH28
G12


1057
RH2
RH8
G13
1058
RH2
RH18
G13
1059
RH2
RH28
G13


1060
RH2
RH8
G14
1061
RH2
RH18
G14
1062
RH2
RH28
G14


1063
RH2
RH8
G15
1064
RH2
RH18
G15
1065
RH2
RH28
G15


1066
RH2
RH8
G16
1067
RH2
RH18
G16
1068
RH2
RH28
G16


1069
RH2
RH8
G17
1070
RH2
RH18
G17
1071
RH2
RH28
G17


1072
RH2
RH8
G18
1073
RH2
RH18
G18
1074
RH2
RH28
G18


1075
RH2
RH8
G19
1076
RH2
RH18
G19
1077
RH2
RH28
G19


1078
RH2
RH8
G20
1079
RH2
RH18
G20
1080
RH2
RH28
G20


1081
RH2
RH9
G1
1082
RH2
RH19
G1
1083
RH2
RH29
G1


1084
RH2
RH9
G2
1085
RH2
RH19
G2
1086
RH2
RH29
G2


1087
RH2
RH9
G3
1088
RH2
RH19
G3
1089
RH2
RH29
G3


1090
RH2
RH9
G4
1091
RH2
RH19
G4
1092
RH2
RH29
G4


1093
RH2
RH9
G5
1094
RH2
RH19
G5
1095
RH2
RH29
G5


1096
RH2
RH9
G6
1097
RH2
RH19
G6
1098
RH2
RH29
G6


1099
RH2
RH9
G7
1100
RH2
RH19
G7
1101
RH2
RH29
G7


1102
RH2
RH9
G8
1103
RH2
RH19
G8
1104
RH2
RH29
G8


1105
RH2
RH9
G9
1106
RH2
RH19
G9
1107
RH2
RH29
G9


1108
RH2
RH9
G10
1109
RH2
RH19
G10
1110
RH2
RH29
G10


1111
RH2
RH9
G11
1112
RH2
RH19
G11
1113
RH2
RH29
G11


1114
RH2
RH9
G12
1115
RH2
RH19
G12
1116
RH2
RH29
G12


1117
RH2
RH9
G13
1118
RH2
RH19
G13
1119
RH2
RH29
G13


1120
RH2
RH9
G14
1121
RH2
RH19
G14
1122
RH2
RH29
G14


1123
RH2
RH9
G15
1124
RH2
RH19
G15
1125
RH2
RH29
G15


1126
RH2
RH9
G16
1127
RH2
RH19
G16
1128
RH2
RH29
G16


1129
RH2
RH9
G17
1130
RH2
RH19
G17
1131
RH2
RH29
G17


1132
RH2
RH9
G18
1133
RH2
RH19
G18
1134
RH2
RH29
G18


1135
RH2
RH9
G19
1136
RH2
RH19
G19
1137
RH2
RH29
G19


1138
RH2
RH9
G20
1139
RH2
RH19
G20
1140
RH2
RH29
G20


1141
RH2
RH10
G1
1142
RH2
RH20
G1
1143
RH2
RH30
G1


1144
RH2
RH10
G2
1145
RH2
RH20
G2
1146
RH2
RH30
G2


1147
RH2
RH10
G3
1148
RH2
RH20
G3
1149
RH2
RH30
G3


1150
RH2
RH10
G4
1151
RH2
RH20
G4
1152
RH2
RH30
G4


1153
RH2
RH10
G5
1154
RH2
RH20
G5
1155
RH2
RH30
G5


1156
RH2
RH10
G6
1157
RH2
RH20
G6
1158
RH2
RH30
G6


1159
RH2
RH10
G7
1160
RH2
RH20
G7
1161
RH2
RH30
G7


1162
RH2
RH10
G8
1163
RH2
RH20
G8
1164
RH2
RH30
G8


1165
RH2
RH10
G9
1166
RH2
RH20
G9
1167
RH2
RH30
G9


1168
RH2
RH10
G10
1169
RH2
RH20
G10
1170
RH2
RH30
G10


1171
RH2
RH10
G11
1172
RH2
RH20
G11
1173
RH2
RH30
G11


1174
RH2
RH10
G12
1175
RH2
RH20
G12
1176
RH2
RH30
G12


1177
RH2
RH10
G13
1178
RH2
RH20
G13
1179
RH2
RH30
G13


1180
RH2
RH10
G14
1181
RH2
RH20
G14
1182
RH2
RH30
G14


1183
RH2
RH10
G15
1184
RH2
RH20
G15
1185
RH2
RH30
G15


1186
RH2
RH10
G16
1187
RH2
RH20
G16
1188
RH2
RH30
G16


1189
RH2
RH10
G17
1190
RH2
RH20
G17
1191
RH2
RH30
G17


1192
RH2
RH10
G18
1193
RH2
RH20
G18
1194
RH2
RH30
G18


1195
RH2
RH10
G19
1196
RH2
RH20
G19
1197
RH2
RH30
G19


1198
RH2
RH10
G20
1199
RH2
RH20
G20
1200
RH2
RH30
G20


1201
RH3
RH1
G1
1202
RH3
RH11
G1
1203
RH3
RH21
G1


1204
RH3
RH1
G2
1205
RH3
RH11
G2
1206
RH3
RH21
G2


1207
RH3
RH1
G3
1208
RH3
RH11
G3
1209
RH3
RH21
G3


1210
RH3
RH1
G4
1211
RH3
RH11
G4
1212
RH3
RH21
G4


1213
RH3
RH1
G5
1214
RH3
RH11
G5
1215
RH3
RH21
G5


1216
RH3
RH1
G6
1217
RH3
RH11
G6
1218
RH3
RH21
G6


1219
RH3
RH1
G7
1220
RH3
RH11
G7
1221
RH3
RH21
G7


1222
RH3
RH1
G8
1223
RH3
RH11
G8
1224
RH3
RH21
G8


1225
RH3
RH1
G9
1226
RH3
RH11
G9
1227
RH3
RH21
G9


1228
RH3
RH1
G10
1229
RH3
RH11
G10
1230
RH3
RH21
G10


1231
RH3
RH1
G11
1232
RH3
RH11
G11
1233
RH3
RH21
G11


1234
RH3
RH1
G12
1235
RH3
RH11
G12
1236
RH3
RH21
G12


1237
RH3
RH1
G13
1238
RH3
RH11
G13
1239
RH3
RH21
G13


1240
RH3
RH1
G14
1241
RH3
RH11
G14
1242
RH3
RH21
G14


1243
RH3
RH1
G15
1244
RH3
RH11
G15
1245
RH3
RH21
G15


1246
RH3
RH1
G16
1247
RH3
RH11
G16
1248
RH3
RH21
G16


1249
RH3
RH1
G17
1250
RH3
RH11
G17
1251
RH3
RH21
G17


1252
RH3
RH1
G18
1253
RH3
RH11
G18
1254
RH3
RH21
G18


1255
RH3
RH1
G19
1256
RH3
RH11
G19
1257
RH3
RH21
G19


1258
RH3
RH1
G20
1259
RH3
RH11
G20
1260
RH3
RH21
G20


1261
RH3
RH2
G1
1262
RH3
RH12
G1
1263
RH3
RH22
G1


1264
RH3
RH2
G2
1265
RH3
RH12
G2
1266
RH3
RH22
G2


1267
RH3
RH2
G3
1268
RH3
RH12
G3
1269
RH3
RH22
G3


1270
RH3
RH2
G4
1271
RH3
RH12
G4
1272
RH3
RH22
G4


1273
RH3
RH2
G5
1274
RH3
RH12
G5
1275
RH3
RH22
G5


1276
RH3
RH2
G6
1277
RH3
RH12
G6
1278
RH3
RH22
G6


1279
RH3
RH2
G7
1280
RH3
RH12
G7
1281
RH3
RH22
G7


1282
RH3
RH2
G8
1283
RH3
RH12
G8
1284
RH3
RH22
G8


1285
RH3
RH2
G9
1286
RH3
RH12
G9
1287
RH3
RH22
G9


1288
RH3
RH2
G10
1289
RH3
RH12
G10
1290
RH3
RH22
G10


1291
RH3
RH2
G11
1292
RH3
RH12
G11
1293
RH3
RH22
G11


1294
RH3
RH2
G12
1295
RH3
RH12
G12
1296
RH3
RH22
G12


1297
RH3
RH2
G13
1298
RH3
RH12
G13
1299
RH3
RH22
G13


1300
RH3
RH2
G14
1301
RH3
RH12
G14
1302
RH3
RH22
G14


1303
RH3
RH2
G15
1304
RH3
RH12
G15
1305
RH3
RH22
G15


1306
RH3
RH2
G16
1307
RH3
RH12
G16
1308
RH3
RH22
G16


1309
RH3
RH2
G17
1310
RH3
RH12
G17
1311
RH3
RH22
G17


1312
RH3
RH2
G18
1313
RH3
RH12
G18
1314
RH3
RH22
G18


1315
RH3
RH2
G19
1316
RH3
RH12
G19
1317
RH3
RH22
G19


1318
RH3
RH2
G20
1319
RH3
RH12
G20
1320
RH3
RH22
G20


1321
RH3
RH3
G1
1322
RH3
RH13
G1
1323
RH3
RH23
G1


1324
RH3
RH3
G2
1325
RH3
RH13
G2
1326
RH3
RH23
G2


1327
RH3
RH3
G3
1328
RH3
RH13
G3
1329
RH3
RH23
G3


1330
RH3
RH3
G4
1331
RH3
RH13
G4
1332
RH3
RH23
G4


1333
RH3
RH3
G5
1334
RH3
RH13
G5
1335
RH3
RH23
G5


1336
RH3
RH3
G6
1337
RH3
RH13
G6
1338
RH3
RH23
G6


1339
RH3
RH3
G7
1340
RH3
RH13
G7
1341
RH3
RH23
G7


1342
RH3
RH3
G8
1343
RH3
RH13
G8
1344
RH3
RH23
G8


1345
RH3
RH3
G9
1346
RH3
RH13
G9
1347
RH3
RH23
G9


1348
RH3
RH3
G10
1349
RH3
RH13
G10
1350
RH3
RH23
G10


1351
RH3
RH3
G11
1352
RH3
RH13
G11
1353
RH3
RH23
G11


1354
RH3
RH3
G12
1355
RH3
RH13
G12
1356
RH3
RH23
G12


1357
RH3
RH3
G13
1358
RH3
RH13
G13
1359
RH3
RH23
G13


1360
RH3
RH3
G14
1361
RH3
RH13
G14
1362
RH3
RH23
G14


1363
RH3
RH3
G15
1364
RH3
RH13
G15
1365
RH3
RH23
G15


1366
RH3
RH3
G16
1367
RH3
RH13
G16
1368
RH3
RH23
G16


1369
RH3
RH3
G17
1370
RH3
RH13
G17
1371
RH3
RH23
G17


1372
RH3
RH3
G18
1373
RH3
RH13
G18
1374
RH3
RH23
G18


1375
RH3
RH3
G19
1376
RH3
RH13
G19
1377
RH3
RH23
G19


1378
RH3
RH3
G20
1379
RH3
RH13
G20
1380
RH3
RH23
G20


1381
RH3
RH4
G1
1382
RH3
RH14
G1
1383
RH3
RH24
G1


1384
RH3
RH4
G2
1385
RH3
RH14
G2
1386
RH3
RH24
G2


1387
RH3
RH4
G3
1388
RH3
RH14
G3
1389
RH3
RH24
G3


1390
RH3
RH4
G4
1391
RH3
RH14
G4
1392
RH3
RH24
G4


1393
RH3
RH4
G5
1394
RH3
RH14
G5
1395
RH3
RH24
G5


1396
RH3
RH4
G6
1397
RH3
RH14
G6
1398
RH3
RH24
G6


1399
RH3
RH4
G7
1400
RH3
RH14
G7
1401
RH3
RH24
G7


1402
RH3
RH4
G8
1403
RH3
RH14
G8
1404
RH3
RH24
G8


1405
RH3
RH4
G9
1406
RH3
RH14
G9
1407
RH3
RH24
G9


1408
RH3
RH4
G10
1409
RH3
RH14
G10
1410
RH3
RH24
G10


1411
RH3
RH4
G11
1412
RH3
RH14
G11
1413
RH3
RH24
G11


1414
RH3
RH4
G12
1415
RH3
RH14
G12
1416
RH3
RH24
G12


1417
RH3
RH4
G13
1418
RH3
RH14
G13
1419
RH3
RH24
G13


1420
RH3
RH4
G14
1421
RH3
RH14
G14
1422
RH3
RH24
G14


1423
RH3
RH4
G15
1424
RH3
RH14
G15
1425
RH3
RH24
G15


1426
RH3
RH4
G16
1427
RH3
RH14
G16
1428
RH3
RH24
G16


1429
RH3
RH4
G17
1430
RH3
RH14
G17
1431
RH3
RH24
G17


1432
RH3
RH4
G18
1433
RH3
RH14
G18
1434
RH3
RH24
G18


1435
RH3
RH4
G19
1436
RH3
RH14
G19
1437
RH3
RH24
G19


1438
RH3
RH4
G20
1439
RH3
RH14
G20
1440
RH3
RH24
G20


1441
RH3
RH5
G1
1442
RH3
RH15
G1
1443
RH3
RH25
G1


1444
RH3
RH5
G2
1445
RH3
RH15
G2
1446
RH3
RH25
G2


1447
RH3
RH5
G3
1448
RH3
RH15
G3
1449
RH3
RH25
G3


1450
RH3
RH5
G4
1451
RH3
RH15
G4
1452
RH3
RH25
G4


1453
RH3
RH5
G5
1454
RH3
RH15
G5
1455
RH3
RH25
G5


1456
RH3
RH5
G6
1457
RH3
RH15
G6
1458
RH3
RH25
G6


1459
RH3
RH5
G7
1460
RH3
RH15
G7
1461
RH3
RH25
G7


1462
RH3
RH5
G8
1463
RH3
RH15
G8
1464
RH3
RH25
G8


1465
RH3
RH5
G9
1466
RH3
RH15
G9
1467
RH3
RH25
G9


1468
RH3
RH5
G10
1469
RH3
RH15
G10
1470
RH3
RH25
G10


1471
RH3
RH5
G11
1472
RH3
RH15
G11
1473
RH3
RH25
G11


1474
RH3
RH5
G12
1475
RH3
RH15
G12
1476
RH3
RH25
G12


1477
RH3
RH5
G13
1478
RH3
RH15
G13
1479
RH3
RH25
G13


1480
RH3
RH5
G14
1481
RH3
RH15
G14
1482
RH3
RH25
G14


1483
RH3
RH5
G15
1484
RH3
RH15
G15
1485
RH3
RH25
G15


1486
RH3
RH5
G16
1487
RH3
RH15
G16
1488
RH3
RH25
G16


1489
RH3
RH5
G17
1490
RH3
RH15
G17
1491
RH3
RH25
G17


1492
RH3
RH5
G18
1493
RH3
RH15
G18
1494
RH3
RH25
G18


1495
RH3
RH5
G19
1496
RH3
RH15
G19
1497
RH3
RH25
G19


1498
RH3
RH5
G20
1499
RH3
RH15
G20
1500
RH3
RH25
G20


1501
RH3
RH6
G1
1502
RH3
RH16
G1
1503
RH3
RH26
G1


1504
RH3
RH6
G2
1505
RH3
RH16
G2
1506
RH3
RH26
G2


1507
RH3
RH6
G3
1508
RH3
RH16
G3
1509
RH3
RH26
G3


1510
RH3
RH6
G4
1511
RH3
RH16
G4
1512
RH3
RH26
G4


1513
RH3
RH6
G5
1514
RH3
RH16
G5
1515
RH3
RH26
G5


1516
RH3
RH6
G6
1517
RH3
RH16
G6
1518
RH3
RH26
G6


1519
RH3
RH6
G7
1520
RH3
RH16
G7
1521
RH3
RH26
G7


1522
RH3
RH6
G8
1523
RH3
RH16
G8
1524
RH3
RH26
G8


1525
RH3
RH6
G9
1526
RH3
RH16
G9
1527
RH3
RH26
G9


1528
RH3
RH6
G10
1529
RH3
RH16
G10
1530
RH3
RH26
G10


1531
RH3
RH6
G11
1532
RH3
RH16
G11
1533
RH3
RH26
G11


1534
RH3
RH6
G12
1535
RH3
RH16
G12
1536
RH3
RH26
G12


1537
RH3
RH6
G13
1538
RH3
RH16
G13
1539
RH3
RH26
G13


1540
RH3
RH6
G14
1541
RH3
RH16
G14
1542
RH3
RH26
G14


1543
RH3
RH6
G15
1544
RH3
RH16
G15
1545
RH3
RH26
G15


1546
RH3
RH6
G16
1547
RH3
RH16
G16
1548
RH3
RH26
G16


1549
RH3
RH6
G17
1550
RH3
RH16
G17
1551
RH3
RH26
G17


1552
RH3
RH6
G18
1553
RH3
RH16
G18
1554
RH3
RH26
G18


1555
RH3
RH6
G19
1556
RH3
RH16
G19
1557
RH3
RH26
G19


1558
RH3
RH6
G20
1559
RH3
RH16
G20
1560
RH3
RH26
G20


1561
RH3
RH7
G1
1562
RH3
RH17
G1
1563
RH3
RH27
G1


1564
RH3
RH7
G2
1565
RH3
RH17
G2
1566
RH3
RH27
G2


1567
RH3
RH7
G3
1568
RH3
RH17
G3
1569
RH3
RH27
G3


1570
RH3
RH7
G4
1571
RH3
RH17
G4
1572
RH3
RH27
G4


1573
RH3
RH7
G5
1574
RH3
RH17
G5
1575
RH3
RH27
G5


1576
RH3
RH7
G6
1577
RH3
RH17
G6
1578
RH3
RH27
G6


1579
RH3
RH7
G7
1580
RH3
RH17
G7
1581
RH3
RH27
G7


1582
RH3
RH7
G8
1583
RH3
RH17
G8
1584
RH3
RH27
G8


1585
RH3
RH7
G9
1586
RH3
RH17
G9
1587
RH3
RH27
G9


1588
RH3
RH7
G10
1589
RH3
RH17
G10
1590
RH3
RH27
G10


1591
RH3
RH7
G11
1592
RH3
RH17
G11
1593
RH3
RH27
G11


1594
RH3
RH7
G12
1595
RH3
RH17
G12
1596
RH3
RH27
G12


1597
RH3
RH7
G13
1598
RH3
RH17
G13
1599
RH3
RH27
G13


1600
RH3
RH7
G14
1601
RH3
RH17
G14
1602
RH3
RH27
G14


1603
RH3
RH7
G15
1604
RH3
RH17
G15
1605
RH3
RH27
G15


1606
RH3
RH7
G16
1607
RH3
RH17
G16
1608
RH3
RH27
G16


1609
RH3
RH7
G17
1610
RH3
RH17
G17
1611
RH3
RH27
G17


1612
RH3
RH7
G18
1613
RH3
RH17
G18
1614
RH3
RH27
G18


1615
RH3
RH7
G19
1616
RH3
RH17
G19
1617
RH3
RH27
G19


1618
RH3
RH7
G20
1619
RH3
RH17
G20
1620
RH3
RH27
G20


1621
RH3
RH8
G1
1622
RH3
RH18
G1
1623
RH3
RH28
G1


1624
RH3
RH8
G2
1625
RH3
RH18
G2
1626
RH3
RH28
G2


1627
RH3
RH8
G3
1628
RH3
RH18
G3
1629
RH3
RH28
G3


1630
RH3
RH8
G4
1631
RH3
RH18
G4
1632
RH3
RH28
G4


1633
RH3
RH8
G5
1634
RH3
RH18
G5
1635
RH3
RH28
G5


1636
RH3
RH8
G6
1637
RH3
RH18
G6
1638
RH3
RH28
G6


1639
RH3
RH8
G7
1640
RH3
RH18
G7
1641
RH3
RH28
G7


1642
RH3
RH8
G8
1643
RH3
RH18
G8
1644
RH3
RH28
G8


1645
RH3
RH8
G9
1646
RH3
RH18
G9
1647
RH3
RH28
G9


1648
RH3
RH8
G10
1649
RH3
RH18
G10
1650
RH3
RH28
G10


1651
RH3
RH8
G11
1652
RH3
RH18
G11
1653
RH3
RH28
G11


1654
RH3
RH8
G12
1655
RH3
RH18
G12
1656
RH3
RH28
G12


1657
RH3
RH8
G13
1658
RH3
RH18
G13
1659
RH3
RH28
G13


1660
RH3
RH8
G14
1661
RH3
RH18
G14
1662
RH3
RH28
G14


1663
RH3
RH8
G15
1664
RH3
RH18
G15
1665
RH3
RH28
G15


1666
RH3
RH8
G16
1667
RH3
RH18
G16
1668
RH3
RH28
G16


1669
RH3
RH8
G17
1670
RH3
RH18
G17
1671
RH3
RH28
G17


1672
RH3
RH8
G18
1673
RH3
RH18
G18
1674
RH3
RH28
G18


1675
RH3
RH8
G19
1676
RH3
RH18
G19
1677
RH3
RH28
G19


1678
RH3
RH8
G20
1679
RH3
RH18
G20
1680
RH3
RH28
G20


1681
RH3
RH9
G1
1682
RH3
RH19
G1
1683
RH3
RH29
G1


1684
RH3
RH9
G2
1685
RH3
RH19
G2
1686
RH3
RH29
G2


1687
RH3
RH9
G3
1688
RH3
RH19
G3
1689
RH3
RH29
G3


1690
RH3
RH9
G4
1691
RH3
RH19
G4
1692
RH3
RH29
G4


1693
RH3
RH9
G5
1694
RH3
RH19
G5
1695
RH3
RH29
G5


1696
RH3
RH9
G6
1697
RH3
RH19
G6
1698
RH3
RH29
G6


1699
RH3
RH9
G7
1700
RH3
RH19
G7
1701
RH3
RH29
G7


1702
RH3
RH9
G8
1703
RH3
RH19
G8
1704
RH3
RH29
G8


1705
RH3
RH9
G9
1706
RH3
RH19
G9
1707
RH3
RH29
G9


1708
RH3
RH9
G10
1709
RH3
RH19
G10
1710
RH3
RH29
G10


1711
RH3
RH9
G11
1712
RH3
RH19
G11
1713
RH3
RH29
G11


1714
RH3
RH9
G12
1715
RH3
RH19
G12
1716
RH3
RH29
G12


1717
RH3
RH9
G13
1718
RH3
RH19
G13
1719
RH3
RH29
G13


1720
RH3
RH9
G14
1721
RH3
RH19
G14
1722
RH3
RH29
G14


1723
RH3
RH9
G15
1724
RH3
RH19
G15
1725
RH3
RH29
G15


1726
RH3
RH9
G16
1727
RH3
RH19
G16
1728
RH3
RH29
G16


1729
RH3
RH9
G17
1730
RH3
RH19
G17
1731
RH3
RH29
G17


1732
RH3
RH9
G18
1733
RH3
RH19
G18
1734
RH3
RH29
G18


1735
RH3
RH9
G19
1736
RH3
RH19
G19
1737
RH3
RH29
G19


1738
RH3
RH9
G20
1739
RH3
RH19
G20
1740
RH3
RH29
G20


1741
RH3
RH10
G1
1742
RH3
RH20
G1
1743
RH3
RH30
G1


1744
RH3
RH10
G2
1745
RH3
RH20
G2
1746
RH3
RH30
G2


1747
RH3
RH10
G3
1748
RH3
RH20
G3
1749
RH3
RH30
G3


1750
RH3
RH10
G4
1751
RH3
RH20
G4
1752
RH3
RH30
G4


1753
RH3
RH10
G5
1754
RH3
RH20
G5
1755
RH3
RH30
G5


1756
RH3
RH10
G6
1757
RH3
RH20
G6
1758
RH3
RH30
G6


1759
RH3
RH10
G7
1760
RH3
RH20
G7
1761
RH3
RH30
G7


1762
RH3
RH10
G8
1763
RH3
RH20
G8
1764
RH3
RH30
G8


1765
RH3
RH10
G9
1766
RH3
RH20
G9
1767
RH3
RH30
G9


1768
RH3
RH10
G10
1769
RH3
RH20
G10
1770
RH3
RH30
G10


1771
RH3
RH10
G11
1772
RH3
RH20
G11
1773
RH3
RH30
G11


1774
RH3
RH10
G12
1775
RH3
RH20
G12
1776
RH3
RH30
G12


1777
RH3
RH10
G13
1778
RH3
RH20
G13
1779
RH3
RH30
G13


1780
RH3
RH10
G14
1781
RH3
RH20
G14
1782
RH3
RH30
G14


1783
RH3
RH10
G15
1784
RH3
RH20
G15
1785
RH3
RH30
G15


1786
RH3
RH10
G16
1787
RH3
RH20
G16
1788
RH3
RH30
G16


1789
RH3
RH10
G17
1790
RH3
RH20
G17
1791
RH3
RH30
G17


1792
RH3
RH10
G18
1793
RH3
RH20
G18
1794
RH3
RH30
G18


1795
RH3
RH10
G19
1796
RH3
RH20
G19
1797
RH3
RH30
G19


1798
RH3
RH10
G20
1799
RH3
RH20
G20
1800
RH3
RH30
G20


1801
RH4
RH1
G1
1802
RH4
RH11
G1
1803
RH4
RH21
G1


1804
RH4
RH1
G2
1805
RH4
RH11
G2
1806
RH4
RH21
G2


1807
RH4
RH1
G3
1808
RH4
RH11
G3
1809
RH4
RH21
G3


1810
RH4
RH1
G4
1811
RH4
RH11
G4
1812
RH4
RH21
G4


1813
RH4
RH1
G5
1814
RH4
RH11
G5
1815
RH4
RH21
G5


1816
RH4
RH1
G6
1817
RH4
RH11
G6
1818
RH4
RH21
G6


1819
RH4
RH1
G7
1820
RH4
RH11
G7
1821
RH4
RH21
G7


1822
RH4
RH1
G8
1823
RH4
RH11
G8
1824
RH4
RH21
G8


1825
RH4
RH1
G9
1826
RH4
RH11
G9
1827
RH4
RH21
G9


1828
RH4
RH1
G10
1829
RH4
RH11
G10
1830
RH4
RH21
G10


1831
RH4
RH1
G11
1832
RH4
RH11
G11
1833
RH4
RH21
G11


1834
RH4
RH1
G12
1835
RH4
RH11
G12
1836
RH4
RH21
G12


1837
RH4
RH1
G13
1838
RH4
RH11
G13
1839
RH4
RH21
G13


1840
RH4
RH1
G14
1841
RH4
RH11
G14
1842
RH4
RH21
G14


1843
RH4
RH1
G15
1844
RH4
RH11
G15
1845
RH4
RH21
G15


1846
RH4
RH1
G16
1847
RH4
RH11
G16
1848
RH4
RH21
G16


1849
RH4
RH1
G17
1850
RH4
RH11
G17
1851
RH4
RH21
G17


1852
RH4
RH1
G18
1853
RH4
RH11
G18
1854
RH4
RH21
G18


1855
RH4
RH1
G19
1856
RH4
RH11
G19
1857
RH4
RH21
G19


1858
RH4
RH1
G20
1859
RH4
RH11
G20
1860
RH4
RH21
G20


1861
RH4
RH2
G1
1862
RH4
RH12
G1
1863
RH4
RH22
G1


1864
RH4
RH2
G2
1865
RH4
RH12
G2
1866
RH4
RH22
G2


1867
RH4
RH2
G3
1868
RH4
RH12
G3
1869
RH4
RH22
G3


1870
RH4
RH2
G4
1871
RH4
RH12
G4
1872
RH4
RH22
G4


1873
RH4
RH2
G5
1874
RH4
RH12
G5
1875
RH4
RH22
G5


1876
RH4
RH2
G6
1877
RH4
RH12
G6
1878
RH4
RH22
G6


1879
RH4
RH2
G7
1880
RH4
RH12
G7
1881
RH4
RH22
G7


1882
RH4
RH2
G8
1883
RH4
RH12
G8
1884
RH4
RH22
G8


1885
RH4
RH2
G9
1886
RH4
RH12
G9
1887
RH4
RH22
G9


1888
RH4
RH2
G10
1889
RH4
RH12
G10
1890
RH4
RH22
G10


1891
RH4
RH2
G11
1892
RH4
RH12
G11
1893
RH4
RH22
G11


1894
RH4
RH2
G12
1895
RH4
RH12
G12
1896
RH4
RH22
G12


1897
RH4
RH2
G13
1898
RH4
RH12
G13
1899
RH4
RH22
G13


1900
RH4
RH2
G14
1901
RH4
RH12
G14
1902
RH4
RH22
G14


1903
RH4
RH2
G15
1904
RH4
RH12
G15
1905
RH4
RH22
G15


1906
RH4
RH2
G16
1907
RH4
RH12
G16
1908
RH4
RH22
G16


1909
RH4
RH2
G17
1910
RH4
RH12
G17
1911
RH4
RH22
G17


1912
RH4
RH2
G18
1913
RH4
RH12
G18
1914
RH4
RH22
G18


1915
RH4
RH2
G19
1916
RH4
RH12
G19
1917
RH4
RH22
G19


1918
RH4
RH2
G20
1919
RH4
RH12
G20
1920
RH4
RH22
G20


1921
RH4
RH3
G1
1922
RH4
RH13
G1
1923
RH4
RH23
G1


1924
RH4
RH3
G2
1925
RH4
RH13
G2
1926
RH4
RH23
G2


1927
RH4
RH3
G3
1928
RH4
RH13
G3
1929
RH4
RH23
G3


1930
RH4
RH3
G4
1931
RH4
RH13
G4
1932
RH4
RH23
G4


1933
RH4
RH3
G5
1934
RH4
RH13
G5
1935
RH4
RH23
G5


1936
RH4
RH3
G6
1937
RH4
RH13
G6
1938
RH4
RH23
G6


1939
RH4
RH3
G7
1940
RH4
RH13
G7
1941
RH4
RH23
G7


1942
RH4
RH3
G8
1943
RH4
RH13
G8
1944
RH4
RH23
G8


1945
RH4
RH3
G9
1946
RH4
RH13
G9
1947
RH4
RH23
G9


1948
RH4
RH3
G10
1949
RH4
RH13
G10
1950
RH4
RH23
G10


1951
RH4
RH3
G11
1952
RH4
RH13
G11
1953
RH4
RH23
G11


1954
RH4
RH3
G12
1955
RH4
RH13
G12
1956
RH4
RH23
G12


1957
RH4
RH3
G13
1958
RH4
RH13
G13
1959
RH4
RH23
G13


1960
RH4
RH3
G14
1961
RH4
RH13
G14
1962
RH4
RH23
G14


1963
RH4
RH3
G15
1964
RH4
RH13
G15
1965
RH4
RH23
G15


1966
RH4
RH3
G16
1967
RH4
RH13
G16
1968
RH4
RH23
G16


1969
RH4
RH3
G17
1970
RH4
RH13
G17
1971
RH4
RH23
G17


1972
RH4
RH3
G18
1973
RH4
RH13
G18
1974
RH4
RH23
G18


1975
RH4
RH3
G19
1976
RH4
RH13
G19
1977
RH4
RH23
G19


1978
RH4
RH3
G20
1979
RH4
RH13
G20
1980
RH4
RH23
G20


1981
RH4
RH4
G1
1982
RH4
RH14
G1
1983
RH4
RH24
G1


1984
RH4
RH4
G2
1985
RH4
RH14
G2
1986
RH4
RH24
G2


1987
RH4
RH4
G3
1988
RH4
RH14
G3
1989
RH4
RH24
G3


1990
RH4
RH4
G4
1991
RH4
RH14
G4
1992
RH4
RH24
G4


1993
RH4
RH4
G5
1994
RH4
RH14
G5
1995
RH4
RH24
G5


1996
RH4
RH4
G6
1997
RH4
RH14
G6
1998
RH4
RH24
G6


1999
RH4
RH4
G7
2000
RH4
RH14
G7
2001
RH4
RH24
G7


2002
RH4
RH4
G8
2003
RH4
RH14
G8
2004
RH4
RH24
G8


2005
RH4
RH4
G9
2006
RH4
RH14
G9
2007
RH4
RH24
G9


2008
RH4
RH4
G10
2009
RH4
RH14
G10
2010
RH4
RH24
G10


2011
RH4
RH4
G11
2012
RH4
RH14
G11
2013
RH4
RH24
G11


2014
RH4
RH4
G12
2015
RH4
RH14
G12
2016
RH4
RH24
G12


2017
RH4
RH4
G13
2018
RH4
RH14
G13
2019
RH4
RH24
G13


2020
RH4
RH4
G14
2021
RH4
RH14
G14
2022
RH4
RH24
G14


2023
RH4
RH4
G15
2024
RH4
RH14
G15
2025
RH4
RH24
G15


2026
RH4
RH4
G16
2027
RH4
RH14
G16
2028
RH4
RH24
G16


2029
RH4
RH4
G17
2030
RH4
RH14
G17
2031
RH4
RH24
G17


2032
RH4
RH4
G18
2033
RH4
RH14
G18
2034
RH4
RH24
G18


2035
RH4
RH4
G19
2036
RH4
RH14
G19
2037
RH4
RH24
G19


2038
RH4
RH4
G20
2039
RH4
RH14
G20
2040
RH4
RH24
G20


2041
RH4
RH5
G1
2042
RH4
RH15
G1
2043
RH4
RH25
G1


2044
RH4
RH5
G2
2045
RH4
RH15
G2
2046
RH4
RH25
G2


2047
RH4
RH5
G3
2048
RH4
RH15
G3
2049
RH4
RH25
G3


2050
RH4
RH5
G4
2051
RH4
RH15
G4
2052
RH4
RH25
G4


2053
RH4
RH5
G5
2054
RH4
RH15
G5
2055
RH4
RH25
G5


2056
RH4
RH5
G6
2057
RH4
RH15
G6
2058
RH4
RH25
G6


2059
RH4
RH5
G7
2060
RH4
RH15
G7
2061
RH4
RH25
G7


2062
RH4
RH5
G8
2063
RH4
RH15
G8
2064
RH4
RH25
G8


2065
RH4
RH5
G9
2066
RH4
RH15
G9
2067
RH4
RH25
G9


2068
RH4
RH5
G10
2069
RH4
RH15
G10
2070
RH4
RH25
G10


2071
RH4
RH5
G11
2072
RH4
RH15
G11
2073
RH4
RH25
G11


2074
RH4
RH5
G12
2075
RH4
RH15
G12
2076
RH4
RH25
G12


2077
RH4
RH5
G13
2078
RH4
RH15
G13
2079
RH4
RH25
G13


2080
RH4
RH5
G14
2081
RH4
RH15
G14
2082
RH4
RH25
G14


2083
RH4
RH5
G15
2084
RH4
RH15
G15
2085
RH4
RH25
G15


2086
RH4
RH5
G16
2087
RH4
RH15
G16
2088
RH4
RH25
G16


2089
RH4
RH5
G17
2090
RH4
RH15
G17
2091
RH4
RH25
G17


2092
RH4
RH5
G18
2093
RH4
RH15
G18
2094
RH4
RH25
G18


2095
RH4
RH5
G19
2096
RH4
RH15
G19
2097
RH4
RH25
G19


2098
RH4
RH5
G20
2099
RH4
RH15
G20
2100
RH4
RH25
G20


2101
RH4
RH6
G1
2102
RH4
RH16
G1
2103
RH4
RH26
G1


2104
RH4
RH6
G2
2105
RH4
RH16
G2
2106
RH4
RH26
G2


2107
RH4
RH6
G3
2108
RH4
RH16
G3
2109
RH4
RH26
G3


2110
RH4
RH6
G4
2111
RH4
RH16
G4
2112
RH4
RH26
G4


2113
RH4
RH6
G5
2114
RH4
RH16
G5
2115
RH4
RH26
G5


2116
RH4
RH6
G6
2117
RH4
RH16
G6
2118
RH4
RH26
G6


2119
RH4
RH6
G7
2120
RH4
RH16
G7
2121
RH4
RH26
G7


2122
RH4
RH6
G8
2123
RH4
RH16
G8
2124
RH4
RH26
G8


2125
RH4
RH6
G9
2126
RH4
RH16
G9
2127
RH4
RH26
G9


2128
RH4
RH6
G10
2129
RH4
RH16
G10
2130
RH4
RH26
G10


2131
RH4
RH6
G11
2132
RH4
RH16
G11
2133
RH4
RH26
G11


2134
RH4
RH6
G12
2135
RH4
RH16
G12
2136
RH4
RH26
G12


2137
RH4
RH6
G13
2138
RH4
RH16
G13
2139
RH4
RH26
G13


2140
RH4
RH6
G14
2141
RH4
RH16
G14
2142
RH4
RH26
G14


2143
RH4
RH6
G15
2144
RH4
RH16
G15
2145
RH4
RH26
G15


2146
RH4
RH6
G16
2147
RH4
RH16
G16
2148
RH4
RH26
G16


2149
RH4
RH6
G17
2150
RH4
RH16
G17
2151
RH4
RH26
G17


2152
RH4
RH6
G18
2153
RH4
RH16
G18
2154
RH4
RH26
G18


2155
RH4
RH6
G19
2156
RH4
RH16
G19
2157
RH4
RH26
G19


2158
RH4
RH6
G20
2159
RH4
RH16
G20
2160
RH4
RH26
G20


2161
RH4
RH7
G1
2162
RH4
RH17
G1
2163
RH4
RH27
G1


2164
RH4
RH7
G2
2165
RH4
RH17
G2
2166
RH4
RH27
G2


2167
RH4
RH7
G3
2168
RH4
RH17
G3
2169
RH4
RH27
G3


2170
RH4
RH7
G4
2171
RH4
RH17
G4
2172
RH4
RH27
G4


2173
RH4
RH7
G5
2174
RH4
RH17
G5
2175
RH4
RH27
G5


2176
RH4
RH7
G6
2177
RH4
RH17
G6
2178
RH4
RH27
G6


2179
RH4
RH7
G7
2180
RH4
RH17
G7
2181
RH4
RH27
G7


2182
RH4
RH7
G8
2183
RH4
RH17
G8
2184
RH4
RH27
G8


2185
RH4
RH7
G9
2186
RH4
RH17
G9
2187
RH4
RH27
G9


2188
RH4
RH7
G10
2189
RH4
RH17
G10
2190
RH4
RH27
G10


2191
RH4
RH7
G11
2192
RH4
RH17
G11
2193
RH4
RH27
G11


2194
RH4
RH7
G12
2195
RH4
RH17
G12
2196
RH4
RH27
G12


2197
RH4
RH7
G13
2198
RH4
RH17
G13
2199
RH4
RH27
G13


2200
RH4
RH7
G14
2201
RH4
RH17
G14
2202
RH4
RH27
G14


2203
RH4
RH7
G15
2204
RH4
RH17
G15
2205
RH4
RH27
G15


2206
RH4
RH7
G16
2207
RH4
RH17
G16
2208
RH4
RH27
G16


2209
RH4
RH7
G17
2210
RH4
RH17
G17
2211
RH4
RH27
G17


2212
RH4
RH7
G18
2213
RH4
RH17
G18
2214
RH4
RH27
G18


2215
RH4
RH7
G19
2216
RH4
RH17
G19
2217
RH4
RH27
G19


2218
RH4
RH7
G20
2219
RH4
RH17
G20
2220
RH4
RH27
G20


2221
RH4
RH8
G1
2222
RH4
RH18
G1
2223
RH4
RH28
G1


2224
RH4
RH8
G2
2225
RH4
RH18
G2
2226
RH4
RH28
G2


2227
RH4
RH8
G3
2228
RH4
RH18
G3
2229
RH4
RH28
G3


2230
RH4
RH8
G4
2231
RH4
RH18
G4
2232
RH4
RH28
G4


2233
RH4
RH8
G5
2234
RH4
RH18
G5
2235
RH4
RH28
G5


2236
RH4
RH8
G6
2237
RH4
RH18
G6
2238
RH4
RH28
G6


2239
RH4
RH8
G7
2240
RH4
RH18
G7
2241
RH4
RH28
G7


2242
RH4
RH8
G8
2243
RH4
RH18
G8
2244
RH4
RH28
G8


2245
RH4
RH8
G9
2246
RH4
RH18
G9
2247
RH4
RH28
G9


2248
RH4
RH8
G10
2249
RH4
RH18
G10
2250
RH4
RH28
G10


2251
RH4
RH8
G11
2252
RH4
RH18
G11
2253
RH4
RH28
G11


2254
RH4
RH8
G12
2255
RH4
RH18
G12
2256
RH4
RH28
G12


2257
RH4
RH8
G13
2258
RH4
RH18
G13
2259
RH4
RH28
G13


2260
RH4
RH8
G14
2261
RH4
RH18
G14
2262
RH4
RH28
G14


2263
RH4
RH8
G15
2264
RH4
RH18
G15
2265
RH4
RH28
G15


2266
RH4
RH8
G16
2267
RH4
RH18
G16
2268
RH4
RH28
G16


2269
RH4
RH8
G17
2270
RH4
RH18
G17
2271
RH4
RH28
G17


2272
RH4
RH8
G18
2273
RH4
RH18
G18
2274
RH4
RH28
G18


2275
RH4
RH8
G19
2276
RH4
RH18
G19
2277
RH4
RH28
G19


2278
RH4
RH8
G20
2279
RH4
RH18
G20
2280
RH4
RH28
G20


2281
RH4
RH9
G1
2282
RH4
RH19
G1
2283
RH4
RH29
G1


2284
RH4
RH9
G2
2285
RH4
RH19
G2
2286
RH4
RH29
G2


2287
RH4
RH9
G3
2288
RH4
RH19
G3
2289
RH4
RH29
G3


2290
RH4
RH9
G4
2291
RH4
RH19
G4
2292
RH4
RH29
G4


2293
RH4
RH9
G5
2294
RH4
RH19
G5
2295
RH4
RH29
G5


2296
RH4
RH9
G6
2297
RH4
RH19
G6
2298
RH4
RH29
G6


2299
RH4
RH9
G7
2300
RH4
RH19
G7
2301
RH4
RH29
G7


2302
RH4
RH9
G8
2303
RH4
RH19
G8
2304
RH4
RH29
G8


2305
RH4
RH9
G9
2306
RH4
RH19
G9
2307
RH4
RH29
G9


2308
RH4
RH9
G10
2309
RH4
RH19
G10
2310
RH4
RH29
G10


2311
RH4
RH9
G11
2312
RH4
RH19
G11
2313
RH4
RH29
G11


2314
RH4
RH9
G12
2315
RH4
RH19
G12
2316
RH4
RH29
G12


2317
RH4
RH9
G13
2318
RH4
RH19
G13
2319
RH4
RH29
G13


2320
RH4
RH9
G14
2321
RH4
RH19
G14
2322
RH4
RH29
G14


2323
RH4
RH9
G15
2324
RH4
RH19
G15
2325
RH4
RH29
G15


2326
RH4
RH9
G16
2327
RH4
RH19
G16
2328
RH4
RH29
G16


2329
RH4
RH9
G17
2330
RH4
RH19
G17
2331
RH4
RH29
G17


2332
RH4
RH9
G18
2333
RH4
RH19
G18
2334
RH4
RH29
G18


2335
RH4
RH9
G19
2336
RH4
RH19
G19
2337
RH4
RH29
G19


2338
RH4
RH9
G20
2339
RH4
RH19
G20
2340
RH4
RH29
G20


2341
RH4
RH10
G1
2342
RH4
RH20
G1
2343
RH4
RH30
G1


2344
RH4
RH10
G2
2345
RH4
RH20
G2
2346
RH4
RH30
G2


2347
RH4
RH10
G3
2348
RH4
RH20
G3
2349
RH4
RH30
G3


2350
RH4
RH10
G4
2351
RH4
RH20
G4
2352
RH4
RH30
G4


2353
RH4
RH10
G5
2354
RH4
RH20
G5
2355
RH4
RH30
G5


2356
RH4
RH10
G6
2357
RH4
RH20
G6
2358
RH4
RH30
G6


2359
RH4
RH10
G7
2360
RH4
RH20
G7
2361
RH4
RH30
G7


2362
RH4
RH10
G8
2363
RH4
RH20
G8
2364
RH4
RH30
G8


2365
RH4
RH10
G9
2366
RH4
RH20
G9
2367
RH4
RH30
G9


2368
RH4
RH10
G10
2369
RH4
RH20
G10
2370
RH4
RH30
G10


2371
RH4
RH10
G11
2372
RH4
RH20
G11
2373
RH4
RH30
G11


2374
RH4
RH10
G12
2375
RH4
RH20
G12
2376
RH4
RH30
G12


2377
RH4
RH10
G13
2378
RH4
RH20
G13
2379
RH4
RH30
G13


2380
RH4
RH10
G14
2381
RH4
RH20
G14
2382
RH4
RH30
G14


2383
RH4
RH10
G15
2384
RH4
RH20
G15
2385
RH4
RH30
G15


2386
RH4
RH10
G16
2387
RH4
RH20
G16
2388
RH4
RH30
G16


2389
RH4
RH10
G17
2390
RH4
RH20
G17
2391
RH4
RH30
G17


2392
RH4
RH10
G18
2393
RH4
RH20
G18
2394
RH4
RH30
G18


2395
RH4
RH10
G19
2396
RH4
RH20
G19
2397
RH4
RH30
G19


2398
RH4
RH10
G20
2399
RH4
RH20
G20
2400
RH4
RH30
G20


2401
RH8
RH1
G1
2402
RH8
RH11
G1
2403
RH8
RH21
G1


2404
RH8
RH1
G2
2405
RH8
RH11
G2
2406
RH8
RH21
G2


2407
RH8
RH1
G3
2408
RH8
RH11
G3
2409
RH8
RH21
G3


2410
RH8
RH1
G4
2411
RH8
RH11
G4
2412
RH8
RH21
G4


2413
RH8
RH1
G5
2414
RH8
RH11
G5
2415
RH8
RH21
G5


2416
RH8
RH1
G6
2417
RH8
RH11
G6
2418
RH8
RH21
G6


2419
RH8
RH1
G7
2420
RH8
RH11
G7
2421
RH8
RH21
G7


2422
RH8
RH1
G8
2423
RH8
RH11
G8
2424
RH8
RH21
G8


2425
RH8
RH1
G9
2426
RH8
RH11
G9
2427
RH8
RH21
G9


2428
RH8
RH1
G10
2429
RH8
RH11
G10
2430
RH8
RH21
G10


2431
RH8
RH1
G11
2432
RH8
RH11
G11
2433
RH8
RH21
G11


2434
RH8
RH1
G12
2435
RH8
RH11
G12
2436
RH8
RH21
G12


2437
RH8
RH1
G13
2438
RH8
RH11
G13
2439
RH8
RH21
G13


2440
RH8
RH1
G14
2441
RH8
RH11
G14
2442
RH8
RH21
G14


2443
RH8
RH1
G15
2444
RH8
RH11
G15
2445
RH8
RH21
G15


2446
RH8
RH1
G16
2447
RH8
RH11
G16
2448
RH8
RH21
G16


2449
RH8
RH1
G17
2450
RH8
RH11
G17
2451
RH8
RH21
G17


2452
RH8
RH1
G18
2453
RH8
RH11
G18
2454
RH8
RH21
G18


2455
RH8
RH1
G19
2456
RH8
RH11
G19
2457
RH8
RH21
G19


2458
RH8
RH1
G20
2459
RH8
RH11
G20
2460
RH8
RH21
G20


2461
RH8
RH2
G1
2462
RH8
RH12
G1
2463
RH8
RH22
G1


2464
RH8
RH2
G2
2465
RH8
RH12
G2
2466
RH8
RH22
G2


2467
RH8
RH2
G3
2468
RH8
RH12
G3
2469
RH8
RH22
G3


2470
RH8
RH2
G4
2471
RH8
RH12
G4
2472
RH8
RH22
G4


2473
RH8
RH2
G5
2474
RH8
RH12
G5
2475
RH8
RH22
G5


2476
RH8
RH2
G6
2477
RH8
RH12
G6
2478
RH8
RH22
G6


2479
RH8
RH2
G7
2480
RH8
RH12
G7
2481
RH8
RH22
G7


2482
RH8
RH2
G8
2483
RH8
RH12
G8
2484
RH8
RH22
G8


2485
RH8
RH2
G9
2486
RH8
RH12
G9
2487
RH8
RH22
G9


2488
RH8
RH2
G10
2489
RH8
RH12
G10
2490
RH8
RH22
G10


2491
RH8
RH2
G11
2492
RH8
RH12
G11
2493
RH8
RH22
G11


2494
RH8
RH2
G12
2495
RH8
RH12
G12
2496
RH8
RH22
G12


2497
RH8
RH2
G13
2498
RH8
RH12
G13
2499
RH8
RH22
G13


2500
RH8
RH2
G14
2501
RH8
RH12
G14
2502
RH8
RH22
G14


2503
RH8
RH2
G15
2504
RH8
RH12
G15
2505
RH8
RH22
G15


2506
RH8
RH2
G16
2507
RH8
RH12
G16
2508
RH8
RH22
G16


2509
RH8
RH2
G17
2510
RH8
RH12
G17
2511
RH8
RH22
G17


2512
RH8
RH2
G18
2513
RH8
RH12
G18
2514
RH8
RH22
G18


2515
RH8
RH2
G19
2516
RH8
RH12
G19
2517
RH8
RH22
G19


2518
RH8
RH2
G20
2519
RH8
RH12
G20
2520
RH8
RH22
G20


2521
RH8
RH3
G1
2522
RH8
RH13
G1
2523
RH8
RH23
G1


2524
RH8
RH3
G2
2525
RH8
RH13
G2
2526
RH8
RH23
G2


2527
RH8
RH3
G3
2528
RH8
RH13
G3
2529
RH8
RH23
G3


2530
RH8
RH3
G4
2531
RH8
RH13
G4
2532
RH8
RH23
G4


2533
RH8
RH3
G5
2534
RH8
RH13
G5
2535
RH8
RH23
G5


2536
RH8
RH3
G6
2537
RH8
RH13
G6
2538
RH8
RH23
G6


2539
RH8
RH3
G7
2540
RH8
RH13
G7
2541
RH8
RH23
G7


2542
RH8
RH3
G8
2543
RH8
RH13
G8
2544
RH8
RH23
G8


2545
RH8
RH3
G9
2546
RH8
RH13
G9
2547
RH8
RH23
G9


2548
RH8
RH3
G10
2549
RH8
RH13
G10
2550
RH8
RH23
G10


2551
RH8
RH3
G11
2552
RH8
RH13
G11
2553
RH8
RH23
G11


2554
RH8
RH3
G12
2555
RH8
RH13
G12
2556
RH8
RH23
G12


2557
RH8
RH3
G13
2558
RH8
RH13
G13
2559
RH8
RH23
G13


2560
RH8
RH3
G14
2561
RH8
RH13
G14
2562
RH8
RH23
G14


2563
RH8
RH3
G15
2564
RH8
RH13
G15
2565
RH8
RH23
G15


2566
RH8
RH3
G16
2567
RH8
RH13
G16
2568
RH8
RH23
G16


2569
RH8
RH3
G17
2570
RH8
RH13
G17
2571
RH8
RH23
G17


2572
RH8
RH3
G18
2573
RH8
RH13
G18
2574
RH8
RH23
G18


2575
RH8
RH3
G19
2576
RH8
RH13
G19
2577
RH8
RH23
G19


2578
RH8
RH3
G20
2579
RH8
RH13
G20
2580
RH8
RH23
G20


2581
RH8
RH4
G1
2582
RH8
RH14
G1
2583
RH8
RH24
G1


2584
RH8
RH4
G2
2585
RH8
RH14
G2
2586
RH8
RH24
G2


2587
RH8
RH4
G3
2588
RH8
RH14
G3
2589
RH8
RH24
G3


2590
RH8
RH4
G4
2591
RH8
RH14
G4
2592
RH8
RH24
G4


2593
RH8
RH4
G5
2594
RH8
RH14
G5
2595
RH8
RH24
G5


2596
RH8
RH4
G6
2597
RH8
RH14
G6
2598
RH8
RH24
G6


2599
RH8
RH4
G7
2600
RH8
RH14
G7
2601
RH8
RH24
G7


2602
RH8
RH4
G8
2603
RH8
RH14
G8
2604
RH8
RH24
G8


2605
RH8
RH4
G9
2606
RH8
RH14
G9
2607
RH8
RH24
G9


2608
RH8
RH4
G10
2609
RH8
RH14
G10
2610
RH8
RH24
G10


2611
RH8
RH4
G11
2612
RH8
RH14
G11
2613
RH8
RH24
G11


2614
RH8
RH4
G12
2615
RH8
RH14
G12
2616
RH8
RH24
G12


2617
RH8
RH4
G13
2618
RH8
RH14
G13
2619
RH8
RH24
G13


2620
RH8
RH4
G14
2621
RH8
RH14
G14
2622
RH8
RH24
G14


2623
RH8
RH4
G15
2624
RH8
RH14
G15
2625
RH8
RH24
G15


2626
RH8
RH4
G16
2627
RH8
RH14
G16
2628
RH8
RH24
G16


2629
RH8
RH4
G17
2630
RH8
RH14
G17
2631
RH8
RH24
G17


2632
RH8
RH4
G18
2633
RH8
RH14
G18
2634
RH8
RH24
G18


2635
RH8
RH4
G19
2636
RH8
RH14
G19
2637
RH8
RH24
G19


2638
RH8
RH4
G20
2639
RH8
RH14
G20
2640
RH8
RH24
G20


2641
RH8
RH5
G1
2642
RH8
RH15
G1
2643
RH8
RH25
G1


2644
RH8
RH5
G2
2645
RH8
RH15
G2
2646
RH8
RH25
G2


2647
RH8
RH5
G3
2648
RH8
RH15
G3
2649
RH8
RH25
G3


2650
RH8
RH5
G4
2651
RH8
RH15
G4
2652
RH8
RH25
G4


2653
RH8
RH5
G5
2654
RH8
RH15
G5
2655
RH8
RH25
G5


2656
RH8
RH5
G6
2657
RH8
RH15
G6
2658
RH8
RH25
G6


2659
RH8
RH5
G7
2660
RH8
RH15
G7
2661
RH8
RH25
G7


2662
RH8
RH5
G8
2663
RH8
RH15
G8
2664
RH8
RH25
G8


2665
RH8
RH5
G9
2666
RH8
RH15
G9
2667
RH8
RH25
G9


2668
RH8
RH5
G10
2669
RH8
RH15
G10
2670
RH8
RH25
G10


2671
RH8
RH5
G11
2672
RH8
RH15
G11
2673
RH8
RH25
G11


2674
RH8
RH5
G12
2675
RH8
RH15
G12
2676
RH8
RH25
G12


2677
RH8
RH5
G13
2678
RH8
RH15
G13
2679
RH8
RH25
G13


2680
RH8
RH5
G14
2681
RH8
RH15
G14
2682
RH8
RH25
G14


2683
RH8
RH5
G15
2684
RH8
RH15
G15
2685
RH8
RH25
G15


2686
RH8
RH5
G16
2687
RH8
RH15
G16
2688
RH8
RH25
G16


2689
RH8
RH5
G17
2690
RH8
RH15
G17
2691
RH8
RH25
G17


2692
RH8
RH5
G18
2693
RH8
RH15
G18
2694
RH8
RH25
G18


2695
RH8
RH5
G19
2696
RH8
RH15
G19
2697
RH8
RH25
G19


2698
RH8
RH5
G20
2699
RH8
RH15
G20
2700
RH8
RH25
G20


2701
RH8
RH6
G1
2702
RH8
RH16
G1
2703
RH8
RH26
G1


2704
RH8
RH6
G2
2705
RH8
RH16
G2
2706
RH8
RH26
G2


2707
RH8
RH6
G3
2708
RH8
RH16
G3
2709
RH8
RH26
G3


2710
RH8
RH6
G4
2711
RH8
RH16
G4
2712
RH8
RH26
G4


2713
RH8
RH6
G5
2714
RH8
RH16
G5
2715
RH8
RH26
G5


2716
RH8
RH6
G6
2717
RH8
RH16
G6
2718
RH8
RH26
G6


2719
RH8
RH6
G7
2720
RH8
RH16
G7
2721
RH8
RH26
G7


2722
RH8
RH6
G8
2723
RH8
RH16
G8
2724
RH8
RH26
G8


2725
RH8
RH6
G9
2726
RH8
RH16
G9
2727
RH8
RH26
G9


2728
RH8
RH6
G10
2729
RH8
RH16
G10
2730
RH8
RH26
G10


2731
RH8
RH6
G11
2732
RH8
RH16
G11
2733
RH8
RH26
G11


2734
RH8
RH6
G12
2735
RH8
RH16
G12
2736
RH8
RH26
G12


2737
RH8
RH6
G13
2738
RH8
RH16
G13
2739
RH8
RH26
G13


2740
RH8
RH6
G14
2741
RH8
RH16
G14
2742
RH8
RH26
G14


2743
RH8
RH6
G15
2744
RH8
RH16
G15
2745
RH8
RH26
G15


2746
RH8
RH6
G16
2747
RH8
RH16
G16
2748
RH8
RH26
G16


2749
RH8
RH6
G17
2750
RH8
RH16
G17
2751
RH8
RH26
G17


2752
RH8
RH6
G18
2753
RH8
RH16
G18
2754
RH8
RH26
G18


2755
RH8
RH6
G19
2756
RH8
RH16
G19
2757
RH8
RH26
G19


2758
RH8
RH6
G20
2759
RH8
RH16
G20
2760
RH8
RH26
G20


2761
RH8
RH7
G1
2762
RH8
RH17
G1
2763
RH8
RH27
G1


2764
RH8
RH7
G2
2765
RH8
RH17
G2
2766
RH8
RH27
G2


2767
RH8
RH7
G3
2768
RH8
RH17
G3
2769
RH8
RH27
G3


2770
RH8
RH7
G4
2771
RH8
RH17
G4
2772
RH8
RH27
G4


2773
RH8
RH7
G5
2774
RH8
RH17
G5
2775
RH8
RH27
G5


2776
RH8
RH7
G6
2777
RH8
RH17
G6
2778
RH8
RH27
G6


2779
RH8
RH7
G7
2780
RH8
RH17
G7
2781
RH8
RH27
G7


2782
RH8
RH7
G8
2783
RH8
RH17
G8
2784
RH8
RH27
G8


2785
RH8
RH7
G9
2786
RH8
RH17
G9
2787
RH8
RH27
G9


2788
RH8
RH7
G10
2789
RH8
RH17
G10
2790
RH8
RH27
G10


2791
RH8
RH7
G11
2792
RH8
RH17
G11
2793
RH8
RH27
G11


2794
RH8
RH7
G12
2795
RH8
RH17
G12
2796
RH8
RH27
G12


2797
RH8
RH7
G13
2798
RH8
RH17
G13
2799
RH8
RH27
G13


2800
RH8
RH7
G14
2801
RH8
RH17
G14
2802
RH8
RH27
G14


2803
RH8
RH7
G15
2804
RH8
RH17
G15
2805
RH8
RH27
G15


2806
RH8
RH7
G16
2807
RH8
RH17
G16
2808
RH8
RH27
G16


2809
RH8
RH7
G17
2810
RH8
RH17
G17
2811
RH8
RH27
G17


2812
RH8
RH7
G18
2813
RH8
RH17
G18
2814
RH8
RH27
G18


2815
RH8
RH7
G19
2816
RH8
RH17
G19
2817
RH8
RH27
G19


2818
RH8
RH7
G20
2819
RH8
RH17
G20
2820
RH8
RH27
G20


2821
RH8
RH8
G1
2822
RH8
RH18
G1
2823
RH8
RH28
G1


2824
RH8
RH8
G2
2825
RH8
RH18
G2
2826
RH8
RH28
G2


2827
RH8
RH8
G3
2828
RH8
RH18
G3
2829
RH8
RH28
G3


2830
RH8
RH8
G4
2831
RH8
RH18
G4
2832
RH8
RH28
G4


2833
RH8
RH8
G5
2834
RH8
RH18
G5
2835
RH8
RH28
G5


2836
RH8
RH8
G6
2837
RH8
RH18
G6
2838
RH8
RH28
G6


2839
RH8
RH8
G7
2840
RH8
RH18
G7
2841
RH8
RH28
G7


2842
RH8
RH8
G8
2843
RH8
RH18
G8
2844
RH8
RH28
G8


2845
RH8
RH8
G9
2846
RH8
RH18
G9
2847
RH8
RH28
G9


2848
RH8
RH8
G10
2849
RH8
RH18
G10
2850
RH8
RH28
G10


2851
RH8
RH8
G11
2852
RH8
RH18
G11
2853
RH8
RH28
G11


2854
RH8
RH8
G12
2855
RH8
RH18
G12
2856
RH8
RH28
G12


2857
RH8
RH8
G13
2858
RH8
RH18
G13
2859
RH8
RH28
G13


2860
RH8
RH8
G14
2861
RH8
RH18
G14
2862
RH8
RH28
G14


2863
RH8
RH8
G15
2864
RH8
RH18
G15
2865
RH8
RH28
G15


2866
RH8
RH8
G16
2867
RH8
RH18
G16
2868
RH8
RH28
G16


2869
RH8
RH8
G17
2870
RH8
RH18
G17
2871
RH8
RH28
G17


2872
RH8
RH8
G18
2873
RH8
RH18
G18
2874
RH8
RH28
G18


2875
RH8
RH8
G19
2876
RH8
RH18
G19
2877
RH8
RH28
G19


2878
RH8
RH8
G20
2879
RH8
RH18
G20
2880
RH8
RH28
G20


2881
RH8
RH9
G1
2882
RH8
RH19
G1
2883
RH8
RH29
G1


2884
RH8
RH9
G2
2885
RH8
RH19
G2
2886
RH8
RH29
G2


2887
RH8
RH9
G3
2888
RH8
RH19
G3
2889
RH8
RH29
G3


2890
RH8
RH9
G4
2891
RH8
RH19
G4
2892
RH8
RH29
G4


2893
RH8
RH9
G5
2894
RH8
RH19
G5
2895
RH8
RH29
G5


2896
RH8
RH9
G6
2897
RH8
RH19
G6
2898
RH8
RH29
G6


2899
RH8
RH9
G7
2900
RH8
RH19
G7
2901
RH8
RH29
G7


2902
RH8
RH9
G8
2903
RH8
RH19
G8
2904
RH8
RH29
G8


2905
RH8
RH9
G9
2906
RH8
RH19
G9
2907
RH8
RH29
G9


2908
RH8
RH9
G10
2909
RH8
RH19
G10
2910
RH8
RH29
G10


2911
RH8
RH9
G11
2912
RH8
RH19
G11
2913
RH8
RH29
G11


2914
RH8
RH9
G12
2915
RH8
RH19
G12
2916
RH8
RH29
G12


2917
RH8
RH9
G13
2918
RH8
RH19
G13
2919
RH8
RH29
G13


2920
RH8
RH9
G14
2921
RH8
RH19
G14
2922
RH8
RH29
G14


2923
RH8
RH9
G15
2924
RH8
RH19
G15
2925
RH8
RH29
G15


2926
RH8
RH9
G16
2927
RH8
RH19
G16
2928
RH8
RH29
G16


2929
RH8
RH9
G17
2930
RH8
RH19
G17
2931
RH8
RH29
G17


2932
RH8
RH9
G18
2933
RH8
RH19
G18
2934
RH8
RH29
G18


2935
RH8
RH9
G19
2936
RH8
RH19
G19
2937
RH8
RH29
G19


2938
RH8
RH9
G20
2939
RH8
RH19
G20
2940
RH8
RH29
G20


2941
RH8
RH10
G1
2942
RH8
RH20
G1
2943
RH8
RH30
G1


2944
RH8
RH10
G2
2945
RH8
RH20
G2
2946
RH8
RH30
G2


2947
RH8
RH10
G3
2948
RH8
RH20
G3
2949
RH8
RH30
G3


2950
RH8
RH10
G4
2951
RH8
RH20
G4
2952
RH8
RH30
G4


2953
RH8
RH10
G5
2954
RH8
RH20
G5
2955
RH8
RH30
G5


2956
RH8
RH10
G6
2957
RH8
RH20
G6
2958
RH8
RH30
G6


2959
RH8
RH10
G7
2960
RH8
RH20
G7
2961
RH8
RH30
G7


2962
RH8
RH10
G8
2963
RH8
RH20
G8
2964
RH8
RH30
G8


2965
RH8
RH10
G9
2966
RH8
RH20
G9
2967
RH8
RH30
G9


2968
RH8
RH10
G10
2969
RH8
RH20
G10
2970
RH8
RH30
G10


2971
RH8
RH10
G11
2972
RH8
RH20
G11
2973
RH8
RH30
G11


2974
RH8
RH10
G12
2975
RH8
RH20
G12
2976
RH8
RH30
G12


2977
RH8
RH10
G13
2978
RH8
RH20
G13
2979
RH8
RH30
G13


2980
RH8
RH10
G14
2981
RH8
RH20
G14
2982
RH8
RH30
G14


2983
RH8
RH10
G15
2984
RH8
RH20
G15
2985
RH8
RH30
G15


2986
RH8
RH10
G16
2987
RH8
RH20
G16
2988
RH8
RH30
G16


2989
RH8
RH10
G17
2990
RH8
RH20
G17
2991
RH8
RH30
G17


2992
RH8
RH10
G18
2993
RH8
RH20
G18
2994
RH8
RH30
G18


2995
RH8
RH10
G19
2996
RH8
RH20
G19
2997
RH8
RH30
G19


2998
RH8
RH10
G20
2999
RH8
RH20
G20
3000
RH8
RH30
G20


3001
RH18
RH1
G1
3002
RH8
RH11
G1
3003
RH8
RH21
G1


3004
RH18
RH1
G2
3005
RH8
RH11
G2
3006
RH8
RH21
G2


3007
RH18
RH1
G3
3008
RH8
RH11
G3
3009
RH8
RH21
G3


3010
RH18
RH1
G4
3011
RH8
RH11
G4
3012
RH8
RH21
G4


3013
RH18
RH1
G5
3014
RH8
RH11
G5
3015
RH8
RH21
G5


3016
RH18
RH1
G6
3017
RH8
RH11
G6
3018
RH8
RH21
G6


3019
RH18
RH1
G7
3020
RH8
RH11
G7
3021
RH8
RH21
G7


3022
RH18
RH1
G8
3023
RH8
RH11
G8
3024
RH8
RH21
G8


3025
RH18
RH1
G9
3026
RH8
RH11
G9
3027
RH8
RH21
G9


3028
RH18
RH1
G10
3029
RH8
RH11
G10
3030
RH8
RH21
G10


3031
RH18
RH1
G11
3032
RH8
RH11
G11
3033
RH8
RH21
G11


3034
RH18
RH1
G12
3035
RH8
RH11
G12
3036
RH8
RH21
G12


3037
RH18
RH1
G13
3038
RH8
RH11
G13
3039
RH8
RH21
G13


3040
RH18
RH1
G14
3041
RH8
RH11
G14
3042
RH8
RH21
G14


3043
RH18
RH1
G15
3044
RH8
RH11
G15
3045
RH8
RH21
G15


3046
RH18
RH1
G16
3047
RH8
RH11
G16
3048
RH8
RH21
G16


3049
RH18
RH1
G17
3050
RH8
RH11
G17
3051
RH8
RH21
G17


3052
RH18
RH1
G18
3053
RH8
RH11
G18
3054
RH8
RH21
G18


3055
RH18
RH1
G19
3056
RH8
RH11
G19
3057
RH8
RH21
G19


3058
RH18
RH1
G20
3059
RH8
RH11
G20
3060
RH8
RH21
G20


3061
RH18
RH2
G1
3062
RH8
RH12
G1
3063
RH8
RH22
G1


3064
RH18
RH2
G2
3065
RH8
RH12
G2
3066
RH8
RH22
G2


3067
RH18
RH2
G3
3068
RH8
RH12
G3
3069
RH8
RH22
G3


3070
RH18
RH2
G4
3071
RH8
RH12
G4
3072
RH8
RH22
G4


3073
RH18
RH2
G5
3074
RH8
RH12
G5
3075
RH8
RH22
G5


3076
RH18
RH2
G6
3077
RH8
RH12
G6
3078
RH8
RH22
G6


3079
RH18
RH2
G7
3080
RH8
RH12
G7
3081
RH8
RH22
G7


3082
RH18
RH2
G8
3083
RH8
RH12
G8
3084
RH8
RH22
G8


3085
RH18
RH2
G9
3086
RH8
RH12
G9
3087
RH8
RH22
G9


3088
RH18
RH2
G10
3089
RH8
RH12
G10
3090
RH8
RH22
G10


3091
RH18
RH2
G11
3092
RH8
RH12
G11
3093
RH8
RH22
G11


3094
RH18
RH2
G12
3095
RH8
RH12
G12
3096
RH8
RH22
G12


3097
RH18
RH2
G13
3098
RH8
RH12
G13
3099
RH8
RH22
G13


3100
RH18
RH2
G14
3101
RH8
RH12
G14
3102
RH8
RH22
G14


3103
RH18
RH2
G15
3104
RH8
RH12
G15
3105
RH8
RH22
G15


3106
RH18
RH2
G16
3107
RH8
RH12
G16
3108
RH8
RH22
G16


3109
RH18
RH2
G17
3110
RH8
RH12
G17
3111
RH8
RH22
G17


3112
RH18
RH2
G18
3113
RH8
RH12
G18
3114
RH8
RH22
G18


3115
RH18
RH2
G19
3116
RH8
RH12
G19
3117
RH8
RH22
G19


3118
RH18
RH2
G20
3119
RH8
RH12
G20
3120
RH8
RH22
G20


3121
RH18
RH3
G1
3122
RH8
RH13
G1
3123
RH8
RH23
G1


3124
RH18
RH3
G2
3125
RH8
RH13
G2
3126
RH8
RH23
G2


3127
RH18
RH3
G3
3128
RH8
RH13
G3
3129
RH8
RH23
G3


3130
RH18
RH3
G4
3131
RH8
RH13
G4
3132
RH8
RH23
G4


3133
RH18
RH3
G5
3134
RH8
RH13
G5
3135
RH8
RH23
G5


3136
RH18
RH3
G6
3137
RH8
RH13
G6
3138
RH8
RH23
G6


3139
RH18
RH3
G7
3140
RH8
RH13
G7
3141
RH8
RH23
G7


3142
RH18
RH3
G8
3143
RH8
RH13
G8
3144
RH8
RH23
G8


3145
RH18
RH3
G9
3146
RH8
RH13
G9
3147
RH8
RH23
G9


3148
RH18
RH3
G10
3149
RH8
RH13
G10
3150
RH8
RH23
G10


3151
RH18
RH3
G11
3152
RH8
RH13
G11
3153
RH8
RH23
G11


3154
RH18
RH3
G12
3155
RH8
RH13
G12
3156
RH8
RH23
G12


3157
RH18
RH3
G13
3158
RH8
RH13
G13
3159
RH8
RH23
G13


3160
RH18
RH3
G14
3161
RH8
RH13
G14
3162
RH8
RH23
G14


3163
RH18
RH3
G15
3164
RH8
RH13
G15
3165
RH8
RH23
G15


3166
RH18
RH3
G16
3167
RH8
RH13
G16
3168
RH8
RH23
G16


3169
RH18
RH3
G17
3170
RH8
RH13
G17
3171
RH8
RH23
G17


3172
RH18
RH3
G18
3173
RH8
RH13
G18
3174
RH8
RH23
G18


3175
RH18
RH3
G19
3176
RH8
RH13
G19
3177
RH8
RH23
G19


3178
RH18
RH3
G20
3179
RH8
RH13
G20
3180
RH8
RH23
G20


3181
RH18
RH4
G1
3182
RH8
RH14
G1
3183
RH8
RH24
G1


3184
RH18
RH4
G2
3185
RH8
RH14
G2
3186
RH8
RH24
G2


3187
RH18
RH4
G3
3188
RH8
RH14
G3
3189
RH8
RH24
G3


3190
RH18
RH4
G4
3191
RH8
RH14
G4
3192
RH8
RH24
G4


3193
RH18
RH4
G5
3194
RH8
RH14
G5
3195
RH8
RH24
G5


3196
RH18
RH4
G6
3197
RH8
RH14
G6
3198
RH8
RH24
G6


3199
RH18
RH4
G7
3200
RH8
RH14
G7
3201
RH8
RH24
G7


3202
RH18
RH4
G8
3203
RH8
RH14
G8
3204
RH8
RH24
G8


3205
RH18
RH4
G9
3206
RH8
RH14
G9
3207
RH8
RH24
G9


3208
RH18
RH4
G10
3209
RH8
RH14
G10
3210
RH8
RH24
G10


3211
RH18
RH4
G11
3212
RH8
RH14
G11
3213
RH8
RH24
G11


3214
RH18
RH4
G12
3215
RH8
RH14
G12
3216
RH8
RH24
G12


3217
RH18
RH4
G13
3218
RH8
RH14
G13
3219
RH8
RH24
G13


3220
RH18
RH4
G14
3221
RH8
RH14
G14
3222
RH8
RH24
G14


3223
RH18
RH4
G15
3224
RH8
RH14
G15
3225
RH8
RH24
G15


3226
RH18
RH4
G16
3227
RH8
RH14
G16
3228
RH8
RH24
G16


3229
RH18
RH4
G17
3230
RH8
RH14
G17
3231
RH8
RH24
G17


3232
RH18
RH4
G18
3233
RH8
RH14
G18
3234
RH8
RH24
G18


3235
RH18
RH4
G19
3236
RH8
RH14
G19
3237
RH8
RH24
G19


3238
RH18
RH4
G20
3239
RH8
RH14
G20
3240
RH8
RH24
G20


3241
RH18
RH5
G1
3242
RH8
RH15
G1
3243
RH8
RH25
G1


3244
RH18
RH5
G2
3245
RH8
RH15
G2
3246
RH8
RH25
G2


3247
RH18
RH5
G3
3248
RH8
RH15
G3
3249
RH8
RH25
G3


3250
RH18
RH5
G4
3251
RH8
RH15
G4
3252
RH8
RH25
G4


3253
RH18
RH5
G5
3254
RH8
RH15
G5
3255
RH8
RH25
G5


3256
RH18
RH5
G6
3257
RH8
RH15
G6
3258
RH8
RH25
G6


3259
RH18
RH5
G7
3260
RH8
RH15
G7
3261
RH8
RH25
G7


3262
RH18
RH5
G8
3263
RH8
RH15
G8
3264
RH8
RH25
G8


3265
RH18
RH5
G9
3266
RH8
RH15
G9
3267
RH8
RH25
G9


3268
RH18
RH5
G10
3269
RH8
RH15
G10
3270
RH8
RH25
G10


3271
RH18
RH5
G11
3272
RH8
RH15
G11
3273
RH8
RH25
G11


3274
RH18
RH5
G12
3275
RH8
RH15
G12
3276
RH8
RH25
G12


3277
RH18
RH5
G13
3278
RH8
RH15
G13
3279
RH8
RH25
G13


3280
RH18
RH5
G14
3281
RH8
RH15
G14
3282
RH8
RH25
G14


3283
RH18
RH5
G15
3284
RH8
RH15
G15
3285
RH8
RH25
G15


3286
RH18
RH5
G16
3287
RH8
RH15
G16
3288
RH8
RH25
G16


3289
RH18
RH5
G17
3290
RH8
RH15
G17
3291
RH8
RH25
G17


3292
RH18
RH5
G18
3293
RH8
RH15
G18
3294
RH8
RH25
G18


3295
RH18
RH5
G19
3296
RH8
RH15
G19
3297
RH8
RH25
G19


3298
RH18
RH5
G20
3299
RH8
RH15
G20
3300
RH8
RH25
G20


3301
RH18
RH6
G1
3302
RH8
RH16
G1
3303
RH8
RH26
G1


3304
RH18
RH6
G2
3305
RH8
RH16
G2
3306
RH8
RH26
G2


3307
RH18
RH6
G3
3308
RH8
RH16
G3
3309
RH8
RH26
G3


3310
RH18
RH6
G4
3311
RH8
RH16
G4
3312
RH8
RH26
G4


3313
RH18
RH6
G5
3314
RH8
RH16
G5
3315
RH8
RH26
G5


3316
RH18
RH6
G6
3317
RH8
RH16
G6
3318
RH8
RH26
G6


3319
RH18
RH6
G7
3320
RH8
RH16
G7
3321
RH8
RH26
G7


3322
RH18
RH6
G8
3323
RH8
RH16
G8
3324
RH8
RH26
G8


3325
RH18
RH6
G9
3326
RH8
RH16
G9
3327
RH8
RH26
G9


3328
RH18
RH6
G10
3329
RH8
RH16
G10
3330
RH8
RH26
G10


3331
RH18
RH6
G11
3332
RH8
RH16
G11
3333
RH8
RH26
G11


3334
RH18
RH6
G12
3335
RH8
RH16
G12
3336
RH8
RH26
G12


3337
RH18
RH6
G13
3338
RH8
RH16
G13
3339
RH8
RH26
G13


3340
RH18
RH6
G14
3341
RH8
RH16
G14
3342
RH8
RH26
G14


3343
RH18
RH6
G15
3344
RH8
RH16
G15
3345
RH8
RH26
G15


3346
RH18
RH6
G16
3347
RH8
RH16
G16
3348
RH8
RH26
G16


3349
RH18
RH6
G17
3350
RH8
RH16
G17
3351
RH8
RH26
G17


3352
RH18
RH6
G18
3353
RH8
RH16
G18
3354
RH8
RH26
G18


3355
RH18
RH6
G19
3356
RH8
RH16
G19
3357
RH8
RH26
G19


3358
RH18
RH6
G20
3359
RH8
RH16
G20
3360
RH8
RH26
G20


3361
RH18
RH7
G1
3362
RH8
RH17
G1
3363
RH8
RH27
G1


3364
RH18
RH7
G2
3365
RH8
RH17
G2
3366
RH8
RH27
G2


3367
RH18
RH7
G3
3368
RH8
RH17
G3
3369
RH8
RH27
G3


3370
RH18
RH7
G4
3371
RH8
RH17
G4
3372
RH8
RH27
G4


3373
RH18
RH7
G5
3374
RH8
RH17
G5
3375
RH8
RH27
G5


3376
RH18
RH7
G6
3377
RH8
RH17
G6
3378
RH8
RH27
G6


3379
RH18
RH7
G7
3380
RH8
RH17
G7
3381
RH8
RH27
G7


3382
RH18
RH7
G8
3383
RH8
RH17
G8
3384
RH8
RH27
G8


3385
RH18
RH7
G9
3386
RH8
RH17
G9
3387
RH8
RH27
G9


3388
RH18
RH7
G10
3389
RH8
RH17
G10
3390
RH8
RH27
G10


3391
RH18
RH7
G11
3392
RH8
RH17
G11
3393
RH8
RH27
G11


3394
RH18
RH7
G12
3395
RH8
RH17
G12
3396
RH8
RH27
G12


3397
RH18
RH7
G13
3398
RH8
RH17
G13
3399
RH8
RH27
G13


3400
RH18
RH7
G14
3401
RH8
RH17
G14
3402
RH8
RH27
G14


3403
RH18
RH7
G15
3404
RH8
RH17
G15
3405
RH8
RH27
G15


3406
RH18
RH7
G16
3407
RH8
RH17
G16
3408
RH8
RH27
G16


3409
RH18
RH7
G17
3410
RH8
RH17
G17
3411
RH8
RH27
G17


3412
RH18
RH7
G18
3413
RH8
RH17
G18
3414
RH8
RH27
G18


3415
RH18
RH7
G19
3416
RH8
RH17
G19
3417
RH8
RH27
G19


3418
RH18
RH7
G20
3419
RH8
RH17
G20
3420
RH8
RH27
G20


3421
RH18
RH8
G1
3422
RH8
RH18
G1
3423
RH8
RH28
G1


3424
RH18
RH8
G2
3425
RH8
RH18
G2
3426
RH8
RH28
G2


3427
RH18
RH8
G3
3428
RH8
RH18
G3
3429
RH8
RH28
G3


3430
RH18
RH8
G4
3431
RH8
RH18
G4
3432
RH8
RH28
G4


3433
RH18
RH8
G5
3434
RH8
RH18
G5
3435
RH8
RH28
G5


3436
RH18
RH8
G6
3437
RH8
RH18
G6
3438
RH8
RH28
G6


3439
RH18
RH8
G7
3440
RH8
RH18
G7
3441
RH8
RH28
G7


3442
RH18
RH8
G8
3443
RH8
RH18
G8
3444
RH8
RH28
G8


3445
RH18
RH8
G9
3446
RH8
RH18
G9
3447
RH8
RH28
G9


3448
RH18
RH8
G10
3449
RH8
RH18
G10
3450
RH8
RH28
G10


3451
RH18
RH8
G11
3452
RH8
RH18
G11
3453
RH8
RH28
G11


3454
RH18
RH8
G12
3455
RH8
RH18
G12
3456
RH8
RH28
G12


3457
RH18
RH8
G13
3458
RH8
RH18
G13
3459
RH8
RH28
G13


3460
RH18
RH8
G14
3461
RH8
RH18
G14
3462
RH8
RH28
G14


3463
RH18
RH8
G15
3464
RH8
RH18
G15
3465
RH8
RH28
G15


3466
RH18
RH8
G16
3467
RH8
RH18
G16
3468
RH8
RH28
G16


3469
RH18
RH8
G17
3470
RH8
RH18
G17
3471
RH8
RH28
G17


3472
RH18
RH8
G18
3473
RH8
RH18
G18
3474
RH8
RH28
G18


3475
RH18
RH8
G19
3476
RH8
RH18
G19
3477
RH8
RH28
G19


3478
RH18
RH8
G20
3479
RH8
RH18
G20
3480
RH8
RH28
G20


3481
RH18
RH9
G1
3482
RH8
RH19
G1
3483
RH8
RH29
G1


3484
RH18
RH9
G2
3485
RH8
RH19
G2
3486
RH8
RH29
G2


3487
RH18
RH9
G3
3488
RH8
RH19
G3
3489
RH8
RH29
G3


3490
RH18
RH9
G4
3491
RH8
RH19
G4
3492
RH8
RH29
G4


3493
RH18
RH9
G5
3494
RH8
RH19
G5
3495
RH8
RH29
G5


3496
RH18
RH9
G6
3497
RH8
RH19
G6
3498
RH8
RH29
G6


3499
RH18
RH9
G7
3500
RH8
RH19
G7
3501
RH8
RH29
G7


3502
RH18
RH9
G8
3503
RH8
RH19
G8
3504
RH8
RH29
G8


3505
RH18
RH9
G9
3506
RH8
RH19
G9
3507
RH8
RH29
G9


3508
RH18
RH9
G10
3509
RH8
RH19
G10
3510
RH8
RH29
G10


3511
RH18
RH9
G11
3512
RH8
RH19
G11
3513
RH8
RH29
G11


3514
RH18
RH9
G12
3515
RH8
RH19
G12
3516
RH8
RH29
G12


3517
RH18
RH9
G13
3518
RH8
RH19
G13
3519
RH8
RH29
G13


3520
RH18
RH9
G14
3521
RH8
RH19
G14
3522
RH8
RH29
G14


3523
RH18
RH9
G15
3524
RH8
RH19
G15
3525
RH8
RH29
G15


3526
RH18
RH9
G16
3527
RH8
RH19
G16
3528
RH8
RH29
G16


3529
RH18
RH9
G17
3530
RH8
RH19
G17
3531
RH8
RH29
G17


3532
RH18
RH9
G18
3533
RH8
RH19
G18
3534
RH8
RH29
G18


3535
RH18
RH9
G19
3536
RH8
RH19
G19
3537
RH8
RH29
G19


3538
RH18
RH9
G20
3539
RH8
RH19
G20
3540
RH8
RH29
G20


3541
RH18
RH10
G1
3542
RH8
RH20
G1
3543
RH8
RH30
G1


3544
RH18
RH10
G2
3545
RH8
RH20
G2
3546
RH8
RH30
G2


3547
RH18
RH10
G3
3548
RH8
RH20
G3
3549
RH8
RH30
G3


3550
RH18
RH10
G4
3551
RH8
RH20
G4
3552
RH8
RH30
G4


3553
RH18
RH10
G5
3554
RH8
RH20
G5
3555
RH8
RH30
G5


3556
RH18
RH10
G6
3557
RH8
RH20
G6
3558
RH8
RH30
G6


3559
RH18
RH10
G7
3560
RH8
RH20
G7
3561
RH8
RH30
G7


3562
RH18
RH10
G8
3563
RH8
RH20
G8
3564
RH8
RH30
G8


3565
RH18
RH10
G9
3566
RH8
RH20
G9
3567
RH8
RH30
G9


3568
RH18
RH10
G10
3569
RH8
RH20
G10
3570
RH8
RH30
G10


3571
RH18
RH10
G11
3572
RH8
RH20
G11
3573
RH8
RH30
G11


3574
RH18
RH10
G12
3575
RH8
RH20
G12
3576
RH8
RH30
G12


3577
RH18
RH10
G13
3578
RH8
RH20
G13
3579
RH8
RH30
G13


3580
RH18
RH10
G14
3581
RH8
RH20
G14
3582
RH8
RH30
G14


3583
RH18
RH10
G15
3584
RH8
RH20
G15
3585
RH8
RH30
G15


3586
RH18
RH10
G16
3587
RH8
RH20
G16
3588
RH8
RH30
G16


3589
RH18
RH10
G17
3590
RH8
RH20
G17
3591
RH8
RH30
G17


3592
RH18
RH10
G18
3593
RH8
RH20
G18
3594
RH8
RH30
G18


3595
RH18
RH10
G19
3596
RH8
RH20
G19
3597
RH8
RH30
G19


3598
RH18
RH10
G20
3599
RH8
RH20
G20
3600
RH8
RH30
G20









wherein RH1 to RH30 have the following structures:




embedded image


embedded image


embedded image



and


wherein G1 to G20 have the following structures:




embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)p(LB)q(LC)r, where LB and LC are each a bidentate ligand; and where p is 1, 2, or 3, q is 0, 1, or 2, r is 0, 1, or 2, and p+q+r is the oxidation state of the metal M. In some such, embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.


In some embodiments, LB and LC are each independently selected from the group consisting of




embedded image


embedded image



where:

    • each of Y1 to Y13 is independently selected from the group consisting of C and N;
    • Y′ is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf;
    • Re and Rf can be fused or joined to form a ring;
    • each Ra, Rb, Rc, and Rd independently represents zero, mono, or up to the maximum number of allowed substitutions to its associated ring;
    • each of Ra1, Rb1, Rc1, Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substitutents defined herein; and
    • two adjacent substituents of Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



wherein:

    • Ra′, Rb′, and Rc′ each independently represent zero, mono, or up to the maximum number of allowed substitutions to its associated ring;
    • each of Ra, Rb, Rc, RN, Ra′, Rb′, and Rc′ is independently hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and
    • two adjacent substituents of Ra′, Rb′, and Rc′ can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments, LB is selected from the group consisting of LB1 to LB264 with general formula of LBk (k is 1 to 264):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, LC is selected from the group consisting of LCj-I has a structure based on formula




embedded image



and


LCj-II has a structure based on formula




embedded image



wherein j is an integer from 1 to 1416, wherein for each LCj in LCj-I and LCj-II, R201 and R202 are each independently defined as follows:























LCj
R201
R202
LCj
R201
R202
LCj
R201
R202
LCj
R201
R202







LC1
RD1
RD1
LC193
RD1
RD3
LC385
RD17
RD40
LC577
RD143
RD120


LC2
RD2
RD2
LC194
RD1
RD4
LC386
RD17
RD41
LC578
RD143
RD133


LC3
RD3
RD3
LC195
RD1
RD5
LC387
RD17
RD42
LC579
RD143
RD134


LC4
RD4
RD4
LC196
RD1
RD9
LC388
RD17
RD43
LC580
RD143
RD135


LC5
RD5
RD5
LC197
RD1
RD10
LC389
RD17
RD48
LC581
RD143
RD136


LC6
RD6
RD6
LC198
RD1
RD17
LC390
RD17
RD49
LC582
RD143
RD144


LC7
RD7
RD7
LC199
RD1
RD18
LC391
RD17
RD50
LC583
RD143
RD145


LC8
RD8
RD8
LC200
RD1
RD20
LC392
RD17
RD54
LC584
RD143
RD146


LC9
RD9
RD9
LC201
RD1
RD22
LC393
RD17
RD55
LC585
RD143
RD147


LC10
RD10
RD10
LC202
RD1
RD37
LC394
RD17
RD58
LC586
RD143
RD149


LC11
RD11
RD11
LC203
RD1
RD40
LC395
RD17
RD59
LC587
RD143
RD151


LC12
RD12
RD12
LC204
RD1
RD41
LC396
RD17
RD78
LC588
RD143
RD154


LC13
RD13
RD13
LC205
RD1
RD42
LC397
RD17
RD79
LC589
RD143
RD155


LC14
RD14
RD14
LC206
RD1
RD43
LC398
RD17
RD81
LC590
RD143
RD161


LC15
RD15
RD15
LC207
RD1
RD48
LC399
RD17
RD87
LC591
RD143
RD175


LC16
RD16
RD16
LC208
RD1
RD49
LC400
RD17
RD88
LC592
RD144
RD3


LC17
RD17
RD17
LC209
RD1
RD50
LC401
RD17
RD89
LC593
RD144
RD5


LC18
RD18
RD18
LC210
RD1
RD54
LC402
RD17
RD93
LC594
RD144
RD17


LC19
RD19
RD19
LC211
RD1
RD55
LC403
RD17
RD116
LC595
RD144
RD18


LC20
RD20
RD20
LC212
RD1
RD58
LC404
RD17
RD117
LC596
RD144
RD20


LC21
RD21
RD21
LC213
RD1
RD59
LC405
RD17
RD118
LC597
RD144
RD22


LC22
RD22
RD22
LC214
RD1
RD78
LC406
RD17
RD119
LC598
RD144
RD37


LC23
RD23
RD23
LC215
RD1
RD79
LC407
RD17
RD120
LC599
RD144
RD40


LC24
RD24
RD24
LC216
RD1
RD81
LC408
RD17
RD133
LC600
RD144
RD41


LC25
RD25
RD25
LC217
RD1
RD87
LC409
RD17
RD134
LC601
RD144
RD42


LC26
RD26
RD26
LC218
RD1
RD88
LC410
RD17
RD135
LC602
RD144
RD43


LC27
RD27
RD27
LC219
RD1
RD89
LC411
RD17
RD136
LC603
RD144
RD48


LC28
RD28
RD28
LC220
RD1
RD93
LC412
RD17
RD143
LC604
RD144
RD49


LC29
RD29
RD29
LC221
RD1
RD116
LC413
RD17
RD144
LC605
RD144
RD54


LC30
RD30
RD30
LC222
RD1
RD117
LC414
RD17
RD145
LC606
RD144
RD58


LC31
RD31
RD31
LC223
RD1
RD118
LC415
RD17
RD146
LC607
RD144
RD59


LC32
RD32
RD32
LC224
RD1
RD119
LC416
RD17
RD147
LC608
RD144
RD78


LC33
RD33
RD33
LC225
RD1
RD120
LC417
RD17
RD149
LC609
RD144
RD79


LC34
RD34
RD34
LC226
RD1
RD133
LC418
RD17
RD151
LC610
RD144
RD81


LC35
RD35
RD35
LC227
RD1
RD134
LC419
RD17
RD154
LC611
RD144
RD87


LC36
RD36
RD36
LC228
RD1
RD135
LC420
RD17
RD155
LC612
RD144
RD88


LC37
RD37
RD37
LC229
RD1
RD136
LC421
RD17
RD161
LC613
RD144
RD89


LC38
RD38
RD38
LC230
RD1
RD143
LC422
RD17
RD175
LC614
RD144
RD93


LC39
RD39
RD39
LC231
RD1
RD144
LC423
RD50
RD3
LC615
RD144
RD116


LC10
RD40
RD40
LC232
RD1
RD145
LC424
RD50
RD5
LC616
RD144
RD117


LC41
RD41
RD41
LC233
RD1
RD146
LC425
RD50
RD18
LC617
RD144
RD118


LC42
RD42
RD42
LC234
RD1
RD147
LC426
RD50
RD20
LC618
RD144
RD119


LC43
RD43
RD43
LC235
RD1
RD149
LC427
RD50
RD22
LC619
RD144
RD120


LC44
RD44
RD44
LC236
RD1
RD151
LC428
RD50
RD37
LC620
RD144
RD133


LC45
RD45
RD45
LC237
RD1
RD154
LC429
RD50
RD40
LC621
RD144
RD134


LC46
RD46
RD46
LC238
RD1
RD155
LC430
RD50
RD41
LC622
RD144
RD135


LC47
RD47
RD47
LC239
RD1
RD161
LC431
RD50
RD42
LC623
RD144
RD136


LC48
RD48
RD48
LC240
RD1
RD175
LC432
RD50
RD43
LC624
RD144
RD145


LC49
RD49
RD49
LC241
RD4
RD3
LC433
RD50
RD48
LC625
RD144
RD146


LC50
RD50
RD50
LC242
RD4
RD5
LC434
RD50
RD49
LC626
RD144
RD147


LC51
RD51
RD51
LC243
RD4
RD9
LC435
RD50
RD54
LC627
RD144
RD149


LC52
RD52
RD52
LC244
RD4
RD10
LC436
RD50
RD55
LC628
RD144
RD151


LC53
RD55
RD55
LC245
RD4
RD17
LC437
RD50
RD58
LC629
RD144
RD154


LC54
RD54
RD54
LC246
RD4
RD18
LC438
RD50
RD59
LC630
RD144
RD155


LC55
RD55
RD55
LC247
RD4
RD20
LC439
RD50
RD78
LC631
RD144
RD161


LC56
RD56
RD56
LC248
RD4
RD22
LC440
RD50
RD79
LC632
RD144
RD175


LC57
RD57
RD57
LC249
RD4
RD37
LC441
RD50
RD81
LC633
RD145
RD3


LC58
RD58
RD58
LC250
RD4
RD40
LC442
RD50
RD87
LC634
RD145
RD5


LC59
RD59
RD59
LC251
RD4
RD41
LC443
RD50
RD88
LC635
RD145
RD17


LC60
RD60
RD60
LC252
RD4
RD42
LC444
RD50
RD89
LC636
RD145
RD18


LC61
RD61
RD61
LC253
RD4
RD43
LC445
RD50
RD93
LC637
RD145
RD20


LC62
RD62
RD62
LC254
RD4
RD48
LC446
RD50
RD116
LC638
RD145
RD22


LC63
RD63
RD63
LC255
RD4
RD49
LC447
RD50
RD117
LC639
RD145
RD37


LC64
RD64
RD64
LC256
RD4
RD50
LC448
RD50
RD118
LC640
RD145
RD40


LC65
RD65
RD65
LC257
RD4
RD54
LC449
RD50
RD119
LC641
RD145
RD41


LC66
RD66
RD66
LC258
RD4
RD55
LC450
RD50
RD120
LC642
RD145
RD42


LC67
RD67
RD67
LC259
RD4
RD58
LC451
RD50
RD133
LC643
RD145
RD43


LC68
RD68
RD68
LC260
RD4
RD59
LC452
RD50
RD134
LC644
RD145
RD48


LC69
RD69
RD69
LC261
RD4
RD78
LC453
RD50
RD135
LC645
RD145
RD49


LC70
RD70
RD70
LC262
RD4
RD79
LC454
RD50
RD136
LC646
RD145
RD54


LC71
RD71
RD71
LC263
RD4
RD81
LC455
RD50
RD143
LC647
RD145
RD58


LC72
RD72
RD72
LC264
RD4
RD87
LC456
RD50
RD144
LC648
RD145
RD59


LC73
RD73
RD73
LC265
RD4
RD88
LC457
RD50
RD145
LC649
RD145
RD78


LC74
RD74
RD74
LC266
RD4
RD89
LC458
RD50
RD146
LC650
RD145
RD79


LC75
RD75
RD75
LC267
RD4
RD93
LC459
RD50
RD147
LC651
RD145
RD81


LC76
RD76
RD76
LC268
RD4
RD116
LC460
RD50
RD149
LC652
RD145
RD87


LC77
RD77
RD77
LC269
RD4
RD117
LC461
RD50
RD151
LC653
RD145
RD88


LC78
RD78
RD78
LC270
RD4
RD118
LC462
RD50
RD154
LC654
RD145
RD89


LC79
RD79
RD79
LC271
RD4
RD119
LC463
RD50
RD155
LC655
RD145
RD93


LC80
RD80
RD80
LC272
RD4
RD120
LC464
RD50
RD161
LC656
RD145
RD116


LC81
RD81
RD81
LC273
RD4
RD133
LC465
RD50
RD175
LC657
RD145
RD117


LC82
RD82
RD82
LC274
RD4
RD134
LC466
RD55
RD3
LC658
RD145
RD118


LC83
RD83
RD83
LC275
RD4
RD135
LC467
RD55
RD5
LC659
RD145
RD119


LC84
RD84
RD84
LC276
RD4
RD136
LC468
RD55
RD18
LC660
RD145
RD120


LC85
RD85
RD85
LC277
RD4
RD143
LC469
RD55
RD20
LC661
RD145
RD133


LC86
RD86
RD86
LC278
RD4
RD144
LC470
RD55
RD22
LC662
RD145
RD134


LC87
RD87
RD87
LC279
RD4
RD145
LC471
RD55
RD37
LC663
RD145
RD135


LC88
RD88
RD88
LC280
RD4
RD146
LC472
RD55
RD40
LC664
RD145
RD136


LC89
RD89
RD89
LC281
RD4
RD147
LC473
RD55
RD41
LC665
RD145
RD146


LC90
RD90
RD90
LC282
RD4
RD149
LC474
RD55
RD42
LC666
RD145
RD147


LC91
RD91
RD91
LC283
RD4
RD151
LC475
RD55
RD43
LC667
RD145
RD149


LC92
RD92
RD92
LC284
RD4
RD154
LC476
RD55
RD48
LC668
RD145
RD151


LC93
RD93
RD93
LC285
RD4
RD155
LC477
RD55
RD49
LC669
RD145
RD154


LC94
RD94
RD94
LC286
RD4
RD161
LC478
RD55
RD54
LC670
RD145
RD155


LC95
RD95
RD95
LC287
RD4
RD175
LC479
RD55
RD58
LC671
RD145
RD161


LC96
RD96
RD96
LC288
RD9
RD3
LC480
RD55
RD59
LC672
RD145
RD175


LC97
RD97
RD97
LC289
RD9
RD5
LC481
RD55
RD78
LC673
RD146
RD3


LC98
RD98
RD98
LC290
RD9
RD10
LC482
RD55
RD79
LC674
RD146
RD5


LC99
RD99
RD99
LC291
RD9
RD17
LC483
RD55
RD81
LC675
RD146
RD17


LC100
RD100
RD100
LC292
RD9
RD18
LC484
RD55
RD87
LC676
RD146
RD18


LC101
RD101
RD101
LC293
RD9
RD20
LC485
RD55
RD88
LC677
RD146
RD20


LC102
RD102
RD102
LC294
RD9
RD22
LC486
RD55
RD89
LC678
RD146
RD22


LC103
RD103
RD103
LC295
RD9
RD37
LC487
RD55
RD93
LC679
RD146
RD37


LC104
RD104
RD104
LC296
RD9
RD40
LC488
RD55
RD116
LC680
RD146
RD40


LC105
RD105
RD105
LC297
RD9
RD41
LC489
RD55
RD117
LC681
RD146
RD41


LC106
RD106
RD106
LC298
RD9
RD42
LC490
RD55
RD118
LC682
RD146
RD42


LC107
RD107
RD107
LC299
RD9
RD43
LC491
RD55
RD119
LC683
RD146
RD43


LC108
RD108
RD108
LC300
RD9
RD48
LC492
RD55
RD120
LC684
RD146
RD48


LC109
RD109
RD109
LC301
RD9
RD49
LC493
RD55
RD133
LC685
RD146
RD49


LC110
RD110
RD110
LC302
RD9
RD50
LC494
RD55
RD134
LC686
RD146
RD54


LC111
RD111
RD111
LC303
RD9
RD54
LC495
RD55
RD135
LC687
RD146
RD58


LC112
RD112
RD112
LC304
RD9
RD55
LC496
RD55
RD136
LC688
RD146
RD59


LC113
RD113
RD113
LC305
RD9
RD58
LC497
RD55
RD143
LC689
RD146
RD78


LC114
RD114
RD114
LC306
RD9
RD59
LC498
RD55
RD144
LC690
RD146
RD79


LC115
RD115
RD115
LC307
RD9
RD78
LC499
RD55
RD145
LC691
RD146
RD81


LC116
RD116
RD116
LC308
RD9
RD79
LC500
RD55
RD146
LC692
RD146
RD87


LC117
RD117
RD117
LC309
RD9
RD81
LC501
RD55
RD147
LC693
RD146
RD88


LC118
RD118
RD118
LC310
RD9
RD87
LC502
RD55
RD149
LC694
RD146
RD89


LC119
RD119
RD119
LC311
RD9
RD88
LC503
RD55
RD151
LC695
RD146
RD93


LC120
RD120
RD120
LC312
RD9
RD89
LC504
RD55
RD154
LC696
RD146
RD117


LC121
RD121
RD121
LC313
RD9
RD93
LC505
RD55
RD155
LC697
RD146
RD118


LC122
RD122
RD122
LC314
RD9
RD116
LC506
RD55
RD161
LC698
RD146
RD119


LC123
RD123
RD123
LC315
RD9
RD117
LC507
RD55
RD175
LC699
RD146
RD120


LC124
RD124
RD124
LC316
RD9
RD118
LC508
RD116
RD3
LC700
RD146
RD133


LC125
RD125
RD125
LC317
RD9
RD119
LC509
RD116
RD5
LC701
RD146
RD134


LC126
RD126
RD126
LC318
RD9
RD120
LC510
RD116
RD17
LC702
RD146
RD135


LC127
RD127
RD127
LC319
RD9
RD133
LC511
RD116
RD18
LC703
RD146
RD136


LC128
RD128
RD128
LC320
RD9
RD134
LC512
RD116
RD20
LC704
RD146
RD146


LC129
RD129
RD129
LC321
RD9
RD135
LC513
RD116
RD22
LC705
RD146
RD147


LC130
RD130
RD130
LC322
RD9
RD136
LC514
RD116
RD37
LC706
RD146
RD149


LC131
RD131
RD131
LC323
RD9
RD143
LC515
RD116
RD40
LC707
RD146
RD151


LC132
RD132
RD132
LC324
RD9
RD144
LC516
RD116
RD41
LC708
RD146
RD154


LC133
RD133
RD133
LC325
RD9
RD145
LC517
RD116
RD42
LC709
RD146
RD155


LC134
RD134
RD134
LC326
RD9
RD146
LC518
RD116
RD43
LC710
RD146
RD161


LC135
RD135
RD135
LC327
RD9
RD147
LC519
RD116
RD48
LC711
RD146
RD175


LC136
RD136
RD136
LC328
RD9
RD149
LC520
RD116
RD49
LC712
RD133
RD3


LC137
RD137
RD137
LC329
RD9
RD151
LC521
RD116
RD54
LC713
RD133
RD5


LC138
RD138
RD138
LC330
RD9
RD154
LC522
RD116
RD58
LC714
RD133
RD3


LC139
RD139
RD139
LC331
RD9
RD155
LC523
RD116
RD59
LC715
RD133
RD18


LC140
RD140
RD140
LC332
RD9
RD161
LC524
RD116
RD78
LC716
RD133
RD20


LC141
RD141
RD141
LC333
RD9
RD175
LC525
RD116
RD79
LC717
RD133
RD22


LC142
RD142
RD142
LC334
RD10
RD3
LC526
RD116
RD81
LC718
RD133
RD37


LC143
RD143
RD143
LC335
RD10
RD5
LC527
RD116
RD87
LC719
RD133
RD40


LC144
RD144
RD144
LC336
RD10
RD17
LC528
RD116
RD88
LC720
RD133
RD41


LC145
RD145
RD145
LC337
RD10
RD18
LC529
RD116
RD89
LC721
RD133
RD42


LC146
RD146
RD146
LC338
RD10
RD20
LC530
RD116
RD95
LC722
RD133
RD43


LC147
RD147
RD147
LC339
RD10
RD22
LC531
RD116
RD117
LC723
RD133
RD48


LC148
RD148
RD148
LC340
RD10
RD37
LC532
RD116
RD118
LC724
RD133
RD49


LC149
RD149
RD149
LC341
RD10
RD40
LC533
RD116
RD119
LC725
RD133
RD54


LC150
RD150
RD150
LC342
RD10
RD41
LC534
RD116
RD120
LC726
RD133
RD58


LC151
RD151
RD151
LC343
RD10
RD42
LC535
RD116
RD133
LC727
RD133
RD59


LC152
RD152
RD152
LC344
RD10
RD43
LC536
RD116
RD134
LC728
RD133
RD78


LC153
RD153
RD153
LC345
RD10
RD48
LC537
RD116
RD135
LC729
RD133
RD79


LC154
RD154
RD154
LC346
RD10
RD49
LC538
RD116
RD136
LC730
RD133
RD81


LC155
RD155
RD155
LC347
RD10
RD50
LC539
RD116
RD143
LC731
RD133
RD87


LC156
RD 156
RD156
LC348
RD10
RD54
LC540
RD116
RD144
LC732
RD133
RD88


LC157
RD157
RD157
LC349
RD10
RD55
LC541
RD116
RD145
LC733
RD133
RD89


LC158
RD158
RD158
LC350
RD10
RD58
LC542
RD116
RD146
LC734
RD133
RD93


LC159
RD159
RD159
LC351
RD10
RD59
LC543
RD116
RD147
LC735
RD133
RD117


LC160
RD160
RD160
LC352
RD10
RD78
LC544
RD116
RD149
LC736
RD133
RD118


LC161
RD161
RD161
LC353
RD10
RD79
LC545
RD116
RD151
LC737
RD133
RD119


LC162
RD162
RD162
LC354
RD10
RD81
LC546
RD116
RD154
LC738
RD133
RD120


LC163
RD163
RD163
LC355
RD10
RD87
LC547
RD116
RD155
LC739
RD133
RD133


LC164
RD164
RD164
LC356
RD10
RD88
LC548
RD116
RD161
LC740
RD133
RD134


LC165
RD165
RD165
LC357
RD10
RD89
LC549
RD116
RD175
LC741
RD133
RD135


LC166
RD166
RD166
LC358
RD10
RD93
LC550
RD143
RD3
LC742
RD133
RD136


LC167
RD167
RD167
LC359
RD10
RD116
LC551
RD143
RD5
LC743
RD133
RD146


LC168
RD168
RD168
LC360
RD10
RD117
LC552
RD143
RD17
LC744
RD133
RD147


LC169
RD169
RD169
LC361
RD10
RD118
LC553
RD143
RD18
LC745
RD133
RD149


LC170
RD170
RD170
LC362
RD10
RD119
LC554
RD143
RD20
LC746
RD133
RD151


LC171
RD171
RD171
LC363
RD10
RD120
LC555
RD143
RD22
LC747
RD133
RD154


LC172
RD172
RD172
LC364
RD10
RD133
LC556
RD143
RD37
LC748
RD133
RD155


LC173
RD173
RD173
LC365
RD10
RD134
LC557
RD143
RD40
LC749
RD133
RD161


LC174
RD174
RD174
LC366
RD10
RD135
LC558
RD143
RD41
LC750
RD133
RD175


LC175
RD175
RD175
LC367
RD10
RD136
LC559
RD143
RD42
LC751
RD175
RD3


LC176
RD176
RD176
LC368
RD10
RD143
LC560
RD143
RD43
LC752
RD175
RD5


LC177
RD177
RD177
LC369
RD10
RD144
LC561
RD143
RD48
LC753
RD175
RD18


LC178
RD178
RD178
LC370
RD10
RD145
LC562
RD143
RD49
LC754
RD175
RD20


LC179
RD179
RD179
LC371
RD10
RD146
LC563
RD143
RD54
LC755
RD175
RD22


LC180
RD180
RD180
LC372
RD10
RD147
LC564
RD143
RD58
LC756
RD175
RD37


LC181
RD181
RD181
LC373
RD10
RD149
LC565
RD143
RD59
LC757
RD175
RD40


LC182
RD182
RD182
LC374
RD10
RD151
LC566
RD143
RD78
LC758
RD175
RD41


LC183
RD183
RD183
LC375
RD10
RD154
LC567
RD143
RD79
LC759
RD175
RD42


LC184
RD184
RD184
LC376
RD10
RD155
LC568
RD143
RD81
LC760
RD175
RD43


LC185
RD185
RD185
LC377
RD10
RD161
LC569
RD143
RD87
LC761
RD175
RD48


LC186
RD186
RD186
LC378
RD10
RD175
LC570
RD143
RD88
LC762
RD175
RD49


LC187
RD187
RD187
LC379
RD17
RD3
LC571
RD143
RD89
LC763
RD175
RD54


LC188
RD188
RD188
LC380
RD17
RD5
LC572
RD143
RD93
LC764
RD175
RD58


LC189
RD189
RD189
LC381
RD17
RD18
LC573
RD143
RD116
LC765
RD175
RD59


LC190
RD190
RD190
LC382
RD17
RD20
LC574
RD143
RD117
LC766
RD175
RD78


LC191
RD191
RD191
LC383
RD17
RD22
LC575
RD143
RD118
LC767
RD175
RD79


LC192
RD192
RD192
LC384
RD17
RD37
LC576
RD143
RD119
LC768
RD175
RD81


LC769
RD193
RD193
LC877
RD1
RD193
LC985
RD4
RD193
LC1093
RD9
RD193


LC770
RD194
RD194
LC878
RD1
RD194
LC986
RD4
RD194
LC1094
RD9
RD194


LC771
RD195
RD195
LC879
RD1
RD195
LC987
RD4
RD195
LC1095
RD9
RD195


LC772
RD196
RD196
LC880
RD1
RD196
LC988
RD4
RD196
LC1096
RD9
RD196


LC773
RD197
RD197
LC881
RD1
RD197
LC989
RD4
RD197
LC1097
RD9
RD197


LC774
RD198
RD198
LC882
RD1
RD198
LC990
RD4
RD198
LC1098
RD9
RD198


LC775
RD199
RD199
LC883
RD1
RD199
LC991
RD4
RD199
LC1099
RD9
RD199


LC776
RD200
RD200
LC884
RD1
RD200
LC992
RD4
RD200
LC1100
RD9
RD200


LC777
RD201
RD201
LC885
RD1
RD201
LC993
RD4
RD201
LC1101
RD9
RD201


LC778
RD202
RD202
LC886
RD1
RD202
LC994
RD4
RD202
LC1102
RD9
RD202


LC779
RD203
RD203
LC887
RD1
RD203
LC995
RD4
RD203
LC1103
RD9
RD203


LC780
RD204
RD204
LC888
RD1
RD204
LC996
RD4
RD204
LC1104
RD9
RD204


LC781
RD205
RD205
LC889
RD1
RD205
LC997
RD4
RD205
LC1105
RD9
RD205


LC782
RD206
RD206
LC890
RD1
RD206
LC998
RD4
RD206
LC1106
RD9
RD206


LC783
RD207
RD207
LC891
RD1
RD207
LC999
RD4
RD207
LC1107
RD9
RD207


LC784
RD208
RD208
LC892
RD1
RD208
LC1000
RD4
RD208
LC1108
RD9
RD208


LC785
RD209
RD209
LC893
RD1
RD209
LC1001
RD4
RD209
LC1109
RD9
RD209


LC786
RD210
RD210
LC894
RD1
RD210
LC1002
RD4
RD210
LC1110
RD9
RD210


LC787
RD211
RD211
LC895
RD1
RD211
LC1003
RD4
RD211
LC1111
RD9
RD211


LC788
RD212
RD212
LC896
RD1
RD212
LC1004
RD4
RD212
LC1112
RD9
RD212


LC789
RD213
RD213
LC897
RD1
RD213
LC1005
RD4
RD213
LC1113
RD9
RD213


LC790
RD214
RD214
LC898
RD1
RD214
LC1006
RD4
RD214
LC1114
RD9
RD214


LC791
RD215
RD215
LC899
RD1
RD215
LC1007
RD4
RD215
LC1115
RD9
RD215


LC792
RD216
RD216
LC900
RD1
RD216
LC1008
RD4
RD216
LC1116
RD9
RD216


LC793
RD217
RD217
LC901
RD1
RD217
LC1009
RD4
RD217
LC1117
RD9
RD217


LC794
RD218
RD218
LC902
RD1
RD218
LC1010
RD4
RD218
LC1118
RD9
RD218


LC795
RD219
RD219
LC903
RD1
RD219
LC1011
RD4
RD219
LC1119
RD9
RD219


LC796
RD220
RD220
LC904
RD1
RD220
LC1012
RD4
RD220
LC1120
RD9
RD220


LC797
RD221
RD221
LC905
RD1
RD221
LC1013
RD4
RD221
LC1121
RD9
RD221


LC798
RD222
RD222
LC906
RD1
RD222
LC1014
RD4
RD222
LC1122
RD9
RD222


LC799
RD223
RD223
LC907
RD1
RD223
LC1015
RD4
RD223
LC1123
RD9
RD223


LC800
RD224
RD224
LC908
RD1
RD224
LC1016
RD4
RD224
LC1124
RD9
RD224


LC801
RD225
RD225
LC909
RD1
RD225
LC1017
RD4
RD225
LC1125
RD9
RD225


LC802
RD226
RD226
LC910
RD1
RD226
LC1018
RD4
RD226
LC1126
RD9
RD226


LC803
RD227
RD227
LC911
RD1
RD227
LC1019
RD4
RD227
LC1127
RD9
RD227


LC804
RD228
RD228
LC912
RD1
RD228
LC1020
RD4
RD228
LC1128
RD9
RD228


LC805
RD229
RD229
LC913
RD1
RD229
LC1021
RD4
RD229
LC1129
RD9
RD229


LC806
RD230
RD230
LC914
RD1
RD230
LC1022
RD4
RD230
LC1130
RD9
RD230


LC807
RD231
RD231
LC915
RD1
RD231
LC1023
RD4
RD231
LC1131
RD9
RD231


LC808
RD232
RD232
LC916
RD1
RD232
LC1024
RD4
RD232
LC1132
RD9
RD232


LC809
RD233
RD233
LC917
RD1
RD233
LC1025
RD4
RD233
LC1133
RD9
RD233


LC810
RD234
RD234
LC918
RD1
RD234
LC1026
RD4
RD234
LC1134
RD9
RD234


LC811
RD235
RD235
LC919
RD1
RD235
LC1027
RD4
RD235
LC1135
RD9
RD235


LC812
RD236
RD236
LC920
RD1
RD236
LC1028
RD4
RD236
LC1136
RD9
RD236


LC813
RD237
RD237
LC921
RD1
RD237
LC1029
RD4
RD237
LC1137
RD9
RD237


LC814
RD238
RD238
LC922
RD1
RD238
LC1030
RD4
RD238
LC1138
RD9
RD238


LC815
RD239
RD239
LC923
RD1
RD239
LC1031
RD4
RD239
LC1139
RD9
RD239


LC816
RD240
RD240
LC924
RD1
RD240
LC1032
RD4
RD240
LC1140
RD9
RD240


LC817
RD241
RD241
LC925
RD1
RD241
LC1033
RD4
RD241
LC1141
RD9
RD241


LC818
RD242
RD242
LC926
RD1
RD242
LC1034
RD4
RD242
LC1142
RD9
RD242


LC819
RD243
RD243
LC927
RD1
RD243
LC1035
RD4
RD243
LC1143
RD9
RD243


LC820
RD244
RD244
LC928
RD1
RD244
LC1036
RD4
RD244
LC1144
RD9
RD244


LC821
RD245
RD245
LC929
RD1
RD245
LC1037
RD4
RD245
LC1145
RD9
RD245


LC822
RD246
RD246
LC930
RD1
RD246
LC1038
RD4
RD246
LC1146
RD9
RD246


LC823
RD17
RD193
LC931
RD50
RD193
LC1039
RD145
RD193
LC1147
RD168
RD193


LC824
RD17
RD194
LC932
RD50
RD194
LC1040
RD145
RD194
LC1148
RD168
RD194


LC825
RD17
RD195
LC933
RD50
RD195
LC1041
RD145
RD195
LC1149
RD168
RD195


LC826
RD17
RD196
LC934
RD50
RD196
LC1042
RD145
RD196
LC1150
RD168
RD196


LC827
RD17
RD197
LC935
RD50
RD197
LC1043
RD145
RD197
LC1151
RD168
RD197


LC828
RD17
RD198
LC936
RD50
RD198
LC1044
RD145
RD198
LC1152
RD168
RD198


LC829
RD17
RD199
LC937
RD50
RD199
LC1045
RD145
RD199
LC1153
RD168
RD199


LC830
RD17
RD200
LC938
RD50
RD200
LC1046
RD145
RD200
LC1154
RD168
RD200


LC831
RD17
RD201
LC939
RD50
RD201
LC1047
RD145
RD201
LC1155
RD168
RD201


LC832
RD17
RD202
LC940
RD50
RD202
LC1048
RD145
RD202
LC1156
RD168
RD202


LC833
RD17
RD203
LC941
RD50
RD203
LC1049
RD145
RD203
LC1157
RD168
RD203


LC834
RD17
RD204
LC942
RD50
RD204
LC1050
RD145
RD204
LC1158
RD168
RD204


LC835
RD17
RD205
LC943
RD50
RD205
LC1051
RD145
RD205
LC1159
RD168
RD205


LC836
RD17
RD206
LC944
RD50
RD206
LC1052
RD145
RD206
LC1160
RD168
RD206


LC837
RD17
RD207
LC945
RD50
RD207
LC1053
RD145
RD207
LC1161
RD168
RD207


LC838
RD17
RD208
LC946
RD50
RD208
LC1054
RD145
RD208
LC1162
RD168
RD208


LC839
RD17
RD209
LC947
RD50
RD209
LC1055
RD145
RD209
LC1163
RD168
RD209


LC840
RD17
RD210
LC948
RD50
RD210
LC1056
RD145
RD210
LC1164
RD168
RD210


LC841
RD17
RD211
LC949
RD50
RD211
LC1057
RD145
RD211
LC1165
RD168
RD211


LC842
RD17
RD212
LC950
RD50
RD212
LC1058
RD145
RD212
LC1166
RD168
RD212


LC843
RD17
RD213
LC951
RD50
RD213
LC1059
RD145
RD213
LC1167
RD168
RD213


LC844
RD17
RD214
LC952
RD50
RD214
LC1060
RD145
RD214
LC1168
RD168
RD214


LC845
RD17
RD215
LC953
RD50
RD215
LC1061
RD145
RD215
LC1169
RD168
RD215


LC846
RD17
RD216
LC954
RD50
RD216
LC1062
RD145
RD216
LC1170
RD168
RD216


LC847
RD17
RD217
LC955
RD50
RD217
LC1063
RD145
RD217
LC1171
RD168
RD217


LC848
RD17
RD218
LC956
RD50
RD218
LC1064
RD145
RD218
LC1172
RD168
RD218


LC849
RD17
RD219
LC957
RD50
RD219
LC1065
RD145
RD219
LC1173
RD168
RD219


LC850
RD17
RD220
LC958
RD50
RD220
LC1066
RD145
RD220
LC1174
RD168
RD220


LC851
RD17
RD221
LC959
RD50
RD221
LC1067
RD145
RD221
LC1175
RD168
RD221


LC852
RD17
RD222
LC960
RD50
RD222
LC1068
RD145
RD222
LC1176
RD168
RD222


LC853
RD17
RD223
LC961
RD50
RD223
LC1069
RD145
RD223
LC1177
RD168
RD223


LC854
RD17
RD224
LC962
RD50
RD224
LC1070
RD145
RD224
LC1178
RD168
RD224


LC855
RD17
RD225
LC963
RD50
RD225
LC1071
RD145
RD225
LC1179
RD168
RD225


LC856
RD17
RD226
LC964
RD50
RD226
LC1072
RD145
RD226
LC1180
RD168
RD226


LC857
RD17
RD227
LC965
RD50
RD227
LC1073
RD145
RD227
LC1181
RD168
RD227


LC858
RD17
RD228
LC966
RD50
RD228
LC1074
RD145
RD228
LC1182
RD168
RD228


LC859
RD17
RD229
LC967
RD50
RD229
LC1075
RD145
RD229
LC1183
RD168
RD229


LC860
RD17
RD230
LC968
RD50
RD230
LC1076
RD145
RD230
LC1184
RD168
RD230


LC861
RD17
RD231
LC969
RD50
RD231
LC1077
RD145
RD231
LC1185
RD168
RD231


LC862
RD17
RD232
LC970
RD50
RD232
LC1078
RD145
RD232
LC1186
RD168
RD232


LC863
RD17
RD233
LC971
RD50
RD233
LC1079
RD145
RD233
LC1187
RD168
RD233


LC864
RD17
RD234
LC972
RD50
RD234
LC1080
RD145
RD234
LC1188
RD168
RD234


LC865
RD17
RD235
LC973
RD50
RD235
LC1081
RD145
RD235
LC1189
RD168
RD235


LC866
RD17
RD236
LC974
RD50
RD236
LC1082
RD145
RD236
LC1190
RD168
RD236


LC867
RD17
RD237
LC975
RD50
RD237
LC1083
RD145
RD237
LC1191
RD168
RD237


LC868
RD17
RD238
LC976
RD50
RD238
LC1084
RD145
RD238
LC1192
RD168
RD238


LC869
RD17
RD239
LC977
RD50
RD239
LC1085
RD145
RD239
LC1193
RD168
RD239


LC870
RD17
RD240
LC978
RD50
RD240
LC1086
RD145
RD240
LC1194
RD168
RD240


LC871
RD17
RD241
LC979
RD50
RD241
LC1087
RD145
RD241
LC1195
RD168
RD241


LC872
RD17
RD242
LC980
RD50
RD242
LC1088
RD145
RD242
LC1196
RD168
RD242


LC873
RD17
RD243
LC981
RD50
RD243
LC1089
RD145
RD243
LC1197
RD168
RD243


LC874
RD17
RD244
LC982
RD50
RD244
LC1090
RD145
RD244
LC1198
RD168
RD244


LC875
RD17
RD245
LC983
RD50
RD245
LC1091
RD145
RD245
LC1199
RD168
RD245


LC876
RD17
RD246
LC984
RD50
RD246
LC1092
RD145
RD246
LC1200
RD168
RD246


LC1201
RD10
RD193
LC1255
RD55
RD193
LC1309
RD37
RD193
LC1363
RD143
RD193


LC1202
RD10
RD194
LC1256
RD55
RD194
LC1310
RD37
RD194
LC1364
RD143
RD194


LC1203
RD10
RD195
LC1257
RD55
RD195
LC1311
RD37
RD195
LC1365
RD143
RD195


LC1204
RD10
RD196
LC1258
RD55
RD196
LC1312
RD37
RD196
LC1366
RD143
RD196


LC1205
RD10
RD197
LC1259
RD55
RD197
LC1313
RD37
RD197
LC1367
RD143
RD197


LC1206
RD10
RD198
LC1260
RD55
RD198
LC1314
RD37
RD198
LC1368
RD143
RD198


LC1207
RD10
RD199
LC1261
RD55
RD199
LC1315
RD37
RD199
LC1369
RD143
RD199


LC1208
RD10
RD200
LC1262
RD55
RD200
LC1316
RD37
RD200
LC1370
RD143
RD200


LC1209
RD10
RD201
LC1263
RD55
RD201
LC1317
RD37
RD201
LC1371
RD143
RD201


LC1210
RD10
RD202
LC1264
RD55
RD202
LC1318
RD37
RD202
LC1372
RD143
RD202


LC1211
RD10
RD203
LC1265
RD55
RD203
LC1319
RD37
RD203
LC1373
RD143
RD203


LC1212
RD10
RD204
LC1266
RD55
RD204
LC1320
RD37
RD204
LC1374
RD143
RD204


LC1213
RD10
RD205
LC1267
RD55
RD205
LC1321
RD37
RD205
LC1375
RD143
RD205


LC1214
RD10
RD206
LC1268
RD55
RD206
LC1322
RD37
RD206
LC1376
RD143
RD206


LC1215
RD10
RD207
LC1269
RD55
RD207
LC1323
RD37
RD207
LC1377
RD143
RD207


LC1216
RD10
RD208
LC1270
RD55
RD208
LC1324
RD37
RD208
LC1378
RD143
RD208


LC1217
RD10
RD209
LC1271
RD55
RD209
LC1325
RD37
RD209
LC1379
RD143
RD209


LC1218
RD10
RD210
LC1272
RD55
RD210
LC1326
RD37
RD210
LC1380
RD143
RD210


LC1219
RD10
RD211
LC1273
RD55
RD211
LC1327
RD37
RD211
LC1381
RD143
RD211


LC1220
RD10
RD212
LC1274
RD55
RD212
LC1328
RD37
RD212
LC1382
RD143
RD212


LC1221
RD10
RD213
LC1275
RD55
RD213
LC1329
RD37
RD213
LC1383
RD143
RD213


LC1222
RD10
RD214
LC1276
RD55
RD214
LC1330
RD37
RD214
LC1384
RD143
RD214


LC1223
RD10
RD215
LC1277
RD55
RD215
LC1331
RD37
RD215
LC1385
RD143
RD215


LC1224
RD10
RD216
LC1278
RD55
RD216
LC1332
RD37
RD216
LC1386
RD143
RD216


LC1225
RD10
RD217
LC1279
RD55
RD217
LC1333
RD37
RD217
LC1387
RD143
RD217


LC1226
RD10
RD218
LC1280
RD55
RD218
LC1334
RD37
RD218
LC1388
RD143
RD218


LC1227
RD10
RD219
LC1281
RD55
RD219
LC1335
RD37
RD219
LC1389
RD143
RD219


LC1228
RD10
RD220
LC1282
RD55
RD220
LC1336
RD37
RD220
LC1390
RD143
RD220


LC1229
RD10
RD221
LC1283
RD55
RD221
LC1337
RD37
RD221
LC1391
RD143
RD221


LC1230
RD10
RD222
LC1284
RD55
RD222
LC1338
RD37
RD222
LC1392
RD143
RD222


LC1231
RD10
RD223
LC1285
RD55
RD223
LC1339
RD37
RD223
LC1393
RD143
RD223


LC1232
RD10
RD224
LC1286
RD55
RD224
LC1340
RD37
RD224
LC1394
RD143
RD224


LC1233
RD10
RD225
LC1287
RD55
RD225
LC1341
RD37
RD225
LC1395
RD143
RD225


LC1234
RD10
RD226
LC1288
RD55
RD226
LC1342
RD37
RD226
LC1396
RD143
RD226


LC1235
RD10
RD227
LC1289
RD55
RD227
LC1343
RD37
RD227
LC1397
RD143
RD227


LC1236
RD10
RD228
LC1290
RD55
RD228
LC1344
RD37
RD228
LC1398
RD143
RD228


LC1237
RD10
RD229
LC1291
RD55
RD229
LC1345
RD37
RD229
LC1399
RD143
RD229


LC1238
RD10
RD230
LC1292
RD55
RD230
LC1346
RD37
RD230
LC1400
RD143
RD230


LC1239
RD10
RD231
LC1293
RD55
RD231
LC1347
RD37
RD231
LC1401
RD143
RD231


LC1240
RD10
RD232
LC1294
RD55
RD232
LC1348
RD37
RD232
LC1402
RD143
RD232


LC1241
RD10
RD233
LC1295
RD55
RD233
LC1349
RD37
RD233
LC1403
RD143
RD233


LC1242
RD10
RD234
LC1296
RD55
RD234
LC1350
RD37
RD234
LC1404
RD143
RD234


LC1243
RD10
RD235
LC1297
RD55
RD235
LC1351
RD37
RD235
LC1405
RD143
RD235


LC1244
RD10
RD236
LC1298
RD55
RD236
LC1352
RD37
RD236
LC1406
RD143
RD236


LC1245
RD10
RD237
LC1299
RD55
RD237
LC1353
RD37
RD237
LC1407
RD143
RD237


LC1246
RD10
RD238
LC1300
RD55
RD238
LC1354
RD37
RD238
LC1408
RD143
RD238


LC1247
RD10
RD239
LC1301
RD55
RD239
LC1355
RD37
RD239
LC1409
RD143
RD239


LC1248
RD10
RD240
LC1302
RD55
RD240
LC1356
RD37
RD240
LC1410
RD143
RD240


LC1249
RD10
RD241
LC1303
RD55
RD241
LC1357
RD37
RD241
LC1411
RD143
RD241


LC1250
RD10
RD242
LC1304
RD55
RD242
LC1358
RD37
RD242
LC1412
RD143
RD242


LC1251
RD10
RD243
LC1305
RD55
RD243
LC1359
RD37
RD243
LC1413
RD143
RD243


LC1252
RD10
RD244
LC1306
RD55
RD244
LC1360
RD37
RD244
LC1414
RD143
RD244


LC1253
RD10
RD245
LC1307
RD55
RD245
LC1361
RD37
RD245
LC1415
RD143
RD245


LC1254
RD10
RD246
LC1308
RD55
RD246
LC1362
RD37
RD246
LC1416
RD143
RD246









where RD1 to RD246 have the following structures:




embedded image


embedded image


embedded image


In some embodiments, the compound has a formula Ir(LAi-m)(LBk)2 or formula Ir(LAi-m)2(LBk) consisting of only those compounds that correspond to LBk ligands that correspond to the following structures LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB130, LB32, LB134, LB136, LB138, LB140, LB142, LB144, LB156, LB58, LB160, LB162, LB164, LB168, LB172, LB175, LB204, LB206, LB214, LB216, LB218, LB220, LB222, LB231, LB233, LB235, LB237, LB240, LB242, LB244, LB246, LB248, LB250, LB252, LB254, LB256, LB258, LB260, LB262, LB263, and LB264.


In some embodiments, the compound has a formula r(LAi-m)(LBk)2 or formula r(LAi-m)2(LBk) consisting of only those compounds that correspond to LBk ligands that correspond to the following structures LB, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB132, LB136, LB138, LB142, LB156, LB162, LB204, LB206, LB214, LB216, LB218, LB220, LB231, LB233, LB237, and LB264.


In some embodiments, the compound has a formula Ir(LAi-m)2(LCj-I) or formula Ir(LAi-m)2(LCj-II) consisting of only those compounds that correspond to LCj-I and LCj-II ligands whose corresponding R1′ and R2′ are defined to be one of the following structures: RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD18, RD20, RD22, RD37, RD40, RD41, RD42, RD43, RD48, RD49, RD50, RD54, RD55, RD58, RD59, RD78, RD79, RD81, RD87, RD88, RD89, RD93, RD116, RD117, RD118, RD119, RD120, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD147, RD149, RD151, RD154, RD155, RD156, RD161, RD175, RD190, RD193, RD200, RD201, RD206, RD210, RD214, RD215, RD216, RD218, RD219, RD220, RD227, RD237, RD241, RD242, RD245, and RD246.


In some embodiments, the compound has a formula Ir(LAi-m)2(LCj-I) or formula Ir(LAi-m)2(LCj-II) consisting of only those compounds that correspond to LCj-I and LCj-II ligands whose corresponding R1′ and R2′ are defined to be one of the following structures: RD1, RD3, RD4, RD5, RD9, RD17, RD22, RD43, RD50, RD78, RD116, RD118, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD149, RD151, RD154, RD155, RD156, RD190, RD193, RD200, RD214, RD218, RD220, RD241, and RD245.


In some embodiments, the compound has a formula Ir(LAi-m)2(LCj-I) consisting of only those compounds that correspond to LCj-I ligands that correspond to the following structures




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has formula Ir(LAi-m)3, wherein i is an integer from 1 to 3600; m is an integer from 1 to 344; and the compound is selected from the group consisting of Ir(LA1-1)3 to Ir(LA3600-344)3; the compound has formula Ir(LAi-m)(LBk)2, wherein i is an integer from 1 to 3600; m is an integer from 1 to 344; k is an integer from 1 to 264; and the compound is selected from the group consisting of Ir(LA1-1)(LB1)2 to Ir(LA3600-344)(LB264)2; the compound has formula Ir(LAi-m)2(LBk), wherein i is an integer from 1 to 3600; m is an integer from 1 to 344; k is an integer from 1 to 264; and the compound is selected from the group consisting of Ir(LA1-1)2(LB1) to Ir(LA3600-344)2(LB264); and the compound has formula Ir(LAi-m)2(LCj-I) or Ir(LAi-m)2(LCj-II), wherein i is an integer from 1 to 3600; m is an integer from 1 to 344; j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(LC1-I) to Ir(LA3600-344)2(LC1416-I), and Ir(LA1-1)2(LC1-II) to Ir(LA3600-344)2(LC1416-II).


In some embodiments, the compound is selected from the group consisting of




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the OLED comprises an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer can comprise a compound comprising a first ligand LA of Formula I




embedded image



In Formula I:

    • ring B is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused;
    • X1, X2, and X3 are each independently CRA or N;
    • R is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused or substituted;
    • provided that
    • (1) when ring B is an unfused 6-membered ring, X1 and X2 are N, and X3 is C;
    • (2) when ring B is a fused 6-membered ring, ring B has the structure of Formula II




embedded image



where:

    • the wavy line indicates the point of connection to ring A;
    • Q1, Q2, Q3, Q4, Q5, and Q6 are each independently C or N; and
    • when proviso (2) applies, at least one of the following conditions is true:
      • (I) at least one of X1, X2, and X3 is N; or
      • (II) R is two or more fused or unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted;
    • RB and RC each independently represents mono to the maximum number of allowable substitutions, or no substitution;
    • each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents disclosed herein, and combinations thereof;
    • wherein LA is coordinated to a metal M through the indicated dashed lines;
    • wherein M is selected from the group consisting of Ir, Os, Pt, Pd, Cu, Ag, and Au;
    • wherein M can be coordinated to other ligands;
    • LA can join with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and
    • any two substituents can be joined or fused to form a ring.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region can comprise a compound comprising a first ligand LA of Formula I




embedded image



In Formula I:

    • ring B is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused;
    • X1, X2, and X3 are each independently CRA or N;
    • R is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused or substituted;
    • provided that
    • (1) when ring B is an unfused 6-membered ring, X1 and X2 are N, and X3 is C;
    • (2) when ring B is a fused 6-membered ring, ring B has the structure of Formula II,




embedded image



where:

    • the wavy line indicates the point of connection to ring A;
    • Q1, Q2, Q3, Q4, Q5, and Q6 are each independently C or N; and
    • when proviso (2) applies, at least one of the following conditions is true:
      • (I) at least one of X1, X2, and X3 is N; or
      • (II) R is two or more fused or unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted;
    • RB and RC each independently represents mono to the maximum number of allowable substitutions, or no substitution;
    • each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents disclosed herein, and combinations thereof;
    • wherein LA is coordinated to a metal M through the indicated dashed lines;
    • wherein M is selected from the group consisting of Ir, Os, Pt, Pd, Cu, Ag, and Au;
    • wherein M can be coordinated to other ligands;
    • LA can join with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and
    • any two substituents can be joined or fused to form a ring.


In some emissive region embodiments, the compound can be an emissive dopant or a non-emissive dopant. In some emissive region embodiments, the emissive region comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some emissive region embodiments, the emissive region comprises a host, wherein the host is selected from the group consisting of the structures listed in the HOST Group defined herein.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer can comprise a compound comprising a first ligand LA of Formula I




embedded image



In Formula I:

    • ring B is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused;
    • X1, X2, and X3 are each independently CRA or N;
    • R is a 5-membered or 6-membered carbocyclic or heterocyclic ring, which can be further fused or substituted;
    • provided that
    • (1) when ring B is an unfused 6-membered ring, X1 and X2 are N, and X3 is C;
    • (2) when ring B is a fused 6-membered ring, ring B has the structure of Formula II,




embedded image



where:

    • the wavy line indicates the point of connection to ring A;
    • Q1, Q2, Q3, Q4, Q5, and Q6 are each independently C or N; and
    • when proviso (2) applies, at least one of the following conditions is true:
      • (I) at least one of X1, X2, and X3 is N; or
      • (II) R is two or more fused or unfused 5-membered or 6-membered carbocyclic or heterocyclic rings, which can be further fused or substituted;
    • RB and RC each independently represents mono to the maximum number of allowable substitutions, or no substitution;
    • each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents disclosed herein, and combinations thereof;
    • wherein LA is coordinated to a metal M through the indicated dashed lines;
    • wherein M is selected from the group consisting of Ir, Os, Pt, Pd, Cu, Ag, and Au;
    • wherein M can be coordinated to other ligands;
    • LA can join with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and
    • any two substituents can be joined or fused to form a ring.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140 US2015060804 US20150123047 and US2012146012.




embedded image


embedded image


embedded image



b) HIL/HTL:


A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



c) EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:


The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



e) Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



f) HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



h) Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.


E. Experimental Data



embedded image


2,4-Dichloro-5-iodopyridine (6.00 g, 21.9 mmol) and copper(I) iodide (8.34 g, 43.8 mmol) were dissolved in dry N,N-dimethylformamide (DMF)(140 mL) and the reaction mixture was sparged with nitrogen for 15 minutes. Methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (5.6 mL, 43.8 mmol) was added and the reaction mixture was heated at 100° C. for 3 hours. The mixture was allowed to cool to room temperature (˜22° C.), then it was diluted with water (100 mL) and extracted with diethyl ether (3×100 mL). The combined organic extracts were washed with water (100 mL), then brine (3×100 mL), then dried over magnesium sulfate and, finally, the solvents were removed in vacuo. 2,4-dichloro-5-(trifluoromethyl)pyridine was obtained as a yellow oil (4.55 g, 21.1 mmol, 96%) and was used in the next step without further purification.




embedded image


2,4-dichloro-5-(trifluoromethyl)pyridine (4.55 g, 21.1 mmol), sodium carbonate (10.05 g, 94.8 mmol), 2-(4-tert-butyl-2-naphthyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6.21 g, 20.0 mmol) were dissolved in dimethoxyethane (DME)(60 mL) and water (12 mL) in a 500 mL 3-necked round bottomed flask fitted with a reflux condenser. The mixture was then sparged with nitrogen for 15 minutes, followed by the addition of tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4)(1.22 g, 1.05 mmol) and degasified for 15 minutes. The reaction mixture was heated at 90° C. under nitrogen for 18 hours. The reaction was then cooled to room temperature (˜22° C.) and filtered through a bed of silica gel, such as Celite diatomaceous earth distributed by Imersys Minerals California, Inc. Solvents were removed in vacuo and the crude was partitioned between brine (100 mL) and ethyl acetate (100 mL). The aqueous phase was extracted with ethyl acetate (3×100 mL), then combined with the organic extracts before being washed with water (100 mL), then brine (100 mL), then being dried over magnesium sulfate and having the solvents removed in vacuo. The resulting crude mixture was purified by flash chromatography using mixtures of isohexane and ethyl acetate in a standard silica gel column to yield 2-(4-(tert-butyl)naphthalen-2-yl)-4-chloro-5-(trifluoromethyl)pyridine as a white solid (6.13 g, 15.3 mmol, 72%).




embedded image


2-(4-(tert-butyl)naphthalen-2-yl)-4-chloro-5-(trifluoromethyl)pyridine (5.55 g, 15.3 mmol), 4-biphenylboronic acid (4.53 g, 22.9 mmol), potassium phosphate tribasic (9.71 g, 45.8 mmol) and dicyclohexyl(2′,6′-dimethoxy-[1,1′-biphenyl]-2-yl)phosphine (0.63 g, 1.53 mmol) were dissolved in toluene (60 mL) and water (6 mL) in a 500 mL 3-necked round bottomed flask fitted with a reflux condenser. The mixture was sparged with nitrogen for 15 minutes, followed by the addition of tris(dibenzylideneacetone) dipalladium (0) (Pd2dba3) (0.70 g, 0.763 mmol) and degasified for an additional 15 minutes. The resulting dark purple mixture was heated at 100° C. for 18 hours. The mixture was then allowed to cool to room temperature (˜22° C.) and the solvents were removed in vacuo. The crude was partitioned between water (100 mL) and ethyl acetate (100 mL), and the aqueous phase was extracted with ethyl acetate (3×100 mL). The combined organic extracts were washed with brine (100 mL), dried over magnesium sulfate, and the solvents removed in vacuo. The resulting crude mixture was purified by flash chromatography using mixtures of isohexane and ethyl acetate in a standard silica gel column, followed by recrystallization from isopropanol to afford the product as a white solid (4.21 g, 8.74 mmol, 57%).




embedded image


To a solution was added 2-(4-(tert-butyl)naphthalen-2-yl)-4-phenyl-5-(trifluoromethyl)pyridine (1.14 g, 2.8 mmol, 1.6 equiv) and iridium(III) chloride hydrate (650 mg, 1.75 mmol, 1.0 equiv). The reaction mixture was sparged with nitrogen for 10 minutes then heated to 110° C. for 24 hours to form the intermediate μ-dichloride complex shown in the above synthesis scheme. After cooling to room temperature, 3,7-Diethylnonane-4,6-dione (1.19 g, 5.60 mmol, 1.6 equiv) and tetrahydrofuran (50 mL) were added to the reaction mixture. The mixture was sparged with nitrogen for 10 minutes. Powdered potassium carbonate (1.16 g, 8.40 mmol, 2.4 equiv) was added and the reaction mixture was heated to 45° C. for 18 hours. The reaction mixture was then cooled to room temperature, concentrated under reduced pressure, and the residue was diluted with methanol (50 mL) and water (50 mL). The red suspension was filtered and the solid washed with methanol (50 mL). The resulting solid was dissolved in dichloromethane (150 mL), dried over anhydrous sodium sulfate (30 g) then dry-loaded onto a bed of silica gel (20 g), such as Celite® diatomaceous earth distributed by Imersys Minerals California, Inc. The crude product was purified over silica gel (300 g), eluting with a gradient of 0 to 25% dichloromethane in hexanes to give bis[(2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-phenyl-5-(trifluoromethyl) pyridin-1-yl]-(3,7-diethylnonane-4,6-dione-κ2O,O′)-iridium(III) (1.84 g, 54% over two steps).




embedded image


A suspension of 4-([1,1′-biphenyl]-4-yl)-2-(4-(tert-butyl)naphthalen-2-yl)-5-(trifluoromethyl)pyridine (2.0 g, 4.17 mmol, 2.2 equiv) and iridium(III) chloride hydrate (0.6 g, 1.895 mmol, 1.0 equiv) in 2-ethoxyethanol (36 mL) and deionized ultrafiltrated (DIUF) water (12 mL) was heated at 100° C. 16 hours. After the reaction mixture was cooled to room temperature, DIUF water (50 mL) was added and the suspension filtered. The resulting intermediate μ-dichloride complex was obtained as a red solid, which was washed with DIUF water (50 mL) and methanol (50 mL) then used directly in the next step. 3,7-diethylnonane-4,6-dione (1.352 g, 6.37 mmol, 2.0 equiv) and powdered potassium carbonate (1.32 g, 9.55 mmol, 3.0 equiv) were added to a suspension of crude intermediate μ-dichloride complex shown in the above synthesis scheme (4.51 g, est. 3.18 mmol, 1.0 equiv) in methanol (40 mL) and dichloromethane (40 mL). The reaction mixture was stirred at 42° C. for 16 hours. The crude reaction mixture was concentrated under reduced pressure and the residue diluted with DIUF water (100 mL). The slurry was filtered and the a red solid residue was washed with methanol (100 mL). The crude residue was dissolved in a minimal amount of dichloromethane, adsorbed onto silica gel (24 g) and purified on an Interchim automated chromatography system (80 g Sorbtech silica gel cartridge), eluting with a gradient of 5 to 50% dichloromethane in hexanes. The product was triturated with methanol (100 mL) and dried under vacuum at ˜50° C. for 16 hours to give bis[4-([1,1′-biphenyl]-4-yl)-2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-5-(trifluoromethyl)pyridin-1-yl]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)-iridium(III) (1.92 g, 44% yield, 99.4% purity) as a red solid.




embedded image


A suspension of 4-([1,1′-biphenyl]-4-yl)-2-(naphthalen-2-yl)-5-(trifluoromethyl)pyridine (2.81 g, 6.6 mmol, 2.2 equiv) and iridium(III) chloride hydrate (0.95 g, 3.0 mmol, 1.0 equiv) in 2-ethoxyethanol (30 mL) and DIUF water (10 mL) was heated at 100° C. for 16 hours. After cooling to room temperature, DIUF water (25 mL) was added. The resulting solid was filtered, washed with DIUF water (25 mL) and methanol (3×25 mL) to give crude intermediate μ-dichloride complex shown in the synthesis scheme as a red solid. 3,7-Diethylnonane-4,6-dione (1.282 g, 6.04 mmol, 2.0 equiv) and powdered potassium carbonate (1.252 g, 9.06 mmol, 3.0 equiv) were added to a suspension of the crude μ-dichloride complex (6.5 g, est. 3.02 mmol, 1.0 equiv) in methanol (50 mL) and dichloromethane (50 mL). The reaction mixture was stirred at 42° C. for 16 hours. The resulting crude reaction mixture was concentrated under reduced pressure and the residue diluted with DIUF water (50 mL). The red solid was filtered and washed with methanol (3×25 mL). The crude residue was dissolved in a minimal amount of dichloromethane, adsorbed onto silica gel (100 g) and purified on an Interchim automated chromatography system (220 g Sorbtech silica gel column), eluting with a gradient of 20 to 50% dichloromethane in hexanes The product obtained was triturated with refluxing methanol (250 mL), and filtered warm. The solid was dried under vacuum at 50° C. for 16 hours to give bis[4-([1,1′-biphenyl]-4-yl)-(2-(naphthalen-2-yl)-3′-yl)-5-(trifluoromethyl)pyridin-1-yl]-(3,7-diethyl-4,6-nonane-dionato-k2O,O′)-iridium(III) (1.9 g, 50% yield, 99.9% purity) as a red solid.




embedded image


A suspension of 4,6-bis(4-(tert-butyl) naphthalen-2-yl)pyrimidine (3.28 g, 7.37 mmol, 2.2 equiv) in 2-ethoxyethyanol (98 mL) and DIUF water (32 mL) was sparged with nitrogen for ten minutes. Iridium(III) chloride hydrate (1.0 g, 3.35 mmol, 1.0 equiv) was added and the reaction mixture heated at 100° C. for 16 hours. The reaction mixture was cooled to room temperature, then DIUF water (100 mL) was added and the solid filtered. The crude intermediate μ-dichloride complex shown in the synthesis scheme above was obtained as a red solid, which was washed with DIUF water (500 mL) and methanol (3×100 mL) then used directly for the next step.


To a suspension of crude di-μ-chloro-tetrakis[(4-(4-(tert-butyl)-naphthalen-2-yl)-1′-yl)-6-(4-(tert-butyl)naphthalen-2-yl)pyrimidin-1-yl]diiridium(III) (the intermediate μ-dichloride complex) (˜3.35 mmol, 1.0 equiv) in methanol (200 mL) and dichloromethane (150 mL) were added 3,7-diethylnonane-4,6-dione (1.42 g, 6.70 mmol, 2.0 equiv) and powdered potassium carbonate (1.39 g, 10.05 mmol, 3.0 equiv). The reaction mixture was stirred at 40° C. for 16 hours. The reaction mixture was then concentrated under reduced pressure. The residue was adsorbed onto silica gel (120 g) and purified on an Interchim automated system (220 g Sorbtech silica gel cartridge), eluting with a gradient of 5-50% dichloromethane in hexanes over 45 minutes. The product obtained was triturated with methanol (250 mL) to give bis[4-((4-(tert-butyl)naphthalen-2-yl)-1′-yl)-6-(4-(tert-butyl)naphthalen-2-yl)-pyrimidin-2-yl]-(3,7-diethyl-4,6-nonanedionato-k2O,O′)iridium(III) (2.85 g, 66% yield) as a red solid.




embedded image


To a solution was added 4,6-Di(naphthalen-2-yl)pyrimidine (2.09 g, 6.30 mmol, 1.8 equiv) and iridium(III) chloride hydrate (1.297 g, 3.5 mmol, 1.0 equiv). The reaction mixture was sparged with nitrogen for 5 minutes then heated at 75° C. for 18 hours to form the intermediate μ-dichloride complex. The reaction mixture was cooled and transferred to a 250 mL 3-necked round-bottom flask equipped with a thermocouple and a reflux condenser. 3,7-Diethylnonane-4,6-dione (1.49 g, 7.0 mmol, 4.0 equiv) and tetrahydrofuran (60 mL) were added and the mixture sparged with nitrogen for 10 minutes. Powdered potassium carbonate (1.45 g, 10.5 mmol, 6.0 equiv) was added then the reaction mixture stirred at 45° C. for 17 hours. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was diluted with methanol (100 mL) and water (50 mL). The red suspension was filtered and the solids washed with methanol (50 mL). The crude solid was purified over silica gel (400 g), eluting with a gradient of 0 to 15% tetrahydrofuran in hexanes. The recovered impure product was triturated with a 1 to 10 mixture of dichloromethane and methanol (110 mL) and filtered. The solid was repurified over silica gel (500 g), eluting with a gradient of 0 to 15% tetrahydrofuran in hexanes. The product was then triturated with a 1 to 10 mixture of dichloromethane and methanol (110 mL). The solid was filtered and dried under vacuum at 45° C. for 2 hours to give bis[(4-(naphthalen-2-yl)-3′-yl)-6-(naphthalen-2-yl)pyrimidin-3-yl]-(3,7-diethylnonane-4,6-dione-κ2O,O′)-iridium(III) (952 mg, 26% yield two steps) as a red solid.


Device Examples

All example devices were fabricated by high vacuum (<10-7 Torr) thermal evaporation. The anode electrode was 1,200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of Liq (8-hydroxyquinoline lithium) followed by 1,000 Å of aluminum (Al). All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package. The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 of LG101 (purchased from LG Chem) as the hole injection layer (HIL); 400 Å of HTM as a hole transporting layer (HTL); 50 Å of EBM as an electron blocking layer (EBL); 400 Å of an emissive layer (EML) containing RH as red host and 3% of emitter; and 350 Å of Liq (8-hydroxyquinoline lithium) doped with 35% of ETM as the electron transporting layer (ETL). Table 1 shows the thickness of the device layers and materials.









TABLE 1







Device layer materials and thicknesses











Layer
Material
Thickness [Å]















Anode
ITO
1,200



HIL
LG101
100



HTL
HTM
400



EBL
EBM
50



EML
Host: Red emitter 3%
400



ETL
Liq: ETM 35%
350



EIL
Liq
10



Cathode
Al
1,000










The chemical structures of the device materials are shown below:




embedded image


embedded image


embedded image


Devices were fabricated using inventive example 1 and comparative examples 1 and 2. Upon fabrication, devices were tested for emission spectra, electroluminescent efficiency and power consumption. For this purpose, the sample was energized by a 2 channel Keysight B2902A SMU at a current density of 10 mA/cm2 and measured by a Photo Research PR735 Spectroradiometer. Radiance (W/str/cm2) from 380 nm to 1080 nm, and total integrated photon count were collected. Each device was then placed under a large area silicon photodiode for the JVL sweep. The integrated photon count of the device at 10 mA/cm2 was used to convert the photodiode current to photon count. The voltage was swept from 0 to a voltage equating to 200 mA/cm2. The EQE of each device was calculated using the total integrated photon count. The results are summarized in Table 2. Voltage and EQE of inventive examples are reported as relative numbers normalized to the results of the comparative example 2.













TABLE 2









λ max
FWHM
At 10 mA/cm2












Device
Red emitter
[nm]
[nm]
Voltage
EQE















Device 1
Inventive
620
41
0.97
1.31



example 1


Device 2
Comparative
618
39
0.97
1.18



example 1


Device 3
Comparative
606
84
1.00
1.00



example 2









Table 2 is a summary of performance of electroluminescence devices that were evaluated. Compared to device 3 using comparative example 2, the inventive device (device 1) shows saturated red color and much narrower emission spectrum. In addition, EQE of the inventive device is 1.3 times higher than device 3. Compared to device 2, the inventive device (device 1) shows more saturated color and higher EQE. As a result, the inventive device emits more saturated red light and showed improved current efficiency.


A photoluminescence (PL) spectra of the inventive and comparative compounds measured in poly(methyl methacrylate) (PMMA) for inventive compound 2 and comparative compound 3. The values are shown in Table 3, below.












TABLE 3







λ max [nm]
FWHM [nm]




















Inventive example 2
616
40



Comparative example 3
611
84










Inventive example 2 exhibits a much narrower emissions spectrum, while comparative example 3 shows a broad, slightly blue-shifted structural emission. In general, the FWHM for a phosphorescent emitter complex is broad, normally in the range of 60 to 100 nm. It has been a long-sought goal to achieve narrow FWHM. The narrower the FWHM, the better color purity for the display application. In the past OLED research, narrowing lineshape has been achieved nanometer by nanometer slowly. Current result is a remarkably unexpected result.

Claims
  • 1. A compound comprising a first ligand LA of Formula I:
  • 2. The compound of claim 1, wherein each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, boryl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.
  • 3. The compound of claim 1, wherein R is selected from the group consisting of imidazole, oxazole, thiazole, pyridine, phenyl, biphenyl, carbazole, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, substituted variants thereof, and combinations thereof.
  • 4. The compound of claim 1, wherein R is two or more fused 5-membered or 6-membered aryl or heteroaryl rings, which can be further fused or substituted.
  • 5. The compound of claim 1, wherein R is two or more unfused 5-membered or 6-membered aryl or heteroaryl rings, which can be further substituted.
  • 6. The compound of claim 1, wherein LA has a structure selected from the group consisting of
  • 7. The compound of claim 1, wherein Ring B has a structure selected from the group consisting of:
  • 8. The compound of claim 1, wherein R has a structure selected from the group consisting of
  • 9. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LAi-m, wherein each of LAi-1 to LAi-344 have the structure defined in the following list:
  • 10. The compound of claim 1, wherein the compound has a formula from the group consisting of M(LA)p(LB)q(LC)r, Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC), wherein LB and LC are each a bidentate ligand; wherein LA, LB, and LC are different from each other; wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and wherein p+q+r is the oxidation state of the metal M.
  • 11. The compound of claim 10, wherein LB and LC are each independently selected from the group consisting of:
  • 12. The compound of claim 9, wherein the compound is selected from the group consisting of: (a) the compound has formula Ir(LAi-m)3, wherein LAi-m is as defined herein; and the compound is selected from the group consisting of Ir(LA1-1)3 to Ir(LA3600-344)3;(b) the compound has formula Ir(LAi-m)(LBk)2, wherein LAi-m is as defined herein; k is an integer from 1 to 264; and the compound is selected from the group consisting of Ir(LA1-1)(LB1)2 to Ir(LA3600-344)(LB264)2;(c) the compound has formula Ir(LAi-m)2(LBk), wherein LAi-m is as defined herein; k is an integer from 1 to 264; and the compound is selected from the group consisting of Ir(LA1-1)2(LB1) to Ir(LA3600-344)2(LB264); and(d) the compound has formula Ir(LAi-m)2(LCj-I) or Ir(LAi-m)2(LCj-II), wherein LAi-m is as defined herein; j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(LCj-I) to Ir(LA3600-344)2(LC1416-1), and Ir(LA1-1)2(LC1-II) to Ir(LA3600-344)2(LC1416-II);each LBk has the structure defined as follows:
  • 13. A compound is selected from the group consisting of
  • 14. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode,wherein the organic layer comprises a compound according to claim 1.
  • 15. The OLED of claim 14, wherein the organic layer further comprises a host, wherein host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2, 1-de]anthracene).
  • 16. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound according to claim 1.
  • 17. The compound of claim 1, wherein R comprises a 5-membered heteroaryl ring, which can be further fused or substituted.
  • 18. The compound of claim 1, wherein each of X1 to X3 is C.
  • 19. The compound of claim 1, wherein at least two of R′ and RA are other than H or D.
  • 20. The compound of claim 1, wherein at least one R′ or RA is selected from the group consisting of F, partially or fully fluorinated alkyl, and partially or fully fluorinated cycloalkyl.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/906,305, filed on Sep. 26, 2019, and U.S. Provisional Application No. 63/010,815, filed on Apr. 16, 2020, the entire contents of which are incorporated herein by reference.

US Referenced Citations (95)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
7776458 Ragini Aug 2010 B2
10038152 Kosuge Jul 2018 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Wakuma et al. Jan 2009 A1
20090030202 Wakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20120274201 Seo Nov 2012 A1
20130088144 Inoue Apr 2013 A1
20150005496 Inoue Jan 2015 A1
20150014659 Kim Jan 2015 A1
20150053937 Kim Feb 2015 A1
20150073142 Ohsawa Mar 2015 A1
20150171348 Stoessel Jun 2015 A1
20150295187 Boudreault Oct 2015 A1
20150295188 Kosuge Oct 2015 A1
20150364701 Horiuchi Dec 2015 A1
20160111663 Kim Apr 2016 A1
20160118606 Inoue Apr 2016 A1
20170092880 Boudreault Mar 2017 A1
20180097179 Boudreault Apr 2018 A1
20190074458 Lee Mar 2019 A1
20190296251 Yen Sep 2019 A1
20210095196 Yeager Apr 2021 A1
Foreign Referenced Citations (68)
Number Date Country
101935523 Jan 2011 CN
104342117 Feb 2015 CN
104418904 Mar 2015 CN
105481903 Apr 2016 CN
106632488 May 2017 CN
107759639 Mar 2018 CN
108191916 Jun 2018 CN
108864196 Nov 2018 CN
109705107 May 2019 CN
109970804 Jul 2019 CN
109970806 Jul 2019 CN
110144213 Aug 2019 CN
0650955 May 1995 EP
1191612 Mar 2002 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
2066150 Jun 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2012053627 Apr 2012 WO
2012141185 Oct 2012 WO
2012147896 Nov 2012 WO
2013094620 Jun 2013 WO
2017168299 Oct 2017 WO
2019097361 May 2019 WO
WO-2020170957 Aug 2020 WO
Non-Patent Literature Citations (54)
Entry
Google Translation of CN 109705107 A (Year: 2023).
Xu et al (Inorganica Chimica Acta 373 (2011) 306-310). (Year: 2011).
Pucheta et al (Phys. Chem. Chem. Phys., 2015, 17, 8740â8749 (Year: 2015).
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Kai, Masamichi et al., “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Nada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota, Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis (dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based On Silole Derivatives And Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91: 209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes Of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Cui, Lin-Song, et al., “Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with H rizontal Orientation for Orange and White Phosphorescent OLEDs,” ACS Appl. Mater. Interfaces 2015, 7, 11007-11014.
Ning, Xiaowen, et al., “Green and yellow pyridazine-based phosphorescent Iridium(III) complexes for high-efficiency and low-cost organic light-emitting diodes,” Dyes and Pigments 164 (2019), 206-212.
Hu, Wei-Kang, et al., “Blue-to-green electrophosphorescence from iridium(III) complexes with cyclometalated pyrimidine ligands,” Dyes and Pigments 150 (2018) 284-292.
Yamada, A., et al., “Flipping of the coordinated triazine moiety in Cu(I)-L2 and the small electronic factor, κel, for direct outer-sphere cross reactions: syntheses, crystal structures and redox behaviour of copper(II)/(I)-L2 complexes (L = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine),” Dalton Trans., vol. 22, pp. 13979-13990.
Yuen, M., et al., “Synthesis, Photophysical and Electrophosphorescent Properties of Fluorene-Based Platinum(II) Complexes,” Chem. Eur. J., vol. 16, pp. 14131-14141.
Related Publications (1)
Number Date Country
20210098717 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
63010815 Apr 2020 US
62906305 Sep 2019 US