Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11753425
  • Patent Number
    11,753,425
  • Date Filed
    Monday, June 17, 2019
    4 years ago
  • Date Issued
    Tuesday, September 12, 2023
    9 months ago
  • CPC
  • Field of Search
    • CPC
    • C07F15/0033
    • C07F15/0086
    • H01L51/0085
    • H01L51/0087
    • H01L51/0067
    • H01L51/0072
    • H10K85/342
    • H10K85/346
    • H10K85/654
    • C09K2211/185
  • International Classifications
    • H01L51/00
    • C07F15/00
    • H10K50/11
    • H10K85/30
    • H10K85/60
    • Term Extension
      285
Abstract
A compound is disclosed that includes a ligand LA of Formula I
Description
FIELD

The present invention relates to compounds for use as emitters, and devices, such as organic light emitting diodes, including the same.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative) Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY

A series of new phosphorescent metal complexes based on ligands containing naphthalene-pyridine derivatives are disclosed. Further functionalization of these moieties allows fine tuning of the properties of the final complexes, such as color of the light emission, the light emitting efficiency and emission lifetime.




embedded image


A compound is disclosed that comprises a ligand LA of Formula I where ring C is a 5-membered or a 6-membered carbocyclic or heterocyclic ring; each RA, RB, and RC independently represents mono to the maximum allowable number of substitutions, or no substitution; each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined above; at least one RA has the formula —CH2R or —CHRR′; each R and R′ is independently selected from the group consisting of halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, and combinations thereof; LA is complexed to a metal M; M is optionally coordinated to other ligands; the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents of RB and RC may be joined or fused together to form a ring.


An OLED comprising the compound of the present disclosure in an organic layer therein is also disclosed.


A consumer product comprising the OLED is also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from −40 degree C. to +80 degree C.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each R can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group is optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group is optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, 0, S or N. Additionally, the heteroalkyl or heterocycloalkyl group is optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group is optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group is optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group is optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group is optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group is optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R′ represents mono-substitution, then one R′ must be other than H (i.e., a substitution) Similarly, when R′ represents di-substitution, then two of R′ must be other than H. Similarly, when R′ represents no substitution, R′, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


A series of new phosphorescent metal complexes based on ligands containing naphthalene-pyridine derivatives are disclosed. Further functionalization of these moieties allows fine tuning of the properties of the final complexes, such as color of the light emission, the light emitting efficiency and emission lifetime.


The presence of the naphthalene moiety in the ligands allows bathochromic shift in the light emission by the phosphorescent metal complexes compared to the traditional phenyl-pyridine ligands. This shift enables tuning the emission peak wavelength, λMAX, of the metal complexes to be between yellow and red, i.e. amber/orange. The ligands have to contain substituents, RA and RB, as aliphatic side chains or fluorinated aliphatic side chains. The side chains allow fine tuning of the color of the emission of the metal complexes and also increases their external quantum efficiencies (EQEs). The use of branched side chains can also lead to desired narrow emission line shape and improves the thermal properties of the final material by lowering the sublimation temperature.


There are significant challenges in developing amber/orange emitting metal complexes. For metal complexes containing diketone-based ancillary ligands, they are usually not stable enough to be commercially viable. For heteroleptic metal complexes, the emission is broad and their EQE are low. The novel ligands disclosed herein exhibit improvements in these categories making them attractive options for amber/orange emitting OLEDs.




embedded image


A compound is disclosed that comprises a ligand LA of Formula I where ring C is a 5-membered or a 6-membered carbocyclic or heterocyclic ring; each RA, RB, and RC independently represents mono to the maximum allowable number of substitutions, or no substitution; each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined above; at least one RA has the formula —CH2R or —CHRR′; each R and R′ is independently selected from the group consisting of halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, and combinations thereof; LA is complexed to a metal M; M is optionally coordinated to other ligands; the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents of RB and RC may be joined or fused together to form a ring.


In some embodiments, R and R′ is independently selected from the group consisting of alkyl, cycloalkyl, D variant, F variant, and combinations thereof.


In some embodiments of the compound, each RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the preferred general substituents defined above.


In some embodiments, M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, and Au. In some embodiments, M is Ir or Pt. In some embodiments, M is Ir(III) or Pt(II).


In some embodiments, R is selected from the group consisting of alkyl, cycloalkyl, partially fluorinated variants thereof, partially or fully deuterated variants thereof, and combination thereof.


In some embodiments, the compound comprises a substituted or unsubstituted acetylacetone ligand.


In some embodiments, at least one RB comprises a cyclohexyl or tert-butyl group.


In some embodiments, ring C is selected from the group consisting of benzene, pyridine, pyrimidine, pyrazine, and pyridazine. In some embodiments, ring C is a furan or thiofuran ring.


In some embodiments of the compound, the ligand LA is selected from the group consisting of:




embedded image


embedded image


In some embodiments of the compound, the ligand LA is selected from the group consisting of: LA1 through LA448 based on the structure of Formula II




embedded image



in which R1, R2, and G are defined as:


















Ligand
R1
R2
G









LA1
RB3
H
RC2



LA2
RB4
H
RC2



LA3
RB5
H
RC2



LA4
RB18
H
RC2



LA5
RB43
H
RC2



LA6
RA3
H
RC2



LA7
RA34
H
RC2



LA8
RA57
H
RC2



LA9
RB3
F
RC2



LA10
RB4
F
RC2



LA11
RB5
F
RC2



LA12
RB18
F
RC2



LA13
RB43
F
RC2



LA14
RA3
F
RC2



LA15
RA34
F
RC2



LA16
RA57
F
RC2



LA17
RB3
RB1
RC2



LA18
RB4
RB1
RC2



LA10
RB5
RB1
RC2



LA20
RB18
RB1
RC2



LA21
RB43
RB1
RC2



LA22
RA3
RB1
RC2



LA23
RA34
RB1
RC2



LA24
RA57
RB1
RC2



LA25
RB3
RA74
RC2



LA26
RB4
RA74
RC2



LA27
RB5
RA74
RC2



LA28
RB18
RA74
RC2



LA29
RB43
RA74
RC2



LA30
RA3
RA74
RC2



LA31
RA34
RA74
RC2



LA32
RA57
RA74
RC2



LA33
RB3
H
RC5



LA34
RB4
H
RC5



LA35
RB5
H
RC5



LA36
RB18
H
RC5



LA37
RB43
H
RC5



LA38
RA3
H
RC5



LA39
RA34
H
RC5



LA40
RA57
H
RC5



LA41
RB3
F
RC5



LA42
RB4
F
RC5



LA43
RB5
F
RC5



LA44
RB18
F
RC5



LA45
RB43
F
RC5



LA46
RA3
F
RC5



LA47
RA34
F
RC5



LA48
RA57
F
RC5



LA49
RB3
RB1
RC5



LA50
RB4
RB1
RC5



LA51
RB5
RB1
RC5



LA52
RB18
RB1
RC5



LA53
RB43
RB1
RC5



LA54
RA3
RB1
RC5



LA55
RA34
RB1
RC5



LA56
RA57
RB1
RC5



LA57
RB3
RA74
RC5



LA58
RB4
RA74
RC5



LA59
RB5
RA74
RC5



LA60
RB18
RA74
RC5



LA61
RB43
RA74
RC5



LA62
RA3
RA74
RC5



LA63
RA34
RA74
RC5



LA64
RA57
RA74
RC5



LA65
RB3
H
RC6



LA66
RB4
H
RC6



LA67
RB5
H
RC6



LA68
RB18
H
RC6



LA69
RB43
H
RC6



LA70
RA3
H
RC6



LA71
RA34
H
RC6



LA72
RA57
H
RC6



LA73
RB3
F
RC6



LA74
RB4
F
RC6



LA75
RB5
F
RC6



LA76
RB18
F
RC6



LA77
RB43
F
RC6



LA78
RA3
F
RC6



LA79
RA34
F
RC6



LA80
RA57
F
RC6



LA81
RB3
RB1
RC6



LA82
RB4
RB1
RC6



LA83
RB5
RB1
RC6



LA84
RB18
RB1
RC6



LA85
RB43
RB1
RC6



LA86
RA3
RB1
RC6



LA87
RA34
RB1
RC6



LA88
RA57
RB1
RC6



LA89
RB3
RA74
RC6



LA90
RB4
RA74
RC6



LA91
RB5
RA74
RC6



LA92
RB18
RA74
RC6



LA93
RB43
RA74
RC6



LA94
RA3
RA74
RC6



LA95
RA34
RA74
RC6



LA96
RA57
RA74
RC6



LA97
RB3
H
RC7



LA98
RB4
H
RC7



LA99
RB5
H
RC7



LA100
RB18
H
RC7



LA101
RB43
H
RC7



LA102
RA3
H
RC7



LA103
RA34
H
RC7



LA104
RA57
H
RC7



LA105
RB3
F
RC7



LA106
RB4
F
RC7



LA107
RB5
F
RC7



LA108
RB18
F
RC7



LA109
RB43
F
RC7



LA110
RA3
F
RC7



LA111
RA34
F
RC7



LA112
RA57
F
RC7



LA113
RB3
RB1
RC7



LA114
RB4
RB1
RC7



LA115
RB5
RB1
RC7



LA116
RB18
RB1
RC7



LA117
RB43
RB1
RC7



LA118
RA3
RB1
RC7



LA119
RA34
RB1
RC7



LA120
RA57
RB1
RC7



LA121
RB3
RA74
RC7



LA122
RB4
RA74
RC7



LA123
RB5
RA74
RC7



LA124
RB18
RA74
RC7



LA125
RB43
RA74
RC7



LA126
RA3
RA74
RC7



LA127
RA34
RA74
RC7



LA128
RA57
RA74
RC7



LA129
RB3
H
RC10



LA130
RB4
H
RC10



LA131
RB5
H
RC10



LA132
RB18
H
RC10



LA133
RB43
H
RC10



LA134
RA3
H
RC10



LA135
RA34
H
RC10



LA136
RA57
H
RC10



LA137
RB3
F
RC10



LA138
RB4
F
RC10



LA139
RB5
F
RC10



LA140
RB18
F
RC10



LA141
RB43
F
RC10



LA142
RA3
F
RC10



LA143
RA34
F
RC10



LA144
RA57
F
RC10



LA145
RB3
RB1
RC10



LA146
RB4
RB1
RC10



LA147
RB5
RB1
RC10



LA148
RB18
RB1
RC10



LA149
RB43
RB1
RC10



LA150
RA3
RB1
RC10



LA151
RA34
RB1
RC10



LA152
RA57
RB1
RC10



LA153
RB3
RA74
RC10



LA154
RB4
RA74
RC10



LA155
RB5
RA74
RC10



LA156
RB18
RA74
RC10



LA157
RB43
RA74
RC10



LA158
RA3
RA74
RC10



LA159
RA34
RA74
RC10



LA160
RA57
RA74
RC10



LA161
RB3
H
RC11



LA162
RB4
H
RC11



LA163
RB5
H
RC11



LA164
RB18
H
RC11



LA165
RB43
H
RC11



LA166
RA3
H
RC11



LA167
RA34
H
RC11



LA168
RA57
H
RC11



LA169
RB3
F
RC11



LA170
RB4
F
RC11



LA171
RB5
F
RC11



LA172
RB18
F
RC11



LA173
RB43
F
RC11



LA174
RA3
F
RC11



LA175
RA34
F
RC11



LA176
RA57
F
RC11



LA177
RB3
RB1
RC11



LA178
RB4
RB1
RC11



LA179
RB5
RB1
RC11



LA180
RB18
RB1
RC11



LA181
RB43
RB1
RC11



LA182
RA3
RB1
RC11



LA183
RA34
RB1
RC11



LA184
RA57
RB1
RC11



LA185
RB3
RA74
RC11



LA186
RB4
RA74
RC11



LA187
RB5
RA74
RC11



LA188
RB18
RA74
RC11



LA189
RB43
RA74
RC11



LA190
RA3
RA74
RC11



LA191
RA34
RA74
RC11



LA192
RA57
RA74
RC11



LA193
RB3
H
RC13



LA194
RB4
H
RC13



LA195
RB5
H
RC13



LA196
RB18
H
RC13



LA197
RB43
H
RC13



LA198
RA3
H
RC13



LA199
RA34
H
RC13



LA200
RA57
H
RC13



LA201
RB3
F
RC13



LA202
RB4
F
RC13



LA203
RB5
F
RC13



LA204
RB18
F
RC13



LA205
RB43
F
RC13



LA206
RA3
F
RC13



LA207
RA34
F
RC13



LA208
RA57
F
RC13



LA209
RB3
RB1
RC13



LA210
RB4
RB1
RC13



LA211
RB5
RB1
RC13



LA212
RB18
RB1
RC13



LA213
RB43
RB1
RC13



LA214
RA3
RB1
RC13



LA215
RA34
RB1
RC13



LA216
RA57
RB1
RC13



LA217
RB3
RA74
RC13



LA218
RB4
RA74
RC13



LA219
RB5
RA74
RC13



LA220
RB18
RA74
RC13



LA221
RB43
RA74
RC13



LA222
RA3
RA74
RC13



LA223
RA34
RA74
RC13



LA224
RA57
RA74
RC13



LA225
RB3
H
RC17



LA226
RB4
H
RC17



LA227
RB5
H
RC17



LA228
RB18
H
RC17



LA229
RB43
H
RC17



LA230
RA3
H
RC17



LA231
RA34
H
RC17



LA232
RA57
H
RC17



LA233
RB3
F
RC17



LA234
RB4
F
RC17



LA235
RB5
F
RC17



LA236
RB18
F
RC17



LA237
RB43
F
RC17



LA238
RA3
F
RC17



LA239
RA34
F
RC17



LA240
RA57
F
RC17



LA241
RB3
RB1
RC17



LA242
RB4
RB1
RC17



LA243
RB5
RB1
RC17



LA244
RB18
RB1
RC17



LA245
RB43
RB1
RC17



LA246
RA3
RB1
RC17



LA247
RA34
RB1
RC17



LA248
RA57
RB1
RC17



LA249
RB3
RA74
RC17



LA250
RB4
RA74
RC17



LA251
RB5
RA74
RC17



LA252
RB18
RA74
RC17



LA253
RB43
RA74
RC17



LA254
RA3
RA74
RC17



LA255
RA34
RA74
RC17



LA256
RA57
RA74
RC17



LA257
RB3
H
RC20



LA258
RB4
H
RC20



LA259
RB5
H
RC20



LA260
RB18
H
RC20



LA261
RB43
H
RC20



LA262
RA3
H
RC20



LA263
RA34
H
RC20



LA264
RA57
H
RC20



LA265
RB3
F
RC20



LA266
RB4
F
RC20



LA267
RB5
F
RC20



LA268
RB18
F
RC20



LA269
RB43
F
RC20



LA270
RA3
F
RC20



LA271
RA34
F
RC20



LA272
RA57
F
RC20



LA273
RB3
RB1
RC20



LA274
RB4
RB1
RC20



LA275
RB5
RB1
RC20



LA276
RB18
RB1
RC20



LA277
RB43
RB1
RC20



LA278
RA3
RB1
RC20



LA279
RA34
RB1
RC20



LA280
RA57
RB1
RC20



LA281
RB3
RA74
RC20



LA282
RB4
RA74
RC20



LA283
RB5
RA74
RC20



LA284
RB18
RA74
RC20



LA285
RB43
RA74
RC20



LA286
RA3
RA74
RC20



LA287
RA34
RA74
RC20



LA288
RA57
RA74
RC20



LA289
RB3
H
RC24



LA290
RB4
H
RC24



LA291
RB5
H
RC24



LA292
RB18
H
RC24



LA293
RB43
H
RC24



LA294
RA3
H
RC24



LA295
RA34
H
RC24



LA296
RA57
H
RC24



LA297
RB3
F
RC24



LA298
RB4
F
RC24



LA299
RB5
F
RC24



LA300
RB18
F
RC24



LA301
RB43
F
RC24



LA302
RA3
F
RC24



LA303
RA34
F
RC24



LA304
RA57
F
RC24



LA305
RB3
RB1
RC24



LA306
RB4
RB1
RC24



LA307
RB5
RB1
RC24



LA308
RB18
RB1
RC24



LA309
RB43
RB1
RC24



LA310
RA3
RB1
RC24



LA311
RA34
RB1
RC24



LA312
RA57
RB1
RC24



LA313
RB3
RA74
RC24



LA314
RB4
RA74
RC24



LA315
RB5
RA74
RC24



LA316
RB18
RA74
RC24



LA317
RB43
RA74
RC24



LA318
RA3
RA74
RC24



LA319
RA34
RA74
RC24



LA320
RA57
RA74
RC24



LA321
RB3
H
RC27



LA322
RB4
H
RC27



LA323
RB5
H
RC27



LA324
RB18
H
RC27



LA325
RB43
H
RC27



LA326
RA3
H
RC27



LA327
RA34
H
RC27



LA328
RA57
H
RC27



LA329
RB3
F
RC27



LA330
RB4
F
RC27



LA331
RB5
F
RC27



LA332
RB18
F
RC27



LA333
RB43
F
RC27



LA334
RA3
F
RC27



LA335
RA34
F
RC27



LA336
RA57
F
RC27



LA337
RB3
RB1
RC27



LA338
RB4
RB1
RC27



LA339
RB5
RB1
RC27



LA340
RB18
RB1
RC27



LA341
RB43
RB1
RC27



LA342
RA3
RB1
RC27



LA343
RA34
RB1
RC27



LA344
RA57
RB1
RC27



LA345
RB3
RA74
RC27



LA346
RB4
RA74
RC27



LA347
RB5
RA74
RC27



LA348
RB18
RA74
RC27



LA349
RB43
RA74
RC27



LA350
RA3
RA74
RC27



LA351
RA34
RA74
RC27



LA352
RA57
RA74
RC27



LA353
RB3
H
RC31



LA354
RB4
H
RC31



LA355
RB5
H
RC31



LA356
RB18
H
RC31



LA357
RB43
H
RC31



LA358
RA3
H
RC31



LA359
RA34
H
RC31



LA360
RA57
H
RC31



LA361
RB3
F
RC31



LA362
RB4
F
RC31



LA363
RB5
F
RC31



LA364
RB18
F
RC31



LA365
RB43
F
RC31



LA366
RA3
F
RC31



LA367
RA34
F
RC31



LA368
RA57
F
RC31



LA369
RB3
RB1
RC31



LA370
RB4
RB1
RC31



LA371
RB5
RB1
RC31



LA372
RB18
RB1
RC31



LA373
RB43
RB1
RC31



LA374
RA3
RB1
RC31



LA375
RA34
RB1
RC31



LA376
RA57
RB1
RC31



LA377
RB3
RA74
RC31



LA378
RB4
RA74
RC31



LA379
RB5
RA74
RC31



LA380
RB18
RA74
RC31



LA381
RB43
RA74
RC31



LA382
RA3
RA74
RC31



LA383
RA34
RA74
RC31



LA384
RA57
RA74
RC31



LA385
RB3
H
RC34



LA386
RB4
H
RC34



LA387
RB5
H
RC34



LA388
RB18
H
RC34



LA389
RB43
H
RC34



LA390
RA3
H
RC34



LA391
RA34
H
RC34



LA392
RA57
H
RC34



LA393
RB3
F
RC34



LA394
RB4
F
RC34



LA395
RB5
F
RC34



LA396
RB18
F
RC34



LA397
RB43
F
RC34



LA398
RA3
F
RC34



LA399
RA34
F
RC34



LA400
RA57
F
RC34



LA401
RB3
RB1
RC34



LA402
RB4
RB1
RC34



LA403
RB5
RB1
RC34



LA404
RB18
RB1
RC34



LA405
RB43
RB1
RC34



LA406
RA3
RB1
RC34



LA407
RA34
RB1
RC34



LA408
RA57
RB1
RC34



LA409
RB3
RA74
RC34



LA410
RB4
RA74
RC34



LA411
RB5
RA74
RC34



LA412
RB18
RA74
RC34



LA413
RB43
RA74
RC34



LA414
RA3
RA74
RC34



LA415
RA34
RA74
RC34



LA416
RA57
RA74
RC34



LA417
RB3
H
RC38



LA418
RB4
H
RC38



LA419
RB5
H
RC38



LA420
RB18
H
RC38



LA421
RB43
H
RC38



LA422
RA3
H
RC38



LA423
RA34
H
RC38



LA424
RA57
H
RC38



LA425
RB3
F
RC38



LA426
RB4
F
RC38



LA427
RB5
F
RC38



LA428
RB18
F
RC38



LA429
RB43
F
RC38



LA430
RA3
F
RC38



LA431
RA34
F
RC38



LA432
RA57
F
RC38



LA433
RB3
RB1
RC38



LA434
RB4
RB1
RC38



LA435
RB5
RB1
RC38



LA436
RB18
RB1
RC38



LA437
RB43
RB1
RC38



LA438
RA3
RB1
RC38



LA439
RA34
RB1
RC38



LA440
RA57
RB1
RC38



LA441
RB3
RA74
RC38



LA442
RB4
RA74
RC38



LA443
RB5
RA74
RC38



LA444
RB18
RA74
RC38



LA445
RB43
RA74
RC38



LA446
RA3
RA74
RC38



LA447
RA34
RA74
RC38



LA448
RA57
RA74
RC38,











LA449 through LA896 based on a structure of Formula II




embedded image



in which R1, R2, and G are defined as:


















Ligand
R1
R2
G









LA449
H
RB3
RC2



LA450
H
RB4
RC2



LA451
H
RB5
RC2



LA452
H
RB18
RC2



LA453
H
RB43
RC2



LA454
H
RA3
RC2



LA455
H
RA34
RC2



LA456
H
RA57
RC2



LA457
F
RB3
RC2



LA458
F
RB4
RC2



LA459
F
RB5
RC2



LA460
F
RB18
RC2



LA461
F
RB43
RC2



LA462
F
RA3
RC2



LA463
F
RA34
RC2



LA464
F
RA57
RC2



LA465
RB1
RB3
RC2



LA466
RB1
RB4
RC2



LA467
RB1
RB5
RC2



LA468
RB1
RB18
RC2



LA469
RB1
RB43
RC2



LA470
RB1
RA3
RC2



LA471
RB1
RA34
RC2



LA472
RB1
RA57
RC2



LA473
RA74
RB3
RC2



LA474
RA74
RB4
RC2



LA475
RA74
RB5
RC2



LA476
RA74
RB18
RC2



LA477
RA74
RB43
RC2



LA478
RA74
RA3
RC2



LA479
RA74
RA34
RC2



LA480
RA74
RA57
RC2



LA481
H
RB3
RC5



LA482
H
RB4
RC5



LA483
H
RB5
RC5



LA484
H
RB18
RC5



LA485
H
RB43
RC5



LA486
H
RA3
RC5



LA487
H
RA34
RC5



LA488
H
RA57
RC5



LA489
F
RB3
RC5



LA490
F
RB4
RC5



LA491
F
RB5
RC5



LA492
F
RB18
RC5



LA493
F
RB43
RC5



LA494
F
RA3
RC5



LA495
F
RA34
RC5



LA496
F
RA57
RC5



LA497
RB1
RB3
RC5



LA498
RB1
RB4
RC5



LA499
RB1
RB5
RC5



LA500
RB1
RB18
RC5



LA501
RB1
RB43
RC5



LA502
RB1
RA3
RC5



LA503
RB1
RA34
RC5



LA504
RB1
RA57
RC5



LA505
RA74
RB3
RC5



LA506
RA74
RB4
RC5



LA507
RA74
RB5
RC5



LA508
RA74
RB18
RC5



LA509
RA74
RB43
RC5



LA510
RA74
RA3
RC5



LA511
RA74
RA34
RC5



LA512
RA74
RA57
RC5



LA513
H
RB3
RC6



LA514
H
RB4
RC6



LA515
H
RB5
RC6



LA516
H
RB18
RC6



LA517
H
RB43
RC6



LA518
H
RA3
RC6



LA519
H
RA34
RC6



LA520
H
RA57
RC6



LA521
F
RB3
RC6



LA522
F
RB4
RC6



LA523
F
RB5
RC6



LA524
F
RB18
RC6



LA525
F
RB43
RC6



LA526
F
RA3
RC6



LA527
F
RA34
RC6



LA528
F
RA57
RC6



LA529
RB1
RB3
RC6



LA530
RB1
RB4
RC6



LA531
RB1
RB5
RC6



LA532
RB1
RB18
RC6



LA533
RB1
RB43
RC6



LA534
RB1
RA3
RC6



LA535
RB1
RA34
RC6



LA536
RB1
RA57
RC6



LA537
RA74
RB3
RC6



LA538
RA74
RB4
RC6



LA539
RA74
RB5
RC6



LA540
RA74
RB18
RC6



LA541
RA74
RB43
RC6



LA542
RA74
RA3
RC6



LA543
RA74
RA34
RC6



LA544
RA74
RA57
RC6



LA545
H
RB3
RC7



LA546
H
RB4
RC7



LA547
H
RB5
RC7



LA548
H
RB18
RC7



LA549
H
RB43
RC7



LA550
H
RA3
RC7



LA551
H
RA34
RC7



LA552
H
RA57
RC7



LA553
F
RB3
RC7



LA554
F
RB4
RC7



LA555
F
RB5
RC7



LA556
F
RB18
RC7



LA557
F
RB43
RC7



LA558
F
RA3
RC7



LA559
F
RA34
RC7



LA560
F
RA57
RC7



LA561
RB1
RB3
RC7



LA562
RB1
RB4
RC7



LA563
RB1
RB5
RC7



LA564
RB1
RB18
RC7



LA565
RB1
RB43
RC7



LA566
RB1
RA3
RC7



LA567
RB1
RA34
RC7



LA568
RB1
RA57
RC7



LA569
RA74
RB3
RC7



LA570
RA74
RB4
RC7



LA571
RA74
RB5
RC7



LA572
RA74
RB18
RC7



LA573
RA74
RB43
RC7



LA574
RA74
RA3
RC7



LA575
RA74
RA34
RC7



LA576
RA74
RA57
RC7



LA577
H
RB3
RC10



LA578
H
RB4
RC10



LA579
H
RB5
RC10



LA580
H
RB18
RC10



LA581
H
RB43
RC10



LA582
H
RA3
RC10



LA583
H
RA34
RC10



LA584
H
RA57
RC10



LA585
F
RB3
RC10



LA586
F
RB4
RC10



LA587
F
RB5
RC10



LA588
F
RB18
RC10



LA589
F
RB43
RC10



LA590
F
RA3
RC10



LA591
F
RA34
RC10



LA592
F
RA57
RC10



LA593
RB1
RB3
RC10



LA594
RB1
RB4
RC10



LA595
RB1
RB5
RC10



LA596
RB1
RB18
RC10



LA597
RB1
RB43
RC10



LA598
RB1
RA3
RC10



LA599
RB1
RA34
RC10



LA600
RB1
RA57
RC10



LA601
RA74
RB3
RC10



LA602
RA74
RB4
RC10



LA603
RA74
RB5
RC10



LA604
RA74
RB18
RC10



LA605
RA74
RB43
RC10



LA606
RA74
RA3
RC10



LA607
RA74
RA34
RC10



LA608
RA74
RA57
RC10



LA609
H
RB3
RC11



LA610
H
RB4
RC11



LA611
H
RB5
RC11



LA612
H
RB18
RC11



LA613
H
RB43
RC11



LA614
H
RA3
RC11



LA615
H
RA34
RC11



LA616
H
RA57
RC11



LA617
F
RB3
RC11



LA618
F
RB4
RC11



LA619
F
RB5
RC11



LA620
F
RB18
RC11



LA621
F
RB43
RC11



LA622
F
RA3
RC11



LA623
F
RA34
RC11



LA624
F
RA57
RC11



LA625
RB1
RB3
RC11



LA626
RB1
RB4
RC11



LA627
RB1
RB5
RC11



LA628
RB1
RB18
RC11



LA629
RB1
RB43
RC11



LA630
RB1
RA3
RC11



LA631
RB1
RA34
RC11



LA632
RB1
RA57
RC11



LA633
RA74
RB3
RC11



LA634
RA74
RB4
RC11



LA635
RA74
RB5
RC11



LA636
RA74
RB18
RC11



LA637
RA74
RB43
RC11



LA638
RA74
RA3
RC11



LA639
RA74
RA34
RC11



LA640
RA74
RA57
RC11



LA641
H
RB3
RC13



LA642
H
RB4
RC13



LA643
H
RB5
RC13



LA644
H
RB18
RC13



LA645
H
RB43
RC13



LA646
H
RA3
RC13



LA647
H
RA34
RC13



LA648
H
RA57
RC13



LA649
F
RB3
RC13



LA650
F
RB4
RC13



LA651
F
RB5
RC13



LA652
F
RB18
RC13



LA653
F
RB43
RC13



LA654
F
RA3
RC13



LA655
F
RA34
RC13



LA656
F
RA57
RC13



LA657
RB1
RB3
RC13



LA658
RB1
RB4
RC13



LA659
RB1
RB5
RC13



LA660
RB1
RB18
RC13



LA661
RB1
RB43
RC13



LA662
RB1
RA3
RC13



LA663
RB1
RA34
RC13



LA664
RB1
RA57
RC13



LA665
RA74
RB3
RC13



LA666
RA74
RB4
RC13



LA667
RA74
RB5
RC13



LA668
RA74
RB18
RC13



LA669
RA74
RB43
RC13



LA670
RA74
RA3
RC13



LA671
RA74
RA34
RC13



LA672
RA74
RA57
RC13



LA673
H
RB3
RC17



LA674
H
RB4
RC17



LA675
H
RB5
RC17



LA676
H
RB18
RC17



LA677
H
RB43
RC17



LA678
H
RA3
RC17



LA679
H
RA34
RC17



LA680
H
RA57
RC17



LA681
F
RB3
RC17



LA682
F
RB4
RC17



LA683
F
RB5
RC17



LA684
F
RB18
RC17



LA685
F
RB43
RC17



LA686
F
RA3
RC17



LA687
F
RA34
RC17



LA688
F
RA57
RC17



LA689
RB1
RB3
RC17



LA690
RB1
RB4
RC17



LA691
RB1
RB5
RC17



LA692
RB1
RB18
RC17



LA693
RB1
RB43
RC17



LA694
RB1
RA3
RC17



LA695
RB1
RA34
RC17



LA696
RB1
RA57
RC17



LA697
RA74
RB3
RC17



LA698
RA74
RB4
RC17



LA699
RA74
RB5
RC17



LA700
RA74
RB18
RC17



LA701
RA74
RB43
RC17



LA702
RA74
RA3
RC17



LA703
RA74
RA34
RC17



LA704
RA74
RA57
RC17



LA705
H
RB3
RC20



LA706
H
RB4
RC20



LA707
H
RB5
RC20



LA708
H
RB18
RC20



LA709
H
RB43
RC20



LA710
H
RA3
RC20



LA711
H
RA34
RC20



LA712
H
RA57
RC20



LA713
F
RB3
RC20



LA714
F
RB4
RC20



LA715
F
RB5
RC20



LA716
F
RB18
RC20



LA717
F
RB43
RC20



LA718
F
RA3
RC20



LA719
F
RA34
RC20



LA720
F
RA57
RC20



LA721
RB1
RB3
RC20



LA722
RB1
RB4
RC20



LA723
RB1
RB5
RC20



LA724
RB1
RB18
RC20



LA725
RB1
RB43
RC20



LA726
RB1
RA3
RC20



LA727
RB1
RA34
RC20



LA728
RB1
RA57
RC20



LA729
RA74
RB3
RC20



LA730
RA74
RB4
RC20



LA731
RA74
RB5
RC20



LA732
RA74
RB18
RC20



LA733
RA74
RB43
RC20



LA734
RA74
RA3
RC20



LA735
RA74
RA34
RC20



LA736
RA74
RA57
RC20



LA737
H
RB3
RC24



LA738
H
RB4
RC24



LA739
H
RB5
RC24



LA740
H
RB18
RC24



LA741
H
RB43
RC24



LA742
H
RA3
RC24



LA743
H
RA34
RC24



LA744
H
RA57
RC24



LA745
F
RB3
RC24



LA746
F
RB4
RC24



LA747
F
RB5
RC24



LA748
F
RB18
RC24



LA749
F
RB43
RC24



LA750
F
RA3
RC24



LA751
F
RA34
RC24



LA752
F
RA57
RC24



LA753
RB1
RB3
RC24



LA754
RB1
RB4
RC24



LA755
RB1
RB5
RC24



LA756
RB1
RB18
RC24



LA757
RB1
RB43
RC24



LA758
RB1
RA3
RC24



LA759
RB1
RA34
RC24



LA760
RB1
RA57
RC24



LA761
RA74
RB3
RC24



LA762
RA74
RB4
RC24



LA763
RA74
RB5
RC24



LA764
RA74
RB18
RC24



LA765
RA74
RB43
RC24



LA766
RA74
RA3
RC24



LA767
RA74
RA34
RC24



LA768
RA74
RA57
RC24



LA769
H
RB3
RC27



LA770
H
RB4
RC27



LA771
H
RB5
RC27



LA772
H
RB18
RC27



LA773
H
RB43
RC27



LA774
H
RA3
RC27



LA775
H
RA34
RC27



LA776
H
RA57
RC27



LA777
F
RB3
RC27



LA778
F
RB4
RC27



LA779
F
RB5
RC27



LA780
F
RB18
RC27



LA781
F
RB43
RC27



LA782
F
RA3
RC27



LA783
F
RA34
RC27



LA784
F
RA57
RC27



LA785
RB1
RB3
RC27



LA786
RB1
RB4
RC27



LA787
RB1
RB5
RC27



LA788
RB1
RB18
RC27



LA789
RB1
RB43
RC27



LA790
RB1
RA3
RC27



LA791
RB1
RA34
RC27



LA792
RB1
RA57
RC27



LA793
RA74
RB3
RC27



LA794
RA74
RB4
RC27



LA795
RA74
RB5
RC27



LA796
RA74
RB18
RC27



LA797
RA74
RB43
RC27



LA798
RA74
RA3
RC27



LA799
RA74
RA34
RC27



LA800
RA74
RA57
RC27



LA801
H
RB3
RC31



LA802
H
RB4
RC31



LA803
H
RB5
RC31



LA804
H
RB18
RC31



LA805
H
RB43
RC31



LA806
H
RA3
RC31



LA807
H
RA34
RC31



LA808
H
RA57
RC31



LA809
F
RB3
RC31



LA810
F
RB4
RC31



LA811
F
RB5
RC31



LA812
F
RB18
RC31



LA813
F
RB43
RC31



LA814
F
RA3
RC31



LA815
F
RA34
RC31



LA816
F
RA57
RC31



LA817
RB1
RB3
RC31



LA818
RB1
RB4
RC31



LA819
RB1
RB5
RC31



LA820
RB1
RB18
RC31



LA821
RB1
RB43
RC31



LA822
RB1
RA3
RC31



LA823
RB1
RA34
RC31



LA824
RB1
RA57
RC31



LA825
RA74
RB3
RC31



LA826
RA74
RB4
RC31



LA827
RA74
RB5
RC31



LA828
RA74
RB18
RC31



LA829
RA74
RB43
RC31



LA830
RA74
RA3
RC31



LA831
RA74
RA34
RC31



LA832
RA74
RA57
RC31



LA833
H
RB3
RC34



LA834
H
RB4
RC34



LA835
H
RB5
RC34



LA836
H
RB18
RC34



LA837
H
RB43
RC34



LA838
H
RA3
RC34



LA839
H
RA34
RC34



LA840
H
RA57
RC34



LA841
F
RB3
RC34



LA842
F
RB4
RC34



LA843
F
RB5
RC34



LA844
F
RB18
RC34



LA845
F
RB43
RC34



LA846
F
RA3
RC34



LA847
F
RA34
RC34



LA848
F
RA57
RC34



LA849
RB1
RB3
RC34



LA850
RB1
RB4
RC34



LA851
RB1
RB5
RC34



LA852
RB1
RB18
RC34



LA853
RB1
RB43
RC34



LA854
RB1
RA3
RC34



LA855
RB1
RA34
RC34



LA856
RB1
RA57
RC34



LA857
RA74
RB3
RC34



LA858
RA74
RB4
RC34



LA859
RA74
RB5
RC34



LA860
RA74
RB18
RC34



LA861
RA74
RB43
RC34



LA862
RA74
RA3
RC34



LA863
RA74
RA34
RC34



LA864
RA74
RA57
RC34



LA865
H
RB3
RC38



LA866
H
RB4
RC38



LA867
H
RB5
RC38



LA868
H
RB18
RC38



LA869
H
RB43
RC38



LA870
H
RA3
RC38



LA871
H
RA34
RC38



LA872
H
RA57
RC38



LA873
F
RB3
RC38



LA874
F
RB4
RC38



LA875
F
RB5
RC38



LA876
F
RB18
RC38



LA877
F
RB43
RC38



LA878
F
RA3
RC38



LA879
F
RA34
RC38



LA880
F
RA57
RC38



LA881
RB1
RB3
RC38



LA882
RB1
RB4
RC38



LA883
RB1
RB5
RC38



LA884
RB1
RB18
RC38



LA885
RB1
RB43
RC38



LA886
RB1
RA3
RC38



LA887
RB1
RA34
RC38



LA888
RB1
RA57
RC38



LA889
RA74
RB3
RC38



LA890
RA74
RB4
RC38



LA891
RA74
RB5
RC38



LA892
RA74
RB18
RC38



LA893
RA74
RB43
RC38



LA894
RA74
RA3
RC38



LA895
RA74
RA34
RC38



LA896
RA74
RA57
RC38,











LA897 through LA1344 based on a structure of Formula II




embedded image



in which R1, R2, and G are defined as:


















Ligand
R1
R2
G









LA897
RB3
RB3
RC2



LA898
RB4
RB4
RC2



LA899
RB5
RB5
RC2



LA900
RB18
RB18
RC2



LA901
RB43
RB43
RC2



LA902
RA3
RA3
RC2



LA903
RA34
RA34
RC2



LA904
RA57
RA57
RC2



LA905
RB3
RB7
RC2



LA906
RB4
RB7
RC2



LA907
RB5
RB7
RC2



LA908
RB18
RB7
RC2



LA909
RB43
RB7
RC2



LA910
RA3
RB7
RC2



LA911
RA34
RB7
RC2



LA912
RA57
RB7
RC2



LA913
RB3
RA3
RC2



LA914
RB4
RA3
RC2



LA915
RB5
RA3
RC2



LA916
RB18
RA3
RC2



LA917
RB43
RA3
RC2



LA918
RA3
RA3
RC2



LA919
RA34
RA3
RC2



LA920
RA57
RA3
RC2



LA921
RB3
RA34
RC2



LA922
RB4
RA34
RC2



LA923
RB5
RA34
RC2



LA924
RB18
RA34
RC2



LA925
RB43
RA34
RC2



LA926
RA3
RA34
RC2



LA927
RA34
RA34
RC2



LA928
RA57
RA34
RC2



LA929
RB3
RB3
RC5



LA930
RB4
RB4
RC5



LA931
RB5
RB5
RC5



LA932
RB18
RB18
RC5



LA933
RB43
RB43
RC5



LA934
RA3
RA3
RC5



LA935
RA34
RA34
RC5



LA936
RA57
RA57
RC5



LA937
RB3
RB7
RC5



LA938
RB4
RB7
RC5



LA939
RB5
RB7
RC5



LA940
RB18
RB7
RC5



LA941
RB43
RB7
RC5



LA942
RA3
RB7
RC5



LA943
RA34
RB7
RC5



LA944
RA57
RB7
RC5



LA945
RB3
RA3
RC5



LA946
RB4
RA3
RC5



LA947
RB5
RA3
RC5



LA948
RB18
RA3
RC5



LA949
RB43
RA3
RC5



LA950
RA3
RA3
RC5



LA951
RA34
RA3
RC5



LA952
RA57
RA3
RC5



LA953
RB3
RA34
RC5



LA954
RB4
RA34
RC5



LA955
RB5
RA34
RC5



LA956
RB18
RA34
RC5



LA957
RB43
RA34
RC5



LA958
RA3
RA34
RC5



LA959
RA34
RA34
RC5



LA960
RA57
RA34
RC5



LA961
RB3
RB3
RC6



LA962
RB4
RB4
RC6



LA963
RB5
RB5
RC6



LA964
RB18
RB18
RC6



LA965
RB43
RB43
RC6



LA966
RA3
RA3
RC6



LA967
RA34
RA34
RC6



LA968
RA57
RA57
RC6



LA969
RB3
RB7
RC6



LA970
RB4
RB7
RC6



LA971
RB5
RB7
RC6



LA972
RB18
RB7
RC6



LA973
RB43
RB7
RC6



LA974
RA3
RB7
RC6



LA975
RA34
RB7
RC6



LA976
RA57
RB7
RC6



LA977
RB3
RA3
RC6



LA978
RB4
RA3
RC6



LA979
RB5
RA3
RC6



LA980
RB18
RA3
RC6



LA981
RB43
RA3
RC6



LA982
RA3
RA3
RC6



LA983
RA34
RA3
RC6



LA984
RA57
RA3
RC6



LA985
RB3
RA34
RC6



LA986
RB4
RA34
RC6



LA987
RB5
RA34
RC6



LA988
RB18
RA34
RC6



LA989
RB43
RA34
RC6



LA990
RA3
RA34
RC6



LA991
RA34
RA34
RC6



LA992
RA57
RA34
RC6



LA993
RB3
RB3
RC7



LA994
RB4
RB4
RC7



LA995
RB5
RB5
RC7



LA996
RB18
RB18
RC7



LA997
RB43
RB43
RC7



LA998
RA3
RA3
RC7



LA999
RA34
RA34
RC7



LA1000
RA57
RA57
RC7



LA1001
RB3
RB7
RC7



LA1002
RB4
RB7
RC7



LA1003
RB5
RB7
RC7



LA1004
RB18
RB7
RC7



LA1005
RB43
RB7
RC7



LA1006
RA3
RB7
RC7



LA1007
RA34
RB7
RC7



LA1008
RA57
RB7
RC7



LA1009
RB3
RA3
RC7



LA1010
RB4
RA3
RC7



LA1011
RB5
RA3
RC7



LA1012
RB18
RA3
RC7



LA1013
RB43
RA3
RC7



LA1014
RA3
RA3
RC7



LA1015
RA34
RA3
RC7



LA1016
RA57
RA3
RC7



LA1017
RB3
RA34
RC7



LA1018
RB4
RA34
RC7



LA1019
RB5
RA34
RC7



LA1020
RB18
RA34
RC7



LA1021
RB43
RA34
RC7



LA1022
RA3
RA34
RC7



LA1023
RA34
RA34
RC7



LA1024
RA57
RA34
RC7



LA1025
RB3
RB3
RC10



LA1026
RB4
RB4
RC10



LA1027
RB5
RB5
RC10



LA1028
RB18
RB18
RC10



LA1029
RB43
RB43
RC10



LA1030
RA3
RA3
RC10



LA1031
RA34
RA34
RC10



LA1032
RA57
RA57
RC10



LA1033
RB3
RB7
RC10



LA1034
RB4
RB7
RC10



LA1035
RB5
RB7
RC10



LA1036
RB18
RB7
RC10



LA1037
RB43
RB7
RC10



LA1038
RA3
RB7
RC10



LA1039
RA34
RB7
RC10



LA1040
RA57
RB7
RC10



LA1041
RB3
RA3
RC10



LA1042
RB4
RA3
RC10



LA1043
RB5
RA3
RC10



LA1044
RB18
RA3
RC10



LA1045
RB43
RA3
RC10



LA1046
RA3
RA3
RC10



LA1047
RA34
RA3
RC10



LA1048
RA57
RA3
RC10



LA1049
RB3
RA34
RC10



LA1050
RB4
RA34
RC10



LA1051
RB5
RA34
RC10



LA1052
RB18
RA34
RC10



LA1053
RB43
RA34
RC10



LA1054
RA3
RA34
RC10



LA1055
RA34
RA34
RC10



LA1056
RA57
RA34
RC10



LA1057
RB3
RB3
RC11



LA1058
RB4
RB4
RC11



LA1059
RB5
RB5
RC11



LA1060
RB18
RB18
RC11



LA1061
RB43
RB43
RC11



LA1062
RA3
RA3
RC11



LA1063
RA34
RA34
RC11



LA1064
RA57
RA57
RC11



LA1065
RB3
RB7
RC11



LA1066
RB4
RB7
RC11



LA1067
RB5
RB7
RC11



LA1068
RB18
RB7
RC11



LA1069
RB43
RB7
RC11



LA1070
RA3
RB7
RC11



LA1071
RA34
RB7
RC11



LA1072
RA57
RB7
RC11



LA1073
RB3
RA3
RC11



LA1074
RB4
RA3
RC11



LA1075
RB5
RA3
RC11



LA1076
RB18
RA3
RC11



LA1077
RB43
RA3
RC11



LA1078
RA3
RA3
RC11



LA1079
RA34
RA3
RC11



LA1080
RA57
RA3
RC11



LA1081
RB3
RA34
RC11



LA1082
RB4
RA34
RC11



LA1083
RB5
RA34
RC11



LA1084
RB18
RA34
RC11



LA1085
RB43
RA34
RC11



LA1086
RA3
RA34
RC11



LA1087
RA34
RA34
RC11



LA1088
RA57
RA34
RC11



LA1089
RB3
RB3
RC13



LA1090
RB4
RB4
RC13



LA1091
RB5
RB5
RC13



LA1092
RB18
RB18
RC13



LA1093
RB43
RB43
RC13



LA1094
RA3
RA3
RC13



LA1095
RA34
RA34
RC13



LA1096
RA57
RA57
RC13



LA1097
RB3
RB7
RC13



LA1098
RB4
RB7
RC13



LA1099
RB5
RB7
RC13



LA1100
RB18
RB7
RC13



LA1101
RB43
RB7
RC13



LA1102
RA3
RB7
RC13



LA1103
RA34
RB7
RC13



LA1104
RA57
RB7
RC13



LA1105
RB3
RA3
RC13



LA1106
RB4
RA3
RC13



LA1107
RB5
RA3
RC13



LA1108
RB18
RA3
RC13



LA1109
RB43
RA3
RC13



LA1110
RA3
RA3
RC13



LA1111
RA34
RA3
RC13



LA1112
RA57
RA3
RC13



LA1113
RB3
RA34
RC13



LA1114
RB4
RA34
RC13



LA1115
RB5
RA34
RC13



LA1116
RB18
RA34
RC13



LA1117
RB43
RA34
RC13



LA1118
RA3
RA34
RC13



LA1119
RA34
RA34
RC13



LA1120
RA57
RA34
RC13



LA1121
RB3
RB3
RC17



LA1122
RB4
RB4
RC17



LA1123
RB5
RB5
RC17



LA1124
RB18
RB18
RC17



LA1125
RB43
RB43
RC17



LA1126
RA3
RA3
RC17



LA1127
RA34
RA34
RC17



LA1128
RA57
RA57
RC17



LA1129
RB3
RB7
RC17



LA1130
RB4
RB7
RC17



LA1131
RB5
RB7
RC17



LA1132
RB18
RB7
RC17



LA1133
RB43
RB7
RC17



LA1134
RA3
RB7
RC17



LA1135
RA34
RB7
RC17



LA1136
RA57
RB7
RC17



LA1137
RB3
RA3
RC17



LA1138
RB4
RA3
RC17



LA1139
RB5
RA3
RC17



LA1140
RB18
RA3
RC17



LA1141
RB43
RA3
RC17



LA1142
RA3
RA3
RC17



LA1143
RA34
RA3
RC17



LA1144
RA57
RA3
RC17



LA1145
RB3
RA34
RC17



LA1146
RB4
RA34
RC17



LA1147
RB5
RA34
RC17



LA1148
RB18
RA34
RC17



LA1149
RB43
RA34
RC17



LA1150
RA3
RA34
RC17



LA1151
RA34
RA34
RC17



LA1152
RA57
RA34
RC17



LA1153
RB3
RB3
RC20



LA1154
RB4
RB4
RC20



LA1155
RB5
RB5
RC20



LA1156
RB18
RB18
RC20



LA1157
RB43
RB43
RC20



LA1158
RA3
RA3
RC20



LA1159
RA34
RA34
RC20



LA1160
RA57
RA57
RC20



LA1161
RB3
RB7
RC20



LA1162
RB4
RB7
RC20



LA1163
RB5
RB7
RC20



LA1164
RB18
RB7
RC20



LA1165
RB43
RB7
RC20



LA1166
RA3
RB7
RC20



LA1167
RA34
RB7
RC20



LA1168
RA57
RB7
RC20



LA1169
RB3
RA3
RC20



LA1170
RB4
RA3
RC20



LA1171
RB5
RA3
RC20



LA1172
RB18
RA3
RC20



LA1173
RB43
RA3
RC20



LA1174
RA3
RA3
RC20



LA1175
RA34
RA3
RC20



LA1176
RA57
RA3
RC20



LA1177
RB3
RA34
RC20



LA1178
RB4
RA34
RC20



LA1179
RB5
RA34
RC20



LA1180
RB18
RA34
RC20



LA1181
RB43
RA34
RC20



LA1182
RA3
RA34
RC20



LA1183
RA34
RA34
RC20



LA1184
RA57
RA34
RC20



LA1185
RB3
RB3
RC24



LA1186
RB4
RB4
RC24



LA1187
RB5
RB5
RC24



LA1188
RB18
RB18
RC24



LA1189
RB43
RB43
RC24



LA1190
RA3
RA3
RC24



LA1191
RA34
RA34
RC24



LA1192
RA57
RA57
RC24



LA1193
RB3
RB7
RC24



LA1194
RB4
RB7
RC24



LA1195
RB5
RB7
RC24



LA1196
RB18
RB7
RC24



LA1197
RB43
RB7
RC24



LA1198
RA3
RB7
RC24



LA1199
RA34
RB7
RC24



LA1200
RA57
RB7
RC24



LA1201
RB3
RA3
RC24



LA1202
RB4
RA3
RC24



LA1203
RB5
RA3
RC24



LA1204
RB18
RA3
RC24



LA1205
RB43
RA3
RC24



LA1206
RA3
RA3
RC24



LA1207
RA34
RA3
RC24



LA1208
RA57
RA3
RC24



LA1209
RB3
RA34
RC24



LA1210
RB4
RA34
RC24



LA1211
RB5
RA34
RC24



LA1212
RB18
RA34
RC24



LA1213
RB43
RA34
RC24



LA1214
RA3
RA34
RC24



LA1215
RA34
RA34
RC24



LA1216
RA57
RA34
RC24



LA1217
RB3
RB3
RC27



LA1218
RB4
RB4
RC27



LA1219
RB5
RB5
RC27



LA1220
RB18
RB18
RC27



LA1221
RB43
RB43
RC27



LA1222
RA3
RA3
RC27



LA1223
RA34
RA34
RC27



LA1224
RA57
RA57
RC27



LA1225
RB3
RB7
RC27



LA1226
RB4
RB7
RC27



LA1227
RB5
RB7
RC27



LA1228
RB18
RB7
RC27



LA1229
RB43
RB7
RC27



LA1230
RA3
RB7
RC27



LA1231
RA34
RB7
RC27



LA1232
RA57
RB7
RC27



LA1233
RB3
RA3
RC27



LA1234
RB4
RA3
RC27



LA1235
RB5
RA3
RC27



LA1236
RB18
RA3
RC27



LA1237
RB43
RA3
RC27



LA1238
RA3
RA3
RC27



LA1239
RA34
RA3
RC27



LA1240
RA57
RA3
RC27



LA1241
RB3
RA34
RC27



LA1242
RB4
RA34
RC27



LA1243
RB5
RA34
RC27



LA1244
RB18
RA34
RC27



LA1245
RB43
RA34
RC27



LA1246
RA3
RA34
RC27



LA1247
RA34
RA34
RC27



LA1248
RA57
RA34
RC27



LA1249
RB3
RB3
RC31



LA1250
RB4
RB4
RC31



LA1251
RB5
RB5
RC31



LA1252
RB18
RB18
RC31



LA1253
RB43
RB43
RC31



LA1254
RA3
RA3
RC31



LA1255
RA34
RA34
RC31



LA1256
RA57
RA57
RC31



LA1257
RB3
RB7
RC31



LA1258
RB4
RB7
RC31



LA1259
RB5
RB7
RC31



LA1260
RB18
RB7
RC31



LA1261
RB43
RB7
RC31



LA1262
RA3
RB7
RC31



LA1263
RA34
RB7
RC31



LA1264
RA57
RB7
RC31



LA1265
RB3
RA3
RC31



LA1266
RB4
RA3
RC31



LA1267
RB5
RA3
RC31



LA1268
RB18
RA3
RC31



LA1269
RB43
RA3
RC31



LA1270
RA3
RA3
RC31



LA1271
RA34
RA3
RC31



LA1272
RA57
RA3
RC31



LA1273
RB3
RA34
RC31



LA1274
RB4
RA34
RC31



LA1275
RB5
RA34
RC31



LA1276
RB18
RA34
RC31



LA1277
RB43
RA34
RC31



LA1278
RA3
RA34
RC31



LA1279
RA34
RA34
RC31



LA1280
RA57
RA34
RC31



LA1281
RB3
RB3
RC34



LA1282
RB4
RB4
RC34



LA1283
RB5
RB5
RC34



LA1284
RB18
RB18
RC34



LA1285
RB43
RB43
RC34



LA1286
RA3
RA3
RC34



LA1287
RA34
RA34
RC34



LA1288
RA57
RA57
RC34



LA1289
RB3
RB7
RC34



LA1290
RB4
RB7
RC34



LA1291
RB5
RB7
RC34



LA1292
RB18
RB7
RC34



LA1293
RB43
RB7
RC34



LA1294
RA3
RB7
RC34



LA1295
RA34
RB7
RC34



LA1296
RA57
RB7
RC34



LA1297
RB3
RA3
RC34



LA1298
RB4
RA3
RC34



LA1299
RB5
RA3
RC34



LA1300
RB18
RA3
RC34



LA1301
RB43
RA3
RC34



LA1302
RA3
RA3
RC34



LA1303
RA34
RA3
RC34



LA1304
RA57
RA3
RC34



LA1305
RB3
RA34
RC34



LA1306
RB4
RA34
RC34



LA1307
RB5
RA34
RC34



LA1308
RB7
RA34
RC34



LA1309
RB13
RA34
RC34



LA1310
RA3
RA34
RC34



LA1311
RA34
RA34
RC34



LA1312
RA57
RA34
RC34



LA1313
RB3
RB3
RC38



LA1314
RB4
RB4
RC38



LA1315
RB5
RB5
RC38



LA1316
RB18
RB18
RC38



LA1317
RB43
RB43
RC38



LA1318
RA3
RA3
RC38



LA1319
RA34
RA34
RC38



LA1320
RA57
RA57
RC38



LA1321
RB3
RB7
RC38



LA1322
RB4
RB7
RC38



LA1323
RB5
RB7
RC38



LA1324
RB18
RB7
RC38



LA1325
RB43
RB7
RC38



LA1326
RA3
RB7
RC38



LA1327
RA34
RB7
RC38



LA1328
RA57
RB7
RC38



LA1329
RB3
RA3
RC38



LA1330
RB4
RA3
RC38



LA1331
RB5
RA3
RC38



LA1332
RB18
RA3
RC38



LA1333
RB43
RA3
RC38



LA1334
RA3
RA3
RC38



LA1335
RA34
RA3
RC38



LA1336
RA57
RA3
RC38



LA1337
RB3
RA34
RC38



LA1338
RB4
RA34
RC38



LA1339
RB5
RA34
RC38



LA1340
RB18
RA34
RC38



LA1341
RB43
RA34
RC38



LA1342
RA3
RA34
RC38



LA1343
RA34
RA34
RC38



LA1344
RA57
RA34
RC38,










LA1345 through LA1792 based on a structure of Formula II




embedded image



in which R1, R2, and G are defined as:


















Ligand
R1
R2
G









LA1345
RB13
RB3
RC2



LA1346
RB13
RB4
RC2



LA1347
RB13
RB5
RC2



LA1348
RB13
RB18
RC2



LA1349
RB13
RB43
RC2



LA1350
RB13
RA3
RC2



LA1351
RB13
RA34
RC2



LA1352
RB13
RA57
RC2



LA1353
RB7
RB3
RC2



LA1354
RB7
RB4
RC2



LA1355
RB7
RB5
RC2



LA1356
RB7
RB18
RC2



LA1357
RB7
RB43
RC2



LA1358
RB7
RA3
RC2



LA1359
RB7
RA34
RC2



LA1360
RB7
RA57
RC2



LA1361
RA3
RB3
RC2



LA1362
RA3
RB4
RC2



LA1363
RA3
RB5
RC2



LA1364
RA3
RB18
RC2



LA1365
RA3
RB43
RC2



LA1366
RA3
RA3
RC2



LA1367
RA3
RA34
RC2



LA1368
RA3
RA57
RC2



LA1369
RA34
RB3
RC2



LA1370
RA34
RB4
RC2



LA1371
RA34
RB5
RC2



LA1372
RA34
RB18
RC2



LA1373
RA34
RB43
RC2



LA1374
RA34
RA3
RC2



LA1375
RA34
RA34
RC2



LA1376
RA34
RA57
RC2



LA1377
RB13
RB3
RC5



LA1378
RB13
RB4
RC5



LA1379
RB13
RB5
RC5



LA1380
RB13
RB18
RC5



LA1381
RB13
RB43
RC5



LA1382
RB13
RA3
RC5



LA1383
RB13
RA34
RC5



LA1384
RB13
RA57
RC5



LA1385
RB7
RB3
RC5



LA1386
RB7
RB4
RC5



LA1387
RB7
RB5
RC5



LA1388
RB7
RB18
RC5



LA1389
RB7
RB43
RC5



LA1390
RB7
RA3
RC5



LA1391
RB7
RA34
RC5



LA1392
RB7
RA57
RC5



LA1393
RA3
RB3
RC5



LA1394
RA3
RB4
RC5



LA1395
RA3
RB5
RC5



LA1396
RA3
RB18
RC5



LA1397
RA3
RB43
RC5



LA1398
RA3
RA3
RC5



LA1399
RA3
RA34
RC5



LA1400
RA3
RA57
RC5



LA1401
RA34
RB3
RC5



LA1402
RA34
RB4
RC5



LA1403
RA34
RB5
RC5



LA1404
RA34
RB18
RC5



LA1405
RA34
RB43
RC5



LA1406
RA34
RA3
RC5



LA1407
RA34
RA34
RC5



LA1408
RA34
RA57
RC5



LA1409
RB13
RB3
RC6



LA1410
RB13
RB4
RC6



LA1411
RB13
RB5
RC6



LA1412
RB13
RB18
RC6



LA1413
RB13
RB43
RC6



LA1414
RB13
RA3
RC6



LA1415
RB13
RA34
RC6



LA1416
RB13
RA57
RC6



LA1417
RB7
RB3
RC6



LA1418
RB7
RB4
RC6



LA1419
RB7
RB5
RC6



LA1420
RB7
RB18
RC6



LA1421
RB7
RB43
RC6



LA1422
RB7
RA3
RC6



LA1423
RB7
RA34
RC6



LA1424
RB7
RA57
RC6



LA1425
RA3
RB3
RC6



LA1426
RA3
RB4
RC6



LA1427
RA3
RB5
RC6



LA1428
RA3
RB18
RC6



LA1429
RA3
RB43
RC6



LA1430
RA3
RA3
RC6



LA1431
RA3
RA34
RC6



LA1432
RA3
RA57
RC6



LA1433
RA34
RB3
RC6



LA1434
RA34
RB4
RC6



LA1435
RA34
RB5
RC6



LA1436
RA34
RB18
RC6



LA1437
RA34
RB43
RC6



LA1438
RA34
RA3
RC6



LA1439
RA34
RA34
RC6



LA1440
RA34
RA57
RC6



LA1441
RB13
RB3
RC7



LA1442
RB13
RB4
RC7



LA1443
RB13
RB5
RC7



LA1444
RB13
RB18
RC7



LA1445
RB13
RB43
RC7



LA1446
RB13
RA3
RC7



LA1447
RB13
RA34
RC7



LA1448
RB13
RA57
RC7



LA1449
RB7
RB3
RC7



LA1450
RB7
RB4
RC7



LA1451
RB7
RB5
RC7



LA1452
RB7
RB18
RC7



LA1453
RB7
RB43
RC7



LA1454
RB7
RA3
RC7



LA1455
RB7
RA34
RC7



LA1456
RB7
RA57
RC7



LA1457
RA3
RB3
RC7



LA1458
RA3
RB4
RC7



LA1459
RA3
RB5
RC7



LA1460
RA3
RB18
RC7



LA1461
RA3
RB43
RC7



LA1462
RA3
RA3
RC7



LA1463
RA3
RA34
RC7



LA1464
RA3
RA57
RC7



LA1465
RA34
RB3
RC7



LA1466
RA34
RB4
RC7



LA1467
RA34
RB5
RC7



LA1468
RA34
RB18
RC7



LA1469
RA34
RB43
RC7



LA1470
RA34
RA3
RC7



LA1471
RA34
RA34
RC7



LA1472
RA34
RA57
RC7



LA1473
RB13
RB3
RC10



LA1474
RB13
RB4
RC10



LA1475
RB13
RB5
RC10



LA1476
RB13
RB18
RC10



LA1477
RB13
RB43
RC10



LA1478
RB13
RA3
RC10



LA1479
RB13
RA34
RC10



LA1480
RB13
RA57
RC10



LA1481
RB7
RB3
RC10



LA1482
RB7
RB4
RC10



LA1483
RB7
RB5
RC10



LA1484
RB7
RB18
RC10



LA1485
RB7
RB43
RC10



LA1486
RB7
RA3
RC10



LA1487
RB7
RA34
RC10



LA1488
RB7
RA57
RC10



LA1489
RA3
RB3
RC10



LA1490
RA3
RB4
RC10



LA1491
RA3
RB5
RC10



LA1492
RA3
RB18
RC10



LA1493
RA3
RB43
RC10



LA1494
RA3
RA3
RC10



LA1495
RA3
RA34
RC10



LA1496
RA3
RA57
RC10



LA1497
RA34
RB3
RC10



LA1498
RA34
RB4
RC10



LA1499
RA34
RB5
RC10



LA1500
RA34
RB18
RC10



LA1501
RA34
RB43
RC10



LA1502
RA34
RA3
RC10



LA1503
RA34
RA34
RC10



LA1504
RA34
RA57
RC10



LA1505
RB13
RB3
RC11



LA1506
RB13
RB4
RC11



LA1507
RB13
RB5
RC11



LA1508
RB13
RB18
RC11



LA1509
RB13
RB43
RC11



LA1510
RB13
RA3
RC11



LA1511
RB3
RA34
RC11



LA1512
RB13
RA57
RC11



LA1513
RB7
RB3
RC11



LA1514
RB7
RB4
RC11



LA1515
RB7
RB5
RC11



LA1516
RB7
RB18
RC11



LA1517
RB7
RB43
RC11



LA1518
RB7
RA3
RC11



LA1519
RB7
RA34
RC11



LA1520
RB7
RA57
RC11



LA1521
RA3
RB3
RC11



LA1522
RA3
RB4
RC11



LA1523
RA3
RB5
RC11



LA1524
RA3
RB18
RC11



LA1525
RA3
RB43
RC11



LA1526
RA3
RA3
RC11



LA1527
RA3
RA34
RC11



LA1528
RA3
RA57
RC11



LA1529
RA34
RB3
RC11



LA1530
RA34
RB4
RC11



LA1531
RA34
RB5
RC11



LA1532
RA34
RB18
RC11



LA1533
RA34
RB43
RC11



LA1534
RA34
RA3
RC11



LA1535
RA34
RA34
RC11



LA1536
RA34
RA57
RC11



LA1537
RB13
RB3
RC13



LA1538
RB13
RB4
RC13



LA1539
RB13
RB5
RC13



LA1540
RB13
RB18
RC13



LA1541
RB13
RB43
RC13



LA1542
RB13
RA3
RC13



LA1543
RB13
RA34
RC13



LA1544
RB13
RA57
RC13



LA1545
RB7
RB3
RC13



LA1546
RB7
RB4
RC13



LA1547
RB7
RB5
RC13



LA1548
RB7
RB18
RC13



LA1549
RB7
RB43
RC13



LA1550
RB7
RA3
RC13



LA1551
RB7
RA34
RC13



LA1552
RB7
RA57
RC13



LA1553
RA3
RB3
RC13



LA1554
RA3
RB4
RC13



LA1555
RA3
RB5
RC13



LA1556
RA3
RB18
RC13



LA1557
RA3
RB43
RC13



LA1558
RA3
RA3
RC13



LA1559
RA3
RA34
RC13



LA1560
RA3
RA57
RC13



LA1561
RA34
RB3
RC13



LA1562
RA34
RB4
RC13



LA1563
RA34
RB5
RC13



LA1564
RA34
RB18
RC13



LA1565
RA34
RB43
RC13



LA1566
RA34
RA3
RC13



LA1567
RA34
RA34
RC13



LA1568
RA34
RA57
RC13



LA1569
RB13
RB3
RC17



LA1570
RB13
RB4
RC17



LA1571
RB13
RB5
RC17



LA1572
RB13
RB18
RC17



LA1573
RB13
RB43
RC17



LA1574
RB13
RA3
RC17



LA1575
RB13
RA34
RC17



LA1576
RB13
RA57
RC17



LA1577
RB7
RB3
RC17



LA1578
RB7
RB4
RC17



LA1579
RB7
RB5
RC17



LA1580
RB7
RB18
RC17



LA1581
RB7
RB43
RC17



LA1582
RB7
RA3
RC17



LA1583
RB7
RA34
RC17



LA1584
RB7
RA57
RC17



LA1585
RA3
RB3
RC17



LA1586
RA3
RB4
RC17



LA1587
RA3
RB5
RC17



LA1588
RA3
RB18
RC17



LA1589
RA3
RB43
RC17



LA1590
RA3
RA3
RC17



LA1591
RA3
RA34
RC17



LA1592
RA3
RA57
RC17



LA1593
RA34
RB3
RC17



LA1594
RA34
RB4
RC17



LA1595
RA34
RB5
RC17



LA1596
RA34
RB18
RC17



LA1597
RA34
RB43
RC17



LA1598
RA34
RA3
RC17



LA1599
RA34
RA34
RC17



LA1600
RA34
RA57
RC17



LA1601
RB13
RB3
RC20



LA1602
RB13
RB4
RC20



LA1603
RB13
RB5
RC20



LA1604
RB13
RB18
RC20



LA1605
RB13
RB43
RC20



LA1606
RB13
RA3
RC20



LA1607
RB13
RA34
RC20



LA1608
RB13
RA57
RC20



LA1609
RB7
RB3
RC20



LA1610
RB7
RB4
RC20



LA1611
RB7
RB5
RC20



LA1612
RB7
RB18
RC20



LA1613
RB7
RB43
RC20



LA1614
RB7
RA3
RC20



LA1615
RB7
RA34
RC20



LA1616
RB7
RA57
RC20



LA1617
RA3
RB3
RC20



LA1618
RA3
RB4
RC20



LA1619
RA3
RB5
RC20



LA1620
RA3
RB18
RC20



LA1621
RA3
RB43
RC20



LA1622
RA3
RA3
RC20



LA1623
RA3
RA34
RC20



LA1624
RA3
RA57
RC20



LA1625
RA34
RB3
RC20



LA1626
RA34
RB4
RC20



LA1627
RA34
RB5
RC20



LA1628
RA34
RB18
RC20



LA1629
RA34
RB43
RC20



LA1630
RA34
RA3
RC20



LA1631
RA34
RA34
RC20



LA1632
RA34
RA57
RC20



LA1633
RB13
RB3
RC24



LA1634
RB13
RB4
RC24



LA1635
RB13
RB5
RC24



LA1636
RB13
RB18
RC24



LA1637
RB13
RB43
RC24



LA1638
RB13
RA3
RC24



LA1639
RB13
RA34
RC24



LA1640
RB13
RA57
RC24



LA1641
RB7
RB3
RC24



LA1642
RB7
RB4
RC24



LA1643
RB7
RB5
RC24



LA1644
RB7
RB18
RC24



LA1645
RB7
RB43
RC24



LA1646
RB7
RA3
RC24



LA1647
RB7
RA34
RC24



LA1648
RB7
RA57
RC24



LA1649
RA3
RB3
RC24



LA1650
RA3
RB4
RC24



LA1651
RA3
RB5
RC24



LA1652
RA3
RB18
RC24



LA1653
RA3
RB43
RC24



LA1654
RA3
RA3
RC24



LA1655
RA3
RA34
RC24



LA1656
RA3
RA57
RC24



LA1657
RA34
RB3
RC24



LA1658
RA34
RB4
RC24



LA1659
RA34
RB5
RC24



LA1660
RA34
RB18
RC24



LA1661
RA34
RB43
RC24



LA1662
RA34
RA3
RC24



LA1663
RA34
RA34
RC24



LA1664
RA34
RA57
RC24



LA1665
RB13
RB3
RC27



LA1666
RB13
RB4
RC27



LA1667
RB13
RB5
RC27



LA1668
RB13
RB18
RC27



LA1669
RB13
RB43
RC27



LA1670
RB13
RA3
RC27



LA1671
RB13
RA34
RC27



LA1672
RB13
RA57
RC27



LA1673
RB7
RB3
RC27



LA1674
RB7
RB4
RC27



LA1675
RB7
RB5
RC27



LA1676
RB7
RB18
RC27



LA1677
RB7
RB43
RC27



LA1678
RB7
RA3
RC27



LA1679
RB7
RA34
RC27



LA1680
RB7
RA57
RC27



LA1681
RA3
RB3
RC27



LA1682
RA3
RB4
RC27



LA1683
RA3
RB5
RC27



LA1684
RA3
RB18
RC27



LA1685
RA3
RB43
RC27



LA1686
RA3
RA3
RC27



LA1687
RA3
RA34
RC27



LA1688
RA3
RA57
RC27



LA1689
RA34
RB3
RC27



LA1690
RA34
RB4
RC27



LA1691
RA34
RB5
RC27



LA1692
RA34
RB18
RC27



LA1693
RA34
RB43
RC27



LA1694
RA34
RA3
RC27



LA1695
RA34
RA34
RC27



LA1696
RA34
RA57
RC27



LA1697
RB13
RB3
RC31



LA1698
RB13
RB4
RC31



LA1699
RB13
RB5
RC31



LA1700
RB13
RB18
RC31



LA1701
RB13
RB43
RC31



LA1702
RB13
RA3
RC31



LA1703
RB13
RA34
RC31



LA1704
RB13
RA57
RC31



LA1705
RB7
RB3
RC31



LA1706
RB7
RB4
RC31



LA1707
RB7
RB5
RC31



LA1708
RB7
RB18
RC31



LA1709
RB7
RB43
RC31



LA1710
RB7
RA3
RC31



LA1711
RB7
RA34
RC31



LA1712
RB7
RA57
RC31



LA1713
RA3
RB3
RC31



LA1714
RA3
RB4
RC31



LA1715
RA3
RB5
RC31



LA1716
RA3
RB18
RC31



LA1717
RA3
RB43
RC31



LA1718
RA3
RA3
RC31



LA1719
RA3
RA34
RC31



LA1720
RA3
RA57
RC31



LA1721
RA34
RB3
RC31



LA1722
RA34
RB4
RC31



LA1723
RA34
RB5
RC31



LA1724
RA34
RB18
RC31



LA1725
RA34
RB43
RC31



LA1726
RA34
RA3
RC31



LA1727
RA34
RA34
RC31



LA1728
RA34
RA57
RC31



LA1729
RB13
RB3
RC34



LA1730
RB13
RB4
RC34



LA1731
RB13
RB5
RC34



LA1732
RB13
RB18
RC34



LA1733
RB13
RB43
RC34



LA1734
RB13
RA3
RC34



LA1735
RB13
RA34
RC34



LA1736
RB13
RA57
RC34



LA1737
RB7
RB3
RC34



LA1738
RB7
RB4
RC34



LA1739
RB7
RB5
R34



LA1740
RB7
RB18
RC34



LA1741
RB7
RB43
RC34



LA1742
RB7
RA3
RC34



LA1743
RB7
RA34
RC34



LA1744
RB7
RA57
RC34



LA1745
RA3
RB3
RC34



LA1746
RA3
RB4
RC34



LA1747
RA3
RB5
RC34



LA1748
RA3
RB18
RC34



LA1749
RA3
RB43
RC34



LA1750
RA3
RA3
RC34



LA1751
RA3
RA34
RC34



LA1752
RA3
RA57
RC34



LA1753
RA34
RB3
RC34



LA1754
RA34
RB4
RC34



LA1755
RA34
RB5
RC34



LA1756
RA34
RB7
RC34



LA1757
RA34
RB13
RC34



LA1758
RA34
RA3
RC34



LA1759
RA34
RA34
RC34



LA1760
RA34
RA57
RC34



LA1761
RB13
RB3
RC38



LA1762
RB13
RB4
RC38



LA1763
RB13
RB5
RC38



LA1764
RB3
RB18
RC38



LA1765
RB13
RB43
RC38



LA1766
RB13
RA3
RC38



LA1767
RB13
RA34
RC38



LA1768
RB13
RA57
RC38



LA1769
RB7
RB3
RC38



LA1770
RB7
RB4
RC38



LA1771
RB7
RB5
RC38



LA1772
RB7
RB18
RC38



LA1773
RB7
RB43
RC38



LA1774
RB7
RA3
RC38



LA1775
RB7
RA34
RC38



LA1776
RB7
RA57
RC38



LA1777
RA3
RB3
RC38



LA1778
RA3
RB4
RC38



LA1779
RA3
RB5
RC38



LA1780
RA3
RB18
RC38



LA1781
RA3
RB43
RC38



LA1782
RA3
RA3
RC38



LA1783
RA3
RA34
RC38



LA1784
RA3
RA57
RC38



LA1785
RA34
RB3
RC38



LA1786
RA34
RB4
RC38



LA1787
RA34
RB5
RC38



LA1788
RA34
RB18
RC38



LA1789
RA34
RB43
RC38



LA1790
RA34
RA3
RC38



LA1791
RA34
RA34
RC38



LA1792
RA34
RA57
RC38,











wherein RA1 to RA74 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



wherein RB1 to RB42 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image



wherein RC1 to RC42 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)x(LB)y(LC)z, wherein LA is selected from the group consisting of LA1 to LA1792, and LB and LC are each a bidentate ligand; and x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M. In some embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC), wherein LA, LB, and LC are as defined above; and wherein LA, LB, and LC are different from each other. In some embodiments, the compound has a formula of Pt(LA)(LB); wherein LA, LB, and LC are as defined above, and wherein LA and LB can be same or different. In some embodiments of the compound having the formula Pt(LA)(LB), the LA and LB are connected to form a tetradentate ligand.


In some embodiments, the compound having the formula of M(LA)x(LB)y(LC)z defined above, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image



where each Y1 to Y13 are independently selected from the group consisting of carbon and nitrogen; Y′ is selected from the group consisting of B Re, N Re, P Re, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf are optionally fused or joined to form a ring; each Ra, Rb, Rc, and Rd may independently represent from mono substitution to the maximum possible number of substitutions, or no substitution; each Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined above; and any two adjacent substituents of Ra, Rb, Rc, and Rd are optionally fused or joined to form a ring or form a multidentate ligand.


In some embodiments, the compound having the formula of M(LA)x(LB)y(LC)z defined above, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image


In some embodiments of the compound having a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other, the compound is Compound Ax having the formula Ir(LA)3, the Compound By having the formula Ir(LA)(LB)2, or the Compound Cz having the formula Ir(LA)2(LC);

    • where LA is selected from the group consisting of LAi, where i is an integer from 1 to 1792;
    • where LB is selected from the group consisting of LBk, where k is an integer from 1 to 468;
    • where LC is selected from the group consisting of LCi, where j is an integer from 1 to 1260;
    • where x=i, y=468i+k−468, and z=12601+j−1260;
    • where each LBk has the following structure:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and each LCj has a structure of Formula X




embedded image



in which R1, R2, and R3 are defined as:


















Ligand
R1
R2
R3









LC1
RD1
RD1
H



LC2
RD2
RD2
H



LC3
RD3
RD3
H



LC4
RD4
RD4
H



LC5
RD5
RD5
H



LC6
RD6
RD6
H



LC7
RD7
RD7
H



LC8
RD8
RD8
H



LC9
RD9
RD9
H



LC10
RD10
RD10
H



LC11
RD11
RD11
H



LC12
RD12
RD12
H



LC13
RD13
RD13
H



LC14
RD14
RD14
H



LC15
RD15
RD15
H



LC16
RD16
RD16
H



LC17
RD17
RD17
H



LC18
RD18
RD18
H



LC19
RD19
RD19
H



LC20
RD20
RD20
H



LC21
RD21
RD21
H



LC22
RD22
RD22
H



LC23
RD23
RD23
H



LC24
RD24
RD24
H



LC25
RD25
RD25
H



LC26
RD26
RD26
H



LC27
RD27
RD27
H



LC28
RD28
RD28
H



LC29
RD29
RD29
H



LC30
RD30
RD30
H



LC31
RD31
RD31
H



LC32
RD32
RD32
H



LC33
RD33
RD33
H



LC34
RD34
RD34
H



LC35
RD35
RD35
H



LC36
RD40
RD40
H



LC37
RD41
RD41
H



LC38
RD42
RD42
H



LC39
RD64
RD64
H



LC40
RD66
RD66
H



LC41
RD68
RD68
H



LC42
RD76
RD76
H



LC43
RD1
RD2
H



LC44
RD1
RD3
H



LC45
RD1
RD4
H



LC46
RD1
RD5
H



LC47
RD1
RD6
H



LC48
RD1
RD7
H



LC49
RD1
RD8
H



LC50
RD1
RD9
H



LC51
RD1
RD10
H



LC52
RD1
RD11
H



LC53
RD1
RD12
H



LC54
RD1
RD13
H



LC55
RD1
RD14
H



LC56
RD1
RD15
H



LC57
RD1
RD16
H



LC58
RD1
RD17
H



LC59
RD1
RD18
H



LC60
RD1
RD19
H



LC61
RD1
RD20
H



LC62
RD1
RD21
H



LC63
RD1
RD22
H



LC64
RD1
RD23
H



LC65
RD1
RD24
H



LC66
RD1
RD25
H



LC67
RD1
RD26
H



LC68
RD1
RD27
H



LC69
RD1
RD28
H



LC70
RD1
RD29
H



LC71
RD1
RD30
H



LC72
RD1
RD31
H



LC73
RD1
RD32
H



LC74
RD1
RD33
H



LC75
RD1
RD34
H



LC76
RD1
RD35
H



LC77
RD1
RD40
H



LC78
RD1
RD41
H



LC79
RD1
RD42
H



LC80
RD1
RD64
H



LC81
RD1
RD66
H



LC82
RD1
RD68
H



LC83
RD1
RD76
H



LC84
RD2
RD1
H



LC85
RD2
RD3
H



LC86
RD2
RD4
H



LC87
RD2
RD5
H



LC88
RD2
RD6
H



LC89
RD2
RD7
H



LC90
RD2
RD8
H



LC91
RD2
RD9
H



LC92
RD2
RD10
H



LC93
RD2
RD11
H



LC94
RD2
RD12
H



LC95
RD2
RD13
H



LC96
RD2
RD14
H



LC97
RD2
RD15
H



LC98
RD2
RD16
H



LC99
RD2
RD17
H



LC100
RD2
RD18
H



LC101
RD2
RD19
H



LC102
RD2
RD20
H



LC103
RD2
RD21
H



LC104
RD2
RD22
H



LC105
RD2
RD23
H



LC106
RD2
RD24
H



LC107
RD2
RD25
H



LC108
RD2
RD26
H



LC109
RD2
RD27
H



LC110
RD2
RD28
H



LC111
RD2
RD29
H



LC112
RD2
RD30
H



LC113
RD2
RD31
H



LC114
RD2
RD32
H



LC115
RD2
RD33
H



LC116
RD2
RD34
H



LC117
RD2
RD35
H



LC118
RD2
RD40
H



LC119
RD2
RD41
H



LC120
RD2
RD42
H



LC121
RD2
RD64
H



LC122
RD2
RD66
H



LC123
RD2
RD68
H



LC124
RD2
RD76
H



LC125
RD3
RD4
H



LC126
RD3
RD5
H



LC127
RD3
RD6
H



LC128
RD3
RD7
H



LC129
RD3
RD8
H



LC130
RD3
RD9
H



LC131
RD3
RD10
H



LC132
RD3
RD11
H



LC133
RD3
RD12
H



LC134
RD3
RD13
H



LC135
RD3
RD14
H



LC136
RD3
RD15
H



LC137
RD3
RD16
H



LC138
RD3
RD17
H



LC139
RD3
RD18
H



LC140
RD3
RD19
H



LC141
RD3
RD20
H



LC142
RD3
RD21
H



LC143
RD3
RD22
H



LC144
RD3
RD23
H



LC145
RD3
RD24
H



LC146
RD3
RD25
H



LC147
RD3
RD26
H



LC148
RD3
RD27
H



LC149
RD3
RD28
H



LC150
RD3
RD29
H



LC151
RD3
RD30
H



LC152
RD3
RD31
H



LC153
RD3
RD32
H



LC154
RD3
RD33
H



LC155
RD3
RD34
H



LC156
RD3
RD35
H



LC157
RD3
RD40
H



LC158
RD3
RD41
H



LC159
RD3
RD42
H



LC160
RD3
RD64
H



LC161
RD3
RD66
H



LC162
RD3
RD68
H



LC163
RD3
RD76
H



LC164
RD4
RD5
H



LC165
RD4
RD6
H



LC166
RD4
RD7
H



LC167
RD4
RD8
H



LC168
RD4
RD9
H



LC169
RD4
RD10
H



LC170
RD4
RD11
H



LC171
RD4
RD12
H



LC172
RD4
RD13
H



LC173
RD4
RD14
H



LC174
RD4
RD15
H



LC175
RD4
RD16
H



LC176
RD4
RD17
H



LC177
RD4
RD18
H



LC178
RD4
RD19
H



LC179
RD4
RD20
H



LC180
RD4
RD21
H



LC181
RD4
RD22
H



LC182
RD4
RD23
H



LC183
RD4
RD24
H



LC184
RD4
RD25
H



LC185
RD4
RD26
H



LC186
RD4
RD27
H



LC187
RD4
RD28
H



LC188
RD4
RD29
H



LC189
RD4
RD30
H



LC190
RD4
RD31
H



LC191
RD4
RD32
H



LC192
RD4
RD33
H



LC193
RD4
RD34
H



LC194
RD4
RD35
H



LC195
RD4
RD40
H



LC196
RD4
RD41
H



LC197
RD4
RD42
H



LC198
RD4
RD64
H



LC199
RD4
RD66
H



LC200
RD4
RD68
H



LC201
RD4
RD76
H



LC202
RD4
RD1
H



LC203
RD7
RD5
H



LC204
RD7
RD6
H



LC205
RD7
RD8
H



LC206
RD7
RD9
H



LC207
RD7
RD10
H



LC208
RD7
RD11
H



LC209
RD7
RD12
H



LC210
RD7
RD13
H



LC211
RD7
RD14
H



LC212
RD7
RD15
H



LC213
RD7
RD16
H



LC214
RD7
RD17
H



LC215
RD7
RD18
H



LC216
RD7
RD19
H



LC217
RD7
RD20
H



LC218
RD7
RD21
H



LC219
RD7
RD22
H



LC220
RD7
RD23
H



LC221
RD7
RD24
H



LC222
RD7
RD25
H



LC223
RD7
RD26
H



LC224
RD7
RD27
H



LC225
RD7
RD28
H



LC226
RD7
RD29
H



LC227
RD7
RD30
H



LC228
RD7
RD31
H



LC229
RD7
RD32
H



LC230
RD7
RD33
H



LC231
RD7
RD34
H



LC232
RD7
RD35
H



LC233
RD7
RD40
H



LC234
RD7
RD41
H



LC235
RD7
RD42
H



LC236
RD7
RD64
H



LC237
RD7
RD66
H



LC238
RD7
RD68
H



LC239
RD7
RD76
H



LC240
RD8
RD5
H



LC241
RD8
RD6
H



LC242
RD8
RD9
H



LC243
RD8
RD10
H



LC244
RD8
RD11
H



LC245
RD8
RD12
H



LC246
RD8
RD13
H



LC247
RD8
RD14
H



LC248
RD8
RD15
H



LC249
RD8
RD16
H



LC250
RD8
RD17
H



LC251
RD8
RD18
H



LC252
RD8
RD19
H



LC253
RD8
RD20
H



LC254
RD8
RD21
H



LC255
RD8
RD22
H



LC256
RD8
RD23
H



LC257
RD8
RD24
H



LC258
RD8
RD25
H



LC259
RD8
RD26
H



LC260
RD8
RD27
H



LC261
RD8
RD28
H



LC262
RD8
RD29
H



LC263
RD8
RD30
H



LC264
RD8
RD31
H



LC265
RD8
RD32
H



LC266
RD8
RD33
H



LC267
RD8
RD34
H



LC268
RD8
RD35
H



LC269
RD8
RD40
H



LC270
RD8
RD41
H



LC271
RD8
RD42
H



LC272
RD8
RD64
H



LC273
RD8
RD66
H



LC274
RD8
RD68
H



LC275
RD8
RD76
H



LC276
RD11
RD5
H



LC277
RD11
RD6
H



LC278
RD11
RD9
H



LC279
RD11
RD10
H



LC280
RD11
RD12
H



LC281
RD11
RD13
H



LC282
RD11
RD14
H



LC283
RD11
RD15
H



LC284
RD11
RD16
H



LC285
RD11
RD17
H



LC286
RD11
RD18
H



LC287
RD11
RD19
H



LC288
RD11
RD20
H



LC289
RD11
RD21
H



LC290
RD11
RD22
H



LC291
RD11
RD23
H



LC292
RD11
RD24
H



LC293
RD11
RD25
H



LC294
RD11
RD26
H



LC295
RD11
RD27
H



LC296
RD11
RD28
H



LC297
RD11
RD29
H



LC298
RD11
RD30
H



LC299
RD11
RD31
H



LC300
RD11
RD32
H



LC301
RD11
RD33
H



LC302
RD11
RD34
H



LC303
RD11
RD35
H



LC304
RD11
RD40
H



LC305
RD11
RD41
H



LC306
RD11
RD42
H



LC307
RD11
RD64
H



LC308
RD11
RD66
H



LC309
RD11
RD68
H



LC310
RD11
RD76
H



LC311
RD13
RD5
H



LC312
RD13
RD6
H



LC313
RD13
RD9
H



LC314
RD13
RD10
H



LC315
RD13
RD12
H



LC316
RD13
RD14
H



LC317
RD13
RD15
H



LC318
RD13
RD16
H



LC319
RD13
RD17
H



LC320
RD13
RD18
H



LC321
RD13
RD19
H



LC322
RD13
RD20
H



LC323
RD13
RD21
H



LC324
RD13
RD22
H



LC325
RD13
RD23
H



LC326
RD13
RD24
H



LC327
RD13
RD25
H



LC328
RD13
RD26
H



LC329
RD13
RD27
H



LC330
RD13
RD28
H



LC331
RD13
RD29
H



LC332
RD13
RD30
H



LC333
RD13
RD31
H



LC334
RD13
RD32
H



LC335
RD13
RD33
H



LC336
RD13
RD34
H



LC337
RD13
RD35
H



LC338
RD13
RD40
H



LC339
RD13
RD41
H



LC340
RD13
RD42
H



LC341
RD13
RD64
H



LC342
RD13
RD66
H



LC343
RD13
RD68
H



LC344
RD13
RD76
H



LC345
RD14
RD5
H



LC346
RD14
RD6
H



LC347
RD14
RD9
H



LC348
RD14
RD10
H



LC349
RD14
RD12
H



LC350
RD14
RD15
H



LC351
RD14
RD16
H



LC352
RD14
RD17
H



LC353
RD14
RD18
H



LC354
RD14
RD19
H



LC355
RD14
RD20
H



LC356
RD14
RD21
H



LC357
RD14
RD22
H



LC358
RD14
RD23
H



LC359
RD14
RD24
H



LC360
RD14
RD25
H



LC361
RD14
RD26
H



LC362
RD14
RD27
H



LC363
RD14
RD28
H



LC364
RD14
RD29
H



LC365
RD14
RD30
H



LC366
RD14
RD31
H



LC367
RD14
RD32
H



LC368
RD14
RD33
H



LC369
RD14
RD34
H



LC370
RD14
RD35
H



LC371
RD14
RD40
H



LC372
RD14
RD41
H



LC373
RD14
RD42
H



LC374
RD14
RD64
H



LC375
RD14
RD66
H



LC376
RD14
RD68
H



LC377
RD14
RD76
H



LC378
RD22
RD5
H



LC379
RD22
RD6
H



LC380
RD22
RD9
H



LC381
RD22
RD10
H



LC382
RD22
RD12
H



LC383
RD22
RD15
H



LC384
RD22
RD16
H



LC385
RD22
RD17
H



LC386
RD22
RD18
H



LC387
RD22
RD19
H



LC388
RD22
RD20
H



LC389
RD22
RD21
H



LC390
RD22
RD23
H



LC391
RD22
RD24
H



LC392
RD22
RD25
H



LC393
RD22
RD26
H



LC394
RD22
RD27
H



LC395
RD22
RD28
H



LC396
RD22
RD29
H



LC397
RD22
RD30
H



LC398
RD22
RD31
H



LC399
RD22
RD32
H



LC400
RD22
RD33
H



LC401
RD22
RD34
H



LC402
RD22
RD35
H



LC403
RD22
RD40
H



LC404
RD22
RD41
H



LC405
RD22
RD42
H



LC406
RD22
RD64
H



LC407
RD22
RD66
H



LC408
RD22
RD68
H



LC409
RD22
RD76
H



LC410
RD26
RD5
H



LC411
RD26
RD6
H



LC412
RD26
RD9
H



LC413
RD26
RD10
H



LC414
RD26
RD12
H



LC415
RD26
RD15
H



LC416
RD26
RD16
H



LC417
RD26
RD17
H



LC418
RD26
RD18
H



LC419
RD26
RD19
H



LC420
RD26
RD20
H



LC421
RD26
RD21
H



LC422
RD26
RD23
H



LC423
RD26
RD24
H



LC424
RD26
RD25
H



LC425
RD26
RD27
H



LC426
RD26
RD28
H



LC427
RD26
RD29
H



LC428
RD26
RD30
H



LC429
RD26
RD31
H



LC430
RD26
RD32
H



LC431
RD26
RD33
H



LC432
RD26
RD34
H



LC433
RD26
RD35
H



LC434
RD26
RD40
H



LC435
RD26
RD41
H



LC436
RD26
RD42
H



LC437
RD26
RD64
H



LC438
RD26
RD66
H



LC439
RD26
RD68
H



LC440
RD26
RD76
H



LC441
RD35
RD5
H



LC442
RD35
RD6
H



LC443
RD35
RD9
H



LC444
RD35
RD10
H



LC445
RD35
RD12
H



LC446
RD35
RD15
H



LC447
RD35
RD16
H



LC448
RD35
RD17
H



LC449
RD35
RD18
H



LC450
RD35
RD19
H



LC451
RD35
RD20
H



LC452
RD35
RD21
H



LC453
RD35
RD23
H



LC454
RD35
RD24
H



LC455
RD35
RD25
H



LC456
RD35
RD27
H



LC457
RD35
RD28
H



LC458
RD35
RD29
H



LC459
RD35
RD30
H



LC460
RD35
RD31
H



LC461
RD35
RD32
H



LC462
RD35
RD33
H



LC463
RD35
RD34
H



LC464
RD35
RD40
H



LC465
RD35
RD41
H



LC466
RD35
RD42
H



LC467
RD35
RD64
H



LC468
RD35
RD66
H



LC469
RD35
RD68
H



LC470
RD35
RD76
H



LC471
RD40
RD5
H



LC472
RD40
RD6
H



LC473
RD40
RD9
H



LC474
RD40
RD10
H



LC475
RD40
RD12
H



LC476
RD40
RD15
H



LC477
RD40
RD16
H



LC478
RD40
RD17
H



LC479
RD40
RD18
H



LC480
RD40
RD19
H



LC481
RD40
RD20
H



LC482
RD40
RD21
H



LC483
RD40
RD23
H



LC484
RD40
RD24
H



LC485
RD40
RD25
H



LC486
RD40
RD27
H



LC487
RD40
RD28
H



LC488
RD40
RD29
H



LC489
RD40
RD30
H



LC490
RD40
RD31
H



LC491
RD40
RD32
H



LC492
RD40
RD33
H



LC493
RD40
RD34
H



LC494
RD40
RD41
H



LC495
RD40
RD42
H



LC496
RD40
RD64
H



LC497
RD40
RD66
H



LC498
RD40
RD68
H



LC499
RD40
RD76
H



LC500
RD41
RD5
H



LC501
RD41
RD6
H



LC502
RD41
RD9
H



LC503
RD41
RD10
H



LC504
RD41
RD12
H



LC505
RD41
RD15
H



LC506
RD41
RD16
H



LC507
RD41
RD17
H



LC508
RD41
RD18
H



LC509
RD41
RD19
H



LC510
RD41
RD20
H



LC511
RD41
RD21
H



LC512
RD41
RD23
H



LC513
RD41
RD24
H



LC514
RD41
RD25
H



LC515
RD41
RD27
H



LC516
RD41
RD28
H



LC517
RD41
RD29
H



LC518
RD41
RD30
H



LC519
RD41
RD31
H



LC520
RD41
RD32
H



LC521
RD41
RD33
H



LC522
RD41
RD34
H



LC523
RD41
RD42
H



LC524
RD41
RD64
H



LC525
RD41
RD66
H



LC526
RD41
RD68
H



LC527
RD41
RD76
H



LC528
RD64
RD5
H



LC529
RD64
RD6
H



LC530
RD64
RD9
H



LC531
RD64
RD10
H



LC532
RD64
RD12
H



LC533
RD64
RD15
H



LC534
RD64
RD16
H



LC535
RD64
RD17
H



LC536
RD64
RD18
H



LC537
RD64
RD19
H



LC538
RD64
RD20
H



LC539
RD64
RD21
H



LC540
RD64
RD23
H



LC541
RD64
RD24
H



LC542
RD64
RD25
H



LC543
RD64
RD27
H



LC544
RD64
RD28
H



LC545
RD64
RD29
H



LC546
RD64
RD30
H



LC547
RD64
RD31
H



LC548
RD64
RD32
H



LC549
RD64
RD33
H



LC550
RD64
RD34
H



LC551
RD64
RD42
H



LC552
RD64
RD64
H



LC553
RD64
RD66
H



LC554
RD64
RD68
H



LC555
RD64
RD76
H



LC556
RD66
RD5
H



LC557
RD66
RD6
H



LC558
RD66
RD9
H



LC559
RD66
RD10
H



LC560
RD66
RD12
H



LC561
RD66
RD15
H



LC562
RD66
RD16
H



LC563
RD66
RD17
H



LC564
RD66
RD18
H



LC565
RD66
RD19
H



LC566
RD66
RD20
H



LC567
RD66
RD21
H



LC568
RD66
RD23
H



LC569
RD66
RD24
H



LC570
RD66
RD25
H



LC571
RD66
RD27
H



LC572
RD66
RD28
H



LC573
RD66
RD29
H



LC574
RD66
RD30
H



LC575
RD66
RD31
H



LC576
RD66
RD32
H



LC577
RD66
RD33
H



LC578
RD66
RD34
H



LC579
RD66
RD42
H



LC580
RD66
RD68
H



LC581
RD66
RD76
H



LC582
RD68
RD5
H



LC583
RD68
RD6
H



LC584
RD68
RD9
H



LC585
RD68
RD10
H



LC586
RD68
RD12
H



LC587
RD68
RD15
H



LC588
RD68
RD16
H



LC589
RD68
RD17
H



LC590
RD68
RD18
H



LC591
RD68
RD19
H



LC592
RD68
RD20
H



LC593
RD68
RD21
H



LC594
RD68
RD23
H



LC595
RD68
RD24
H



LC596
RD68
RD25
H



LC597
RD68
RD27
H



LC598
RD68
RD28
H



LC599
RD68
RD29
H



LC600
RD68
RD30
H



LC601
RD68
RD31
H



LC602
RD68
RD32
H



LC603
RD68
RD33
H



LC604
RD68
RD34
H



LC605
RD68
RD42
H



LC606
RD68
RD76
H



LC607
RD76
RD5
H



LC608
RD76
RD6
H



LC609
RD76
RD9
H



LC610
RD76
RD10
H



LC611
RD76
RD12
H



LC612
RD76
RD15
H



LC613
RD76
RD16
H



LC614
RD76
RD17
H



LC615
RD76
RD18
H



LC616
RD76
RD19
H



LC617
RD76
RD20
H



LC618
RD76
RD21
H



LC619
RD76
RD23
H



LC620
RD76
RD24
H



LC621
RD76
RD25
H



LC622
RD76
RD27
H



LC623
RD76
RD28
H



LC624
RD76
RD29
H



LC625
RD76
RD30
H



LC626
RD76
RD31
H



LC627
RD76
RD32
H



LC628
RD76
RD33
H



LC629
RD76
RD34
H



LC630
RD76
RD42
H



LC631
RD1
RD1
RD1



LC632
RD2
RD2
RD1



LC633
RD3
RD3
RD1



LC634
RD4
RD4
RD1



LC635
RD5
RD5
RD1



LC636
RD6
RD6
RD1



LC637
RD7
RD7
RD1



LC638
RD8
RD8
RD1



LC639
RD9
RD9
RD1



LC640
RD10
RD10
RD1



LC641
RD11
RD11
RD1



LC642
RD12
RD12
RD1



LC643
RD13
RD13
RD1



LC644
RD14
RD14
RD1



LC645
RD15
RD15
RD1



LC646
RD16
RD16
RD1



LC647
RD17
RD17
RD1



LC648
RD18
RD18
RD1



LC649
RD19
RD19
RD1



LC650
RD20
RD20
RD1



LC651
RD21
RD21
RD1



LC652
RD22
RD22
RD1



LC653
RD23
RD23
RD1



LC654
RD24
RD24
RD1



LC655
RD25
RD25
RD1



LC656
RD26
RD26
RD1



LC657
RD27
RD27
RD1



LC658
RD28
RD28
RD1



LC659
RD29
RD29
RD1



LC660
RD30
RD30
RD1



LC661
RD31
RD31
RD1



LC662
RD32
RD32
RD1



LC663
RD33
RD33
RD1



LC664
RD34
RD34
RD1



LC665
RD35
RD35
RD1



LC666
RD40
RD40
RD1



LC667
RD41
RD41
RD1



LC668
RD42
RD42
RD1



LC669
RD64
RD64
RD1



LC670
RD66
RD66
RD1



LC671
RD68
RD68
RD1



LC672
RD76
RD76
RD1



LC673
RD1
RD2
RD1



LC674
RD1
RD3
RD1



LC675
RD1
RD4
RD1



LC676
RD1
RD5
RD1



LC677
RD1
RD6
RD1



LC678
RD1
RD7
RD1



LC679
RD1
RD8
RD1



LC680
RD1
RD9
RD1



LC681
RD1
RD10
RD1



LC682
RD1
RD11
RD1



LC683
RD1
RD12
RD1



LC684
RD1
RD13
RD1



LC685
RD1
RD14
RD1



LC686
RD1
RD15
RD1



LC687
RD1
RD16
RD1



LC688
RD1
RD17
RD1



LC689
RD1
RD8
RD1



LC690
RD1
RD9
RD1



LC691
RD1
RD20
RD1



LC692
RD1
RD21
RD1



LC693
RD1
RD22
RD1



LC694
RD1
RD23
RD1



LC695
RD1
RD24
RD1



LC696
RD1
RD25
RD1



LC697
RD1
RD26
RD1



LC698
RD1
RD27
RD1



LC699
RD1
RD28
RD1



LC700
RD1
RD29
RD1



LC701
RD1
RD30
RD1



LC702
RD1
RD31
RD1



LC703
RD1
RD32
RD1



LC704
RD1
RD33
RD1



LC705
RD1
RD34
RD1



LC706
RD1
RD35
RD1



LC707
RD1
RD40
RD1



LC708
RD1
RD41
RD1



LC709
RD1
RD42
RD1



LC710
RD1
RD64
RD1



LC711
RD1
RD66
RD1



LC712
RD1
RD68
RD1



LC713
RD1
RD76
RD1



LC714
RD2
RD1
RD1



LC715
RD2
RD3
RD1



LC716
RD2
RD4
RD1



LC717
RD2
RD5
RD1



LC718
RD2
RD6
RD1



LC719
RD2
RD7
RD1



LC720
RD2
RD8
RD1



LC721
RD2
RD9
RD1



LC722
RD2
RD10
RD1



LC723
RD2
RD11
RD1



LC724
RD2
RD12
RD1



LC725
RD2
RD13
RD1



LC726
RD2
RD14
RD1



LC727
RD2
RD15
RD1



LC728
RD2
RD16
RD1



LC729
RD2
RD17
RD1



LC730
RD2
RD18
RD1



LC731
RD2
RD19
RD1



LC732
RD2
RD20
RD1



LC733
RD2
RD21
RD1



LC734
RD2
RD22
RD1



LC735
RD2
RD23
RD1



LC736
RD2
RD24
RD1



LC737
RD2
RD25
RD1



LC738
RD2
RD26
RD1



LC739
RD2
RD27
RD1



LC740
RD2
RD28
RD1



LC741
RD2
RD29
RD1



LC742
RD2
RD30
RD1



LC743
RD2
RD31
RD1



LC744
RD2
RD32
RD1



LC745
RD2
RD33
RD1



LC746
RD2
RD34
RD1



LC747
RD2
RD35
RD1



LC748
RD2
RD40
RD1



LC749
RD2
RD41
RD1



LC750
RD2
RD42
RD1



LC751
RD2
RD64
RD1



LC752
RD2
RD66
RD1



LC753
RD2
RD68
RD1



LC754
RD2
RD76
RD1



LC755
RD3
RD4
RD1



LC756
RD3
RD5
RD1



LC757
RD3
RD6
RD1



LC758
RD3
RD7
RD1



LC759
RD3
RD8
RD1



LC760
RD3
RD9
RD1



LC761
RD3
RD10
RD1



LC762
RD3
RD11
RD1



LC763
RD3
RD12
RD1



LC764
RD3
RD13
RD1



LC765
RD3
RD14
RD1



LC766
RD3
RD15
RD1



LC767
RD3
RD6
RD1



LC768
RD3
RD17
RD1



LC769
RD3
RD18
RD1



LC770
RD3
RD19
RD1



LC771
RD3
RD20
RD1



LC772
RD3
RD21
RD1



LC773
RD3
RD22
RD1



LC774
RD3
RD23
RD1



LC775
RD3
RD24
RD1



LC776
RD3
RD25
RD1



LC777
RD3
RD26
RD1



LC778
RD3
RD27
RD1



LC779
RD3
RD28
RD1



LC780
RD3
RD29
RD1



LC781
RD3
RD30
RD1



LC782
RD3
RD31
RD1



LC783
RD3
RD32
RD1



LC784
RD3
RD33
RD1



LC785
RD3
RD34
RD1



LC786
RD3
RD35
RD1



LC787
RD3
RD40
RD1



LC788
RD3
RD41
RD1



LC789
RD3
RD42
RD1



LC790
RD3
RD64
RD1



LC791
RD3
RD66
RD1



LC792
RD3
RD68
RD1



LC793
RD3
RD76
RD1



LC794
RD4
RD5
RD1



LC795
RD4
RD6
RD1



LC796
RD4
RD7
RD1



LC797
RD4
RD8
RD1



LC798
RD4
RD9
RD1



LC799
RD4
RD10
RD1



LC800
RD4
RD11
RD1



LC801
RD4
RD12
RD1



LC802
RD4
RD13
RD1



LC803
RD4
RD14
RD1



LC804
RD4
RD15
RD1



LC805
RD4
RD16
RD1



LC806
RD4
RD17
RD1



LC807
RD4
RD18
RD1



LC808
RD4
RD19
RD1



LC809
RD4
RD20
RD1



LC810
RD4
RD21
RD1



LC811
RD4
RD22
RD1



LC812
RD4
RD23
RD1



LC813
RD4
RD24
RD1



LC814
RD4
RD25
RD1



LC815
RD4
RD26
RD1



LC816
RD4
RD27
RD1



LC817
RD4
RD28
RD1



LC818
RD4
RD29
RD1



LC819
RD4
RD30
RD1



LC820
RD4
RD31
RD1



LC821
RD4
RD32
RD1



LC822
RD4
RD33
RD1



LC823
RD4
RD34
RD1



LC824
RD4
RD35
RD1



LC825
RD4
RD40
RD1



LC826
RD4
RD41
RD1



LC827
RD4
RD42
RD1



LC828
RD4
RD64
RD1



LC829
RD4
RD66
RD1



LC830
RD4
RD68
RD1



LC831
RD4
RD76
RD1



LC832
RD4
RD1
RD1



LC833
RD7
RD5
RD1



LC834
RD7
RD6
RD1



LC835
RD7
RD8
RD1



LC836
RD7
RD9
RD1



LC837
RD7
RD10
RD1



LC838
RD7
RD11
RD1



LC839
RD7
RD12
RD1



LC840
RD7
RD13
RD1



LC841
RD7
RD14
RD1



LC842
RD7
RD15
RD1



LC843
RD7
RD16
RD1



LC844
RD7
RD17
RD1



LC845
RD7
RD18
RD1



LC846
RD7
RD19
RD1



LC847
RD7
RD20
RD1



LC848
RD7
RD21
RD1



LC849
RD7
RD22
RD1



LC850
RD7
RD23
RD1



LC851
RD7
RD24
RD1



LC852
RD7
RD25
RD1



LC853
RD7
RD26
RD1



LC854
RD7
RD27
RD1



LC855
RD7
RD28
RD1



LC856
RD7
RD29
RD1



LC857
RD7
RD30
RD1



LC858
RD7
RD31
RD1



LC859
RD7
RD32
RD1



LC860
RD7
RD33
RD1



LC861
RD7
RD34
RD1



LC862
RD7
RD35
RD1



LC863
RD7
RD40
RD1



LC864
RD7
RD41
RD1



LC865
RD7
RD42
RD1



LC866
RD7
RD64
RD1



LC867
RD7
RD66
RD1



LC868
RD7
RD68
RD1



LC869
RD7
RD76
RD1



LC870
RD8
RD5
RD1



LC871
RD8
RD6
RD1



LC872
RD8
RD9
RD1



LC873
RD8
RD10
RD1



LC874
RD8
RD11
RD1



LC875
RD8
RD12
RD1



LC876
RD8
RD13
RD1



LC877
RD8
RD14
RD1



LC878
RD8
RD15
RD1



LC879
RD8
RD16
RD1



LC880
RD8
RD17
RD1



LC881
RD8
RD18
RD1



LC882
RD8
RD19
RD1



LC883
RD8
RD20
RD1



LC884
RD8
RD21
RD1



LC885
RD8
RD22
RD1



LC886
RD8
RD23
RD1



LC887
RD8
RD24
RD1



LC888
RD8
RD25
RD1



LC889
RD8
RD26
RD1



LC890
RD8
RD27
RD1



LC891
RD8
RD28
RD1



LC892
RD8
RD29
RD1



LC893
RD8
RD30
RD1



LC894
RD8
RD31
RD1



LC895
RD8
RD32
RD1



LC896
RD8
RD33
RD1



LC897
RD8
RD34
RD1



LC898
RD8
RD35
RD1



LC899
RD8
RD40
RD1



LC900
RD8
RD41
RD1



LC901
RD8
RD42
RD1



LC902
RD8
RD64
RD1



LC903
RD8
RD66
RD1



LC904
RD8
RD68
RD1



LC905
RD8
RD76
RD1



LC906
RD11
RD5
RD1



LC907
RD11
RD6
RD1



LC908
RD11
RD9
RD1



LC909
RD11
RD10
RD1



LC910
RD11
RD12
RD1



LC911
RD11
RD13
RD1



LC912
RD11
RD14
RD1



LC913
RD11
RD15
RD1



LC914
RD11
RD16
RD1



LC915
RD11
RD17
RD1



LC916
RD11
RD18
RD1



LC917
RD11
RD19
RD1



LC918
RD11
RD20
RD1



LC919
RD11
RD21
RD1



LC920
RD11
RD22
RD1



LC921
RD11
RD23
RD1



LC922
RD11
RD24
RD1



LC923
RD11
RD25
RD1



LC924
RD11
RD26
RD1



LC925
RD11
RD27
RD1



LC926
RD11
RD28
RD1



LC927
RD11
RD29
RD1



LC928
RD11
RD30
RD1



LC929
RD11
RD31
RD1



LC930
RD11
RD32
RD1



LC931
RD11
RD33
RD1



LC932
RD11
RD34
RD1



LC933
RD11
RD35
RD1



LC934
RD11
RD40
RD1



LC935
RD11
RD41
RD1



LC936
RD11
RD42
RD1



LC937
RD11
RD64
RD1



LC938
RD11
RD66
RD1



LC939
RD11
RD68
RD1



LC940
RD11
RD76
RD1



LC941
RD13
RD5
RD1



LC942
RD13
RD6
RD1



LC943
RD13
RD9
RD1



LC944
RD13
RD10
RD1



LC945
RD13
RD12
RD1



LC946
RD13
RD14
RD1



LC947
RD13
RD15
RD1



LC948
RD13
RD16
RD1



LC949
RD13
RD17
RD1



LC950
RD13
RD18
RD1



LC951
RD13
RD19
RD1



LC952
RD13
RD20
RD1



LC953
RD13
RD21
RD1



LC954
RD13
RD22
RD1



LC955
RD13
RD23
RD1



LC956
RD13
RD24
RD1



LC957
RD13
RD25
RD1



LC958
RD13
RD26
RD1



LC959
RD13
RD27
RD1



LC960
RD13
RD28
RD1



LC961
RD13
RD29
RD1



LC962
RD13
RD30
RD1



LC963
RD13
RD31
RD1



LC964
RD13
RD32
RD1



LC965
RD13
RD33
RD1



LC966
RD13
RD34
RD1



LC967
RD13
RD35
RD1



LC968
RD13
RD40
RD1



LC969
RD13
RD41
RD1



LC970
RD13
RD42
RD1



LC971
RD13
RD64
RD1



LC972
RD13
RD66
RD1



LC973
RD13
RD68
RD1



LC974
RD13
RD76
RD1



LC975
RD14
RD5
RD1



LC976
RD14
RD6
RD1



LC977
RD14
RD9
RD1



LC978
RD14
RD10
RD1



LC979
RD14
RD12
RD1



LC980
RD14
RD15
RD1



LC981
RD14
RD16
RD1



LC982
RD14
RD17
RD1



LC983
RD14
RD18
RD1



LC984
RD14
RD19
RD1



LC985
RD14
RD20
RD1



LC986
RD14
RD21
RD1



LC987
RD14
RD22
RD1



LC988
RD14
RD23
RD1



LC989
RD14
RD24
RD1



LC990
RD14
RD25
RD1



LC991
RD14
RD26
RD1



LC992
RD14
RD27
RD1



LC993
RD14
RD28
RD1



LC994
RD14
RD29
RD1



LC995
RD14
RD30
RD1



LC996
RD14
RD31
RD1



LC997
RD14
RD32
RD1



LC998
RD14
RD33
RD1



LC999
RD14
RD34
RD1



LC1000
RD14
RD35
RD1



LC1001
RD14
RD40
RD1



LC1002
RD14
RD41
RD1



LC1003
RD14
RD42
RD1



LC1004
RD14
RD64
RD1



LC1005
RD14
RD66
RD1



LC1006
RD14
RD68
RD1



LC1007
RD14
RD76
RD1



LC1008
RD22
RD5
RD1



LC1009
RD22
RD6
RD1



LC1010
RD22
RD9
RD1



LC1011
RD22
RD10
RD1



LC1012
RD22
RD12
RD1



LC1013
RD22
RD15
RD1



LC1014
RD22
RD16
RD1



LC1015
RD22
RD17
RD1



LC1016
RD22
RD18
RD1



LC1017
RD22
RD19
RD1



LC1018
RD22
RD20
RD1



LC1019
RD22
RD21
RD1



LC1020
RD22
RD23
RD1



LC1021
RD22
RD24
RD1



LC1022
RD22
RD25
RD1



LC1023
RD22
RD26
RD1



LC1024
RD22
RD27
RD1



LC1025
RD22
RD28
RD1



LC1026
RD22
RD29
RD1



LC1027
RD22
RD30
RD1



LC1028
RD22
RD31
RD1



LC1029
RD22
RD32
RD1



LC1030
RD22
RD33
RD1



LC1031
RD22
RD34
RD1



LC1032
RD22
RD35
RD1



LC1033
RD22
RD40
RD1



LC1034
RD22
RD41
RD1



LC1035
RD22
RD42
RD1



LC1036
RD22
RD64
RD1



LC1037
RD22
RD66
RD1



LC1038
RD22
RD68
RD1



LC1039
RD22
RD76
RD1



LC1040
RD26
RD5
RD1



LC1041
RD26
RD6
RD1



LC1042
RD26
RD9
RD1



LC1043
RD26
RD10
RD1



LC1044
RD26
RD12
RD1



LC1045
RD26
RD15
RD1



LC1046
RD26
RD16
RD1



LC1047
RD26
RD17
RD1



LC1048
RD26
RD18
RD1



LC1049
RD26
RD19
RD1



LC1050
RD26
RD20
RD1



LC1051
RD26
RD21
RD1



LC1052
RD26
RD23
RD1



LC1053
RD26
RD24
RD1



LC1054
RD26
RD25
RD1



LC1055
RD26
RD27
RD1



LC1056
RD26
RD28
RD1



LC1057
RD26
RD29
RD1



LC1058
RD26
RD30
RD1



LC1059
RD26
RD31
RD1



LC1060
RD26
RD32
RD1



LC1061
RD26
RD33
RD1



LC1062
RD26
RD34
RD1



LC1063
RD26
RD35
RD1



LC1064
RD26
RD40
RD1



LC1065
RD26
RD41
RD1



LC1066
RD26
RD42
RD1



LC1067
RD26
RD64
RD1



LC1068
RD26
RD66
RD1



LC1069
RD26
RD68
RD1



LC1070
RD26
RD76
RD1



LC1071
RD35
RD5
RD1



LC1072
RD35
RD6
RD1



LC1073
RD35
RD9
RD1



LC1074
RD35
RD10
RD1



LC1075
RD35
RD12
RD1



LC1076
RD35
RD15
RD1



LC1077
RD35
RD16
RD1



LC1078
RD35
RD17
RD1



LC1079
RD35
RD18
RD1



LC1080
RD35
RD19
RD1



LC1081
RD35
RD20
RD1



LC1082
RD35
RD21
RD1



LC1083
RD35
RD23
RD1



LC1084
RD35
RD24
RD1



LC1085
RD35
RD25
RD1



LC1086
RD35
RD27
RD1



LC1087
RD35
RD28
RD1



LC1088
RD35
RD29
RD1



LC1089
RD35
RD30
RD1



LC1090
RD35
RD31
RD1



LC1091
RD35
RD32
RD1



LC1092
RD35
RD33
RD1



LC1093
RD35
RD34
RD1



LC1094
RD35
RD40
RD1



LC1095
RD35
RD41
RD1



LC1096
RD35
RD42
RD1



LC1097
RD35
RD64
RD1



LC1098
RD35
RD66
RD1



LC1099
RD35
RD68
RD1



LC1100
RD35
RD76
RD1



LC1101
RD40
RD5
RD1



LC1102
RD40
RD6
RD1



LC1103
RD40
RD9
RD1



LC1104
RD40
RD10
RD1



LC1105
RD40
RD12
RD1



LC1106
RD40
RD15
RD1



LC1107
RD40
RD16
RD1



LC1108
RD40
RD17
RD1



LC1109
RD40
RD8
RD1



LC1110
RD40
RD9
RD1



LC1111
RD40
RD20
RD1



LC1112
RD40
RD21
RD1



LC1113
RD40
RD23
RD1



LC1114
RD40
RD24
RD1



LC1115
RD40
RD25
RD1



LC1116
RD40
RD27
RD1



LC1117
RD40
RD28
RD1



LC1118
RD40
RD29
RD1



LC1119
RD40
RD30
RD1



LC1120
RD40
RD31
RD1



LC1121
RD40
RD32
RD1



LC1122
RD40
RD33
RD1



LC1123
RD40
RD34
RD1



LC1124
RD40
RD41
RD1



LC1125
RD40
RD42
RD1



LC1126
RD40
RD64
RD1



LC1127
RD40
RD66
RD1



LC1128
RD40
RD68
RD1



LC1129
RD40
RD76
RD1



LC1130
RD41
RD5
RD1



LC1131
RD41
RD6
RD1



LC1132
RD41
RD9
RD1



LC1133
RD41
RD10
RD1



LC1134
RD41
RD12
RD1



LC1135
RD41
RD15
RD1



LC1136
RD41
RD16
RD1



LC1137
RD41
RD17
RD1



LC1138
RD41
RD18
RD1



LC1139
RD41
RD19
RD1



LC1140
RD41
RD20
RD1



LC1141
RD41
RD21
RD1



LC1142
RD41
RD23
RD1



LC1143
RD41
RD24
RD1



LC1144
RD41
RD25
RD1



LC1145
RD41
RD27
RD1



LC1146
RD41
RD28
RD1



LC1147
RD41
RD29
RD1



LC1148
RD41
RD30
RD1



LC1149
RD41
RD31
RD1



LC1150
RD41
RD32
RD1



LC1151
RD41
RD33
RD1



LC1152
RD41
RD34
RD1



LC1153
RD41
RD42
RD1



LC1154
RD41
RD64
RD1



LC1155
RD41
RD66
RD1



LC1156
RD41
RD68
RD1



LC1157
RD41
RD76
RD1



LC1158
RD64
RD5
RD1



LC1159
RD64
RD6
RD1



LC1160
RD64
RD9
RD1



LC1161
RD64
RD10
RD1



LC1162
RD64
RD12
RD1



LC1163
RD64
RD15
RD1



LC1164
RD64
RD16
RD1



LC1165
RD64
RD17
RD1



LC1166
RD64
RD18
RD1



LC1167
RD64
RD19
RD1



LC1168
RD64
RD20
RD1



LC1169
RD64
RD21
RD1



LC1170
RD64
RD23
RD1



LC1171
RD64
RD24
RD1



LC1172
RD64
RD25
RD1



LC1173
RD64
RD27
RD1



LC1174
RD64
RD28
RD1



LC1175
RD64
RD29
RD1



LC1176
RD64
RD30
RD1



LC1177
RD64
RD31
RD1



LC1178
RD64
RD32
RD1



LC1179
RD64
RD33
RD1



LC1180
RD64
RD34
RD1



LC1181
RD64
RD42
RD1



LC1182
RD64
RD64
RD1



LC1183
RD64
RD66
RD1



LC1184
RD64
RD68
RD1



LC1185
RD64
RD76
RD1



LC1186
RD66
RD5
RD1



LC1187
RD66
RD6
RD1



LC1188
RD66
RD9
RD1



LC1189
RD66
RD10
RD1



LC1190
RD66
RD12
RD1



LC1191
RD66
RD15
RD1



LC1192
RD66
RD16
RD1



LC1193
RD66
RD17
RD1



LC1194
RD66
RD18
RD1



LC1195
RD66
RD19
RD1



LC1196
RD66
RD20
RD1



LC1197
RD66
RD21
RD1



LC1198
RD66
RD23
RD1



LC1199
RD66
RD24
RD1



LC1200
RD66
RD25
RD1



LC1201
RD66
RD27
RD1



LC1202
RD66
RD28
RD1



LC1203
RD66
RD29
RD1



LC1204
RD66
RD30
RD1



LC1205
RD66
RD31
RD1



LC1206
RD66
RD32
RD1



LC1207
RD66
RD33
RD1



LC1208
RD66
RD34
RD1



LC1209
RD66
RD42
RD1



LC1210
RD66
RD68
RD1



LC1211
RD66
RD76
RD1



LC1212
RD68
RD5
RD1



LC1213
RD68
RD6
RD1



LC1214
RD68
RD9
RD1



LC1215
RD68
RD10
RD1



LC1216
RD68
RD12
RD1



LC1217
RD68
RD15
RD1



LC1218
RD68
RD16
RD1



LC1219
RD68
RD17
RD1



LC1220
RD68
RD18
RD1



LC1221
RD68
RD19
RD1



LC1222
RD68
RD20
RD1



LC1223
RD68
RD21
RD1



LC1224
RD68
RD23
RD1



LC1225
RD68
RD24
RD1



LC1226
RD68
RD25
RD1



LC1227
RD68
RD27
RD1



LC1228
RD68
RD28
RD1



LC1229
RD68
RD29
RD1



LC1230
RD68
RD30
RD1



LC1231
RD68
RD31
RD1



LC1232
RD68
RD32
RD1



LC1233
RD68
RD33
RD1



LC1234
RD68
RD34
RD1



LC1235
RD68
RD42
RD1



LC1236
RD68
RD76
RD1



LC1237
RD76
RD5
RD1



LC1238
RD76
RD6
RD1



LC1239
RD76
RD9
RD1



LC1240
RD76
RD10
RD1



LC1241
RD76
RD12
RD1



LC1242
RD76
RD15
RD1



LC1243
RD76
RD16
RD1



LC1244
RD76
RD17
RD1



LC1245
RD76
RD18
RD1



LC1246
RD76
RD19
RD1



LC1247
RD76
RD20
RD1



LC1248
RD76
RD21
RD1



LC1249
RD76
RD23
RD1



LC1250
RD76
RD24
RD1



LC1251
RD76
RD25
RD1



LC1252
RD76
RD27
RD1



LC1253
RD76
RD28
RD1



LC1254
RD76
RD29
RD1



LC1255
RD76
RD30
RD1



LC1256
RD76
RD31
RD1



LC1257
RD76
RD32
RD1



LC1258
RD76
RD33
RD1



LC1259
RD76
RD34
RD1



LC1260
RD76
RD42
RD1,











where RD1 to RD21 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


According to another aspect, an organic light emitting device (OLED) comprising: an anode; a cathode; and an organic layer disposed between the anode and the cathode is disclosed. The




embedded image


organic layer comprises the compound comprising the ligand LA of Formula I described herein.


A consumer product also disclosed that comprises the OLED whose organic layer comprises the compound comprising the ligand LA of Formula I described herein.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


An emissive region in an OLED is also disclosed. The emissive region comprises the compound comprising the ligand LA of Formula I




embedded image



described herein.


In some embodiments of the emissive region, the compound is an emissive dopant or a non-emissive dopant. In some embodiments, the emissive region further comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some embodiments, the emissive region further comprises a host, wherein the host is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, published on Mar. 14, 2019 as U.S. patent application publication No. 2019/0081248, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others).


When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligand(s). In som embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


The organic layer can also include a host. In some embodiments, two or more hosts are preferred. In some embodiments, the hosts used maybe a) bipolar, b) electron transporting, c) hole transporting or d) wide band gap materials that play little role in charge transport. In some embodiments, the host can include a metal complex. The host can be a triphenylene containing benzo-fused thiophene or benzo-fused furan. Any substituent in the host can be an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡C—CnH2n+1, Ar1, Ar1-Ar2, and CnH2n-Ar1, or the host has no substitutions. In the preceding substituents n can range from 1 to 10; and Ar1 and Ar2 can be independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof. The host can be an inorganic compound, for example a Zn containing inorganic material e.g. ZnS.


The host can be a compound comprising at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. The host can include a metal complex. The host can be, but is not limited to, a specific compound selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


Additional information on possible hosts is provided below.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


Combination with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


embedded image



HIL/HTL:


A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


Host:


The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is an another ligand, k′ is an integer from 1 to 3.


ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


EXPERIMENTAL

All reactions were carried out under nitrogen protection unless specified otherwise. All solvents for reactions were anhydrous and used as received from the commercial sources.


Synthesis of Comparative Compound 1 (CC1)
Synthesis of 2-(4-Cyclohexylnaphthalen-2-yl)pyridine



embedded image


A mixture of 2-bromo-pyridine (2.8 g, 17.72 mmol), 2-(4-cyclohexylnaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.44 g, 22.12 mmol) and 2M aqueous potassium carbonate (17.5 mL, 35 mmol) in 1,4-dioxane (80 ml) was sparged with nitrogen for 10 minutes. Bis(triphenylphosphine)pallad-ium(II) dichloride (0.375 g, 0.534 mmol) was added and sparging continued for 10 more minutes. The reaction mixture was heated at reflux overnight (˜16 hrs). The reaction mixture was then cooled to room temperature and diluted with water (50 mL) and ethyl acetate (100 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over by sodium sulfate, filtered and concentrated under reduced pressure. The crude product was dissolved in 50% dichloromethane in hexane and passed through a pad of basic alumina (30 g), rinsing with 50% dichloromethane in hexane (50 mL). The product (4.4 g) was recrystallized from methanol to give 2-(4-cyclohexylnaphthalen-2-yl)pyridine (4.21 g, 83% yield) as a white solid.


Synthesis of CC1




embedded image


(A) A solution of 2-(4-cyclohexylnaphthalen-2-yl)pyridine (1.2 g, 4.2 mmol) in triethyl phosphate (16 mL) was sparged with nitrogen for 10 minutes. Iridium(III) chloride hydrate (862 mg, 2.33 mmol) was added and the reaction mixture stirred at 120° C. for 25 hours. The cooled reaction mixture was diluted with DIUF water (16 mL), filtered and the solid was washed with ethanol (3×10 mL). The solid was air-dried to give di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphth-1′yl)-pyridin-1-yl)]diiridium(III) as an orange solid (2.11 g, >100% yield). (B) A suspension of di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphth-1′yl)-pyridin-1-yl)]diiridium(III) (2.11 g, 1.16 mmol) and acetylacetone (630 mg, 6.3 mmol) in ethanol (25 mL) was sparged with nitrogen for 10 minutes. Powdered potassium carbonate (1.2 g, 8.4 mmol) was added and the reaction mixture stirred at room temperature in the dark for 5 hours. DIUF Water (25 mL) was added, the slurry was stirred for 1 hour, filtered, and the solid was washed with water (3×5 mL) and ethanol (3×5 mL) then air-dried. The orange solid (˜2 g) was was loaded onto a column of silica gel (50 g), eluting with 1:1 dichloromethane and hexanes (250 mL). The cleanest product fractions were concentrated and the solid was dried in a vacuum oven at 50° C. to give the compound CC1, bis[(2-(4-cyclohexylnaphthyl-1′-yl)-pyridin-1-yl)]-(2,4-pen-tanedionato-k2O,O′)iridium(III) (0.81 mg, 40% yield) as an orange solid.


Synthesis of Comparative Compound 2 (CC2)
Synthesis of 2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine



embedded image


A mixture of 2-bromo-4-methylpyridine (3.8 g, 22.09 mmol), 2-(4-cyclohexylnaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9.29 g, 27.6 mmol) and 2M aqueous potassium carbonate (17.5 mL, 35 mmol) in 1,4-dioxane (80 mL) was sparged with nitrogen for 10 minutes. Bis(triphenylphosphine) palladium(II) dichloride (0.543 g, 0.773 mmol) was added and sparging continued for 10 more minutes. The reaction mixture was heated at reflux overnight (˜16 hours). The reaction mixture was cooled to room temperature and diluted with water (50 mL) and ethyl acetate (100 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over by sodium sulfate, filtered and concentrated under reduced pressure. The crude product was dissolved in 50% dichloromethane in hexane and passed through a pad of basic alumina (30 g), rinsing with 50% dichloromethane in hexane (50 mL), and the filtrate was concentrated under reduced pressure. The crude product was purified with 120 g silica gel column, eluting with 33 to 66% dichloromethane in hexanes The product (4.4 g) was recrystallized from methanol to give 2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine (6.2 g, 93% yield) as an off-white solid.


Synthesis of CC2




embedded image


(A) A solution of 2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine (3.32 g, 11.0 mmol) in 2-ethoxyethanol (120 mL) and DIUF water (30 mL) was sparged with nitrogen for 5 minutes. Iridium(III) chloride hydrate (1.58 g, 5.0 mmol) was added and sparging continued for an additional 5 minutes, then the reaction mixture was heated at 90° C. overnight (˜16 hours). The reaction mixture was cooled to −50° C., filtered, washing the solids with water (2×40 mL). The solid was air-dried for 10 minutes to give di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine-2-yl)]diiridium(III) (3.1 g, crude) as a orangish solid. (B) A solution of crude di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine-2-yl)]-diiridium(III) (3.07 g, 3.7 mmol) and pentane-2,4-dione (0.74 g, 7.4 mmol) in 2-ethoxyethanol (60 mL) was sparged with nitrogen for 5 minutes, powdered potassium carbonate (1.02 g, 6.0 mmol) was added and sparging continued for 3 additional minutes. The reaction mixture was stirred at room temperature overnight (˜16 hours) in a flask wrapped in aluminum foil to exclude light. DIUF water (60 mL) was added, the suspension was stirred for 30 minutes and the resulting red solid was filtered. The red solid was suspended in dichloromethane (10 mL), loaded directly onto a column of silica gel and the column eluted with 40% dichloro-methane in hexanes. Product fractions were concentrated under reduced pressure and the solid was dried at 50° C. under high vacuum to give the compound CC2, bis[(2-(4-cyclohexylnaphthalen-2-yl)-4-methylpyridine-2-yl)]-(pentane-2,4-dio-nato-k2O,O′)iridium(III) (0.95 g, 22% yield) as an orange solid.


Synthesis of Comparative Compound 3 (CC3)
Synthesis of 2-(4-Cyclohexylnaphthalen-2-yl)-4-(trifluoromethyl)pyridine



embedded image


2.0M aq. potassium carbonate (23 mL, 44.2 mmol) was added to a solution of 2-bromo-4-(trifluoromethyl)pyridine (5.0 g, 22.1 mmol), (1-cyclohexylnaphalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9.3 g, 27.7 mmol) and trans-dichlorobis(triphenylphosphine)palladium(II) (470 mg, 0.66 mmol) in 1,4-dioxane (100 mL) and the reaction mixture was sparged with nitrogen for 10 minutes. The mixture was heated at reflux for 18 hours before it was cooled to room temperature, saturated brine (20 mL) was added and the layers were separated. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was chromatograph-ed on silica gel, eluting with 30% dichloromethane in heptanes then increasing to 100% dichloromethane to ensure complete elution of product. The product fractions were concentrated under reduced pressure to give 2-(4-cyclo-hexylnaphthalen-2-yl)-4-(trifluoromethyl)pyridine (5.8 g, 75% yield) as a white solid.


Synthesis of CC3




embedded image


(A) A solution of 2-(4-cyclohexylnaph-thalen-2-yl)-4-(trifluoromethyl)pyridine (3.91 g, 11.0 mmol) in 2-ethoxy-ethanol (120 mL) and DIUF water (30 mL) was sparged with nitrogen for 5 minutes. Iridium(III) chloride hydrate (1.58 g, 5.0 mmol) was added, sparging continued for 5 minutes, then the reaction mixture heated at 90° C. for 7 hours. The reaction mixture was cooled to −50° C., filtered, the solids washed with water (30 mL) then air-dried for 10 minutes to give the compound CC3, di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphthalen-2-yl)-4-(trifluoromethyl) pyridine-2-yl)]diiridium(III) (5.5 g, crude) as a reddish solid. (B) A solution of crude di-μ-chloro-tetrakis[(2-(4-cyclohexylnaphthalen-2-yl)-4-(trifluoromethyl) pyridine-2-yl)]diiridium(III) (2.81 g, 3.0 mmol) and pentane-2,4-dione (0.6 g, 6.0 mmol) in 2-ethoxyethanol (60 mL) was sparged with nitrogen for 5 minutes. Powdered potassium carbonate (0.829 g, 6.0 mmol) was added and sparging continued for 3 additional minutes. The reaction mixture was stirred at room temperature overnight. DIUF water (60 mL) was added, the suspension stirred for 30 minutes and the solid filtered. The sticky solid was slurried in methanol (40 mL) for 10 minutes, filtered and the solid washed methanol (40 mL). The red solid was loaded onto a column of silica gel and the column eluted with 30% dichloromethane in hexanes. Product fractions were concentrated under reduced pressure and the solid was dried at 50° C. under high vacuum to give the compound CC3, bis[(2-(4-cyclohexyl-naphthalen-2-yl)-4-(trifluoromethyl)pyridine-2-yl)]-(pentane-2,4-dionato-k2O,O′)iridium(III) (1.4 g, 47% overall yield) as a red solid.


Synthesis of Comparative Compound 4 (CC4)
Synthesis of 4-(tert-Butyl)-2-(4-cyclohexylnaphthalen-2-yl)pyridine



embedded image


A mixture of 4-(tert-butyl)-2-chloropyridine (1.45 g, 8.55 mmol), 2-(4-cyclohexyl-naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.65 g, 10.85 mmol), and 2M aq. potassium carbonate (7.5 mL, 15 mmol) in 1,4-dioxane (40 mL) was sparged with nitrogen for 10 minutes. Bis(triphenyl-phosphine)palladium(II) dichloride (0.240 g, 0.342 mmol) was added and sparging continued for 10 additional minutes, and the reaction mixture was heated at reflux for 18 hours. The reaction mixture was cooled to room temperature and diluted with water (5 mL) and ethyl acetate (60 mL). The layers were separated and the aqueous layer extracted with ethyl acetate (2×60 mL). The combined organic layers were washed with saturated brine (2×60 mL), dried over sodium sulfate, filtered and concentrate under reduced pressure. The impure product (6.74 g) was chromatograph-ed on silica gel, eluting with 33-66% dichloromethane in hexane. Product fractions were concentrated under reduced pressure and the solid recrystallized from methanol to give 4-(tert-butyl)-2-(4-cyclohexylnaphthalen-2-yl)pyridine (2.6 g, 89% yield).


Synthesis of CC4




embedded image


A mixture of 4-(tert-butyl)-2-(4-cyclohexylnaphthalen-2-yl)pyridine (1.0 g, 145.8 mmol) and triethyl phosphate (6 mL) was sparged with nitrogen for 10 minutes. Iridium(III) chloride hydrate (0.46 g, 1.46 mmol) was added and sparging continued for 5 additional minutes. The reaction mixture was heated at 125° C. for 16 hours. The reaction mixture was cooled to room temperature and diluted with methanol (6 mL). Powdered potassium carbonate (0.6 g, 4.37 mmol) and acetylacetone (0.29 g, 2.91 mmol) were added and the reaction mixture stirred at 40° C. for 1 hour. Water (15 mL) was added, the suspension stirred for 30 minutes, filtered and the solid washed with water (3×2 mL) and methanol (3×2 mL). The orange solid was chromatograph-ed on silica gel, eluting with 0-50% dichloromethane in heptane over 45 minutes. Product fractions were concentrated under reduced pressure the residue (0.68 g) triturated with hot hexanes to give the compound CC4, bis[(2-(4-cyclohexylnaphthalen-2-yl)-4-tert-butylpyridin-2-yl)]-(2,4-pentanedionato-k2O,O)iridium(III) (0.55 g, 39% yield) as an orange solid.


Synthesis of Compound C88,222
Synthesis of 2-(4-cyclohexyl-naphthalen-2-yl)-4-(3,3,3-trifluoro-2,2-dimethylpropyl)pyridine



embedded image


(A) A 2 L, four-neck flask was flushed with nitrogen and charged with 2-chloro-4-iodo-pyridine (25.2 g, 105 mmol) in anhydrous tetrahydrofuran (500 mL) while sparging was continued during the addition. Palladium(II) acetate (0.71 g, 3.1 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxy-biphenyl (SPhos) (2.6 g, 6.3 mmol) were added, the mixture was cooled to −1° C., then sparging was discontinued. 0.8M (3,3,3-trifluoro-2,2-dimethylpropyl)zinc(II) bromide in tetrahydrofuran (155 mL, 124 mmol) was added dropwise to the reaction mixture over 30 minutes while maintaining the temperature at below 2° C. The reaction mixture was cooled in an ice bath and 25% sodium hydroxide (200 mL) added dropwise. The layers were separated and the aqueous phase extracted with methyl tert-butyl ether. The combined organic phases were washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure giving a yellow-brown oil. The crude product (33.5 g) was chromatographed on silica gel, eluting with 0-10% ethyl acetate in heptanes, to give 2-chloro-4-(3,3,3-trifluoro-2,2-dimethylpropyl)pyridine (23.0 g, 92% yield) as a yellow oil. (B) A 500 mL four-neck flask was charged with 2-chloro-4-(3,3,3-trifluoro-2,2-dimethylpropyl)pyridine (4.75 g, 20 mmol), 2-(4-cyclohexylnaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.4 g, 22 mmol), 2M aq. potassium carbonate (20 mL, 40 mmol) and ethanol (300 mL) and the mixture was sparged with nitrogen for 10 minutes. SilicaCat DPP-Pd (2.0 g, 0.6 mmol) was added and sparging continued for additional 5 minutes. The reaction mixture was heated at reflux for 19 hours. The reaction mixture was cooled to room temperature, filtered and the solids washed with water (50 mL) and ethanol (100 mL). The solids were dissolved in dichloromethane (30 mL), adsorbed onto silica gel (50 g) and purified by chromatography, eluting with 0-5% ethyl acetate in heptanes, to give 2-(4-cyclohexylnaphthalen-2-yl)-4-(3,3,3-trifluoro-2,2-dimethyl-propyl)pyridine (7.0 g, 85% yield) as a white solid.


Synthesis of Compound C88,222



embedded image


(C) A mixture of 2-(4-cyclohexylnaphthalen-2-yl)-4-(3,3,3-trifluoro-2,2-dimethylpropyl)pyridine (4.07 g, 9.9 mmol), 2-ethoxyethanol (120 mL) and DIUF water (30 mL) was sparged with nitrogen for 5 minutes. Iridium(III) chloride hydrate (1.42 g, 4.5 mmol) was added, sparging continued for 5 minutes and the reaction mixture was heated at 90° C. for 48 hours. The reaction mixture was cooled to ˜60° C., filtered under reduced pressure and the solids washed with water (2×30 mL). The solid was air-dried for 5 minutes to give di-μ-chloro-tetrakis[(4-(4-cyclo-hexylnaphthalen-2-yl)-4-(3,3,3-trifluoro-2,2-dimethylpropyl)pyridin-2-yl]-diirid-ium(III) (4.0 g) as an orange solid. (D) A solution of di-μ-chloro-tetrakis[(4-(4-cyclohexylnaphthalen-2-yl)-4-(3,3,3-tri-fluoro-2,2-dimethylpropyl)pyridin-2-yl]diiridium(III) (4.08 g, 3.9 mmol) and pentane-2,4-dione (0.78 g, 7.8 mmol) in 2-ethoxyethanol (100 mL) was sparged with nitrogen for 5 minutes. Powdered potassium carbonate (1.08 g, 7.8 mmol) was added and sparging continued for additional 5 minutes. The mixture was stirred at 50° C. for 24 hours. DIUF water (100 mL) was added, the suspension was stirred for 30 minutes, filtered and the slightly sticky solid washed with water (30 mL). The solid was slurried in methanol (50 mL) for 10 minutes, filtered and the solid washed with methanol (50 mL). The red solid was dissolved/suspended in 30% dichloromethane in hexanes (20 mL) and stirred at 35° C. for 30 minutes. The slurry was loaded directly onto a column of silica gel, eluting with 30-40% dichloromethane in hexanes. Product containing fractions were concentrated under reduced pressure and dried at 50° C. in a vacuum oven to give the compound C88,222, [(2-(4-cyclohexyl-naphthalen-2-yl)-4-(3,3,3-tri-fluoro-2,2-dimethylpropyl)pyridin-2-yl]-(2,4-pentanedionato-k2O,O)iridium(III) (1.8 g, 36% yield over 2 steps) as a red solid.


Device Examples

All example devices were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode was 1150 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of Liq (8-hydroxyquinoline lithium) followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package. The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of LG101 (purchased from LG chem) as the hole injection layer (HIL); 400 Å of HTM as a hole transporting layer (HTL); 300 Å of an emissive layer (EML) containing Compound H as a host, a stability dopant (SD) (18%), and Comparative Compound 1, 2, 3, and 4 (CC1, CC2, CC3, CC4) or Compound C88,222 as the emitter (3%); 100 Å of Compound H as a blocking layer; and 350 Å of Liq (8-hydroxyquinoline lithium) doped with 40% of ETM as the ETL. The emitter was selected to provide the desired color, efficiency and lifetime. The stability dopant (SD) was added to the electron-transporting host to help transport positive charge in the emissive layer. The Comparative Example devices were fabricated similarly to the device examples except that Comparative Compounds were used as the emitters in the EML. Table 1 below provides the materials used for the device layers and the layer thickness.









TABLE 1







Device layer materials and thicknesses











Layer
Material
Thickness [Å]















Anode
ITO
1150



HIL
HATCN
100



HTL
HTM
450



EML
Compound H: SD
400




18%: Emitter 3%



ETL
Liq: ETM 40%
350



EIL
Liq
10



Cathode
Al
1000










The device performance data are summarized in Table 2 below. The maximum wavelength of emission (λmax) is very comparable for all comparative compounds (589, 584, 584 nm) and Compound C88,222 (589 nm). The exception is Compound CC3 where a CF3 pendant group was added on the pyridine (631 nm), showing that electron-withdrawing groups on the pyridine lead to bathochromic shift of the emission from an orange color to a deep red color (much lower energy). Since device performance can only be compared with the similar emitting color, it is not suitable to compare CC3 with others tested here except the large color change. The line shape of the emission (FHWM) is similar going from comparative compounds with similar emitting colors to Compound C88,222. The EQE of Compound C88,222 (1.00) was much higher than the EQE of all Comparative Compounds with similar emitting colors (CC1—0.74, CC2—0.81, CC4—0.81). The addition of flexible branched side chains on pyridine units can be responsible this increase in efficiency. Finally, the device lifetime (LT95% at 80 mA/cm2) was also better in the case of Compound C88,222 (1.00) compared to the Comparative Compounds with similar emitting colors (CC1—0.28, CC2—0.44, CC4—0.34).









TABLE 2







Performance of the devices made with Comparative and Inventive Compounds.


















λ

At 10 mA/cm2















Device

1931 CIE
max
FWHM
Voltage
EQE
At 80 mA/cm2















Example
Emitter
X
y
[nm]
[nm]
[au]
[au]
LT95% [au]





Example 1
Compound
0.58
0.42
589
1.00
1.00
1.00
1.00



C88, 222









CE1
Comparative
0.58
0.42
589
1.03
1.03
0.74
0.28



Compound 1









CE2
Comparative
0.57
0.43
584
1.03
1.03
0.81
0.44



Compound 2









CE3
Comparative
0.66
0.34
631
1.26
1.00
0.65
1.14



Compound 3









CE4
Comparative
0.57
0.43
584
1.06
1.03
0.81
0.34



Compound 4
















The chemical structures for the materials used in the experimental OLED devices are shown below:




embedded image


embedded image


embedded image


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound having a formula of M(LA)2(LB), wherein a ligand LA has the structure of Formula I
  • 2. The compound of claim 1, wherein RB is a tert-butyl group.
  • 3. The compound of claim 1, wherein RB is a cyclohexane.
  • 4. The compound of claim 1, wherein RB is an isopropyl group.
  • 5. A formulation comprising the compound according to claim 1.
  • 6. A chemical structure selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule, wherein the chemical structure comprises the compound of claim 1 or a monovalent or polyvalent variant thereof.
  • 7. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LA6 through LA8, LA38 through LA40, and LA72 based on a structure of Formula II
  • 8. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, a compound having a formula of M(LA)2(LB),
  • 9. The OLED of claim 8, wherein the organic layer is an emissive layer and the compound is an emissive dopant or a non-emissive dopant.
  • 10. The OLED of claim 8, wherein the organic layer further comprises a host, wherein host comprises at least one chemical group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 11. The OLED of claim 10, wherein the host is selected from the group consisting of:
  • 12. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound having a formula of M(LA)2(LB),
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/696,383, filed Jul. 11, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (84)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
8268456 Koyama et al. Sep 2012 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20040214038 Kwong Oct 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20120274201 Seo et al. Nov 2012 A1
20150053937 Kim Feb 2015 A1
20170365799 Ji Dec 2017 A1
20180097187 Boudreault et al. Apr 2018 A1
20190051844 Ji Feb 2019 A1
20200212318 Kim Jul 2020 A1
Foreign Referenced Citations (50)
Number Date Country
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2007266071 Oct 2007 JP
2008074939 Apr 2008 JP
20160109596 Sep 2016 KR
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2013094620 Jun 2013 WO
Non-Patent Literature Citations (47)
Entry
Richard J. Lewis, Sr. “Hawley's Condensed Chemical Dictionary, 12th Edition”, John Wiley & Sons, Inc., New York p. 796 (1993).
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20(2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi et al., “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota,Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis(dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based On Silole Derivatives And Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91: 209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic Llght-Emitting Diodes with Phosphorescent Platinum Complexes Containing N∧C∧N∧-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes Of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2- α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Related Publications (1)
Number Date Country
20200017536 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
62696383 Jul 2018 US