Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11827651
  • Patent Number
    11,827,651
  • Date Filed
    Friday, April 24, 2020
    4 years ago
  • Date Issued
    Tuesday, November 28, 2023
    a year ago
Abstract
Provided is a compound comprising a first ligand LA of
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

A series of new phosphorescent metal complexes based on ligands containing fused thiophene derivatives that are useful for OLEDs are disclosed. Further functionalization of these moieties allows ability to fine tune the properties of the final phosphorescent metal complexes to control the color of the emission, OLED efficiency, lifetime, etc.


In one aspect, the present disclosure provides a compound comprising a first ligand LA of




embedded image



where at least one of RA and RB is a structure of




embedded image



wherein, each X1 to X4 is independently C or N; at least one of X1 to X4 is C; each Z1 and Z2 is independently O or S; RA, RB, and RC each represents mono to the maximum allowable substitutions, or no substitution; each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; LA is complexed to a metal M selected from the group consisting of Os, Ir, Pd, and Pt; M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound comprising a first ligand LA of




embedded image



where at least one of RA and RB comprises a structure of




embedded image



wherein, each X1 to X4 is independently C or N; at least one of X1 to X4 is C; each Z1 and Z2 is independently O or S; RA, RB, and RC each represents mono to the maximum allowable substitutions, or no substitution; each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; LA is complexed to a metal M selected from the group consisting of Os, Ir, Pd, and Pt; M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments of the compound, each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the preferred general substituents defined herein.


In some embodiments of the compound, M is Ir or Pt.


In some embodiments, X1 to X4 are each C. In some embodiments, at least one of X1 to X4 is N. In some embodiments, X2 is N.


In some embodiments, two RB substituents are joined together to form a fused ring having at least two double bonds. In some embodiments, the fused ring is an aromatic ring. In some embodiments, the fused ring is a benzene ring. In some embodiments, the fused ring is a pyrrole, thiophene or furan ring.


In some embodiments, two RA substituents are joined together to form a fused ring having at least two double bonds. In some embodiments, the fused ring is an aromatic ring. In some embodiments, the fused ring is a benzene ring. In some embodiments, the fused ring is a pyrrole, thiophene or furan ring. In some embodiments, the fused ring can be further fused by one or more rings with each ring having at least two double bonds.


In some embodiments, Z1 and Z2 are each S. In some embodiments, Z1 and Z2 are each O.


In some embodiments, RC is an alkyl group comprising 1 to 10 carbon atoms. In some embodiments, RC is a cycloalkyl group comprising 5 to 10 carbon atoms. In some embodiments, R is H.


In some embodiments, M is coordinated to at least one additional substituted or unsubstituted phenyl-pyridine ligand. In some embodiments, M is coordinated to a substituted or unsubstituted acetylacetonate ligand.


In some embodiments, only one of RA or RB comprises a structure of Formula 2 or Formula 3. In some embodiments, one of RA comprises a structure of Formula 2 or Formula 3, and no RB comprises a structure of Formula 2 or Formula 3. In some embodiments, one of RB comprises a structure of Formula 2 or Formula 3, and no RA comprises a structure of Formula 2 or Formula 3.


In some embodiments, the first ligand LA is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image



wherein each RA′, and RB′ represents mono to the maximum allowable substitutions, or no substitution; each RA′, and RB′ is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; wherein Z3 is O or S.


In some embodiments, first ligand LA is selected from the group consisting of:

    • LAi-I, wherein i=1 to 1152, that are based on a structure of Formula I




embedded image




    • LAi-II, wherein i=1 to 1152, that are based on a structure of Formula II







embedded image




    • LAi-III, wherein i=1 to 1152, that are based on a structure of Formula III







embedded image




    • LAi-IV, wherein i=1 to 1152, that are based on a structure of Formula IV







embedded image




    • LAi-V, wherein i=1 to 1152, that are based on a structure of Formula V







embedded image




    • LAi-VI, wherein i=1 to 1152, that are based on a structure of Formula VI







embedded image




    • LAi-VII, wherein i=1 to 1152, that are based on a structure of Formula VII







embedded image




    • LAi-VIII, wherein i=1 to 1152, that are based on a structure of Formula VII







embedded image




    • LAi-IX, wherein i=1 to 1152, that are based on a structure of Formula IX







embedded image




    • LAi-X, wherein i=1 to 1152, that are based on a structure of Formula X







embedded image




    • LAi-XI, wherein i=1 to 1152, that are based on a structure of Formula XI







embedded image




    • LAi-XII, wherein i=1 to 1152, that are based on a structure of Formula XII







embedded image




    • LAi-XIII, wherein i=1 to 1152, that are based on a structure of Formula XIII







embedded image




    • LAi-XIV, wherein i=1 to 1152, that are based on a structure of Formula XIV







embedded image




    • LAi-XV, wherein i=1 to 1152, that are based on a structure of Formula XV







embedded image




    • LAi-XVI, wherein i=1 to 1152, that are based on a structure of Formula XVI







embedded image




    • LAi-XVII, wherein i=1 to 1152, that are based on a structure of Formula XVII







embedded image




    • LAi-XVIII, wherein i=1 to 1152, that are based on a structure of Formula XVIII







embedded image




    • LAi-XIX, wherein i=1 to 1152, that are based on a structure of Formula XIX







embedded image




    • LAi-XX, wherein i=1 to 1152, that are based on a structure of Formula XX







embedded image




    • LAi-XXI, wherein i=1 to 1152, that are based on a structure of Formula XXI







embedded image




    • LAi-XXII, wherein i=1 to 1152, that are based on a structure of Formula XXII







embedded image




    • LAi-XXIII, wherein i=1 to 1152, that are based on a structure of Formula XXIII







embedded image




    • LAi-XXIV, wherein i=1 to 1152, that are based on a structure of Formula XXIV







embedded image




    • LAi-XXV, wherein i=1 to 1152, that are based on a structure of Formula XXV







embedded image




    • LAi-XXVI, wherein i=1 to 1152, that are based on a structure of Formula XXVI







embedded image




    • wherein for each LAi, R1 and R2 are defined as:




















Ligand
R1
R2









LA1
RC1
RB1



LA2
RC2
RB1



LA3
RC3
RB1



LA4
RC4
RB1



LA5
RC5
RB1



LA6
RC6
RB1



LA7
RC7
RB1



LA8
RC8
RB1



LA9
RC9
RB1



LA10
RC10
RB1



LA11
RC11
RB1



LA12
RC12
RB1



LA13
RC13
RB1



LA14
RC14
RB1



LA15
RC15
RB1



LA16
RC16
RB1



LA17
RC17
RB1



LA18
RC18
RB1



LA19
RC19
RB1



LA20
RC20
RB1



LA21
RC21
RB1



LA22
RC22
RB1



LA23
RC23
RB1



LA24
RC24
RB1



LA25
RC25
RB1



LA26
RC26
RB1



LA27
RC27
RB1



LA28
RC28
RB1



LA29
RC29
RB1



LA30
RC30
RB1



LA31
RC31
RB1



LA32
RC32
RB1



LA33
RC33
RB1



LA34
RC34
RB1



LA35
RC35
RB1



LA36
RC36
RB1



LA37
RC37
RB1



LA38
RC38
RB1



LA39
RC39
RB1



LA40
RC40
RB1



LA41
RC41
RB1



LA42
RC42
RB1



LA43
RC43
RB1



LA44
RC44
RB1



LA45
RC45
RB1



LA46
RC46
RB1



LA47
RC47
RB1



LA48
RC48
RB1



LA49
RC49
RB1



LA50
RC50
RB1



LA51
RC51
RB1



LA52
RC52
RB1



LA53
RC53
RB1



LA54
RC54
RB1



LA55
RC55
RB1



LA56
RC56
RB1



LA57
RC57
RB1



LA58
RC58
RB1



LA59
RC59
RB1



LA60
RC60
RB1



LA61
RC61
RB1



LA62
RC62
RB1



LA63
RC63
RB1



LA64
RC64
RB1



LA65
RC65
RB1



LA66
RC66
RB1



LA67
RC67
RB1



LA68
RC68
RB1



LA69
RC69
RB1



LA70
RC70
RB1



LA71
RC71
RB1



LA72
RC72
RB1



LA73
RC73
RB1



LA74
RC74
RB1



LA75
RC75
RB1



LA76
RC76
RB1



LA77
RC77
RB1



LA78
RC78
RB1



LA79
RC79
RB1



LA80
RC80
RB1



LA81
RC81
RB1



LA82
RC82
RB1



LA83
RC83
RB1



LA84
RC84
RB1



LA85
RC85
RB1



LA86
RC86
RB1



LA87
RC87
RB1



LA88
RC88
RB1



LA89
RC89
RB1



LA90
RC90
RB1



LA91
RC91
RB1



LA92
RC92
RB1



LA93
RC93
RB1



LA94
RC94
RB1



LA95
RC95
RB1



LA96
RC96
RB1



LA97
RC97
RB1



LA98
RC98
RB1



LA99
RC99
RB1



LA100
RC100
RB1



LA101
RC101
RB1



LA102
RC102
RB1



LA103
RC103
RB1



LA104
RC104
RB1



LA105
RC105
RB1



LA106
RC106
RB1



LA107
RC107
RB1



LA108
RC108
RB1



LA109
RC109
RB1



LA110
RC110
RB1



LA111
RC111
RB1



LA112
RC112
RB1



LA113
RC113
RB1



LA114
RC114
RB1



LA115
RC115
RB1



LA116
RC116
RB1



LA117
RC117
RB1



LA118
RC118
RB1



LA119
RC119
RB1



LA120
RC120
RB1



LA121
RC121
RB1



LA122
RC122
RB1



LA123
RC123
RB1



LA124
RC124
RB1



LA125
RC125
RB1



LA126
RC126
RB1



LA127
RC127
RB1



LA128
RC128
RB1



LA129
RC129
RB1



LA130
RC130
RB1



LA131
RC131
RB1



LA132
RC132
RB1



LA133
RC133
RB1



LA134
RC134
RB1



LA135
RC135
RB1



LA136
RC136
RB1



LA137
RC137
RB1



LA138
RC138
RB1



LA139
RC139
RB1



LA140
RC140
RB1



LA141
RC141
RB1



LA142
RC142
RB1



LA143
RC143
RB1



LA144
RC144
RB1



LA145
RC145
RB1



LA146
RC146
RB1



LA147
RC147
RB1



LA148
RC148
RB1



LA149
RC149
RB1



LA150
RC150
RB1



LA151
RC151
RB1



LA152
RC152
RB1



LA153
RC153
RB1



LA154
RC154
RB1



LA155
RC155
RB1



LA156
RC156
RB1



LA157
RC157
RB1



LA158
RC158
RB1



LA159
RC159
RB1



LA160
RC160
RB1



LA161
RC161
RB1



LA162
RC162
RB1



LA163
RC163
RB1



LA164
RC164
RB1



LA165
RC165
RB1



LA166
RC166
RB1



LA167
RC167
RB1



LA168
RC168
RB1



LA169
RC169
RB1



LA170
RC170
RB1



LA171
RC171
RB1



LA172
RC1
RB2



LA173
RC1
RB3



LA174
RC1
RB4



LA175
RC1
RB5



LA176
RC1
RB6



LA177
RC1
RB7



LA178
RC1
RB8



LA179
RC1
RB9



LA180
RC1
RB10



LA181
RC1
RB11



LA182
RC1
RB12



LA183
RC1
RB13



LA184
RC1
RB14



LA185
RC1
RB15



LA186
RC1
RB16



LA187
RC1
RB17



LA188
RC1
RB18



LA189
RC1
RB19



LA190
RC1
RB20



LA191
RC1
RB21



LA192
RC1
RB22



LA193
RC1
RB23



LA194
RC1
RB24



LA195
RC1
RB25



LA196
RC1
RB26



LA197
RC1
RB27



LA198
RC1
RB28



LA199
RC1
RB29



LA200
RC1
RB30



LA201
RC1
RB31



LA202
RC1
RB32



LA203
RC1
RB33



LA204
RC1
RB34



LA205
RC1
RB35



LA206
RC1
RB36



LA207
RC1
RB37



LA208
RC1
RB38



LA209
RC1
RB39



LA210
RC1
RB40



LA211
RC1
RB41



LA212
RC1
RB42



LA213
RC1
RA1



LA214
RC1
RA2



LA215
RC1
RA3



LA216
RC1
RA4



LA217
RC1
RA5



LA218
RC1
RA6



LA219
RC1
RA7



LA220
RC1
RA8



LA221
RC1
RA9



LA222
RC1
RA10



LA223
RC1
RA11



LA224
RC1
RA12



LA225
RC1
RA13



LA226
RC1
RA14



LA227
RC1
RA15



LA228
RC1
RA16



LA229
RC1
RA17



LA230
RC1
RA18



LA231
RC1
RA19



LA232
RC1
RA20



LA233
RC1
RA21



LA234
RC1
RA22



LA235
RC1
RA23



LA236
RC1
RA24



LA237
RC1
RA25



LA238
RC1
RA26



LA239
RC1
RA27



LA240
RC1
RA28



LA241
RC1
RA29



LA242
RC1
RA30



LA243
RC1
RA31



LA244
RC1
RA32



LA245
RC1
RA33



LA246
RC1
RA34



LA247
RC1
RA35



LA248
RC1
RA36



LA249
RC1
RA37



LA250
RC1
RA38



LA251
RC1
RA39



LA252
RC1
RA40



LA253
RC1
RA41



LA254
RC1
RA42



LA255
RC1
RA43



LA256
RC1
RA44



LA257
RC1
RA45



LA258
RC1
RA46



LA259
RC1
RA47



LA260
RC1
RA48



LA261
RC1
RA49



LA262
RC1
RA50



LA263
RC1
RA51



LA264
RC1
RA52



LA265
RC1
RA53



LA266
RC1
RA54



LA267
RC1
RA55



LA268
RC1
RA56



LA269
RC1
RA57



LA270
RC1
RA58



LA271
RC1
RA59



LA272
RC1
RA60



LA273
RC1
RA61



LA274
RC1
RA62



LA275
RC1
RA63



LA276
RC1
RA64



LA277
RC1
RA65



LA278
RC1
RA66



LA279
RC1
RA67



LA280
RC1
RA68



LA281
RC1
RA69



LA282
RC1
RA70



LA283
RC1
RA71



LA284
RC1
RA72



LA285
RC1
RA73



LA286
RC1
RA74



LA287
RC1
RA75



LA288
RC1
RA76



LA289
RC1
RB3



LA290
RC2
RB3



LA291
RC3
RB3



LA292
RC4
RB3



LA293
RC5
RB3



LA294
RC6
RB3



LA295
RC7
RB3



LA296
RC8
RB3



LA297
RC9
RB3



LA298
RC10
RB3



LA299
RC11
RB3



LA300
RC12
RB3



LA301
RC13
RB3



LA302
RC14
RB3



LA303
RC15
RB3



LA304
RC16
RB3



LA305
RC17
RB3



LA306
RC18
RB3



LA307
RC19
RB3



LA308
RC20
RB3



LA309
RC21
RB3



LA310
RC22
RB3



LA311
RC23
RB3



LA312
RC24
RB3



LA313
RC25
RB3



LA314
RC26
RB3



LA315
RC27
RB3



LA316
RC28
RB3



LA317
RC29
RB3



LA318
RC30
RB3



LA319
RC31
RB3



LA320
RC32
RB3



LA321
RC33
RB3



LA322
RC34
RB3



LA323
RC35
RB3



LA324
RC36
RB3



LA325
RC37
RB3



LA326
RC38
RB3



LA327
RC39
RB3



LA328
RC40
RB3



LA329
RC41
RB3



LA330
RC42
RB3



LA331
RC43
RB3



LA332
RC44
RB3



LA333
RC45
RB3



LA334
RC46
RB3



LA335
RC47
RB3



LA336
RC48
RB3



LA337
RC49
RB3



LA338
RC50
RB3



LA339
RC51
RB3



LA340
RC52
RB3



LA341
RC53
RB3



LA342
RC54
RB3



LA343
RC55
RB3



LA344
RC56
RB3



LA345
RC57
RB3



LA346
RC58
RB3



LA347
RC59
RB3



LA348
RC60
RB3



LA349
RC61
RB3



LA350
RC62
RB3



LA351
RC63
RB3



LA352
RC64
RB3



LA353
RC65
RB3



LA354
RC66
RB3



LA355
RC67
RB3



LA356
RC68
RB3



LA357
RC69
RB3



LA358
RC70
RB3



LA359
RC71
RB3



LA360
RC72
RB3



LA361
RC73
RB3



LA362
RC74
RB3



LA363
RC75
RB3



LA364
RC76
RB3



LA365
RC77
RB3



LA366
RC78
RB3



LA367
RC79
RB3



LA368
RC80
RB3



LA369
RC81
RB3



LA370
RC82
RB3



LA371
RC83
RB3



LA372
RC84
RB3



LA373
RC85
RB3



LA374
RC86
RB3



LA375
RC87
RB3



LA376
RC88
RB3



LA377
RC89
RB3



LA378
RC90
RB3



LA379
RC91
RB3



LA380
RC92
RB3



LA381
RC93
RB3



LA382
RC94
RB3



LA383
RC95
RB3



LA384
RC96
RB3



LA385
RC97
RB3



LA386
RC98
RB3



LA387
RC99
RB3



LA388
RC100
RB3



LA389
RC101
RB3



LA390
RC102
RB3



LA391
RC103
RB3



LA392
RC104
RB3



LA393
RC105
RB3



LA394
RC106
RB3



LA395
RC107
RB3



LA396
RC108
RB3



LA397
RC109
RB3



LA398
RC110
RB3



LA399
RC111
RB3



LA400
RC112
RB3



LA401
RC113
RB3



LA402
RC114
RB3



LA403
RC115
RB3



LA404
RC116
RB3



LA405
RC117
RB3



LA406
RC118
RB3



LA407
RC119
RB3



LA408
RC120
RB3



LA409
RC121
RB3



LA410
RC122
RB3



LA411
RC123
RB3



LA412
RC124
RB3



LA413
RC125
RB3



LA414
RC126
RB3



LA415
RC127
RB3



LA416
RC128
RB3



LA417
RC129
RB3



LA418
RC130
RB3



LA419
RC131
RB3



LA420
RC132
RB3



LA421
RC133
RB3



LA422
RC134
RB3



LA423
RC135
RB3



LA424
RC136
RB3



LA425
RC137
RB3



LA426
RC138
RB3



LA427
RC139
RB3



LA428
RC140
RB3



LA429
RC141
RB3



LA430
RC142
RB3



LA431
RC143
RB3



LA432
RC144
RB3



LA433
RC145
RB3



LA434
RC146
RB3



LA435
RC147
RB3



LA436
RC148
RB3



LA437
RC149
RB3



LA438
RC150
RB3



LA439
RC151
RB3



LA440
RC152
RB3



LA441
RC153
RB3



LA442
RC154
RB3



LA443
RC155
RB3



LA444
RC156
RB3



LA445
RC157
RB3



LA446
RC158
RB3



LA447
RC159
RB3



LA448
RC160
RB3



LA449
RC161
RB3



LA450
RC162
RB3



LA451
RC163
RB3



LA452
RC164
RB3



LA453
RC165
RB3



LA454
RC166
RB3



LA455
RC167
RB3



LA456
RC168
RB3



LA457
RC169
RB3



LA458
RC170
RB3



LA459
RC171
RB3



LA460
RC8
RB2



LA461
RC8
RB3



LA462
RC8
RB4



LA463
RC8
RB5



LA464
RC8
RB6



LA465
RC8
RB7



LA466
RC8
RB8



LA467
RC8
RB9



LA468
RC8
RB10



LA469
RC8
RB11



LA470
RC8
RB12



LA471
RC8
RB13



LA472
RC8
RB14



LA473
RC8
RB15



LA474
RC8
RB16



LA475
RC8
RB17



LA476
RC8
RB18



LA477
RC8
RB19



LA478
RC8
RB20



LA479
RC8
RB21



LA480
RC8
RB22



LA481
RC8
RB23



LA482
RC8
RB24



LA483
RC8
RB25



LA484
RC8
RB26



LA485
RC8
RB27



LA486
RC8
RB28



LA487
RC8
RB29



LA488
RC8
RB30



LA489
RC8
RB31



LA490
RC8
RB32



LA491
RC8
RB33



LA492
RC8
RB34



LA493
RC8
RB35



LA494
RC8
RB36



LA495
RC8
RB37



LA496
RC8
RB38



LA497
RC8
RB39



LA498
RC8
RB40



LA499
RC8
RB41



LA500
RC8
RB42



LA501
RC8
RA1



LA502
RC8
RA2



LA503
RC8
RA3



LA504
RC8
RA4



LA505
RC8
RA5



LA506
RC8
RA6



LA507
RC8
RA7



LA508
RC8
RA8



LA509
RC8
RA9



LA510
RC8
RA10



LA511
RC8
RA11



LA512
RC8
RA12



LA513
RC8
RA13



LA514
RC8
RA14



LA515
RC8
RA15



LA516
RC8
RA16



LA517
RC8
RA17



LA518
RC8
RA18



LA519
RC8
RA19



LA520
RC8
RA20



LA521
RC8
RA21



LA522
RC8
RA22



LA523
RC8
RA23



LA524
RC8
RA24



LA525
RC8
RA25



LA526
RC8
RA26



LA527
RC8
RA27



LA528
RC8
RA28



LA529
RC8
RA29



LA530
RC8
RA30



LA531
RC8
RA31



LA532
RC8
RA32



LA533
RC8
RA33



LA534
RC8
RA34



LA535
RC8
RA35



LA536
RC8
RA36



LA537
RC8
RA37



LA538
RC8
RA38



LA539
RC8
RA39



LA540
RC8
RA40



LA541
RC8
RA41



LA542
RC8
RA42



LA543
RC8
RA43



LA544
RC8
RA44



LA545
RC8
RA45



LA546
RC8
RA46



LA547
RC8
RA47



LA548
RC8
RA48



LA549
RC8
RA49



LA550
RC8
RA50



LA551
RC8
RA51



LA552
RC8
RA52



LA553
RC8
RA53



LA554
RC8
RA54



LA555
RC8
RA55



LA556
RC8
RA56



LA557
RC8
RA57



LA558
RC8
RA58



LA559
RC8
RA59



LA560
RC8
RA60



LA561
RC8
RA61



LA562
RC8
RA62



LA563
RC8
RA63



LA564
RC8
RA64



LA565
RC8
RA65



LA566
RC8
RA66



LA567
RC8
RA67



LA568
RC8
RA68



LA569
RC8
RA69



LA570
RC8
RA70



LA571
RC8
RA71



LA572
RC8
RA72



LA573
RC8
RA73



LA574
RC8
RA74



LA575
RC8
RA75



LA576
RC8
RA76



LA577
RC1
RB6



LA578
RC2
RB6



LA579
RC3
RB6



LA580
RC4
RB6



LA581
RC5
RB6



LA582
RC6
RB6



LA583
RC7
RB6



LA584
RC8
RB6



LA585
RC9
RB6



LA586
RC10
RB6



LA587
RC11
RB6



LA588
RC12
RB6



LA589
RC13
RB6



LA590
RC14
RB6



LA591
RC15
RB6



LA592
RC16
RB6



LA593
RC17
RB6



LA594
RC18
RB6



LA595
RC19
RB6



LA596
RC20
RB6



LA597
RC21
RB6



LA598
RC22
RB6



LA599
RC23
RB6



LA600
RC24
RB6



LA601
RC25
RB6



LA602
RC26
RB6



LA603
RC27
RB6



LA604
RC28
RB6



LA605
RC29
RB6



LA606
RC30
RB6



LA607
RC31
RB6



LA608
RC32
RB6



LA609
RC33
RB6



LA610
RC34
RB6



LA611
RC35
RB6



LA612
RC36
RB6



LA613
RC37
RB6



LA614
RC38
RB6



LA615
RC39
RB6



LA616
RC40
RB6



LA617
RC41
RB6



LA618
RC42
RB6



LA619
RC43
RB6



LA620
RC44
RB6



LA621
RC45
RB6



LA622
RC46
RB6



LA623
RC47
RB6



LA624
RC48
RB6



LA625
RC49
RB6



LA626
RC50
RB6



LA627
RC51
RB6



LA628
RC52
RB6



LA629
RC53
RB6



LA630
RC54
RB6



LA631
RC55
RB6



LA632
RC56
RB6



LA633
RC57
RB6



LA634
RC58
RB6



LA635
RC59
RB6



LA636
RC60
RB6



LA637
RC61
RB6



LA638
RC62
RB6



LA639
RC63
RB6



LA640
RC64
RB6



LA641
RC65
RB6



LA642
RC66
RB6



LA643
RC67
RB6



LA644
RC68
RB6



LA645
RC69
RB6



LA646
RC70
RB6



LA647
RC71
RB6



LA648
RC72
RB6



LA649
RC73
RB6



LA650
RC74
RB6



LA651
RC75
RB6



LA652
RC76
RB6



LA653
RC77
RB6



LA654
RC78
RB6



LA655
RC79
RB6



LA656
RC80
RB6



LA657
RC81
RB6



LA658
RC82
RB6



LA659
RC83
RB6



LA660
RC84
RB6



LA661
RC85
RB6



LA662
RC86
RB6



LA663
RC87
RB6



LA664
RC88
RB6



LA665
RC89
RB6



LA666
RC90
RB6



LA667
RC91
RB6



LA668
RC92
RB6



LA669
RC93
RB6



LA670
RC94
RB6



LA671
RC95
RB6



LA672
RC96
RB6



LA673
RC97
RB6



LA674
RC98
RB6



LA675
RC99
RB6



LA676
RC100
RB6



LA677
RC101
RB6



LA678
RC102
RB6



LA679
RC103
RB6



LA680
RC104
RB6



LA681
RC105
RB6



LA682
RC106
RB6



LA683
RC107
RB6



LA684
RC108
RB6



LA685
RC109
RB6



LA686
RC110
RB6



LA687
RC111
RB6



LA688
RC112
RB6



LA689
RC113
RB6



LA690
RC114
RB6



LA691
RC115
RB6



LA692
RC116
RB6



LA693
RC117
RB6



LA694
RC118
RB6



LA695
RC119
RB6



LA696
RC120
RB6



LA697
RC121
RB6



LA698
RC122
RB6



LA699
RC123
RB6



LA700
RC124
RB6



LA701
RC125
RB6



LA702
RC126
RB6



LA703
RC127
RB6



LA704
RC128
RB6



LA705
RC129
RB6



LA706
RC130
RB6



LA707
RC131
RB6



LA708
RC132
RB6



LA709
RC133
RB6



LA710
RC134
RB6



LA711
RC135
RB6



LA712
RC136
RB6



LA713
RC137
RB6



LA714
RC138
RB6



LA715
RC139
RB6



LA716
RC140
RB6



LA717
RC141
RB6



LA718
RC142
RB6



LA719
RC143
RB6



LA720
RC144
RB6



LA721
RC145
RB6



LA722
RC146
RB6



LA723
RC147
RB6



LA724
RC148
RB6



LA725
RC149
RB6



LA726
RC150
RB6



LA727
RC151
RB6



LA728
RC152
RB6



LA729
RC153
RB6



LA730
RC154
RB6



LA731
RC155
RB6



LA732
RC156
RB6



LA733
RC157
RB6



LA734
RC158
RB6



LA735
RC159
RB6



LA736
RC160
RB6



LA737
RC161
RB6



LA738
RC162
RB6



LA739
RC163
RB6



LA740
RC164
RB6



LA741
RC165
RB6



LA742
RC166
RB6



LA743
RC167
RB6



LA744
RC168
RB6



LA745
RC169
RB6



LA746
RC170
RB6



LA747
RC171
RB6



LA748
RC27
RB2



LA749
RC27
RB3



LA750
RC27
RB4



LA751
RC27
RB5



LA752
RC27
RB6



LA753
RC27
RB7



LA754
RC27
RB8



LA755
RC27
RB9



LA756
RC27
RB10



LA757
RC27
RB11



LA758
RC27
RB12



LA759
RC27
RB13



LA760
RC27
RB14



LA761
RC27
RB15



LA762
RC27
RB16



LA763
RC27
RB17



LA764
RC27
RB18



LA765
RC27
RB19



LA766
RC27
RB20



LA767
RC27
RB21



LA768
RC27
RB22



LA769
RC27
RB23



LA770
RC27
RB24



LA771
RC27
RB25



LA772
RC27
RB26



LA773
RC27
RB27



LA774
RC27
RB28



LA775
RC27
RB29



LA776
RC27
RB30



LA777
RC27
RB31



LA778
RC27
RB32



LA779
RC27
RB33



LA780
RC27
RB34



LA781
RC27
RB35



LA782
RC27
RB36



LA783
RC27
RB37



LA784
RC27
RB38



LA785
RC27
RB39



LA786
RC27
RB40



LA787
RC27
RB41



LA788
RC27
RB42



LA789
RC27
RA1



LA790
RC27
RA2



LA791
RC27
RA3



LA792
RC27
RA4



LA793
RC27
RA5



LA794
RC27
RA6



LA795
RC27
RA7



LA796
RC27
RA8



LA797
RC27
RA9



LA798
RC27
RA10



LA799
RC27
RA11



LA800
RC27
RA12



LA801
RC27
RA13



LA802
RC27
RA14



LA803
RC27
RA15



LA804
RC27
RA16



LA805
RC27
RA17



LA806
RC27
RA18



LA807
RC27
RA19



LA808
RC27
RA20



LA809
RC27
RA21



LA810
RC27
RA22



LA811
RC27
RA23



LA812
RC27
RA24



LA813
RC27
RA25



LA814
RC27
RA26



LA815
RC27
RA27



LA816
RC27
RA28



LA817
RC27
RA29



LA818
RC27
RA30



LA819
RC27
RA31



LA820
RC27
RA32



LA821
RC27
RA33



LA822
RC27
RA34



LA823
RC27
RA35



LA824
RC27
RA36



LA825
RC27
RA37



LA826
RC27
RA38



LA827
RC27
RA39



LA828
RC27
RA40



LA829
RC27
RA41



LA830
RC27
RA42



LA831
RC27
RA43



LA832
RC27
RA44



LA833
RC27
RA45



LA834
RC27
RA46



LA835
RC27
RA47



LA836
RC27
RA48



LA837
RC27
RA49



LA838
RC27
RA50



LA839
RC27
RA51



LA840
RC27
RA52



LA841
RC27
RA53



LA842
RC27
RA54



LA843
RC27
RA55



LA844
RC27
RA56



LA845
RC27
RA57



LA846
RC27
RA58



LA847
RC27
RA59



LA848
RC27
RA60



LA849
RC27
RA61



LA850
RC27
RA62



LA851
RC27
RA63



LA852
RC27
RA64



LA853
RC27
RA65



LA854
RC27
RA66



LA855
RC27
RA67



LA856
RC27
RA68



LA857
RC27
RA69



LA858
RC27
RA70



LA859
RC27
RA71



LA860
RC27
RA72



LA861
RC27
RA73



LA862
RC27
RA74



LA863
RC27
RA75



LA864
RC27
RA76



LA865
RC1
RB12



LA866
RC2
RB12



LA867
RC3
RB12



LA868
RC4
RB12



LA869
RC5
RB12



LA870
RC6
RB12



LA871
RC7
RB12



LA872
RC8
RB12



LA873
RC9
RB12



LA874
RC10
RB12



LA875
RC11
RB12



LA876
RC12
RB12



LA877
RC13
RB12



LA878
RC14
RB12



LA879
RC15
RB12



LA880
RC16
RB12



LA881
RC17
RB12



LA882
RC18
RB12



LA883
RC19
RB12



LA884
RC20
RB12



LA885
RC21
RB12



LA886
RC22
RB12



LA887
RC23
RB12



LA888
RC24
RB12



LA889
RC25
RB12



LA890
RC26
RB12



LA891
RC27
RB12



LA892
RC28
RB12



LA893
RC29
RB12



LA894
RC30
RB12



LA895
RC31
RB12



LA896
RC32
RB12



LA897
RC33
RB12



LA898
RC34
RB12



LA899
RC35
RB12



LA900
RC36
RB12



LA901
RC37
RB12



LA902
RC38
RB12



LA903
RC39
RB12



LA904
RC40
RB12



LA905
RC41
RB12



LA906
RC42
RB12



LA907
RC43
RB12



LA908
RC44
RB12



LA909
RC45
RB12



LA910
RC46
RB12



LA911
RC47
RB12



LA912
RC48
RB12



LA913
RC49
RB12



LA914
RC50
RB12



LA915
RC51
RB12



LA916
RC52
RB12



LA917
RC53
RB12



LA918
RC54
RB12



LA919
RC55
RB12



LA920
RC56
RB12



LA921
RC57
RB12



LA922
RC58
RB12



LA923
RC59
RB12



LA924
RC60
RB12



LA925
RC61
RB12



LA926
RC62
RB12



LA927
RC63
RB12



LA928
RC64
RB12



LA929
RC65
RB12



LA930
RC66
RB12



LA931
RC67
RB12



LA932
RC68
RB12



LA933
RC69
RB12



LA934
RC70
RB12



LA935
RC71
RB12



LA936
RC72
RB12



LA937
RC73
RB12



LA938
RC74
RB12



LA939
RC75
RB12



LA940
RC76
RB12



LA941
RC77
RB12



LA942
RC78
RB12



LA943
RC79
RB12



LA944
RC80
RB12



LA945
RC81
RB12



LA946
RC82
RB12



LA947
RC83
RB12



LA948
RC84
RB12



LA949
RC85
RB12



LA950
RC86
RB12



LA951
RC87
RB12



LA952
RC88
RB12



LA953
RC89
RB12



LA954
RC90
RB12



LA955
RC91
RB12



LA956
RC92
RB12



LA957
RC93
RB12



LA958
RC94
RB12



LA959
RC95
RB12



LA960
RC96
RB12



LA961
RC97
RB12



LA962
RC98
RB12



LA963
RC99
RB12



LA964
RC100
RB12



LA965
RC101
RB12



LA966
RC102
RB12



LA967
RC103
RB12



LA968
RC104
RB12



LA969
RC105
RB12



LA970
RC106
RB12



LA971
RC107
RB12



LA972
RC108
RB12



LA973
RC109
RB12



LA974
RC110
RB12



LA975
RC111
RB12



LA976
RC112
RB12



LA977
RC113
RB12



LA978
RC114
RB12



LA979
RC115
RB12



LA980
RC116
RB12



LA981
RC117
RB12



LA982
RC118
RB12



LA983
RC119
RB12



LA984
RC120
RB12



LA985
RC121
RB12



LA986
RC122
RB12



LA987
RC123
RB12



LA988
RC124
RB12



LA989
RC125
RB12



LA990
RC126
RB12



LA991
RC127
RB12



LA992
RC128
RB12



LA993
RC129
RB12



LA994
RC130
RB12



LA995
RC131
RB12



LA996
RC132
RB12



LA997
RC133
RB12



LA998
RC134
RB12



LA999
RC135
RB12



LA1000
RC136
RB12



LA1001
RC137
RB12



LA1002
RC138
RB12



LA1003
RC139
RB12



LA1004
RC140
RB12



LA1005
RC141
RB12



LA1006
RC142
RB12



LA1007
RC143
RB12



LA1008
RC144
RB12



LA1009
RC145
RB12



LA1010
RC146
RB12



LA1011
RC147
RB12



LA1012
RC148
RB12



LA1013
RC149
RB12



LA1014
RC150
RB12



LA1015
RC151
RB12



LA1016
RC152
RB12



LA1017
RC153
RB12



LA1018
RC154
RB12



LA1019
RC155
RB12



LA1020
RC156
RB12



LA1021
RC157
RB12



LA1022
RC158
RB12



LA1023
RC159
RB12



LA1024
RC160
RB12



LA1025
RC161
RB12



LA1026
RC162
RB12



LA1027
RC163
RB12



LA1028
RC164
RB12



LA1029
RC165
RB12



LA1030
RC166
RB12



LA1031
RC167
RB12



LA1032
RC168
RB12



LA1033
RC169
RB12



LA1034
RC170
RB12



LA1035
RC171
RB12



LA1036
RC152
RB2



LA1037
RC152
RB3



LA1038
RC152
RB4



LA1039
RC152
RB5



LA1040
RC152
RB6



LA1041
RC152
RB7



LA1042
RC152
RB8



LA1043
RC152
RB9



LA1044
RC152
RB10



LA1045
RC152
RB11



LA1046
RC152
RB12



LA1047
RC152
RB13



LA1048
RC152
RB14



LA1049
RC152
RB15



LA1050
RC152
RB16



LA1051
RC152
RB17



LA1052
RC152
RB18



LA1053
RC152
RB19



LA1054
RC152
RB20



LA1055
RC152
RB21



LA1056
RC152
RB22



LA1057
RC152
RB23



LA1058
RC152
RB24



LA1059
RC152
RB25



LA1060
RC152
RB26



LA1061
RC152
RB27



LA1062
RC152
RB28



LA1063
RC152
RB29



LA1064
RC152
RB30



LA1065
RC152
RB31



LA1066
RC152
RB32



LA1067
RC152
RB33



LA1068
RC152
RB34



LA1069
RC152
RB35



LA1070
RC152
RB36



LA1071
RC152
RB37



LA1072
RC152
RB38



LA1073
RC152
RB39



LA1074
RC152
RB40



LA1075
RC152
RB41



LA1076
RC152
RB42



LA1077
RC152
RA1



LA1078
RC152
RA2



LA1079
RC152
RA3



LA1080
RC152
RA4



LA1081
RC152
RA5



LA1082
RC152
RA6



LA1083
RC152
RA7



LA1084
RC152
RA8



LA1085
RC152
RA9



LA1086
RC152
RA10



LA1087
RC152
RA11



LA1088
RC152
RA12



LA1089
RC152
RA13



LA1090
RC152
RA14



LA1091
RC152
RA15



LA1092
RC152
RA16



LA1093
RC152
RA17



LA1094
RC152
RA18



LA1095
RC152
RA19



LA1096
RC152
RA20



LA1097
RC152
RA21



LA1098
RC152
RA22



LA1099
RC152
RA23



LA1100
RC152
RA24



LA1101
RC152
RA25



LA1102
RC152
RA26



LA1103
RC152
RA27



LA1104
RC152
RA28



LA1105
RC152
RA29



LA1106
RC152
RA30



LA1107
RC152
RA31



LA1108
RC152
RA32



LA1109
RC152
RA33



LA1110
RC152
RA34



LA1111
RC152
RA35



LA1112
RC152
RA36



LA1113
RC152
RA37



LA1114
RC152
RA38



LA1115
RC152
RA39



LA1116
RC152
RA40



LA1117
RC152
RA41



LA1118
RC152
RA42



LA1119
RC152
RA43



LA1120
RC152
RA44



LA1121
RC152
RA45



LA1122
RC152
RA46



LA1123
RC152
RA47



LA1124
RC152
RA48



LA1125
RC152
RA49



LA1126
RC152
RA50



LA1127
RC152
RA51



LA1128
RC152
RA52



LA1129
RC152
RA53



LA1130
RC152
RA54



LA1131
RC152
RA55



LA1132
RC152
RA56



LA1133
RC152
RA57



LA1134
RC152
RA58



LA1135
RC152
RA59



LA1136
RC152
RA60



LA1137
RC152
RA61



LA1138
RC152
RA62



LA1139
RC152
RA63



LA1140
RC152
RA64



LA1141
RC152
RA65



LA1142
RC152
RA66



LA1143
RC152
RA67



LA1144
RC152
RA68



LA1145
RC152
RA69



LA1146
RC152
RA70



LA1147
RC152
RA71



LA1148
RC152
RA72



LA1149
RC152
RA73



LA1150
RC152
RA74



LA1151
RC152
RA75



LA1152
RC152
RA76












    • wherein RA1 to RA76 have the following structures:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



wherein RB1 to RB42 have the following structures:




embedded image


embedded image


embedded image


embedded image



wherein RC1 to RC171 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)x(LB)y(LC)z, where LA is as defined above (i.e. LA is selected from the group consisting of LAi-I to LAi-XXVI, where i is 1 to 1152), LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M. In some embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, the compound has a formula of Pt(LA)(LB); and wherein LA and LB can be same or different. In some embodiments, LA and LB are connected to form a tetradentate ligand.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA is as defined above, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image



where, each Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen; Y′ is selected from the group consisting of B Re, N Re, P Re, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf can be fused or joined to form a ring; each Ra, Rb, Rc, and Rd can independently represent from mono substitution to the maximum possible number of substitutions, or no substitution; each Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and any two adjacent substituents of Ra, Rb, Rc, and Rd can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA is as defined above, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA is as defined above, LB is selected from the group consisting of LB1 to LB263 having the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and LC is selected from the group consisting of LCj-I, having the structures based on




embedded image



or

    • LCj-II, having the structures based on




embedded image



wherein for each LCj in LCj-I and LCj-II, R1 and R2 are defined as provided below:

















LCj
R1
R2









LC1
RD1
RD1



LC2
RD2
RD2



LC3
RD3
RD3



LC4
RD4
RD4



LC5
RD5
RD5



LC6
RD6
RD6



LC7
RD7
RD7



LC8
RD8
RD8



LC9
RD9
RD9



LC10
RD10
RD10



LC11
RD11
RD11



LC12
RD12
RD12



LC13
RD13
RD13



LC14
RD14
RD14



LC15
RD15
RD15



LC16
RD16
RD16



LC17
RD17
RD17



LC18
RD18
RD18



LC19
RD19
RD19



LC20
RD20
RD20



LC21
RD21
RD21



LC22
RD22
RD22



LC23
RD23
RD23



LC24
RD24
RD24



LC25
RD25
RD25



LC26
RD26
RD26



LC27
RD27
RD27



LC28
RD28
RD28



LC29
RD29
RD29



LC30
RD30
RD30



LC31
RD31
RD31



LC32
RD32
RD32



LC33
RD33
RD33



LC34
RD34
RD34



LC35
RD35
RD35



LC36
RD36
RD36



LC37
RD37
RD37



LC38
RD38
RD38



LC39
RD39
RD39



LC40
RD40
RD40



LC41
RD41
RD41



LC42
RD42
RD42



LC43
RD43
RD43



LC44
RD44
RD44



LC45
RD45
RD45



LC46
RD46
RD46



LC47
RD47
RD47



LC48
RD48
RD48



LC49
RD49
RD49



LC50
RD50
RD50



LC51
RD51
RD51



LC52
RD52
RD52



LC53
RD53
RD53



LC54
RD54
RD54



LC55
RD55
RD55



LC56
RD56
RD56



LC57
RD57
RD57



LC58
RD58
RD58



LC59
RD59
RD59



LC60
RD60
RD60



LC61
RD61
RD61



LC62
RD62
RD62



LC63
RD63
RD63



LC64
RD64
RD64



LC65
RD65
RD65



LC66
RD66
RD66



LC67
RD67
RD67



LC68
RD68
RD68



LC69
RD69
RD69



LC70
RD70
RD70



LC71
RD71
RD71



LC72
RD72
RD72



LC73
RD73
RD73



LC74
RD74
RD74



LC75
RD75
RD75



LC76
RD76
RD76



LC77
RD77
RD77



LC78
RD78
RD78



LC79
RD79
RD79



LC80
RD80
RD80



LC81
RD81
RD81



LC82
RD82
RD82



LC83
RD83
RD83



LC84
RD84
RD84



LC85
RD85
RD85



LC86
RD86
RD86



LC87
RD87
RD87



LC88
RD88
RD88



LC89
RD89
RD89



LC90
RD90
RD90



LC91
RD91
RD91



LC92
RD92
RD92



LC93
RD93
RD93



LC94
RD94
RD94



LC95
RD95
RD95



LC96
RD96
RD96



LC97
RD97
RD97



LC98
RD98
RD98



LC99
RD99
RD99



LC100
RD100
RD100



LC101
RD101
RD101



LC102
RD102
RD102



LC103
RD103
RD103



LC104
RD104
RD104



LC105
RD105
RD105



LC106
RD106
RD106



LC107
RD107
RD107



LC108
RD108
RD108



LC109
RD109
RD109



LC110
RD110
RD110



LC111
RD111
RD111



LC112
RD112
RD112



LC113
RD113
RD113



LC114
RD114
RD114



LC115
RD115
RD115



LC116
RD116
RD116



LC117
RD117
RD117



LC118
RD118
RD118



LC119
RD119
RD119



LC120
RD120
RD120



LC121
RD121
RD121



LC122
RD122
RD122



LC123
RD123
RD123



LC124
RD124
RD124



LC125
RD125
RD125



LC126
RD126
RD126



LC127
RD127
RD127



LC128
RD128
RD128



LC129
RD129
RD129



LC130
RD130
RD130



LC131
RD131
RD131



LC132
RD132
RD132



LC133
RD133
RD133



LC134
RD134
RD134



LC135
RD135
RD135



LC136
RD136
RD136



LC137
RD137
RD137



LC138
RD138
RD138



LC139
RD139
RD139



LC140
RD140
RD140



LC141
RD141
RD141



LC142
RD142
RD142



LC143
RD143
RD143



LC144
RD144
RD144



LC145
RD145
RD145



LC146
RD146
RD146



LC147
RD147
RD147



LC148
RD148
RD148



LC149
RD149
RD149



LC150
RD150
RD150



LC151
RD151
RD151



LC152
RD152
RD152



LC153
RD153
RD153



LC154
RD154
RD154



LC155
RD155
RD155



LC156
RD156
RD156



LC157
RD157
RD157



LC158
RD158
RD158



LC159
RD159
RD159



LC160
RD160
RD160



LC161
RD161
RD161



LC162
RD162
RD162



LC163
RD163
RD163



LC164
RD164
RD164



LC165
RD165
RD165



LC166
RD166
RD166



LC167
RD167
RD167



LC168
RD168
RD168



LC169
RD169
RD169



LC170
RD170
RD170



LC171
RD171
RD171



LC172
RD172
RD172



LC173
RD173
RD173



LC174
RD174
RD174



LC175
RD175
RD175



LC176
RD176
RD176



LC177
RD177
RD177



LC178
RD178
RD178



LC179
RD179
RD179



LC180
RD180
RD180



LC181
RD181
RD181



LC182
RD182
RD182



LC183
RD183
RD183



LC184
RD184
RD184



LC185
RD185
RD185



LC186
RD186
RD186



LC187
RD187
RD187



LC188
RD188
RD188



LC189
RD189
RD189



LC190
RD190
RD190



LC191
RD191
RD191



LC192
RD192
RD192



LC193
RD1
RD3



LC194
RD1
RD4



LC195
RD1
RD5



LC196
RD1
RD9



LC197
RD1
RD10



LC198
RD1
RD17



LC199
RD1
RD18



LC200
RD1
RD20



LC201
RD1
RD22



LC202
RD1
RD37



LC203
RD1
RD40



LC204
RD1
RD41



LC205
RD1
RD42



LC206
RD1
RD43



LC207
RD1
RD48



LC208
RD1
RD49



LC209
RD1
RD50



LC210
RD1
RD54



LC211
RD1
RD55



LC212
RD1
RD58



LC213
RD1
RD59



LC214
RD1
RD78



LC215
RD1
RD79



LC216
RD1
RD81



LC217
RD1
RD87



LC218
RD1
RD88



LC219
RD1
RD89



LC220
RD1
RD93



LC221
RD1
RD116



LC222
RD1
RD117



LC223
RD1
RD118



LC224
RD1
RD119



LC225
RD1
RD120



LC226
RD1
RD133



LC227
RD1
RD134



LC228
RD1
RD135



LC229
RD1
RD136



LC230
RD1
RD143



LC231
RD1
RD144



LC232
RD1
RD145



LC233
RD1
RD146



LC234
RD1
RD147



LC235
RD1
RD149



LC236
RD1
RD151



LC237
RD1
RD154



LC238
RD1
RD155



LC239
RD1
RD161



LC240
RD1
RD175



LC241
RD4
RD3



LC242
RD4
RD5



LC243
RD4
RD9



LC244
RD4
RD10



LC245
RD4
RD17



LC246
RD4
RD18



LC247
RD4
RD20



LC248
RD4
RD22



LC249
RD4
RD37



LC250
RD4
RD40



LC251
RD4
RD41



LC252
RD4
RD42



LC253
RD4
RD43



LC254
RD4
RD48



LC255
RD4
RD49



LC256
RD4
RD50



LC257
RD4
RD54



LC258
RD4
RD55



LC259
RD4
RD58



LC260
RD4
RD59



LC261
RD4
RD78



LC262
RD4
RD79



LC263
RD4
RD81



LC264
RD4
RD87



LC265
RD4
RD88



LC266
RD4
RD89



LC267
RD4
RD93



LC268
RD4
RD116



LC269
RD4
RD117



LC270
RD4
RD118



LC271
RD4
RD119



LC272
RD4
RD120



LC273
RD4
RD133



LC274
RD4
RD134



LC275
RD4
RD135



LC276
RD4
RD136



LC277
RD4
RD143



LC278
RD4
RD144



LC279
RD4
RD145



LC280
RD4
RD146



LC281
RD4
RD147



LC282
RD4
RD149



LC283
RD4
RD151



LC284
RD4
RD154



LC285
RD4
RD155



LC286
RD4
RD161



LC287
RD4
RD175



LC288
RD9
RD3



LC289
RD9
RD5



LC290
RD9
RD10



LC291
RD9
RD17



LC292
RD9
RD18



LC293
RD9
RD20



LC294
RD9
RD22



LC295
RD9
RD37



LC296
RD9
RD40



LC297
RD9
RD41



LC298
RD9
RD42



LC299
RD9
RD43



LC300
RD9
RD48



LC301
RD9
RD49



LC302
RD9
RD50



LC303
RD9
RD54



LC304
RD9
RD55



LC305
RD9
RD58



LC306
RD9
RD59



LC307
RD9
RD78



LC308
RD9
RD79



LC309
RD9
RD81



LC310
RD9
RD87



LC311
RD9
RD88



LC312
RD9
RD89



LC313
RD9
RD93



LC314
RD9
RD116



LC315
RD9
RD117



LC316
RD9
RD118



LC317
RD9
RD119



LC318
RD9
RD120



LC319
RD9
RD133



LC320
RD9
RD134



LC321
RD9
RD135



LC322
RD9
RD136



LC323
RD9
RD143



LC324
RD9
RD144



LC325
RD9
RD145



LC326
RD9
RD146



LC327
RD9
RD147



LC328
RD9
RD149



LC329
RD9
RD151



LC330
RD9
RD154



LC331
RD9
RD155



LC332
RD9
RD161



LC333
RD9
RD175



LC334
RD10
RD3



LC335
RD10
RD5



LC336
RD10
RD17



LC337
RD10
RD18



LC338
RD10
RD20



LC339
RD10
RD22



LC340
RD10
RD37



LC341
RD10
RD40



LC342
RD10
RD41



LC343
RD10
RD42



LC344
RD10
RD43



LC345
RD10
RD48



LC346
RD10
RD49



LC347
RD10
RD50



LC348
RD10
RD54



LC349
RD10
RD55



LC350
RD10
RD58



LC351
RD10
RD59



LC352
RD10
RD78



LC353
RD10
RD79



LC354
RD10
RD81



LC355
RD10
RD87



LC356
RD10
RD88



LC357
RD10
RD89



LC358
RD10
RD93



LC359
RD10
RD116



LC360
RD10
RD117



LC361
RD10
RD118



LC362
RD10
RD119



LC363
RD10
RD120



LC364
RD10
RD133



LC365
RD10
RD134



LC366
RD10
RD135



LC367
RD10
RD136



LC368
RD10
RD143



LC369
RD10
RD144



LC370
RD10
RD145



LC371
RD10
RD146



LC372
RD10
RD147



LC373
RD10
RD149



LC374
RD10
RD151



LC375
RD10
RD154



LC376
RD10
RD155



LC377
RD10
RD161



LC378
RD10
RD175



LC379
RD17
RD3



LC380
RD17
RD5



LC381
RD17
RD18



LC382
RD17
RD20



LC383
RD17
RD22



LC384
RD17
RD37



LC385
RD17
RD40



LC386
RD17
RD41



LC387
RD17
RD42



LC388
RD17
RD43



LC389
RD17
RD48



LC390
RD17
RD49



LC391
RD17
RD50



LC392
RD17
RD54



LC393
RD17
RD55



LC394
RD17
RD58



LC395
RD17
RD59



LC396
RD17
RD78



LC397
RD17
RD79



LC398
RD17
RD81



LC399
RD17
RD87



LC400
RD17
RD88



LC401
RD17
RD89



LC402
RD17
RD93



LC403
RD17
RD116



LC404
RD17
RD117



LC405
RD17
RD118



LC406
RD17
RD119



LC407
RD17
RD120



LC408
RD17
RD133



LC409
RD17
RD134



LC410
RD17
RD135



LC411
RD17
RD136



LC412
RD17
RD143



LC413
RD17
RD144



LC414
RD17
RD145



LC415
RD17
RD146



LC416
RD17
RD147



LC417
RD17
RD149



LC418
RD17
RD151



LC419
RD17
RD154



LC420
RD17
RD155



LC421
RD17
RD161



LC422
RD17
RD175



LC423
RD50
RD3



LC424
RD50
RD5



LC425
RD50
RD18



LC426
RD50
RD20



LC427
RD50
RD22



LC428
RD50
RD37



LC429
RD50
RD40



LC430
RD50
RD41



LC431
RD50
RD42



LC432
RD50
RD43



LC433
RD50
RD48



LC434
RD50
RD49



LC435
RD50
RD54



LC436
RD50
RD55



LC437
RD50
RD58



LC438
RD50
RD59



LC439
RD50
RD78



LC440
RD50
RD79



LC441
RD50
RD81



LC442
RD50
RD87



LC443
RD50
RD88



LC444
RD50
RD89



LC445
RD50
RD93



LC446
RD50
RD116



LC447
RD50
RD117



LC448
RD50
RD118



LC449
RD50
RD119



LC450
RD50
RD120



LC451
RD50
RD133



LC452
RD50
RD134



LC453
RD50
RD135



LC454
RD50
RD136



LC455
RD50
RD143



LC456
RD50
RD144



LC457
RD50
RD145



LC458
RD50
RD146



LC459
RD50
RD147



LC460
RD50
RD149



LC461
RD50
RD151



LC462
RD50
RD154



LC463
RD50
RD155



LC464
RD50
RD161



LC465
RD50
RD175



LC466
RD55
RD3



LC467
RD55
RD5



LC468
RD55
RD18



LC469
RD55
RD20



LC470
RD55
RD22



LC471
RD55
RD37



LC472
RD55
RD40



LC473
RD55
RD41



LC474
RD55
RD42



LC475
RD55
RD43



LC476
RD55
RD48



LC477
RD55
RD49



LC478
RD55
RD54



LC479
RD55
RD58



LC480
RD55
RD59



LC481
RD55
RD78



LC482
RD55
RD79



LC483
RD55
RD81



LC484
RD55
RD87



LC485
RD55
RD88



LC486
RD55
RD89



LC487
RD55
RD93



LC488
RD55
RD116



LC489
RD55
RD117



LC490
RD55
RD118



LC491
RD55
RD119



LC492
RD55
RD120



LC493
RD55
RD133



LC494
RD55
RD134



LC495
RD55
RD135



LC496
RD55
RD136



LC497
RD55
RD143



LC498
RD55
RD144



LC499
RD55
RD145



LC500
RD55
RD146



LC501
RD55
RD147



LC502
RD55
RD149



LC503
RD55
RD151



LC504
RD55
RD154



LC505
RD55
RD155



LC506
RD55
RD161



LC507
RD55
RD175



LC508
RD116
RD3



LC509
RD116
RD5



LC510
RD116
RD17



LC511
RD116
RD18



LC512
RD116
RD20



LC513
RD116
RD22



LC514
RD116
RD37



LC515
RD116
RD40



LC516
RD116
RD41



LC517
RD116
RD42



LC518
RD116
RD43



LC519
RD116
RD48



LC520
RD116
RD49



LC521
RD116
RD54



LC522
RD116
RD58



LC523
RD116
RD59



LC524
RD116
RD78



LC525
RD116
RD79



LC526
RD116
RD81



LC527
RD116
RD87



LC528
RD116
RD88



LC529
RD116
RD89



LC530
RD116
RD93



LC531
RD116
RD117



LC532
RD116
RD118



LC533
RD116
RD119



LC534
RD116
RD120



LC535
RD116
RD133



LC536
RD116
RD134



LC537
RD116
RD135



LC538
RD116
RD136



LC539
RD116
RD143



LC540
RD116
RD144



LC541
RD116
RD145



LC542
RD116
RD146



LC543
RD116
RD147



LC544
RD116
RD149



LC545
RD116
RD151



LC546
RD116
RD154



LC547
RD116
RD155



LC548
RD116
RD161



LC549
RD116
RD175



LC550
RD143
RD3



LC551
RD143
RD5



LC552
RD143
RD17



LC553
RD143
RD18



LC554
RD143
RD20



LC555
RD143
RD22



LC556
RD143
RD37



LC557
RD143
RD40



LC558
RD143
RD41



LC559
RD143
RD42



LC560
RD143
RD43



LC561
RD143
RD48



LC562
RD143
RD49



LC563
RD143
RD54



LC564
RD143
RD58



LC565
RD143
RD59



LC566
RD143
RD78



LC567
RD143
RD79



LC568
RD143
RD81



LC569
RD143
RD87



LC570
RD143
RD88



LC571
RD143
RD89



LC572
RD143
RD93



LC573
RD143
RD116



LC574
RD143
RD117



LC575
RD143
RD118



LC576
RD143
RD119



LC577
RD143
RD120



LC578
RD143
RD133



LC579
RD143
RD134



LC580
RD143
RD135



LC581
RD143
RD136



LC582
RD143
RD144



LC583
RD143
RD145



LC584
RD143
RD146



LC585
RD143
RD147



LC586
RD143
RD149



LC587
RD143
RD151



LC588
RD143
RD154



LC589
RD143
RD155



LC590
RD143
RD161



LC591
RD143
RD175



LC592
RD144
RD3



LC593
RD144
RD5



LC594
RD144
RD17



LC595
RD144
RD18



LC596
RD144
RD20



LC597
RD144
RD22



LC598
RD144
RD37



LC599
RD144
RD40



LC600
RD144
RD41



LC601
RD144
RD42



LC602
RD144
RD43



LC603
RD144
RD48



LC604
RD144
RD49



LC605
RD144
RD54



LC606
RD144
RD58



LC607
RD144
RD59



LC608
RD144
RD78



LC609
RD144
RD79



LC610
RD144
RD81



LC611
RD144
RD87



LC612
RD144
RD88



LC613
RD144
RD89



LC614
RD144
RD93



LC615
RD144
RD116



LC616
RD144
RD117



LC617
RD144
RD118



LC618
RD144
RD119



LC619
RD144
RD120



LC620
RD144
RD133



LC621
RD144
RD134



LC622
RD144
RD135



LC623
RD144
RD136



LC624
RD144
RD145



LC625
RD144
RD146



LC626
RD144
RD147



LC627
RD144
RD149



LC628
RD144
RD151



LC629
RD144
RD154



LC630
RD144
RD155



LC631
RD144
RD161



LC632
RD144
RD175



LC633
RD145
RD3



LC634
RD145
RD5



LC635
RD145
RD17



LC636
RD145
RD18



LC637
RD145
RD20



LC638
RD145
RD22



LC639
RD145
RD37



LC640
RD145
RD40



LC641
RD145
RD41



LC642
RD145
RD42



LC643
RD145
RD43



LC644
RD145
RD48



LC645
RD145
RD49



LC646
RD145
RD54



LC647
RD145
RD58



LC648
RD145
RD59



LC649
RD145
RD78



LC650
RD145
RD79



LC651
RD145
RD81



LC652
RD145
RD87



LC653
RD145
RD88



LC654
RD145
RD89



LC655
RD145
RD93



LC656
RD145
RD116



LC657
RD145
RD117



LC658
RD145
RD118



LC659
RD145
RD119



LC660
RD145
RD120



LC661
RD145
RD133



LC662
RD145
RD134



LC663
RD145
RD135



LC664
RD145
RD136



LC665
RD145
RD146



LC666
RD145
RD147



LC667
RD145
RD149



LC668
RD145
RD151



LC669
RD145
RD154



LC670
RD145
RD155



LC671
RD145
RD161



LC672
RD145
RD175



LC673
RD146
RD3



LC674
RD146
RD5



LC675
RD146
RD17



LC676
RD146
RD18



LC677
RD146
RD20



LC678
RD146
RD22



LC679
RD146
RD37



LC680
RD146
RD40



LC681
RD146
RD41



LC682
RD146
RD42



LC683
RD146
RD43



LC684
RD146
RD48



LC685
RD146
RD49



LC686
RD146
RD54



LC687
RD146
RD58



LC688
RD146
RD59



LC689
RD146
RD78



LC690
RD146
RD79



LC691
RD146
RD81



LC692
RD146
RD87



LC693
RD146
RD88



LC694
RD146
RD89



LC695
RD146
RD93



LC696
RD146
RD117



LC697
RD146
RD118



LC698
RD146
RD119



LC699
RD146
RD120



LC700
RD146
RD133



LC701
RD146
RD134



LC702
RD146
RD135



LC703
RD146
RD136



LC704
RD146
RD146



LC705
RD146
RD147



LC706
RD146
RD149



LC707
RD146
RD151



LC708
RD146
RD154



LC709
RD146
RD155



LC710
RD146
RD161



LC711
RD146
RD175



LC712
RD133
RD3



LC713
RD133
RD5



LC714
RD133
RD3



LC715
RD133
RD18



LC716
RD133
RD20



LC717
RD133
RD22



LC718
RD133
RD37



LC719
RD133
RD40



LC720
RD133
RD41



LC721
RD133
RD42



LC722
RD133
RD43



LC723
RD133
RD48



LC724
RD133
RD49



LC725
RD133
RD54



LC726
RD133
RD58



LC727
RD133
RD59



LC728
RD133
RD78



LC729
RD133
RD79



LC730
RD133
RD81



LC731
RD133
RD87



LC732
RD133
RD88



LC733
RD133
RD89



LC734
RD133
RD93



LC735
RD133
RD117



LC736
RD133
RD118



LC737
RD133
RD119



LC738
RD133
RD120



LC739
RD133
RD133



LC740
RD133
RD134



LC741
RD133
RD135



LC742
RD133
RD136



LC743
RD133
RD146



LC744
RD133
RD147



LC745
RD133
RD149



LC746
RD133
RD151



LC747
RD133
RD154



LC748
RD133
RD155



LC749
RD133
RD161



LC750
RD133
RD175



LC751
RD175
RD3



LC752
RD175
RD5



LC753
RD175
RD18



LC754
RD175
RD20



LC755
RD175
RD22



LC756
RD175
RD37



LC757
RD175
RD40



LC758
RD175
RD41



LC759
RD175
RD42



LC760
RD175
RD43



LC761
RD175
RD48



LC762
RD175
RD49



LC763
RD175
RD54



LC764
RD175
RD58



LC765
RD175
RD59



LC766
RD175
RD78



LC767
RD175
RD79



LC768
RD175
RD81












    • wherein RD1 to RD192 have the following structures:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA is as defined above, LB can be selected from the group consisting of: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB130, LB32, LB134, LB136, LB138, LB140, LB142, LB144, LB156, LB58, LB160, LB162, LB164, LB168, LB172, LB175, LB204, LB206, LB214, LB216, LB218, LB220, LB222, LB231, LB233, LB235, LB237, LB240, LB242, LB244, LB246, LB248, LB250, LB252, LB254, LB256, LB258, LB260, LB262, and LB263. In some embodiments, LB can be selected from the group consisting of: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB132, LB136, LB138, LB142, LB156, LB162, LB204, LB206, LB214, LB216, LB218, LB220, LB231, LB233, and LB237.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA and LB are as defined above, LC can be selected from the group consisting of only those LCj-I and LCj-II whose corresponding R1 and R2 are defined to be selected from the following structures: RD1, RD3, RD4, RD5, RD9, RD10, RD17, RD18, RD20, RD22, RD37, RD40, RD41, RD42, RD43, RD48, RD49, RD50, RD54, RD55, RD58, RD59, RD78, RD79, RD81, RD87, RD88, RD89, RD93, RD116, RD117, RD118, RD119, RD120, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD147, RD149, RD151, RD154, RD161, RD175, and RD190. In some embodiments, LC can be selected from the group consisting of only those LCj-I and LCj-II whose corresponding R1 and R2 are defined to be selected from the following structures: RD1, RD3, RD4, RD9, RD17, RD22, RD43, RD50, RD75, RD116, RD118, RD133, RD134, RD135, RD136, RD143, RD144, RD145, RD146, RD149, RD151, RD154, R155, and RD190.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z, where LA and LB are as defined above, the ligand LC is selected from the group consisting of:




embedded image


embedded image


embedded image


In some embodiments of the compound where the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other, the compound can be the Compound Ax-F having the formula Ir(LAi-F)3, the Compound By having the formula Ir(LAi-F)2(LBk)2, or the Compound Cz-I having the formula Ir(LAi-F)2(LCj-I), or the Compound Cz-II having the formula Ir(LAi-F)2(LCj-II); where x=i, F=f, y=263i+k−263, and z=768i+j−768; where i is an integer from 1 to 1152, and k is an integer from 1 to 263, and j is an integer from 1 to 768, and f is a Roman numeral I to XXVI; where LAi-F have the structure of LAi-I to LAi-XXVI as defined above, LBk have the structure of LB1 to LB263 defined above, and LCj have the structure of LCj-I or LCj-II as defined above.


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the first organic layer may comprise a compound comprising a first ligand LA of




embedded image



where at least one of RA and RB is a structure of




embedded image



wherein, each X1 to X4 is independently C or N; at least one of X1 to X4 is C; each Z1 and Z2 is independently O or S; RA, RB, and RC each represents mono to the maximum allowable substitutions, or no substitution; each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; LA is complexed to a metal M selected from the group consisting of Os, Ir, Pd, and Pt; M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region may comprise a compound comprising a first ligand LA of




embedded image



where at least one of RA and RB is a structure of




embedded image



wherein, each X1 to X4 is independently C or N; at least one of X1 to X4 is C; each Z1 and Z2 is independently O or S; RA, RB, and RC each represents mono to the maximum allowable substitutions, or no substitution; each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; LA is complexed to a metal M selected from the group consisting of Os, Ir, Pd, and Pt; M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound comprising a first ligand LA of




embedded image



where at least one of RA and RB is a structure of




embedded image



wherein, each X1 to X4 is independently C or N; at least one of X1 to X4 is C; each Z1 and Z2 is independently O or S; RA, RB, and RC each represents mono to the maximum allowable substitutions, or no substitution; each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; LA is complexed to a metal M selected from the group consisting of Os, Ir, Pd, and Pt; M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140 US2015060804 US20150123047 and US2012146012.




embedded image


embedded image


embedded image



b) HIL/HTL:


A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP7-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



c) EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:


The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y1O4) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



e) Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO8035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



f) HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



h) Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


Experiments
Synthesis of the Inventive Example Ir(LA583-XIII)2(LC17-I)



embedded image



A solution of (2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-(4-(5-neopentyl)thieno-[3,2-b]thiophen-2-yl)pyridine (1.823 g, 3.9 mmol, 2.1 equiv) in 2-ethoxyethanol (50 mL) and DIUF water (15 mL) was sparged with nitrogen for 10 minutes. Iridium chloride hydrate (0.591 g, 1.9 mmol, 1.0 equiv) was added and the reaction mixture was heated at 80° C. for 68 hours. The mixture was cooled to 50° C., filtered, and the solid washed with DIUF water (2×50 mL) and methanol (2×50 mL) then air-dried to give di-μ-chloro-tetrakis[((2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-((5-neopentyl)thieno[3,2-b]thiophen-2-yl)pyridin-6-yl)]diiridium(III) (5.016 g, >100% yield) as a red-brown solid.


To a solution di-μ-chloro-tetrakis[((2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-((5-neopentyl)thieno[3,2-b]thiophen-2-yl)pyridin-6-yl)]diiridium(III) (5.016 g, 2.15 mmol, 1.0 equiv) in 2-ethoxyethanol (50 mL) was added, via syringe, 3,7-diethylnonane-4,6-dione (1.80 g, 8.43 mmol, 3.9 equiv) and the reaction mixture was sparged with nitrogen for 15 minutes. Powdered potassium carbonate (1.66 g, 12.0 mmol, 5.6 equiv) was added and the reaction mixture was stirred at room temperature for 24 hours in a flask wrapped in foil to exclude light. DIUF water (50 mL) was added and the mixture was stirred for 30 minutes. The suspension was filtered, the solid was washed with DIUF water (2×50 mL) and methanol (2×50 mL) then air-dried. The orange-red solid was dry-loaded onto Celite and chromatographed on silica gel column, eluting with 10-50% dichloromethane in hexanes to give bis[((2-(4-(tert-butyl)naphthalen-2-yl)-1′-yl)-4-((5-neopentyl)thieno[3,2-b]thiophen-2-yl)pyridin-6-yl)]-(3,7-diethylnonane-4,6-dio-nato-k2O,O′)iridium(III) (0.756 g, 29%) as an orange red solid.


The inventive example (Ir(LA583-XIII)2(LC17-I)) exhibited emission with a peak maximum at 606 nm in the solid state with high emission quantum yield of 88%. The inventive example compound can be used as an emissive dopant in OLEDs to improve the OLED performance.


It is understood that the various embodiments described herein are byway of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A heteroleptic compound having a formula of M(LA)x(LB)y(LC)z wherein LA has a structure of
  • 2. The compound of claim 1, wherein each R, RA, RB, and RC is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.
  • 3. The compound of claim 1, wherein M is Ir or Pt.
  • 4. The compound of claim 1, wherein X1 to X4 are each C.
  • 5. The compound of claim 1, wherein at least one of X1 to X4 is N.
  • 6. The compound of claim 1, wherein two RA substituents are joined together to form a fused aromatic ring.
  • 7. The compound of claim 1, wherein two RB substituents are joined together to form a fused aromatic ring.
  • 8. The compound of claim 1, wherein Z1 and Z2 are each S; or Z1 and Z2 are each O.
  • 9. The compound of claim 1, wherein RC is an alkyl group comprising 1 to 10 carbon atoms or a cycloalkyl group comprising 5 to 10 carbon atoms.
  • 10. The compound of claim 1, wherein at least one RB is a structure of Formula II or Formula III.
  • 11. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of:
  • 12. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of: LAi-I, wherein i=1 to 1152, that are based on a structure of Formula I
  • 13. The compound of claim 12, wherein the compound is Compound By having the formula Ir(LAi-F)2(LBk)2, Compound Cz-I having the formula Ir(LAi-F)2(LCj-I), or Compound Cz-II having the formula Ir(LAi-F)2(LCj-II); wherein F=f, y=263i+k−263, and z=768i+j−768;wherein i is an integer from 1 to 1152, and k is an integer from 1 to 263, and j is an integer from 1 to 768, and f=I to XXVI;wherein LBk is selected from the group consisting of LB1 to LB263 having the following structures:
  • 14. A formulation comprising the compound according to claim 1.
  • 15. The compound of claim 1, wherein LB and LC are each independently selected from the group consisting of:
  • 16. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a heteroleptic compound having a formula of M(LA)x(LB)y(LC)z wherein LA has a structure of
  • 17. The OLED of claim 16, wherein the organic layer further comprises a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 18. The OLED of claim 17, wherein the host is selected from the group consisting of:
  • 19. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a heteroleptic compound having a formula of M(LA)x(LB)y(LC)z wherein LA has a structure of
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/847,037, filed on May 13, 2019, the entire contents of which are incorporated herein by reference.

US Referenced Citations (83)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6593690 McCormick Jul 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
8440826 De Cola et al. May 2013 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090134784 Lin May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20110057559 Xia Mar 2011 A1
20110084599 Brooks Apr 2011 A1
20140350642 Anemian Nov 2014 A1
20140371825 Anemian Dec 2014 A1
Foreign Referenced Citations (51)
Number Date Country
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2010027583 Mar 2010 WO
2010028151 Mar 2010 WO
2012013719 Feb 2012 WO
WO-2013076197 May 2013 WO
Non-Patent Literature Citations (47)
Entry
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter, ” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi et al., “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Nada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota, Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis (dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based On Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91: 209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSLYKE, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69 (15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Coluccini, C., et al., “Photophysical and Electrochemical Properties of Thiophene-Based 2-Arylpyridines,” Eur. J. Org. Chem, 2011, vol. 2011, Issue 28, pp. 5587-5598.
Related Publications (1)
Number Date Country
20200361975 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62847037 May 2019 US