Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 9518063
  • Patent Number
    9,518,063
  • Date Filed
    Wednesday, June 10, 2015
    9 years ago
  • Date Issued
    Tuesday, December 13, 2016
    8 years ago
Abstract
A new class of compounds containing aza-dibenzothiophene or aza-dibenzofuran are provided. The compounds may be used in organic light emitting devices giving improved stability, improved efficiency, long lifetime and low operational voltage. In particular, the compounds may be used as the host material of an emissive layer having a host and an emissive dopant, or as a material in an enhancement layer.
Description
FIELD OF THE INVENTION

The present invention relates to novel organic complexes containing aza-dibenzothiophene or aza-dibenzofuran. The materials may be useful in organic light emitting devices (OLEDs).


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine)iridium, denoted Ir(ppy)3, which has the structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

A process is provided for making aza-dibenzothiophene compounds or aza-dibenzofuran compounds. The process, comprising treating an acetic acid solution of an amino-arylthio pyridine intermediate having the formula




embedded image



wherein one of X1 and X2 is nitrogen and the other of X1 and X2 is carbon and wherein Y is S or O, with tBuONO to produce an aza complex having the formula




embedded image



R1 and R2 may represent mono, di, tri or tetra substitutions. R1 is selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl and halide. Preferably, R1 is halide. R2 is selected from the group consisting of hydrogen, alkyl, aryl and halide. Preferably, one of X1 and X2 may be carbon and the other may be nitrogen. More preferably, X1 is nitrogen and X2 is carbon or X1 is carbon and X2 is nitrogen. Preferably, Y is S. Alternatively, Y may preferably be O. R2 may include at least one halide, and R2 may include only halide substituents. The process may be used to make compounds where R2 is not halide and the amino-arylthio pyridine intermediate is treated with H2SO4 prior to treatment with tBuONO. The yield of




embedded image



may be greater than 50%.


A novel class of aza-dibenzothiophene and aza-dibenzofuran compounds are provided. The compounds have the formula:




embedded image



X1, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of a carbon atom and a nitrogen atom, and at least one of X1, X2, X3, X4, X5, X6, X7, and X8 is a nitrogen atom. Y is S or O. R1 and R2 may represent mono, di, tri, or tetra substitutions. R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, aryl and halide, and at least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 may represent mono, di, tri, tetra or penta substitutions, and R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, m and n are 0, 1, 2, 3, or 4; and wherein m+n is equal to or greater than 2 and m+n is equal to or less than 6. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Additionally, a novel class of aza-dibenzothiophene and aza-dibenzofuran compounds are provided. The compounds have the formula:




embedded image



X1, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of a carbon atom and a nitrogen atom, and at least one of X1, X2, X3, X4, X5, X6, X7, and X8 is a nitrogen atom. Y is S or O. R1 and R2 may represent mono, di, tri, or tetra substitutions. R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, aryl and halide, and at least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 may represent mono, di, tri, tetra or penta substitutions, and R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, m and n are 0, 1, 2, 3, or 4; and wherein m+n is equal to or greater than 2 and m+n is equal to or less than 6. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Compounds are also provided where one of R1 and R2 is hydrogen and the other of R1 and R2 is selected from the groups consisting of




embedded image


embedded image


embedded image



In addition, compounds are provided wherein both R1 and R2 are selected from the groups provided herein. Moreover, compounds are provided wherein R1 is selected from the groups provided herein.


Specific examples of the aza-dibenzothiophene compounds and aza-dibenzofuran compounds are provided including Compounds 1-93.


Specific examples of the aza-dibenzothiophene compounds and aza-dibenzofuran compounds are provided including Compounds 1-79.


A first device comprising an organic light emitting device is provided. The device further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound having FORMULA I. In particular, the organic layer of the device may comprise a compound selected from Compounds 1-93.


In one aspect, the first device is a consumer product.


An organic light emitting device is also provided. The device comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound having FORMULA I. In particular, the organic layer of the device may comprise a compound selected from Compound 1-79. Preferably, the organic layer is an emissive layer and the compound having FORMULA I is a host. The emissive layer may further comprise an emissive dopant. Preferably, the emissive dopant has the formula




embedded image



where R1 and R2 are each independently selected from the group consisting of hydrogen, alkyl, and aryl.


Additionally, a consumer product is also provided. The product contains a device that has an anode, a cathode, and an organic layer disposed between the anode and the cathode, where the organic layer comprises a compounds having FORMULA I.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows aza-dibenzothiophene compounds and aza-dibenzofuran compounds.



FIG. 4 shows reactions in synthetic pathways.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75. No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.


A new class of compounds containing an aza-dibenzothiophene or aza-dibenzofuran core are provided (illustrated in FIG. 3). In particular, aza-dibenzothiophene compounds or aza-dibenzofuran compounds further substituted with triphenylene and/or nitrogen-containing substituents are provided. These compounds may be advantageously used in phosphorescent organic light emitting devices. Preferably, these compounds may be used as a host material in an emissive layer or as a material in an enhancement layer.


While there are existing syntheses for aza-dibenzothiophene compounds and aza-dibenzofuran compounds, these synthetic routes may have limited practicality. For example, substrates of aza-dibenzothiophene and aza-dibenzofuran were first synthesized by the well-known Pschorr Cyclization method which involves the formation of diazonium salt followed by cyclization in an aqueous medium with or without catalysts, such as Cu, CuCl. However, the general yield of the Pschorr Cyclization method is not consistent and can be less than 10%. Therefore, it is highly desirable to provide a process for making aza-dibenzothiophene compounds and aza-dibenzofuran compounds in improved yields. A new process for making aza-dibenzothiophene compounds is provided herein (illustrated in FIG. 4). The processes described in this invention differ from the existing synthesis at least by using acetic acid, not aqueous medium, and do not employ any metal catalyst. Preferably, the acetic acid is pure (or glacial) acetic acid. The process provided herein may provide yields higher than 50% or yields higher than 70%.


Dibenzothiophene-containing and dibenzofuran-containing materials are typically hole transporting materials that have a relatively high triplet energy. Given the beneficial properties of dibenzothiophene and dibenzofuran, these compounds have been used in the OLED area and some of these compounds have achieved good device performance. See Lin et al., Dibenzothiophene-containing Materials in Phosphorescent Light Emitting Diodes, 2008, U.S. application Ser. No. 12/208,907 and Ma et al., Benzo-fused Thiophene/Triphenylene Hybrid Materials, 2008, PCT/US2008/072499. Without being bound by theory, it is thought that anion injection and anion stability may play an important role in device stability. In order to have high anion stability and a lower energy barrier for anion injection to the emissive layer, compounds with a lower LUMO level are desired. In particular, dibenzothiophene and dibenzofuran containing compounds having a lower LUMO value (i.e., compounds that are more easily reduced) may be beneficial.


The compounds provided herein contain an aza-dibenzothiophene or aza-dibenzofuran core further substituted with particular chemical groups having desirable properties. Specifically, these aza-type compounds are substituted with triphenylene groups and/or nitrogen-containing groups (e.g., carbazole) to maintain high triplet energy and provide improved charge transport properties. Therefore, these substituted aza-dibenzothiophene compounds and aza-dibenzofuran compounds may provide devices having improved stability, improved efficiency, and a longer lifetime. In addition, these aza-type compounds have been demonstrated to be more easily reduced than their dibenzothiophene or dibenzofuran counterparts, and thus may provide devices having low operating voltage.


Triphenylene is a polyaromatic hydrocarbon with high triplet energy, yet high n-conjugation and a relatively small energy difference between the first singlet and first triplet levels. This would indicate that triphenylene has relatively easily accessible HOMO and LUMO levels compared to other aromatic compounds with similar triplet energy (e.g., biphenyl). These characteristics of triphenylene make it a good molecular building block in OLED hosts to stabilize charges (hole or electron). One advantage of using triphenylene and its derivatives as hosts is that it can accommodate red, green and even blue phosphorescent dopants to give high efficiency without energy quenching. Triphenylene hosts may be used to provide high efficiency and stability PHOLEDs. See Kwong and Alleyene, Triphenylene Hosts in Phosphorescent Light Emitting Diodes, 2006, 60 pp, U.S. 2006/0280965 A1. A compound containing an aza-dibenzothiophene or aza-dibenzofuran core and a triphenylene moiety may be beneficial as a host in PHOLEDs. More specifically, the triplet energy of both portions of the compound are relatively high thereby maintaining an overall high triplet energy. In addition, the combination of these two groups in one compound may also offer improved charge balance thus improving device efficiency and lifetime. Non-limiting examples triphenylene groups that may be the triphenylene moiety of such compounds may include




embedded image


Nitrogen containing groups may also be used as substituents of the aza-dibenzothiophene compounds and aza-dibenzofuran compounds. Such nitrogen containing groups may include carbazole, oligocarbazole, indolocarbazole, and diphenylamine. Carbazole is a nitrogen containing heteroaromatic, having high triplet energy, and has hole transporting and electron transporting properties. One advantage to using carbazole-containing compounds (i.e., carbazole, oligocarbazole and indolocarbazole) as host materials is that they simultaneously possess sufficiently large triplet energies and carrier transport properties. For example, the indolocarbazole and 3-(9-carbazolyl)carbazole have a relatively low electrochemical oxidation potential. As such, these compounds are easier to oxidize and to reverse the oxidation, which improves overall host stability. Another advantage is that these carbazole building blocks can serve as donors, while coupling with aza-dibenzothiophenes or aza-dibenzofurans which are acceptors here, to form a donor-acceptor type molecule. It is believed that these molecules having a donor-acceptor molecular arrangement contribute, at least in part, to the low voltage character in the device.


The compounds provided herein may be used as host materials in blue, green and red PHOLEDs. In particular, aza-dibenzothiophene or aza-dibenzofuran compounds substituted with triphenylene may be used in blue, green and red devices as these compounds can accommodate blue, green and red emissive dopants. Preferably, these compounds may be used in blue devices. The aza-type compounds provided herein may also be substituted with both triphenylene and nitrogen-containing substituents. These compounds substituted with both triphenylene and nitrogen-containing groups may be used in green and red devices as these compounds can accommodate green and red emissive dopants. Preferably, these compounds may be used in green devices.


The heteroaromatic compounds (i.e., aza-dibenzothiophene and aza-dibenzofuran) described herein may be more easily reduced than their dibenzothiophene or dibenzofuran counterparts, in particular by 0.2 V to 0.5 V. As a result, these aza-type compounds may provide devices having low operational voltage and long lifetimes. Without being bound by theory, it is thought that the more easily reduced compounds may provide better anion stability and easier anion injection from the electron transport layer (ETL) to the emissive layer (EML) in the device.


The compounds described herein have the formula:




embedded image


X1, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of a carbon atom and a nitrogen atom, and at least one of X1, X2, X3, X4, X4, X6, X7, and X8 is a nitrogen atom. Y is S or O. R1 and R2 may represent mono, di, tri, or tetra substitutions. R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, aryl and halide. At least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 may represent mono, di, tri, or tetra or penta substitutions; and R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


The compounds described herein have the formula:




embedded image


Where X1, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of a carbon atom and a nitrogen atom, and at least one of X1, X2, X3, X4, X5, X6, X7, and X8 is a nitrogen atom. Y is S or O; wherein R1 and R2 may represent mono, di, tri, or tetra substitutions. R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, aryl and halide and at least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 may represent mono, di, tri, or tetra or penta substitutions; and R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Preferably, m and n are 0, 1, 2, 3, or 4, and m+n is equal to or greater than 2 and m+n is equal to or less than 6. Without being bound by theory, it is thought that at least 2 provides better electron transport properties by providing a preferred amount of electron transport moieties. Moreover, it is thought that greater than 6 may result in an increase in sublimation temperature so that the manufacturing of devices with such compounds is not as practical.


In one aspect, at least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of the compounds are provided, and include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Specific examples of such compounds are provided, and include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another aspect, at least one of R1 and R2 is selected from the group consisting of:




embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another aspect, R1 and R2 are each independently selected from the group consisting of hydrogen and




embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


In one aspect, at least one of R1 and R2 is selected from the group consisting of:




embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another aspect, R1 and R2 are each independently selected from the group consisting of hydrogen and




embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, R1 and R2 are each independently selected from the group consisting of hydrogen and




embedded image


embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another aspect, R1 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. R2 is hydrogen. Preferably, R′1, R′2, R′3, and R′4 are each independently hydrogen or methyl.


Specific examples of such compounds include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A first device comprising an organic light emitting device is also provided. The device further comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer further comprising a compound having the formula:




embedded image



X1, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of a carbon atom and a nitrogen atom. At least one of X1, X2, X3, X4, X5, X6, X7, and X8 is a nitrogen atom. Y is S or O. R1 and R2 may represent mono, di, tri, or tetra substitutions. R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, aryl and halide. At least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 may represent mono, di, tri, tetra or penta substitutions. R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl.


In one aspect, the first device is a consumer product.


Additionally, an organic light emitting device is also provided. The device comprises an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode, wherein the organic layer further comprises a compound having FORMULA I. Preferably, m and n are 0, 1, 2, 3, or 4; and m+n is equal to or greater than 2 and m+n is equal to or less than 6.


In one aspect, at least one of R1 and R2 is selected from the group consisting of:




embedded image


embedded image



R′1, R′2, R′3, and R′4 are independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, aryl and heteroaryl.


In another aspect, R1 and R2 are each independently selected from the group consisting of hydrogen and




embedded image


embedded image


In one aspect, devices are provided that contain a compound selected from the group consisting of Compounds 1-93.


In particular, devices are provided wherein the compound is selected from the group consisting of Compounds 1-79.


In one aspect, the organic layer is an emissive layer and the aza-dibenzothiophene and aza-dibenzofuran having FORMULA I is a host in the organic layer. The organic layer may further comprise an emissive dopant. Preferably, the emissive dopant has the formula




embedded image



wherein R1 and R2 are each independently selected from the group consisting of hydrogen, alkyl, and aryl.


As discussed above, the aza-dibenzothiophene and aza-dibenzofuran compounds having FORMULA I may be advantageously used as a host material in an emissive layer. However, these compounds may also be used as materials in an enhancement layer. In particular, the compounds described herein may be used the material in a blocking layer.


A consumer device is also provided, wherein the device further comprises an anode, a cathode and an organic layer. The organic layer further comprises an aza-dibenzothiophene or aza-dibenzofuran compound having FORMULA I.


Additionally, a process for making an aza-dibenzothiophene compound or an aza-dibenzofuran compound is provided (illustrated in FIG. 4, top). The process comprises treating an acetic acid solution of an amino-arylthio pyridine intermediate having the formula:




embedded image



with tBuONO to produce an aza complex having the formula




embedded image



Y is S or O. X1 or X2 is nitrogen. R1 and R2 may be a mono, di, tri, or tetra substitution. R1 is selected from the group consisting of hydrogen, alkyl, aryl and heteroaryl; and R2 is selected from the group consisting of hydrogen, alkyl, aryl and halide. For example, an acetic acid solution of the intermediate 3-amino-4-arylthio pyridine with halide substituents on the pyridine ring or an acetic acid solution of the intermediate 3-arylthio-4-amino pyridine with halide substituents on the pyridine ring may be treated with 1-2 eq. of tBuONO at room temperature until no gas evolved, usually around 1-3 hours.


Particular examples of the process include intermediates and aza-complexes where Y is S (i.e., dibenzothiophene intermediates and aza-dibenzothiophene complexes). Alternatively, the process may preferably include intermediates and aza-complexes where Y is O (i.e., dibenzofuran intermediates and aza-dibenzofuran complexes). The process provided herein may yield greater than 50% or greater than 70% of the aza-complexes. In particular, the yield of




embedded image



may be greater than 50%.


Examples of the process to make aza-dibenzothiophene or aza-dibenzofuran compounds include intermediates where one of X1 and X2 is carbon and the other is nitrogen. In a particular example of the process, X1 is nitrogen and X2 is carbon. In another particular example, X1 is carbon and X2 is nitrogen.


Examples of the process to make aza-dibenzothiophene or aza-dibenzofuran compounds include compounds where R2 includes at least one halide. In a particular example of the process, R2 includes only halide substituents. Moreover, R1 is preferably halide. Halide substituents may include, but are not limited to, bromide, chloride, fluoride, and iodide.


The process may also be used to make aza-dibenzothiophene or aza-dibenzofuran compounds where R2 is not a halide (i.e. there are no further substituents on the pyridine ring). For these aza-compounds lacking a halide substituent on the pyridine ring, the amino-arylthio pyridine intermediate is treated with H2SO4 prior to treatment with tBuONO (illustrated in FIG. 4, bottom). For example, an acetic acid solution of the intermediate 3-amino-4-arylthio pyridine or an acetic acid solution of the intermediate 3-arylthio-4-amino pyridine may be treated with 1-5 eq. of H2SO4, followed by 1-2 eq. of tBuONO until no gas evolved, usually around 1-5 hours.


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 1 below. Table 1 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.











TABLE 1





MATERIAL
EXAMPLES OF MATERIAL
PUBLICATIONS







Hole injection materials




Phthalocyanine and porphyrin compounds


embedded image


Appl. Phys. Lett. 69, 2160 (1996)





Starburst triarylamines


embedded image


J. Lumin. 72-74, 985 (1997)





CFx Fluorohydrocarbon


embedded image


Appl. Phys. Lett. 78, 673 (2001)


polymer







Conducting polymers (e.g., PEDOT:PSS, polyaniline, polythiophene)


embedded image


Synth. Met. 87, 171 (1997) WO2007002683





Phosphonic acid and sliane SAMs


embedded image


US20030162053





Triarylamine or polythiophene polymers with conductivity dopants


embedded image


EA1725079A1








embedded image











embedded image








Arylamines complexed with metal oxides such as molybdenum and tungsten oxides


embedded image


SID Symposium Digest, 37, 923 (2006) WO2009018009





p-type semiconducting organic complexes


embedded image


US20020158242





Metal organometallic complexes


embedded image


US20060240279





Cross-linkable compounds


embedded image


US20080220265





Hole transporting materials




Triarylamines (e.g., TPD, α-NPD)


embedded image


Appl. Phys. Lett. 51, 913 (1987)








embedded image


U.S. Pat. No. 5,061,569








embedded image


EP650955








embedded image


J. Mater. Chem. 3, 319 (1993)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)





Triarylamine on spirofluorene core


embedded image


Synth. Met. 91, 209 (1997)





Arylamine carbazole compounds


embedded image


Adv. Mater. 6, 677 (1994), US20080124572





Triarylamine with (di)benzothiophene/ (di)benzofuran


embedded image


US20070278938, US20080106190





Indolocarbazoles


embedded image


Synth. Met. 111, 421 (2000)





Isoindole compounds


embedded image


Chem. Mater. 15, 3148 (2003)





Metal carbene complexes


embedded image


US20080018221





Phosphorescent OLED




host materials




Red hosts




Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)





Metal 8- hydroxyquinolates (e.g., Alq3, BAlq)


embedded image


Nature 395, 151 (1998)








embedded image


US20060202194








embedded image


WO2005014551








embedded image


WO2006072002





Metal phenoxy- benzothiazole compounds


embedded image


Appl. Phys. Lett. 90, 123509 (2007)





Conjugated oligomers and polymers (e.g., polyfluorene)


embedded image


Org. Electron. 1, 15 (2000)





Aromatic fused rings


embedded image


WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065





Zinc complexes


embedded image


WO2009062578





Green hosts




Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US20030175553








embedded image


WO2001039234





Aryltriphenylene compounds


embedded image


US20060280965








embedded image


US20060280965








embedded image


WO2009021126





Donor acceptor type molecules


embedded image


WO2008056746





Aza-carbazole/ DBT/DBF


embedded image


JP2008074939





Polymers (e.g., PVK)


embedded image


Appl. Phys. Lett. 77, 2280 (2000)





Spirofluorene compounds


embedded image


WO2004093207





Metal phenoxy- benzooxazole compounds


embedded image


WO2005089025








embedded image


WO2006132173








embedded image


JP200511610





Spirofluorene- carbazole compounds


embedded image


JP2007254297








embedded image


JP2007254297





Indolocabazoles


embedded image


WO2007063796








embedded image


WO2007063754





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)


embedded image


J. Appl. Phys. 90, 5048 (2001)








embedded image


WO2004107822





Tetraphenylene complexes


embedded image


US20050112407





Metal phenoxypyridine compounds


embedded image


WO2005030900





Metal coordination complexes (e.g., Zn, Al with N{circumflex over ( )}N ligands)


embedded image


US20040137268, US20040137267





Blue hosts




Arylcarbazoles


embedded image


Appl. Phys. Lett, 82, 2422 (2003)








embedded image


US20070190359





Dibenzothiophene/ Dibenzofuran- carbazole compounds


embedded image


WO2006114966, US20090167162








embedded image


US20090167162








embedded image


WO2009086028








embedded image


US20090030202, US20090017330





Silicon aryl compounds


embedded image


US20050238919








embedded image


WO2009003898





Silicon/Germanium aryl compounds


embedded image


EP2034538A





Aryl benzoyl ester


embedded image


WO2006100298





High triplet metal organometallic complex


embedded image


U.S. Pat. No. 7,154,114





Phosphorescent dopants




Red dopants




Heavy metal porphyrins (e.g., PtOEP)


embedded image


Nature 395, 151 (1998)





Iridium(III) organometallic complexes


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US2006835469








embedded image


US2006835469








embedded image


US20060202194








embedded image


US20060202194








embedded image


US20070087321








embedded image


US20070087321








embedded image


Adv. Mater. 19, 739 (2007)








embedded image


WO2009100991








embedded image


WO2008101842





Platinum(II) organometallic complexes


embedded image


WO2003040257





Osmium(III) complexes


embedded image


Chem. Mater. 17, 3532 (2005)





Ruthenium(II) complexes


embedded image


Adv. Mater. 17, 1059 (2005)





Rhenium (I), (II), and (III) complexes


embedded image


US20050244673





Green dopants




Iridium(III) organometallic complexes


embedded image


Inorg. Chem. 40, 1704 (2001)



and its derivatives









embedded image


US20020034656








embedded image


U.S. Pat. No. 7,332,232








embedded image


US20090108737








embedded image


US20090039776








embedded image


U.S. Pat. No. 6,921,915








embedded image


U.S. Pat. No. 6,687,266








embedded image


Chem. Mater. 16, 2480 (2004)








embedded image


US20070190359








embedded image


US 20060008670 JP2007123392








embedded image


Adv. Mater. 16, 2003 (2004)








embedded image


Angew. Chem. Int. Ed. 2006, 45, 7800








embedded image


WO2009050290








embedded image


US20090165846








embedded image


US20080015355





Monomer for polymeric metal organometallic compounds


embedded image


U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598





Pt(II) organometallic complexes, including polydentated ligands


embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Chem. Lett. 34, 592 (2005)








embedded image


WO2002015645








embedded image


US20060263635





Cu complexes


embedded image


WO2009000673





Gold complexes


embedded image


Chem. Commun. 2906 (2005)





Rhenium(III) complexes


embedded image


Inorg. Chem. 42, 1248 (2003)





Deuterated organometallic complexes


embedded image


US20030138657





Organometallic complexes with two or more metal centers


embedded image


US20030152802








embedded image


U.S. Pat. No. 7,090,928





Blue dopants




Iridium(III) organometallic complexes


embedded image


WO2002002714








embedded image


WO2006009024








embedded image


US20060251923








embedded image


U.S. Pat. No. 7,393,599, WO2006056418, US20050260441, WO2005019373








embedded image


U.S. Pat. No. 7,534,505








embedded image


U.S. Pat. No. 7,445,855








embedded image


US20070190359, US20080297033








embedded image


U.S. Pat. No. 7,338,722








embedded image


US20020134984








embedded image


Angew. Chem. Int. Ed. 47, 1 (2008)








embedded image


Chem. Mater. 18, 5119 (2006)








embedded image


Inorg. Chem. 46, 4308 (2007)








embedded image


WO2005123873








embedded image


WO2005123873








embedded image


WO2007004380








embedded image


WO2006082742





Osmium(II) complexes


embedded image


U.S. Pat. No. 7,279,704








embedded image


Organometallics 23, 3745 (2004)





Gold complexes


embedded image


Appl. Phys. Lett. 74, 1361 (1999)





Platinum(II) complexes


embedded image


WO2006098120, WO2006103874





Exciton/hole blocking




layer materials




Bathocuprine compounds (e.g., BCP, BPhen)


embedded image


Appl. Phys. Lett. 75, 4 (1999)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





Metal 8- hydroxyquinolates (e.g., BAlq)


embedded image


Appl. Phys. Lett. 81, 162 (2002)





5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole


embedded image


Appl. Phys. Lett. 81, 162 (2002)





Triphenylene compounds


embedded image


US20050025993





Fluorinated aromatic compounds


embedded image


Appl. Phys. Lett. 79, 156 (2001)





Phenothiazine- S-oxide


embedded image


WO2008132085





Electron transporting materials




Anthracene- benzoimidazole compounds


embedded image


WO2003060956








embedded image


US20090179554





Aza triphenylene derivatives


embedded image


US20090115316





Anthracene- benzothiazole compounds


embedded image


Appl. Phys. Lett. 89, 063504 (2006)





Metal 8- hydroxyquinolates (e.g., Alq3, Zrq4)


embedded image


Appl. Phys. Lett. 51, 913 (1987) U.S. Pat. No. 7,230,107





Metal hydroxy- benzoquinolates


embedded image


Chem. Lett. 5, 905 (1993)





Bathocuprine compounds such as BCP, BPhen, etc


embedded image


Appl. Phys. Lett. 91, 263503 (2007)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)


embedded image


Appl. Phys. Lett. 74, 865 (1999)








embedded image


Appl. Phys. Lett. 55, 1489 (1989)








embedded image


Jpn. J. Apply. Phys. 32, L917 (1993)





Silole compounds


embedded image


Org. Electron. 4, 113 (2003)





Arylborane compounds


embedded image


J. Am. Chem. Soc. 120, 9714 (1998)





Fluorinated aromatic compounds


embedded image


J. Am. Chem. Soc. 122, 1832 (2000)





Fullerene (e.g., C60)


embedded image


US20090101870





Triazine complexes


embedded image


US20040036077





Zn (N{circumflex over ( )}N) complexes


embedded image


U.S. Pat. No. 6,528,187









EXPERIMENTAL
Compound Examples
Example 1
Synthesis of Compound 1



embedded image


Step 1.


To a 500 mL round flask was added 2-chloro-3-iodo-4-aminopyridine (10 g, 39 mmol), 4-bromothiophenol (7.0 g, 34 mmol), CuI (0.4 g, 2.0 mmol), ethylene glycol (4.9 g, 78 mmol), potassium carbonate (10.8 g, 74 mmol), and 200 mL of isopropanol. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield of 2-chloro-3-(4-bromophenylthio)-4-aminopyridine was 7.4 g.


Step 2.


To a 500 mL round flask was added 2-chloro-3-(4-bromophenylthio)-4-aminopyridine (7.0 g, 22 mmol), and 400 mL of AcOH. To this clear solution, ButONO (2.3 g, 22 mmol) was added drop by drop. After stirring at room temperature for 1 h, another 10 mmol of ButONO was added. The mixture was continued to stir for another 2 h. The reaction was quenched by water, and the product was purified by a silica gel column. Yield of 1-chloro-6-bromo-[1]Benzothieno[2,3-c]pyridine was 6.5 g.


Step 3.


To a 500 mL round flask was added 1-chloro-6-bromo-[1]Benzothieno[2,3-c]pyridine (3.6 g, 12 mmol), carbazole (6.0 g, 36 mmol), Pd2(dba)3 (1.1 g, 1.2 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (S-Phos, 2.0 g, 4.8 mmol), sodium t-butoxide (6.9 g, 72 mmol), and 250 mL of xylene. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield was 4.0 g. The product was further purified by vacuum sublimation. 1H NMR results confirmed the desired compound.


Example 2
Synthesis of Compound 2



embedded image


Step 1.


To a 500 mL round flask was added 2-chloro-4-amino-5-iodo-pyridine (11.5 g, 45 mmol), 4-bromothiophenol (8.1 g, 42.8 mmol), CuI (0.4 g, 2.3 mmol), ethylene glycol (5.6 g, 90.4 mmol), potassium carbonate (12.4 g, 90.4 mmol), and 200 mL of isopropanol. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield of 2-chloro-5-(4-bromophenylthio)-4-aminopyridine was 9.2 g.


Step 2.


To a 500 mL round flask was added 2-chloro-5-(4-bromophenylthio)-4-aminopyridine (11 g, 35 mmol), and 600 mL of AcOH. To this clear solution, ButONO (3.6 g, 35 mmol) was added drop by drop. After stirring at room temperature for 1 hr, another 15 mmol of ButONO was added. The mixture was continued to stir for another 2 h. The reaction was quenched by water, and the product was purified by a silica gel column. Yield of 3-chloro-6-bromo-[1]Benzothieno[2,3-c]pyridine was 10 g.


Step 3.


To a 500 mL round flask was added 3-chloro-6-bromo-[1]Benzothieno[2,3-c]pyridine (3.0 g, 10 mmol), carbazole (4.2 g, 25 mmol), Pd(OAc)2 (0.1 g, 0.5 mmol), P(But)3 (1M in toluene, 1.5 mL, 1.5 mmol), sodium t-butoxide (6.3 g, 66 mmol), and 250 mL of xylene. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield was 4.2 g. The product was further purified by vacuum sublimation. 1H NMR results confirmed the desired compound.


Example 3
Synthesis of Compound 3



embedded image


Step 1.


To a 500 mL round flask was added 2,6-dichloro-3-iodo-4-aminopyridine (7.0 g, 28.8 mmol), thiophenol (3.2 g, 34.8 mmol), CuI (0.2 g, 1.2 mmol), ethylene glycol (3.0 g, 57.6 mmol), potassium carbonate (6.6 g, 57.6 mmol), and 200 mL of isopropanol. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield of 2,6-dichloro-3-phenylthio-4-aminopyridine was 4.0 g.


Step 2.


To a 500 mL round flask was added 2,6-dichloro-3-phenylthio-4-aminopyridine (4.0 g, 14.7 mmol), and 200 mL of AcOH. To this clear solution, ButONO (1.5 g, 15 mmol) was added drop by drop. After stirring at room temperature for 1 h, another 8 mmol of ButONO was added. The mixture was continued to stir for another 2 h. The reaction was quenched by water, and the product was purified by a silica gel column. Yield of 1,3-dichloro-[1]Benzothieno[2,3-c]pyridine was 3.2 g.


Step 3.


To a 500 mL round flask was added 1,3-dichloro-[1]Benzothieno[2,3-c]pyridine (2.5 g, 10 mmol), carbazole (4.2 g, 25 mmol), Pd2(dba)3 (0.9 g, 1.0 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (S-Phos, 1.6 g, 4.0 mmol), sodium t-butoxide (4.8 g, 50 mmol), and 200 mL of xylene. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield was 4.2 g. The product was further purified by vacuum sublimation. 1H NMR results confirmed the desired compound.


Example 4
Synthesis of Compound 4



embedded image


Step 1.


To a 500 mL round flask was added 1-chloro-6-bromo-[1]Benzothieno[2,3-c]pyridine (5.0 g, 16.7 mmol), carbazole (2.8 g, 16.7 mmol), Pd(OAc)2 (0.1 g, 0.4 mmol), PBut3 (1.0 M solution in toluene, 1.2 mL, 1.2 mmol), sodium t-butoxide (4.8 g, 50.1 mmol), and 400 mL of xylene. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield of 1-chloro-6-(9-carbazole)-[1]Benzothieno[2,3-c]pyridine was 1.9 g.


Step 2.


To a 500 mL round flask was added 1-chloro-6-(9-carbazole)-[1]Benzothieno[2,3-c]pyridine (1.3 g, 3.4 mmol), diphenylamine (0.7 g, 4.0 mmol), Pd2(dba)3 (0.09 g, 0.1 mmol), 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (0.2 g, 0.4 mmol), sodium t-butoxide (0.8 g, 8.0 mmol), and 100 mL of toulene. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield of compound 4 was 1.1 g.


Example 5
Synthesis of Compound 21



embedded image


Step 1.


The solution of 2-amino-5-chloropyridine (10.0 g, 77.8 mmol) potassium acetate (7.63 g, 77.8 mmol) in 100 mL of acetic acid was heated to 85° C. and ClI (12.6 g, 77.8 mmol) in 50 mL of acetic acid was added dropwise. Reaction mixture was kept 2 h at this temperature, diluted with 1 L of water, neutralized with NaOH 1N solution to pH 7 and extracted with ethyl acetate (4×75 mL). Organic fraction were combined, washed with NaHCO3, filtered through celite and evaporated. The residue was subjected to column chromatography on silica (eluent-hexane/ethyl acetate 1/1) providing 5-chloro-3-iodopyridin-2-amine as yellow solid (11.9 g, 60%).


Step 2.


Mixture of 5-chloro-2-methoxyphenylboronic acid (5.0 g, 26.8 mmol), 5-chloro-3-iodopyridin-2-amine (6.83 g, 26.8 mmol), sodium carbonate (8.53 g, 80.5 mmol in 50 mL of water), Pd(PPh3)4 (621 mg, 2 mol. %) and 100 mL of toluene was refluxed overnight under N2, reaction mixture was cooled down to room temperature, organic layer was separated and concentrated in vacuum. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate gradient mixture as eluent, providing 3.3 g (46% yield) of 5-chloro-3-(5-chloro-2-methoxyphenyl)pyridin-2-amine.


Step 3.


Solution of 5-chloro-3-(5-chloro-2-methoxyphenyl)pyridin-2-amine (5.2 g, 19.3 mmol) in 50 mL of glacial acetic acid and 20 mL of THF was cooled down to −10° C., and tert-butyl nitrite (4.6 mL) was added dropwise. The reaction mixture was stirred overnight at 0° C., warmed to room temperature, diluted with 100 mL of water. Solid material was filtered and dried, providing 2.9 g of pure 3,6-dichlorobenzofuro[2,3-b]pyridine.


Step 4.


The mixture of 3,6-dichlorobenzofuro[2,3-b]pyridine (2.86 g, 12.01 mmol), carbazole (5.02 g, 30.003 mmol), sodium tert-butoxide (4.62 g, 48.05 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (S-Phos, 430 mg), Pd2(dba)3 (910 mg) in 150 mL of dry xylenes was refluxed under N2 for 48 h. Then reaction mixture was cooled down to room temperature, diluted with 100 mL H2O and extracted with ethyl acetate (4×50 mL). Organic fractions were combined, dried over Na2SO4 anhydr., filtered and evaporated. The residual material was purified by column chromatography on silica gel (eluent-gradient mixture hexane-dichloromethane), then crystallized from hexane/dichloromethane mixture, providing target material as white tiny needles. Additional purification by sublimation (288° C. at 10−5 mm Hg) resulted 1.86 g of pure target compound.


Example 6
Synthesis of Compound 39



embedded image


Step 1.


The mixture of 3-chloro-6-bromo-[1]benzothieno[2,3-c]pyridine (1.7 g, 5.8 mmol), triphenylene-2-ylboronic acid (1.6 g, 5.8 mmol), potassium phosphate tribasic (3.7 g, 17 mmol), 200 mL toluene and 10 mL water was prepared and bubbled with nitrogen for twenty minutes. Then the tris(dibenzylideneacetone)dipalladium (53 mg, 0.060 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (96 mg, 0.23 mmol) were added. The mixture was bubbled with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, then reaction mixture was cooled to room temperature and filtered through a silica plug and washed with dichloromethane. The first several portions were discarded since they only contained impurities. The combined filtrate was concentrated to give crude product, which was recrystallized from hot dichloromethane and hexanes to give 1.8 g 3-chloro-6-(2-triphenylenyl)-[1]Benzothieno[2,3-c]pyridine as yellow solid (4.0 mmol, 70% yield).


Step 2.


The mixture of 3-chloro-6-(2-triphenylenyl)-[1]Benzothieno[2,3-c]pyridine (1.6 g, 3.6 mmol), carbazole (0.72 g, 4.3 mmol), Pd(OAc)2 (20 mg, 0.090 mmol), sodium t-butoxide (1.0 g, 11 mmol), and 300 mL of xylene was prepared and bubbled with nitrogen for 15 minutes. Then PBut3 (1.0 M solution in toluene, 0.27 mL, 0.27 mmol) was added and the mixture was bubbled with nitrogen for another 15 minutes. After refluxed overnight, the reaction mixture was cooled to room temperature and filtered through a silica gel plug, which was then washed with dichloromethane. The xylene portion was discarded. The combined dichloromethane filtrate was concentrated and the crude product was stirred in 100 mL mixture of 20% dichloromethane in hexanes overnight. The residue was collected by filtration to give 1.7 g light yellow solid (2.9 mmol, 80% yield).


Example 7
Synthesis of Compound 59



embedded image


Step 1.


The mixture of 1-chloro-6-(9-carbazole)-[1]benzothieno[2,3-c]pyridine (1.0 g, 1.6 mmol), triphenylene-2-ylboronic acid (0.85 g, 3.1 mmol), potassium phosphate tribasic (1.7 g, 7.8 mmol), 100 mL toluene and 5 mL water was prepared and bubbled with nitrogen for twenty minutes. Then the tris(dibenzylideneacetone)dipalladium (24 mg, 0.030 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (43 mg, 0.10 mmol) were added. The mixture was bubble with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, the reaction was cooled to room temperature and concentrated. The obtained solid was redissolved in 800 mL refluxing toluene and filtered through a thin celite plug. The collected filtrate was concentrated to about 100 mL and then refluxed under nitrogen for one hour. After slowly cooled to room temperature, the precipitation was collected by filtration. The residue was stirred in 100 mL hot mixture of 20% dichloromethane in methanol and stirred overnight after it cooled to room temperature. The residue was collected by filtration and dried under vacuum to provide 1.2 g white solid (2.1 mmol, 81% yield).


Example 8
Synthesis of Compound 66



embedded image


Step 1.


To a 250 mL round flask was added 2-chloro-3-iodo-4-aminopyridine (5.0 g, 19.6 mmol), thiophenol (2.16 g, 19.6 mmol), CuI (0.187 g, 0.98 mmol), ethylene glycol (2.5 g, 39 mmol), potassium carbonate (5.4 g, 39 mmol), and 150 mL of isopropanol. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield (91%) of 2-chloro-3-phenylthio-4-aminopyridine was 4.2 g.


Step 2.


To a 250 mL round flask was added 2-chloro-3-phenylthio-4-aminopyridine (2.7 g, 11.4 mmol), and 60 mL of glacial AcOH. To this clear solution, ButONO (1.36 g, 11.45 mmol) was added drop by drop. After stirring at room temperature for 1 h, another (1.36 g 11.45) mmol of ButONO was added. The mixture was continued to stir at room temperature for 18 h. The reaction was quenched by water, and the product was purified by a silica gel column. Yield (88%) of 1-chloro-benzothieno[2,3-c]pyridine was 2.2 g.


Step 3.


The mixture of 1-chloro-benzothieno[2,3-c]pyridine (1.5 g, 6.8 mmol), 3-(triphenylene-2-yl)phenylboronic acid (2.5 g, 7.2 mmol), synthesized according to U.S. Provisional Application Ser. No. 60/963,944, potassium phosphate tribasic (4.4 g, 20.4 mmol), 100 mL toluene and 10 mL water was prepared and bubbled with nitrogen for fifteen minutes. Then the tris(dibenzylideneacetone)dipalladium (63 mg, 0.068 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (116 mg, 0.28 mmol) were added. The mixture was bubbled with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, the reaction mixture was cooled to room temperature. The product was purified by silica gel chromatography column. ˜2.7 g (81%) Compound 66 was obtained.


Example 9
Synthesis of Compound 70



embedded image


Step 1.


The mixture of 1-chloro-benzothieno[2,3-c]pyridine (1.0 g, 4.5 mmol), 2-triphenylene-boronic acid (1.25 g, 4.5 mmol), synthesized according to U.S. Provisional Application Ser. No. 60/963,944, potassium phosphate tribasic (3.0 g, 18.0 mmol), 100 mL toluene and 10 mL water was prepared and bubbled with nitrogen for fifteen minutes. Then the tris(dibenzylideneacetone)dipalladium (42 mg, 0.045 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (77 mg, 0.18 mmol) were added. The mixture was bubbled with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, the reaction mixture was cooled to room temperature. The product was purified by silical gel chromatography column. ˜1.5 g (84%) Compound 70 was obtained.


Example 10
Synthesis of Compound 71



embedded image


Step 1.


The solution of 2-amino-5-chloropyridine (10.0 g, 77.8 mmol) potassium acetate (7.63 g, 77.8 mmol) in 100 mL of acetic acid was heated to 85° C., and ClI (12.6 g, 77.8 mmol) in 50 mL of acetic acid was added dropwise. Reaction mixture was kept 2 h at this temperature, diluted with 1 L of water, neutralized with NaOH 1N solution to pH 7 and extracted with ethyl acetate (4×75 mL). Organic fraction were combined, washed with NaHCO3, filtered through celite and evaporated. The residue was subjected to column chromatography on silica (eluent-hexane/ethyl acetate 1/1) providing 5-chloro-3-iodopyridin-2-amine as yellow solid (11.9 g, 60%).


Step 2.


Mixture of 2-(methylthio)phenylboronic acid (5.0 g, 29.8 mmol), 5-chloro-3-iodopyridin-2-amine (7.56 g, 29.8 mmol), sodium carbonate (9.0 g, in 50 mL of water), Pd(PPh3)4 (621 mg) and 100 mL of toluene was refluxed overnight under N2, reaction mixture was cooled down to room temperature, organic layer was separated and concentrated in vacuum. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate gradient mixture as eluent, providing 3.5 g of 5-chloro-3-(2-(methylthio)phenyl)pyridin-2-amine.


Step 3.


Solution of 5-chloro-3-(2-(methylthio)phenyl)pyridin-2-amine (5.2 g, 19.3 mmol) in 50 mL of glacial acetic acid and 20 mL of THF was cooled down to −10° C., and tert-butyl nitrite (4.6 mL) was added dropwise. The reaction mixture was stirred overnight at 0° C., warmed to room temperature, diluted with 100 mL of water. Solid material was filtered and dried, providing 2.5 g of pure 3-chlorobenzothieno[2,3-b]pyridine.


Step 4.


The mixture of 3-chloro-[1]Benzothieno[2,3-b]pyridine (1.3 g, 5.9 mmol), 4,4,5,5-tetramethyl-2-(3-(triphenylene-2-yl)phenyl)-1,3,2-dioxaborolane (3.1 g, 7.1 mmol), potassium phosphate tribasic (3.8 g, 18 mmol), 100 mL toluene and 10 mL water was prepared and bubbled with nitrogen for fifteen minutes. Then the tris(dibenzylideneacetone)dipalladium (54 mg, 0.060 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (97 mg, 0.24 mmol) were added. The mixture was bubbled with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, the reaction mixture was cooled to room temperature and filtered to collect the precipitation. The residue was washed by methanol and then redissolved in hot toluene. The solution was filtered through a magnesium sulfate plug, which was washed with dichloromethane. The combined filtrate was concentrated to provide 700 mg white solid (1.4 mmol, 24% yield).


Example 11
Synthesis of Compound 79



embedded image


Step 1.


To a 250 mL round flask was added 2-chloro-5-iodo-4-aminopyridine (5.0 g, 19.6 mmol), thiophenol (2.16 g, 19.6 mmol), CuI (0.187 g, 0.98 mmol), ethylene glycol (2.5 g, 39 mmol), potassium carbonate (5.4 g, 39 mmol), and 150 mL of isopropanol. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 24 h. After cooling, the mixture was purified by a silica gel column. Yield (97%) of 2-chloro-3-phenylthio-4-aminopyridine was 4.5 g.


Step 2.


To a 250 mL round flask was added 2-chloro-3-phenylthio-4-aminopyridine (3.7 g, 16.8 mmol), and 60 mL of glacial AcOH. To this clear solution, ButONO (1.8 g, 16.8 mmol) was added drop by drop. After stirring at room temperature for 1 h, another (1.8 g 16.8) mmol of ButONO was added. The mixture was continued to stir at room temperature for 18 h. The reaction was quenched by water, and the product was purified by a silica gel column. Yield (33%) of 3-chloro-benzothieno[2,3-c]pyridine was 1.2 g.


Step 3.


The mixture of 3-chloro-benzothieno[2,3-c]pyridine (1.0 g, 4.5 mmol), 3-(triphenylene-2-yl)phenylboronic acid (2.1 g, 4.8 mmol), synthesized according to U.S. Provisional Application Ser. No. 60/963,944, potassium phosphate tribasic (2.9 g, 13.5 mmol), 100 mL toluene and 10 mL water was prepared and bubbled with nitrogen for fifteen minutes. Then the tris(dibenzylideneacetone)dipalladium (63 mg, 0.068 mmol) and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (116 mg, 0.28 mmol) were added. The mixture was bubbled with nitrogen for another twenty minutes. After refluxed overnight under nitrogen, the reaction mixture was cooled to room temperature. The product was purified by silica gel chromatography column. ˜1.2 g (55%) Compound 79 was obtained.


Example 12
Synthesis of Compound 80



embedded image


Step 1.


Carbazole (7.3 g, 43.7 mmol), 3-bromoiodobenzene (25 g, 87.3 mmol) and sodium t-buthoxide (8.4 g, 87.3 mmol) is suspended in 150 mL of dry xylene under nitrogen atmosphere. Tris(dibenzylideneacetone)dipalladium (200 mg) and 1,1′-bis(diphenylphosphino) ferrocene (400 mg) are added as one portion and the reaction is heated to reflux and stirred under nitrogen atmosphere for 24 h. After cooling the xylene is evaporated and the residue is subjected to column chromatography on silica gel, providing 3-bromophenyl carbazole (9.5 g, yellow solidified oil).


Step 2.


3-Bromophenyl carbazole (9.5 g, 29.5 mmol), bis(pinacolato)diboron (11.2 g, 44.2 mmol), potassium acetate (8.7 g), tris(dibenzylideneacetone)dipalladium (200 mg) and 1,1′-bis(diphenylphosphino)ferrocene (400 mg) are suspended in 200 mL of dioxane and heated to reflux under nitrogen atmosphere overnight. After cooling down and evaporation the residue is subjected to column chromatography on silica gel, providing 9-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9H-carbazole b (6.0 g, colorless crystals).


Step 3.


1,3-Dibromobenzene (16 g, 64.9 mmol), 9-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9H-carbazole b (6.0 g, 11.6 mmol), potassium acetate (saturated solution of 6.6 g in water) and tetrakis(triphenylphosphine)palladium (0) (380 mg) are heated to reflux in 150 mL of toluene overnight under nitrogen atmosphere. After cooling down, evaporation and column chromatography 9-(3′-bromo-[1,1′-biphenyl]-3-yl)-9H-carbazole (5.8 g) is obtained.


Step 4.


Reaction of bis(pinacolato)diboron and 9-(3′-bromo-[1,1′-biphenyl]-3-yl)-9H-carbazole in dioxane, catalyzed with tris(dibenzylideneacetone)dipalladium and 1,1′-bis(diphenylphosphino)ferrocene with potassium acetate as base in the same conditions as Step 2 provides 9-(3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole which is purified by column chromatography on silica gel.


Step 5.


1-Chlorobenzo[4,5]thieno[2,3-c]pyridine (described as Compound 66, Step 2) and 9-(3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole are dissolved in toluene (150 mL). Catalyst (tris(dibenzylideneacetone)dipalladium, 400 mg and 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl, 200 mg) and base (potassium phosphate tribasic) are added as one portion and reaction is heated to reflux under nitrogen atmosphere overnight. The product is purified by silica gel column, providing Compound 80.


Device Examples

All example devices were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode is 800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.


Particular devices are provided wherein P1 is the emissive dopant and an invention compound, Compound 1, Compound 2 or Compound 3, is the host. The organic stack of Device Examples 1-3 consisted of, sequentially from the ITO surface, 100 Å of P1 as the hole injecting layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transport layer (HTL), 300 Å of the invention compound doped with 15% of P1, an Ir phosphorescent compound, as the emissive layer (EML), 100 Å of invention compound as ETL2 and 400 Å of Alq3 (tris-8-hydroxyquinoline aluminum) as the ETL1.


Comparative Example 1 was fabricated similarly to the Device Examples, except that the EML comprised CBP as the host doped with 10% of P1, and P2 was used as the blocking layer material.


As used herein, the following compounds have the following structures:




embedded image


Particular materials for use in an OLED are provided which may lead to devices having particularly good properties. The materials may be used as the host of an emissive layer or as a material in an enhancement layer. The emissive layer materials and blocking layer materials of Device Examples 1-3 are shown in Table 2. The devices were tested and the results measured are provided in Table 3. Cmpd is an abbreviation for Compound. Devices having an emissive layer and a blocking layer using Compounds 1-3 show high device efficiency, long lifetime, and reduced operating voltage.














TABLE 2







Device example
Cmpd
Dopant %
BL









1
1
P1 15%
1



2
2
P1 15%
2



3
3
P1 15%
3



Comparative 1
CBP
P1 10%
P2




















TABLE 3









At L = 1000 cd/m2
At RT 40 mA/cm2


















Device
CIE
λ max
FWHM
V
LE
EQE
PE
LE per
Lo
LT80%,
Gnits2



















example
X
Y
(nm)
(nm)
(V)
(cd/A)
(%)
lm/W
EQE
(cd/m2)
(hr)
(hr)






















1
0.366
0.602
530
79
5
60.9
16.9
38.4
3.6
17,697
113
35.37


2
0.362
0.605
530
76
5.2
64.3
17.6
38.7
3.7
18,976
85
30.61


3
0.359
0.604
528
76
6
47.6
13.1
24.9
3.6
15582
106
25.81


Comparative 1
0.345
0.615
524
75
5.8
61
16.7
33
3.7
16148
83
21.64









From Device Examples 1-3, it can be seen that the Invention Compounds as hosts in green phosphorescent OLEDs give high device efficiency (i.e., LE>60 cd/A at 1000 cd/m2), indicating aza-dibenzothiophene as a chromophore has triplet energy high enough for efficient green electrophosphorescence. Also notable is the high stability of the device incorporating Compounds 1 and 2 as the host. The lifetime, T80% (defined as the time required for the initial luminance, L0, to decay to 80% of its value, at a constant current density of 40 mA/cm2 at room temperature) are 113 hrs and 85 hrs for Compounds 1 and 2, respectively, with higher L0 than the comparative example 1. This translates to a 1.5 fold improvement in the device stability. Thus, the invention compounds may function well as the enhancement layer.


Another notable feature is that Compounds 1 and 2 both gave lower device voltage, 5 V at 1000 cd/m2 and 5.2 V at 1000 cd/m2, respectively, compared to CBP which has 5.8 V at 1000 cd/m2.


The data suggests that aza-dibenzothiophenes can be excellent hosts and enhancement layer materials for phosphorescent OLEDs, providing higher efficiency, lower voltage and an improvement in device stability multiple times better than the commonly used host, CBP.


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A process comprising: treating an acetic acid solution of an intermediate having the formula
  • 2. The process of claim 1, wherein Y is S.
  • 3. The process of claim 1, wherein Y is O.
  • 4. The process of claim 1, wherein X1 is nitrogen and X2 is carbon.
  • 5. The process of claim 1, wherein X1 is carbon and X2 is nitrogen.
  • 6. The process of claim 1, wherein R1 is halide.
  • 7. The process of claim 1, wherein R2 includes at least one halide.
  • 8. The process of claim 1, wherein R2 includes only halide substituents.
  • 9. The process of claim 1, wherein R2 is not halide, Y is S, and the amino-arylthio pyridine intermediate is treated with H2SO4 prior to treatment with tBuONO.
  • 10. The process of claim 1, wherein Y is S and the yield of
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 12/647,927, filed Dec. 28, 2009, which claims priority to U.S. Provisional Application No. 61/145,370, filed Jan. 16, 2009, the disclosures of which are herein expressly incorporated by reference in their entirety. The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

US Referenced Citations (82)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030151042 Marks et al. Aug 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20060288577 Bormuth Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090153034 Lin et al. Jun 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20110215309 D'Andrade et al. Sep 2011 A1
20140217335 Tanabe et al. Aug 2014 A1
20150274749 Lin et al. Oct 2015 A1
Foreign Referenced Citations (53)
Number Date Country
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
2008021687 Oct 2008 JP
2008545729 Dec 2008 JP
2012502485 Jan 2012 JP
2012515216 Jul 2012 JP
0139234 May 2001 WO
0202714 Jan 2002 WO
0215645 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006130598 Dec 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008075517 Jun 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009050290 Apr 2009 WO
2009021126 May 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
Non-Patent Literature Citations (55)
Entry
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90:183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 115-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato)beryllium as an Emitter, ” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivates,” Adv. Mater, 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater, 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi and Tokito, Shizuo, “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18 (21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater, 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota,Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis (dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on p-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic LIght-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 87:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69 (15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
STN Registry database entries for CAS RN 244-91-7; CAS RN 318-69-4; and CAS RN 244-93-9 (Published in STN Registry Nov. 16, 1984); Accessed Sep. 23, 2013.
Database Beilstein [Online] Beilstein Institute for Organic Chemistry, Frankfurt-Main, DE; vol. 78, Jan. 1, 1958 (Jan. 1, 1958), pp. 943-945.
Kauffman JM et al: “Synthesis and photophysical properties of fluorescent dibenzofurans, a dibenzothiophene and carbazoles substituted with benzoxazole and hydroxyl groups to produce excited state intramolecular proton-transfer” Journal of Heterocyclic Chemistry, vol. 32, Jan. 1, 1995 (Jan. 1, 1995), pp. 1541-1555.
Partial International Search Report in PCT/US2010/021111 application.
U.S. Appl. No. 61/145,370, filed Jan. 16, 2009.
U.S. Appl. No. 12/209,928, filed Sep. 12, 2008.
U.S. Appl. No. 11/443,586, filed May 31, 2006.
Search Report issued for corresponding Taiwan Patent Application No. 104131505.
Notice of Reasons for Rejection issued Apr. 25, 2016 for corresponding JP Application No. 2014-188613.
Related Publications (1)
Number Date Country
20150274749 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61145370 Jan 2009 US
Divisions (1)
Number Date Country
Parent 12647927 Dec 2009 US
Child 14735589 US