Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11495756
  • Patent Number
    11,495,756
  • Date Filed
    Wednesday, April 22, 2020
    5 years ago
  • Date Issued
    Tuesday, November 8, 2022
    2 years ago
Abstract
Provided are a compounds comprising a first ligand LA of
Description
FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


SUMMARY

The present disclosure provides novel transition metal compounds comprising a unique bidentate ligand as emissive dopants for improving device performance of OLED devices.


In one aspect, the present disclosure provides a compound comprising a first ligand LA of




embedded image



In Formula 1 and Formula 2, Y is selected from the group consisting of R, NRR′, OR, and SR; Z is selected from the group consisting of O, S, and NR″; X1 to X5 are each independently C or N; at least one of X1 to X3 is C; two adjacent X1 to X3 are not N; at least one of X4 and X5 is C; each RA and RB independently represents mono to the maximum allowable substitutions, or no substitution; each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; each R, R′, and R″ is independently alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, silyl, aryl, heteroaryl, and combinations thereof; the ligand LA is complexed to a metal M; the metal M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.


In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.


In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 is a plot of photoluminescence (PL) spectra of the inventive and comparative example compounds in 2-MeTHF solution at room temperature.





DETAILED DESCRIPTION
A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.


In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.


B. The Compounds of the Present Disclosure

The present disclosure provides transition metal compounds having a novel bidentate ligand structure whose unique electronic properties exhibit phosphorescent emission in red to near IR region and are useful as emitter materials in OLEDs.


In one aspect, a compound comprising a first ligand LA of




embedded image



is disclosed. In Formula 1 and Formula 2, Y is selected from the group consisting of R, NRR′, OR, and SR; Z is selected from the group consisting of O, S, and NR″; X1 to X5 are each independently C or N; at least one of X1 to X3 is C; two adjacent X1 to X3 are not N; at least one of X4 and X5 is C; each RA and RB independently represents mono to the maximum allowable substitutions, or no substitution; each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; each R, R′, and R″ is independently alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, silyl, aryl, heteroaryl, and combinations thereof; the ligand LA is complexed to a metal M; the metal M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments of the compound, each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the preferred general substituents defined herein.


In some embodiments of the compound, Z is O. In some embodiments, Y is selected from the group consisting of R and OR. In some embodiments, X1 to X5 are C.


In some embodiments, each RB is H. In some embodiments, two RA substituents are joined together to form a 6-membered aromatic ring. In some embodiments, each RA substituent is an alkyl group.


In some embodiments, M is Ir, Os, Pt, Pd, Cu, Ag, or Au. In some embodiments, M is Ir or Pt. In some embodiments, M is Ir. In some embodiments, M is also coordinated to a substituted or unsubstituted phenylpyridine or phenylpyrimidine ligand in which phenyl, pyridine, and pyrimidine rings can be further fused.


In some embodiments, each R1, R2, R3, R4 is a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, cycloalkyl, and combinations thereof.


In some embodiments, at least one of X1 to X3 is N.


In some embodiments of the compound, the first ligand LA is selected from the group consisting of:




embedded image


embedded image


In some embodiments of the compound, the first ligand LA is selected from the group consisting of:


LAi-I that are based on a structure




embedded image



LAi-II that are based on a structure




embedded image



LAi-III that are based on a structure




embedded image



LAi-IV that are based on a structure




embedded image



LAi-V that are based on a structure




embedded image



LAi-VI that are based on a structure




embedded image



LAi-VII that are based on a structure




embedded image



LAi-VIII that are based on a structure




embedded image



LAi-IX that are based on a structure of




embedded image



LAi-X that are based on a structure




embedded image



LAi-XI that are based on a structure




embedded image



wherein i is an integer from 1 to 2916 and for each LAi, R1, R2, R3 are defined as follows:


















LAi
R1
R2
R3









LA1
RD1
RD1
RD1



LA2
RD1
RD1
RD2



LA3
RD1
RD1
RD3



LA4
RD1
RD1
RD4



LA5
RD1
RD1
RD5



LA6
RD1
RD1
RD6



LA7
RD1
RD1
RD7



LA8
RD1
RD1
RD8



LA9
RD1
RD1
RD9



LA10
RD1
RD1
RD10



LA11
RD1
RD1
RD11



LA12
RD1
RD1
RD12



LA13
RD1
RD1
RD13



LA14
RD1
RD1
RD14



LA15
RD1
RD1
RD15



LA16
RD1
RD1
RD16



LA17
RD1
RD1
RD17



LA18
RD1
RD1
RD18



LA19
RD1
RD1
RD19



LA20
RD1
RD1
RD20



LA21
RD1
RD1
RD21



LA22
RD1
RD1
RD22



LA23
RD1
RD1
RD23



LA24
RD1
RD1
RD24



LA25
RD1
RD1
RD25



LA26
RD1
RD1
RD26



LA27
RD1
RD1
RD27



LA28
RD1
RD1
RD28



LA29
RD1
RD1
RD29



LA30
RD1
RD1
RD30



LA31
RD1
RD1
RD31



LA32
RD1
RD1
RD32



LA33
RD1
RD1
RD33



LA34
RD1
RD1
RD34



LA35
RD1
RD1
RD35



LA36
RD1
RD1
RD36



LA37
RD1
RD1
RD37



LA38
RD1
RD1
RD38



LA39
RD1
RD1
RD39



LA40
RD1
RD1
RD40



LA41
RD1
RD1
RD41



LA42
RD1
RD1
RD42



LA43
RD1
RD1
RD43



LA44
RD1
RD1
RD44



LA45
RD1
RD1
RD45



LA46
RD1
RD1
RD46



LA47
RD1
RD1
RD47



LA48
RD1
RD1
RD48



LA49
RD1
RD1
RD49



LA50
RD1
RD1
RD50



LA51
RD1
RD1
RD51



LA52
RD1
RD1
RD52



LA53
RD1
RD1
RD53



LA54
RD1
RD1
RD54



LA55
RD1
RD1
RD55



LA56
RD1
RD1
RD56



LA57
RD1
RD1
RD57



LA58
RD1
RD1
RD58



LA59
RD1
RD1
RD59



LA60
RD1
RD1
RD60



LA61
RD1
RD1
RD61



LA62
RD1
RD1
RD62



LA63
RD1
RD1
RD63



LA64
RD1
RD1
RD64



LA65
RD1
RD1
RD65



LA66
RD1
RD1
RD66



LA67
RD1
RD1
RD67



LA68
RD1
RD1
RD68



LA69
RD1
RD1
RD69



LA70
RD1
RD1
RD70



LA71
RD1
RD1
RD71



LA72
RD1
RD1
RD72



LA73
RD1
RD1
RD73



LA74
RD1
RD1
RD74



LA75
RD1
RD1
RD75



LA76
RD1
RD1
RD76



LA77
RD1
RD1
RD77



LA78
RD1
RD1
RD78



LA79
RD1
RD1
RD79



LA80
RD1
RD1
RD80



LA81
RD1
RD1
RD81



LA82
RD1
RD2
RD1



LA83
RD1
RD2
RD2



LA84
RD1
RD2
RD3



LA85
RD1
RD2
RD4



LA86
RD1
RD2
RD5



LA87
RD1
RD2
RD6



LA88
RD1
RD2
RD7



LA89
RD1
RD2
RD8



LA90
RD1
RD2
RD9



LA91
RD1
RD2
RD10



LA92
RD1
RD2
RD11



LA93
RD1
RD2
RD12



LA94
RD1
RD2
RD13



LA95
RD1
RD2
RD14



LA96
RD1
RD2
RD15



LA97
RD1
RD2
RD16



LA98
RD1
RD2
RD17



LA99
RD1
RD2
RD18



LA100
RD1
RD2
RD19



LA101
RD1
RD2
RD20



LA102
RD1
RD2
RD21



LA103
RD1
RD2
RD22



LA104
RD1
RD2
RD23



LA105
RD1
RD2
RD24



LA106
RD1
RD2
RD25



LA107
RD1
RD2
RD26



LA108
RD1
RD2
RD27



LA109
RD1
RD2
RD28



LA110
RD1
RD2
RD29



LA111
RD1
RD2
RD30



LA112
RD1
RD2
RD31



LA113
RD1
RD2
RD32



LA114
RD1
RD2
RD33



LA115
RD1
RD2
RD34



LA116
RD1
RD2
RD35



LA117
RD1
RD2
RD36



LA118
RD1
RD2
RD37



LA119
RD1
RD2
RD38



LA120
RD1
RD2
RD39



LA121
RD1
RD2
RD40



LA122
RD1
RD2
RD41



LA123
RD1
RD2
RD42



LA124
RD1
RD2
RD43



LA125
RD1
RD2
RD44



LA126
RD1
RD2
RD45



LA127
RD1
RD2
RD46



LA128
RD1
RD2
RD47



LA129
RD1
RD2
RD48



LA130
RD1
RD2
RD49



LA131
RD1
RD2
RD50



LA132
RD1
RD2
RD51



LA133
RD1
RD2
RD52



LA134
RD1
RD2
RD53



LA135
RD1
RD2
RD54



LA136
RD1
RD2
RD55



LA137
RD1
RD2
RD56



LA138
RD1
RD2
RD57



LA139
RD1
RD2
RD58



LA140
RD1
RD2
RD59



LA141
RD1
RD2
RD60



LA142
RD1
RD2
RD61



LA143
RD1
RD2
RD62



LA144
RD1
RD2
RD63



LA145
RD1
RD2
RD64



LA146
RD1
RD2
RD65



LA147
RD1
RD2
RD66



LA148
RD1
RD2
RD67



LA149
RD1
RD2
RD68



LA150
RD1
RD2
RD69



LA151
RD1
RD2
RD70



LA152
RD1
RD2
RD71



LA153
RD1
RD2
RD72



LA154
RD1
RD2
RD73



LA155
RD1
RD2
RD74



LA156
RD1
RD2
RD75



LA157
RD1
RD2
RD76



LA158
RD1
RD2
RD77



LA159
RD1
RD2
RD78



LA160
RD1
RD2
RD79



LA161
RD1
RD2
RD80



LA162
RD1
RD2
RD81



LA163
RD1
RD2
RD1



LA164
RD1
RD2
RD2



LA165
RD1
RD2
RD3



LA166
RD1
RD2
RD4



LA167
RD1
RD2
RD5



LA168
RD1
RD2
RD6



LA169
RD1
RD2
RD7



LA170
RD1
RD2
RD8



LA171
RD1
RD2
RD9



LA172
RD1
RD2
RD10



LA173
RD1
RD2
RD11



LA174
RD1
RD2
RD12



LA175
RD1
RD2
RD13



LA176
RD1
RD2
RD14



LA177
RD1
RD2
RD15



LA178
RD1
RD2
RD16



LA179
RD1
RD2
RD17



LA180
RD1
RD2
RD18



LA181
RD1
RD2
RD19



LA182
RD1
RD2
RD20



LA183
RD1
RD2
RD21



LA184
RD1
RD2
RD22



LA185
RD1
RD2
RD23



LA186
RD1
RD2
RD24



LA187
RD1
RD2
RD25



LA188
RD1
RD2
RD26



LA189
RD1
RD2
RD27



LA190
RD1
RD2
RD28



LA191
RD1
RD2
RD29



LA192
RD1
RD2
RD30



LA193
RD1
RD2
RD31



LA194
RD1
RD2
RD32



LA195
RD1
RD2
RD33



LA196
RD1
RD2
RD34



LA197
RD1
RD2
RD35



LA198
RD1
RD2
RD36



LA199
RD1
RD2
RD37



LA200
RD1
RD2
RD38



LA201
RD1
RD2
RD39



LA202
RD1
RD2
RD40



LA203
RD1
RD2
RD41



LA204
RD1
RD2
RD42



LA205
RD1
RD2
RD43



LA206
RD1
RD2
RD44



LA207
RD1
RD2
RD45



LA208
RD1
RD2
RD46



LA209
RD1
RD2
RD47



LA210
RD1
RD2
RD48



LA211
RD1
RD2
RD49



LA212
RD1
RD2
RD50



LA213
RD1
RD2
RD51



LA214
RD1
RD2
RD52



LA215
RD1
RD2
RD53



LA216
RD1
RD2
RD54



LA217
RD1
RD2
RD55



LA218
RD1
RD2
RD56



LA219
RD1
RD2
RD57



LA220
RD1
RD2
RD58



LA221
RD1
RD2
RD59



LA222
RD1
RD2
RD60



LA223
RD1
RD2
RD61



LA224
RD1
RD2
RD62



LA225
RD1
RD2
RD63



LA226
RD1
RD2
RD64



LA227
RD1
RD2
RD65



LA228
RD1
RD2
RD66



LA229
RD1
RD2
RD67



LA230
RD1
RD2
RD68



LA231
RD1
RD2
RD69



LA232
RD1
RD2
RD70



LA233
RD1
RD2
RD71



LA234
RD1
RD2
RD72



LA235
RD1
RD2
RD73



LA236
RD1
RD2
RD74



LA237
RD1
RD2
RD75



LA238
RD1
RD2
RD76



LA239
RD1
RD2
RD77



LA240
RD1
RD2
RD78



LA241
RD1
RD2
RD79



LA242
RD1
RD2
RD80



LA243
RD1
RD3
RD81



LA244
RD1
RD3
RD1



LA245
RD1
RD3
RD2



LA246
RD1
RD3
RD3



LA247
RD1
RD3
RD4



LA248
RD1
RD3
RD5



LA249
RD1
RD3
RD6



LA250
RD1
RD3
RD7



LA251
RD1
RD3
RD8



LA252
RD1
RD3
RD9



LA253
RD1
RD3
RD10



LA254
RD1
RD3
RD11



LA255
RD1
RD3
RD12



LA256
RD1
RD3
RD13



LA257
RD1
RD3
RD14



LA258
RD1
RD3
RD15



LA259
RD1
RD3
RD16



LA260
RD1
RD3
RD17



LA261
RD1
RD3
RD18



LA262
RD1
RD3
RD19



LA263
RD1
RD3
RD20



LA264
RD1
RD3
RD21



LA265
RD1
RD3
RD22



LA266
RD1
RD3
RD23



LA267
RD1
RD3
RD24



LA268
RD1
RD3
RD25



LA269
RD1
RD3
RD26



LA270
RD1
RD3
RD27



LA271
RD1
RD3
RD28



LA272
RD1
RD3
RD29



LA273
RD1
RD3
RD30



LA274
RD1
RD3
RD31



LA275
RD1
RD3
RD32



LA276
RD1
RD3
RD33



LA277
RD1
RD3
RD34



LA278
RD1
RD3
RD35



LA279
RD1
RD3
RD36



LA280
RD1
RD3
RD37



LA281
RD1
RD3
RD38



LA282
RD1
RD3
RD39



LA283
RD1
RD3
RD40



LA284
RD1
RD3
RD41



LA285
RD1
RD3
RD42



LA286
RD1
RD3
RD43



LA287
RD1
RD3
RD44



LA288
RD1
RD3
RD45



LA289
RD1
RD3
RD46



LA290
RD1
RD3
RD47



LA291
RD1
RD3
RD48



LA292
RD1
RD3
RD49



LA293
RD1
RD3
RD50



LA294
RD1
RD3
RD51



LA295
RD1
RD3
RD52



LA296
RD1
RD3
RD53



LA297
RD1
RD3
RD54



LA298
RD1
RD3
RD55



LA299
RD1
RD3
RD56



LA300
RD1
RD3
RD57



LA301
RD1
RD3
RD58



LA302
RD1
RD3
RD59



LA303
RD1
RD3
RD60



LA304
RD1
RD3
RD61



LA305
RD1
RD3
RD62



LA306
RD1
RD3
RD63



LA307
RD1
RD3
RD64



LA308
RD1
RD3
RD65



LA309
RD1
RD3
RD66



LA310
RD1
RD3
RD67



LA311
RD1
RD3
RD68



LA312
RD1
RD3
RD69



LA313
RD1
RD3
RD70



LA314
RD1
RD3
RD71



LA315
RD1
RD3
RD72



LA316
RD1
RD3
RD73



LA317
RD1
RD3
RD74



LA318
RD1
RD3
RD75



LA319
RD1
RD3
RD76



LA320
RD1
RD3
RD77



LA321
RD1
RD3
RD78



LA322
RD1
RD3
RD79



LA323
RD1
RD3
RD80



LA324
RD1
RD3
RD81



LA325
RD1
RD4
RD1



LA326
RD1
RD4
RD2



LA327
RD1
RD4
RD3



LA328
RD1
RD4
RD4



LA329
RD1
RD4
RD5



LA330
RD1
RD4
RD6



LA331
RD1
RD4
RD7



LA332
RD1
RD4
RD8



LA333
RD1
RD4
RD9



LA334
RD1
RD4
RD10



LA335
RD1
RD4
RD11



LA336
RD1
RD4
RD12



LA337
RD1
RD4
RD13



LA338
RD1
RD4
RD14



LA339
RD1
RD4
RD15



LA340
RD1
RD4
RD16



LA341
RD1
RD4
RD17



LA342
RD1
RD4
RD18



LA343
RD1
RD4
RD19



LA344
RD1
RD4
RD20



LA345
RD1
RD4
RD21



LA346
RD1
RD4
RD22



LA347
RD1
RD4
RD23



LA348
RD1
RD4
RD24



LA349
RD1
RD4
RD25



LA350
RD1
RD4
RD26



LA351
RD1
RD4
RD27



LA352
RD1
RD4
RD28



LA353
RD1
RD4
RD29



LA354
RD1
RD4
RD30



LA355
RD1
RD4
RD31



LA356
RD1
RD4
RD32



LA357
RD1
RD4
RD33



LA358
RD1
RD4
RD34



LA359
RD1
RD4
RD35



LA360
RD1
RD4
RD36



LA361
RD1
RD4
RD37



LA362
RD1
RD4
RD38



LA363
RD1
RD4
RD39



LA364
RD1
RD4
RD40



LA365
RD1
RD4
RD41



LA366
RD1
RD4
RD42



LA367
RD1
RD4
RD43



LA368
RD1
RD4
RD44



LA369
RD1
RD4
RD45



LA370
RD1
RD4
RD46



LA371
RD1
RD4
RD47



LA372
RD1
RD4
RD48



LA373
RD1
RD4
RD49



LA374
RD1
RD4
RD50



LA375
RD1
RD4
RD51



LA376
RD1
RD4
RD52



LA377
RD1
RD4
RD53



LA378
RD1
RD4
RD54



LA379
RD1
RD4
RD55



LA380
RD1
RD4
RD56



LA381
RD1
RD4
RD57



LA382
RD1
RD4
RD58



LA383
RD1
RD4
RD59



LA384
RD1
RD4
RD60



LA385
RD1
RD4
RD61



LA386
RD1
RD4
RD62



LA387
RD1
RD4
RD63



LA388
RD1
RD4
RD64



LA389
RD1
RD4
RD65



LA390
RD1
RD4
RD66



LA391
RD1
RD4
RD67



LA392
RD1
RD4
RD68



LA393
RD1
RD4
RD69



LA394
RD1
RD4
RD70



LA395
RD1
RD4
RD71



LA396
RD1
RD4
RD72



LA397
RD1
RD4
RD73



LA398
RD1
RD4
RD74



LA399
RD1
RD4
RD75



LA400
RD1
RD4
RD76



LA401
RD1
RD4
RD77



LA402
RD1
RD4
RD78



LA403
RD1
RD4
RD79



LA404
RD1
RD4
RD80



LA405
RD1
RD4
RD81



LA406
RD1
RD5
RD1



LA407
RD1
RD5
RD2



LA408
RD1
RD5
RD3



LA409
RD1
RD5
RD4



LA410
RD1
RD5
RD5



LA411
RD1
RD5
RD6



LA412
RD1
RD5
RD7



LA413
RD1
RD5
RD8



LA414
RD1
RD5
RD9



LA415
RD1
RD5
RD10



LA416
RD1
RD5
RD11



LA417
RD1
RD5
RD12



LA418
RD1
RD5
RD13



LA419
RD1
RD5
RD14



LA420
RD1
RD5
RD15



LA421
RD1
RD5
RD16



LA422
RD1
RD5
RD17



LA423
RD1
RD5
RD18



LA424
RD1
RD5
RD19



LA425
RD1
RD5
RD20



LA426
RD1
RD5
RD21



LA427
RD1
RD5
RD22



LA428
RD1
RD5
RD23



LA429
RD1
RD5
RD24



LA430
RD1
RD5
RD25



LA431
RD1
RD5
RD26



LA432
RD1
RD5
RD27



LA433
RD1
RD5
RD28



LA434
RD1
RD5
RD29



LA435
RD1
RD5
RD30



LA436
RD1
RD5
RD31



LA437
RD1
RD5
RD32



LA438
RD1
RD5
RD33



LA439
RD1
RD5
RD34



LA440
RD1
RD5
RD35



LA441
RD1
RD5
RD36



LA442
RD1
RD5
RD37



LA443
RD1
RD5
RD38



LA444
RD1
RD5
RD39



LA445
RD1
RD5
RD40



LA446
RD1
RD5
RD41



LA447
RD1
RD5
RD42



LA448
RD1
RD5
RD43



LA449
RD1
RD5
RD44



LA450
RD1
RD5
RD45



LA451
RD1
RD5
RD46



LA452
RD1
RD5
RD47



LA453
RD1
RD5
RD48



LA454
RD1
RD5
RD49



LA455
RD1
RD5
RD50



LA456
RD1
RD5
RD51



LA457
RD1
RD5
RD52



LA458
RD1
RD5
RD53



LA459
RD1
RD5
RD54



LA460
RD1
RD5
RD55



LA461
RD1
RD5
RD56



LA462
RD1
RD5
RD57



LA463
RD1
RD5
RD58



LA464
RD1
RD5
RD59



LA465
RD1
RD5
RD60



LA466
RD1
RD5
RD61



LA467
RD1
RD5
RD62



LA468
RD1
RD5
RD63



LA469
RD1
RD5
RD64



LA470
RD1
RD5
RD65



LA471
RD1
RD5
RD66



LA472
RD1
RD5
RD67



LA473
RD1
RD5
RD68



LA474
RD1
RD5
RD69



LA475
RD1
RD5
RD70



LA476
RD1
RD5
RD71



LA477
RD1
RD5
RD72



LA478
RD1
RD5
RD73



LA479
RD1
RD5
RD74



LA480
RD1
RD5
RD75



LA481
RD1
RD5
RD76



LA482
RD1
RD5
RD77



LA483
RD1
RD5
RD78



LA484
RD1
RD5
RD79



LA485
RD1
RD5
RD80



LA486
RD1
RD5
RD81



LA487
RD2
RD1
RD1



LA488
RD2
RD1
RD2



LA489
RD2
RD1
RD3



LA490
RD2
RD1
RD4



LA491
RD2
RD1
RD5



LA492
RD2
RD1
RD6



LA493
RD2
RD1
RD7



LA494
RD2
RD1
RD8



LA495
RD2
RD1
RD9



LA496
RD2
RD1
RD10



LA497
RD2
RD1
RD11



LA498
RD2
RD1
RD12



LA499
RD2
RD1
RD13



LA500
RD2
RD1
RD14



LA501
RD2
RD1
RD15



LA502
RD2
RD1
RD16



LA503
RD2
RD1
RD17



LA504
RD2
RD1
RD18



LA505
RD2
RD1
RD19



LA506
RD2
RD1
RD20



LA507
RD2
RD1
RD21



LA508
RD2
RD1
RD22



LA509
RD2
RD1
RD23



LA510
RD2
RD1
RD24



LA511
RD2
RD1
RD25



LA512
RD2
RD1
RD26



LA513
RD2
RD1
RD27



LA514
RD2
RD1
RD28



LA515
RD2
RD1
RD29



LA516
RD2
RD1
RD30



LA517
RD2
RD1
RD31



LA518
RD2
RD1
RD32



LA519
RD2
RD1
RD33



LA520
RD2
RD1
RD34



LA521
RD2
RD1
RD35



LA522
RD2
RD1
RD36



LA523
RD2
RD1
RD37



LA524
RD2
RD1
RD38



LA525
RD2
RD1
RD39



LA526
RD2
RD1
RD40



LA527
RD2
RD1
RD41



LA528
RD2
RD1
RD42



LA529
RD2
RD1
RD43



LA530
RD2
RD1
RD44



LA531
RD2
RD1
RD45



LA532
RD2
RD1
RD46



LA533
RD2
RD1
RD47



LA534
RD2
RD1
RD48



LA535
RD2
RD1
RD49



LA536
RD2
RD1
RD50



LA537
RD2
RD1
RD51



LA538
RD2
RD1
RD52



LA539
RD2
RD1
RD53



LA540
RD2
RD1
RD54



LA541
RD2
RD1
RD55



LA542
RD2
RD1
RD56



LA543
RD2
RD1
RD57



LA544
RD2
RD1
RD58



LA545
RD2
RD1
RD59



LA546
RD2
RD1
RD60



LA547
RD2
RD1
RD61



LA548
RD2
RD1
RD62



LA549
RD2
RD1
RD63



LA550
RD2
RD1
RD64



LA551
RD2
RD1
RD65



LA552
RD2
RD1
RD66



LA553
RD2
RD1
RD67



LA554
RD2
RD1
RD68



LA555
RD2
RD1
RD69



LA556
RD2
RD1
RD70



LA557
RD2
RD1
RD71



LA558
RD2
RD1
RD72



LA559
RD2
RD1
RD73



LA560
RD2
RD1
RD74



LA561
RD2
RD1
RD75



LA562
RD2
RD1
RD76



LA563
RD2
RD1
RD77



LA564
RD2
RD1
RD78



LA565
RD2
RD1
RD79



LA566
RD2
RD1
RD80



LA567
RD2
RD1
RD81



LA568
RD2
RD2
RD1



LA569
RD2
RD2
RD2



LA570
RD2
RD2
RD3



LA571
RD2
RD2
RD4



LA572
RD2
RD2
RD5



LA573
RD2
RD2
RD6



LA574
RD2
RD2
RD7



LA575
RD2
RD2
RD8



LA576
RD2
RD2
RD9



LA577
RD2
RD2
RD10



LA578
RD2
RD2
RD11



LA579
RD2
RD2
RD12



LA580
RD2
RD2
RD13



LA581
RD2
RD2
RD14



LA582
RD2
RD2
RD15



LA583
RD2
RD2
RD16



LA584
RD2
RD2
RD17



LA585
RD2
RD2
RD18



LA586
RD2
RD2
RD19



LA587
RD2
RD2
RD20



LA588
RD2
RD2
RD21



LA589
RD2
RD2
RD22



LA590
RD2
RD2
RD23



LA591
RD2
RD2
RD24



LA592
RD2
RD2
RD25



LA593
RD2
RD2
RD26



LA594
RD2
RD2
RD27



LA595
RD2
RD2
RD28



LA596
RD2
RD2
RD29



LA597
RD2
RD2
RD30



LA598
RD2
RD2
RD31



LA599
RD2
RD2
RD32



LA600
RD2
RD2
RD33



LA601
RD2
RD2
RD34



LA602
RD2
RD2
RD35



LA603
RD2
RD2
RD36



LA604
RD2
RD2
RD37



LA605
RD2
RD2
RD38



LA606
RD2
RD2
RD39



LA607
RD2
RD2
RD40



LA608
RD2
RD2
RD41



LA609
RD2
RD2
RD42



LA610
RD2
RD2
RD43



LA611
RD2
RD2
RD44



LA612
RD2
RD2
RD45



LA613
RD2
RD2
RD46



LA614
RD2
RD2
RD47



LA615
RD2
RD2
RD48



LA616
RD2
RD2
RD49



LA617
RD2
RD2
RD50



LA618
RD2
RD2
RD51



LA619
RD2
RD2
RD52



LA620
RD2
RD2
RD53



LA621
RD2
RD2
RD54



LA622
RD2
RD2
RD55



LA623
RD2
RD2
RD56



LA624
RD2
RD2
RD57



LA625
RD2
RD2
RD58



LA626
RD2
RD2
RD59



LA627
RD2
RD2
RD60



LA628
RD2
RD2
RD61



LA629
RD2
RD2
RD62



LA630
RD2
RD2
RD63



LA631
RD2
RD2
RD64



LA632
RD2
RD2
RD65



LA633
RD2
RD2
RD66



LA634
RD2
RD2
RD67



LA635
RD2
RD2
RD68



LA636
RD2
RD2
RD69



LA637
RD2
RD2
RD70



LA638
RD2
RD2
RD71



LA639
RD2
RD2
RD72



LA640
RD2
RD2
RD73



LA641
RD2
RD2
RD74



LA642
RD2
RD2
RD75



LA643
RD2
RD2
RD76



LA644
RD2
RD2
RD77



LA645
RD2
RD2
RD78



LA646
RD2
RD2
RD79



LA647
RD2
RD2
RD80



LA648
RD2
RD2
RD81



LA649
RD2
RD2
RD1



LA650
RD2
RD2
RD2



LA651
RD2
RD2
RD3



LA652
RD2
RD2
RD4



LA653
RD2
RD2
RD5



LA654
RD2
RD2
RD6



LA655
RD2
RD2
RD7



LA656
RD2
RD2
RD8



LA657
RD2
RD2
RD9



LA658
RD2
RD2
RD10



LA659
RD2
RD2
RD11



LA660
RD2
RD2
RD12



LA661
RD2
RD2
RD13



LA662
RD2
RD2
RD14



LA663
RD2
RD2
RD15



LA664
RD2
RD2
RD16



LA665
RD2
RD2
RD17



LA666
RD2
RD2
RD18



LA667
RD2
RD2
RD19



LA668
RD2
RD2
RD20



LA669
RD2
RD2
RD21



LA670
RD2
RD2
RD22



LA671
RD2
RD2
RD23



LA672
RD2
RD2
RD24



LA673
RD2
RD2
RD25



LA674
RD2
RD2
RD26



LA675
RD2
RD2
RD27



LA676
RD2
RD2
RD28



LA677
RD2
RD2
RD29



LA678
RD2
RD2
RD30



LA679
RD2
RD2
RD31



LA680
RD2
RD2
RD32



LA681
RD2
RD2
RD33



LA682
RD2
RD2
RD34



LA683
RD2
RD2
RD35



LA684
RD2
RD2
RD36



LA685
RD2
RD2
RD37



LA686
RD2
RD2
RD38



LA687
RD2
RD2
RD39



LA688
RD2
RD2
RD40



LA689
RD2
RD2
RD41



LA690
RD2
RD2
RD42



LA691
RD2
RD2
RD43



LA692
RD2
RD2
RD44



LA693
RD2
RD2
RD45



LA694
RD2
RD2
RD46



LA695
RD2
RD2
RD47



LA696
RD2
RD2
RD48



LA697
RD2
RD2
RD49



LA698
RD2
RD2
RD50



LA699
RD2
RD2
RD51



LA700
RD2
RD2
RD52



LA701
RD2
RD2
RD53



LA702
RD2
RD2
RD54



LA703
RD2
RD2
RD55



LA704
RD2
RD2
RD56



LA705
RD2
RD2
RD57



LA706
RD2
RD2
RD58



LA707
RD2
RD2
RD59



LA708
RD2
RD2
RD60



LA709
RD2
RD2
RD61



LA710
RD2
RD2
RD62



LA711
RD2
RD2
RD63



LA712
RD2
RD2
RD64



LA713
RD2
RD2
RD65



LA714
RD2
RD2
RD66



LA715
RD2
RD2
RD67



LA716
RD2
RD2
RD68



LA717
RD2
RD2
RD69



LA718
RD2
RD2
RD70



LA719
RD2
RD2
RD71



LA720
RD2
RD2
RD72



LA721
RD2
RD2
RD73



LA722
RD2
RD2
RD74



LA723
RD2
RD2
RD75



LA724
RD2
RD2
RD76



LA725
RD2
RD2
RD77



LA726
RD2
RD2
RD78



LA727
RD2
RD2
RD79



LA728
RD2
RD2
RD80



LA729
RD2
RD3
RD81



LA730
RD2
RD3
RD1



LA731
RD2
RD3
RD2



LA732
RD2
RD3
RD3



LA733
RD2
RD3
RD4



LA734
RD2
RD3
RD5



LA735
RD2
RD3
RD6



LA736
RD2
RD3
RD7



LA737
RD2
RD3
RD8



LA738
RD2
RD3
RD9



LA739
RD2
RD3
RD10



LA740
RD2
RD3
RD11



LA741
RD2
RD3
RD12



LA742
RD2
RD3
RD13



LA743
RD2
RD3
RD14



LA744
RD2
RD3
RD15



LA745
RD2
RD3
RD16



LA746
RD2
RD3
RD17



LA747
RD2
RD3
RD18



LA748
RD2
RD3
RD19



LA749
RD2
RD3
RD20



LA750
RD2
RD3
RD21



LA751
RD2
RD3
RD22



LA752
RD2
RD3
RD23



LA753
RD2
RD3
RD24



LA754
RD2
RD3
RD25



LA755
RD2
RD3
RD26



LA756
RD2
RD3
RD27



LA757
RD2
RD3
RD28



LA758
RD2
RD3
RD29



LA759
RD2
RD3
RD30



LA760
RD2
RD3
RD31



LA761
RD2
RD3
RD32



LA762
RD2
RD3
RD33



LA763
RD2
RD3
RD34



LA764
RD2
RD3
RD35



LA765
RD2
RD3
RD36



LA766
RD2
RD3
RD37



LA767
RD2
RD3
RD38



LA768
RD2
RD3
RD39



LA769
RD2
RD3
RD40



LA770
RD2
RD3
RD41



LA771
RD2
RD3
RD42



LA772
RD2
RD3
RD43



LA773
RD2
RD3
RD44



LA774
RD2
RD3
RD45



LA775
RD2
RD3
RD46



LA776
RD2
RD3
RD47



LA777
RD2
RD3
RD48



LA778
RD2
RD3
RD49



LA779
RD2
RD3
RD50



LA780
RD2
RD3
RD51



LA781
RD2
RD3
RD52



LA782
RD2
RD3
RD53



LA783
RD2
RD3
RD54



LA784
RD2
RD3
RD55



LA785
RD2
RD3
RD56



LA786
RD2
RD3
RD57



LA787
RD2
RD3
RD58



LA788
RD2
RD3
RD59



LA789
RD2
RD3
RD60



LA790
RD2
RD3
RD61



LA791
RD2
RD3
RD62



LA792
RD2
RD3
RD63



LA793
RD2
RD3
RD64



LA794
RD2
RD3
RD65



LA795
RD2
RD3
RD66



LA796
RD2
RD3
RD67



LA797
RD2
RD3
RD68



LA798
RD2
RD3
RD69



LA799
RD2
RD3
RD70



LA800
RD2
RD3
RD71



LA801
RD2
RD3
RD72



LA802
RD2
RD3
RD73



LA803
RD2
RD3
RD74



LA804
RD2
RD3
RD75



LA805
RD2
RD3
RD76



LA806
RD2
RD3
RD77



LA807
RD2
RD3
RD78



LA808
RD2
RD3
RD79



LA809
RD2
RD3
RD80



LA810
RD2
RD3
RD81



LA811
RD2
RD4
RD1



LA812
RD2
RD4
RD2



LA813
RD2
RD4
RD3



LA814
RD2
RD4
RD4



LA815
RD2
RD4
RD5



LA816
RD2
RD4
RD6



LA817
RD2
RD4
RD7



LA818
RD2
RD4
RD8



LA819
RD2
RD4
RD9



LA820
RD2
RD4
RD10



LA821
RD2
RD4
RD11



LA822
RD2
RD4
RD12



LA823
RD2
RD4
RD13



LA824
RD2
RD4
RD14



LA825
RD2
RD4
RD15



LA826
RD2
RD4
RD16



LA827
RD2
RD4
RD17



LA828
RD2
RD4
RD18



LA829
RD2
RD4
RD19



LA830
RD2
RD4
RD20



LA831
RD2
RD4
RD21



LA832
RD2
RD4
RD22



LA833
RD2
RD4
RD23



LA834
RD2
RD4
RD24



LA835
RD2
RD4
RD25



LA836
RD2
RD4
RD26



LA837
RD2
RD4
RD27



LA838
RD2
RD4
RD28



LA839
RD2
RD4
RD29



LA840
RD2
RD4
RD30



LA841
RD2
RD4
RD31



LA842
RD2
RD4
RD32



LA843
RD2
RD4
RD33



LA844
RD2
RD4
RD34



LA845
RD2
RD4
RD35



LA846
RD2
RD4
RD36



LA847
RD2
RD4
RD37



LA848
RD2
RD4
RD38



LA849
RD2
RD4
RD39



LA850
RD2
RD4
RD40



LA851
RD2
RD4
RD41



LA852
RD2
RD4
RD42



LA853
RD2
RD4
RD43



LA854
RD2
RD4
RD44



LA855
RD2
RD4
RD45



LA856
RD2
RD4
RD46



LA857
RD2
RD4
RD47



LA858
RD2
RD4
RD48



LA859
RD2
RD4
RD49



LA860
RD2
RD4
RD50



LA861
RD2
RD4
RD51



LA862
RD2
RD4
RD52



LA863
RD2
RD4
RD53



LA864
RD2
RD4
RD54



LA865
RD2
RD4
RD55



LA866
RD2
RD4
RD56



LA867
RD2
RD4
RD57



LA868
RD2
RD4
RD58



LA869
RD2
RD4
RD59



LA870
RD2
RD4
RD60



LA871
RD2
RD4
RD61



LA872
RD2
RD4
RD62



LA873
RD2
RD4
RD63



LA874
RD2
RD4
RD64



LA875
RD2
RD4
RD65



LA876
RD2
RD4
RD66



LA877
RD2
RD4
RD67



LA878
RD2
RD4
RD68



LA879
RD2
RD4
RD69



LA880
RD2
RD4
RD70



LA881
RD2
RD4
RD71



LA882
RD2
RD4
RD72



LA883
RD2
RD4
RD73



LA884
RD2
RD4
RD74



LA885
RD2
RD4
RD75



LA886
RD2
RD4
RD76



LA887
RD2
RD4
RD77



LA888
RD2
RD4
RD78



LA889
RD2
RD4
RD79



LA890
RD2
RD4
RD80



LA891
RD2
RD4
RD81



LA892
RD2
RD5
RD1



LA893
RD2
RD5
RD2



LA894
RD2
RD5
RD3



LA895
RD2
RD5
RD4



LA896
RD2
RD5
RD5



LA897
RD2
RD5
RD6



LA898
RD2
RD5
RD7



LA899
RD2
RD5
RD8



LA900
RD2
RD5
RD9



LA901
RD2
RD5
RD10



LA902
RD2
RD5
RD11



LA903
RD2
RD5
RD12



LA904
RD2
RD5
RD13



LA905
RD2
RD5
RD14



LA906
RD2
RD5
RD15



LA907
RD2
RD5
RD16



LA908
RD2
RD5
RD17



LA909
RD2
RD5
RD18



LA910
RD2
RD5
RD19



LA911
RD2
RD5
RD20



LA912
RD2
RD5
RD21



LA913
RD2
RD5
RD22



LA914
RD2
RD5
RD23



LA915
RD2
RD5
RD24



LA916
RD2
RD5
RD25



LA917
RD2
RD5
RD26



LA918
RD2
RD5
RD27



LA919
RD2
RD5
RD28



LA920
RD2
RD5
RD29



LA921
RD2
RD5
RD30



LA922
RD2
RD5
RD31



LA923
RD2
RD5
RD32



LA924
RD2
RD5
RD33



LA925
RD2
RD5
RD34



LA926
RD2
RD5
RD35



LA927
RD2
RD5
RD36



LA928
RD2
RD5
RD37



LA929
RD2
RD5
RD38



LA930
RD2
RD5
RD39



LA931
RD2
RD5
RD40



LA932
RD2
RD5
RD41



LA933
RD2
RD5
RD42



LA934
RD2
RD5
RD43



LA935
RD2
RD5
RD44



LA936
RD2
RD5
RD45



LA937
RD2
RD5
RD46



LA938
RD2
RD5
RD47



LA939
RD2
RD5
RD48



LA940
RD2
RD5
RD49



LA941
RD2
RD5
RD50



LA942
RD2
RD5
RD51



LA943
RD2
RD5
RD52



LA944
RD2
RD5
RD53



LA945
RD2
RD5
RD54



LA946
RD2
RD5
RD55



LA947
RD2
RD5
RD56



LA948
RD2
RD5
RD57



LA949
RD2
RD5
RD58



LA950
RD2
RD5
RD59



LA951
RD2
RD5
RD60



LA952
RD2
RD5
RD61



LA953
RD2
RD5
RD62



LA954
RD2
RD5
RD63



LA955
RD2
RD5
RD64



LA956
RD2
RD5
RD65



LA957
RD2
RD5
RD66



LA958
RD2
RD5
RD67



LA959
RD2
RD5
RD68



LA960
RD2
RD5
RD69



LA961
RD2
RD5
RD70



LA962
RD2
RD5
RD71



LA963
RD2
RD5
RD72



LA964
RD2
RD5
RD73



LA965
RD2
RD5
RD74



LA966
RD2
RD5
RD75



LA967
RD2
RD5
RD76



LA968
RD2
RD5
RD77



LA969
RD2
RD5
RD78



LA970
RD2
RD5
RD79



LA971
RD2
RD5
RD80



LA972
RD2
RD5
RD81



LA973
RD1
RD6
RD1



LA974
RD1
RD6
RD2



LA975
RD1
RD6
RD3



LA976
RD1
RD6
RD4



LA977
RD1
RD6
RD5



LA978
RD1
RD6
RD6



LA979
RD1
RD6
RD7



LA980
RD1
RD6
RD8



LA981
RD1
RD6
RD9



LA982
RD1
RD6
RD10



LA983
RD1
RD6
RD11



LA984
RD1
RD6
RD12



LA985
RD1
RD6
RD13



LA986
RD1
RD6
RD14



LA987
RD1
RD6
RD15



LA988
RD1
RD6
RD16



LA989
RD1
RD6
RD17



LA990
RD1
RD6
RD18



LA991
RD1
RD6
RD19



LA992
RD1
RD6
RD20



LA993
RD1
RD6
RD21



LA994
RD1
RD6
RD22



LA995
RD1
RD6
RD23



LA996
RD1
RD6
RD24



LA997
RD1
RD6
RD25



LA998
RD1
RD6
RD26



LA999
RD1
RD6
RD27



LA1000
RD1
RD6
RD28



LA1001
RD1
RD6
RD29



LA1002
RD1
RD6
RD30



LA1003
RD1
RD6
RD31



LA1004
RD1
RD6
RD32



LA1005
RD1
RD6
RD33



LA1006
RD1
RD6
RD34



LA1007
RD1
RD6
RD35



LA1008
RD1
RD6
RD36



LA1009
RD1
RD6
RD37



LA1010
RD1
RD6
RD38



LA1011
RD1
RD6
RD39



LA1012
RD1
RD6
RD40



LA1013
RD1
RD6
RD41



LA1014
RD1
RD6
RD42



LA1015
RD1
RD6
RD43



LA1016
RD1
RD6
RD44



LA1017
RD1
RD6
RD45



LA1018
RD1
RD6
RD46



LA1019
RD1
RD6
RD47



LA1020
RD1
RD6
RD48



LA1021
RD1
RD6
RD49



LA1022
RD1
RD6
RD50



LA1023
RD1
RD6
RD51



LA1024
RD1
RD6
RD52



LA1025
RD1
RD6
RD53



LA1026
RD1
RD6
RD54



LA1027
RD1
RD6
RD55



LA1028
RD1
RD6
RD56



LA1029
RD1
RD6
RD57



LA1030
RD1
RD6
RD58



LA1031
RD1
RD6
RD59



LA1032
RD1
RD6
RD60



LA1033
RD1
RD6
RD61



LA1034
RD1
RD6
RD62



LA1035
RD1
RD6
RD63



LA1036
RD1
RD6
RD64



LA1037
RD1
RD6
RD65



LA1038
RD1
RD6
RD66



LA1039
RD1
RD6
RD67



LA1040
RD1
RD6
RD68



LA1041
RD1
RD6
RD69



LA1042
RD1
RD6
RD70



LA1043
RD1
RD6
RD71



LA1044
RD1
RD6
RD72



LA1045
RD1
RD6
RD73



LA1046
RD1
RD6
RD74



LA1047
RD1
RD6
RD75



LA1048
RD1
RD6
RD76



LA1049
RD1
RD6
RD77



LA1050
RD1
RD6
RD78



LA1051
RD1
RD6
RD79



LA1052
RD1
RD6
RD80



LA1053
RD1
RD6
RD81



LA1054
RD1
RD7
RD1



LA1055
RD1
RD7
RD2



LA1056
RD1
RD7
RD3



LA1057
RD1
RD7
RD4



LA1058
RD1
RD7
RD5



LA1059
RD1
RD7
RD6



LA1060
RD1
RD7
RD7



LA1061
RD1
RD7
RD8



LA1062
RD1
RD7
RD9



LA1063
RD1
RD7
RD10



LA1064
RD1
RD7
RD11



LA1065
RD1
RD7
RD12



LA1066
RD1
RD7
RD13



LA1067
RD1
RD7
RD14



LA1068
RD1
RD7
RD15



LA1069
RD1
RD7
RD16



LA1070
RD1
RD7
RD17



LA1071
RD1
RD7
RD18



LA1072
RD1
RD7
RD19



LA1073
RD1
RD7
RD20



LA1074
RD1
RD7
RD21



LA1075
RD1
RD7
RD22



LA1076
RD1
RD7
RD23



LA1077
RD1
RD7
RD24



LA1078
RD1
RD7
RD25



LA1079
RD1
RD7
RD26



LA1080
RD1
RD7
RD27



LA1081
RD1
RD7
RD28



LA1082
RD1
RD7
RD29



LA1083
RD1
RD7
RD30



LA1084
RD1
RD7
RD31



LA1085
RD1
RD7
RD32



LA1086
RD1
RD7
RD33



LA1087
RD1
RD7
RD34



LA1088
RD1
RD7
RD35



LA1089
RD1
RD7
RD36



LA1090
RD1
RD7
RD37



LA1091
RD1
RD7
RD38



LA1092
RD1
RD7
RD39



LA1093
RD1
RD7
RD40



LA1094
RD1
RD7
RD41



LA1095
RD1
RD7
RD42



LA1096
RD1
RD7
RD43



LA1097
RD1
RD7
RD44



LA1098
RD1
RD7
RD45



LA1099
RD1
RD7
RD46



LA1100
RD1
RD7
RD47



LA1101
RD1
RD7
RD48



LA1102
RD1
RD7
RD49



LA1103
RD1
RD7
RD50



LA1104
RD1
RD7
RD51



LA1105
RD1
RD7
RD52



LA1106
RD1
RD7
RD53



LA1107
RD1
RD7
RD54



LA1108
RD1
RD7
RD55



LA1109
RD1
RD7
RD56



LA1110
RD1
RD7
RD57



LA1111
RD1
RD7
RD58



LA1112
RD1
RD7
RD59



LA1113
RD1
RD7
RD60



LA1114
RD1
RD7
RD61



LA1115
RD1
RD7
RD62



LA1116
RD1
RD7
RD63



LA1117
RD1
RD7
RD64



LA1118
RD1
RD7
RD65



LA1119
RD1
RD7
RD66



LA1120
RD1
RD7
RD67



LA1121
RD1
RD7
RD68



LA1122
RD1
RD7
RD69



LA1123
RD1
RD7
RD70



LA1124
RD1
RD7
RD71



LA1125
RD1
RD7
RD72



LA1126
RD1
RD7
RD73



LA1127
RD1
RD7
RD74



LA1128
RD1
RD7
RD75



LA1129
RD1
RD7
RD76



LA1130
RD1
RD7
RD77



LA1131
RD1
RD7
RD78



LA1132
RD1
RD7
RD79



LA1133
RD1
RD7
RD80



LA1134
RD1
RD7
RD81



LA1135
RD1
RD7
RD1



LA1136
RD1
RD7
RD2



LA1137
RD1
RD7
RD3



LA1138
RD1
RD7
RD4



LA1139
RD1
RD7
RD5



LA1140
RD1
RD7
RD6



LA1141
RD1
RD7
RD7



LA1142
RD1
RD7
RD8



LA1143
RD1
RD7
RD9



LA1144
RD1
RD7
RD10



LA1145
RD1
RD7
RD11



LA1146
RD1
RD7
RD12



LA1147
RD1
RD7
RD13



LA1148
RD1
RD7
RD14



LA1149
RD1
RD7
RD15



LA1150
RD1
RD7
RD16



LA1151
RD1
RD7
RD17



LA1152
RD1
RD7
RD18



LA1153
RD1
RD7
RD19



LA1154
RD1
RD7
RD20



LA1155
RD1
RD7
RD21



LA1156
RD1
RD7
RD22



LA1157
RD1
RD7
RD23



LA1158
RD1
RD7
RD24



LA1159
RD1
RD7
RD25



LA1160
RD1
RD7
RD26



LA1161
RD1
RD7
RD27



LA1162
RD1
RD7
RD28



LA1163
RD1
RD7
RD29



LA1164
RD1
RD7
RD30



LA1165
RD1
RD7
RD31



LA1166
RD1
RD7
RD32



LA1167
RD1
RD7
RD33



LA1168
RD1
RD7
RD34



LA1169
RD1
RD7
RD35



LA1170
RD1
RD7
RD36



LA1171
RD1
RD7
RD37



LA1172
RD1
RD7
RD38



LA1173
RD1
RD7
RD39



LA1174
RD1
RD7
RD40



LA1175
RD1
RD7
RD41



LA1176
RD1
RD7
RD42



LA1177
RD1
RD7
RD43



LA1178
RD1
RD7
RD44



LA1179
RD1
RD7
RD45



LA1180
RD1
RD7
RD46



LA1181
RD1
RD7
RD47



LA1182
RD1
RD7
RD48



LA1183
RD1
RD7
RD49



LA1184
RD1
RD7
RD50



LA1185
RD1
RD7
RD51



LA1186
RD1
RD7
RD52



LA1187
RD1
RD7
RD53



LA1188
RD1
RD7
RD54



LA1189
RD1
RD7
RD55



LA1190
RD1
RD7
RD56



LA1191
RD1
RD7
RD57



LA1192
RD1
RD7
RD58



LA1193
RD1
RD7
RD59



LA1194
RD1
RD7
RD60



LA1195
RD1
RD7
RD61



LA1196
RD1
RD7
RD62



LA1197
RD1
RD7
RD63



LA1198
RD1
RD7
RD64



LA1199
RD1
RD7
RD65



LA1200
RD1
RD7
RD66



LA1201
RD1
RD7
RD67



LA1202
RD1
RD7
RD68



LA1203
RD1
RD7
RD69



LA1204
RD1
RD7
RD70



LA1205
RD1
RD7
RD71



LA1206
RD1
RD7
RD72



LA1207
RD1
RD7
RD73



LA1208
RD1
RD7
RD74



LA1209
RD1
RD7
RD75



LA1210
RD1
RD7
RD76



LA1211
RD1
RD7
RD77



LA1212
RD1
RD7
RD78



LA1213
RD1
RD7
RD79



LA1214
RD1
RD7
RD80



LA1215
RD1
RD8
RD81



LA1216
RD1
RD8
RD1



LA1217
RD1
RD8
RD2



LA1218
RD1
RD8
RD3



LA1219
RD1
RD8
RD4



LA1220
RD1
RD8
RD5



LA1221
RD1
RD8
RD6



LA1222
RD1
RD8
RD7



LA1223
RD1
RD8
RD8



LA1224
RD1
RD8
RD9



LA1225
RD1
RD8
RD10



LA1226
RD1
RD8
RD11



LA1227
RD1
RD8
RD12



LA1228
RD1
RD8
RD13



LA1229
RD1
RD8
RD14



LA1230
RD1
RD8
RD15



LA1231
RD1
RD8
RD16



LA1232
RD1
RD8
RD17



LA1233
RD1
RD8
RD18



LA1234
RD1
RD8
RD19



LA1235
RD1
RD8
RD20



LA1236
RD1
RD8
RD21



LA1237
RD1
RD8
RD22



LA1238
RD1
RD8
RD23



LA1239
RD1
RD8
RD24



LA1240
RD1
RD8
RD25



LA1241
RD1
RD8
RD26



LA1242
RD1
RD8
RD27



LA1243
RD1
RD8
RD28



LA1244
RD1
RD8
RD29



LA1245
RD1
RD8
RD30



LA1246
RD1
RD8
RD31



LA1247
RD1
RD8
RD32



LA1248
RD1
RD8
RD33



LA1249
RD1
RD8
RD34



LA1250
RD1
RD8
RD35



LA1251
RD1
RD8
RD36



LA1252
RD1
RD8
RD37



LA1253
RD1
RD8
RD38



LA1254
RD1
RD8
RD39



LA1255
RD1
RD8
RD40



LA1256
RD1
RD8
RD41



LA1257
RD1
RD8
RD42



LA1258
RD1
RD8
RD43



LA1259
RD1
RD8
RD44



LA1260
RD1
RD8
RD45



LA1261
RD1
RD8
RD46



LA1262
RD1
RD8
RD47



LA1263
RD1
RD8
RD48



LA1264
RD1
RD8
RD49



LA1265
RD1
RD8
RD50



LA1266
RD1
RD8
RD51



LA1267
RD1
RD8
RD52



LA1268
RD1
RD8
RD53



LA1269
RD1
RD8
RD54



LA1270
RD1
RD8
RD55



LA1271
RD1
RD8
RD56



LA1272
RD1
RD8
RD57



LA1273
RD1
RD8
RD58



LA1274
RD1
RD8
RD59



LA1275
RD1
RD8
RD60



LA1276
RD1
RD8
RD61



LA1277
RD1
RD8
RD62



LA1278
RD1
RD8
RD63



LA1279
RD1
RD8
RD64



LA1280
RD1
RD8
RD65



LA1281
RD1
RD8
RD66



LA1282
RD1
RD8
RD67



LA1283
RD1
RD8
RD68



LA1284
RD1
RD8
RD69



LA1285
RD1
RD8
RD70



LA1286
RD1
RD8
RD71



LA1287
RD1
RD8
RD72



LA1288
RD1
RD8
RD73



LA1289
RD1
RD8
RD74



LA1290
RD1
RD8
RD75



LA1291
RD1
RD8
RD76



LA1292
RD1
RD8
RD77



LA1293
RD1
RD8
RD78



LA1294
RD1
RD8
RD79



LA1295
RD1
RD8
RD80



LA1296
RD1
RD8
RD81



LA1297
RD1
RD9
RD1



LA1298
RD1
RD9
RD2



LA1299
RD1
RD9
RD3



LA1300
RD1
RD9
RD4



LA1301
RD1
RD9
RD5



LA1302
RD1
RD9
RD6



LA1303
RD1
RD9
RD7



LA1304
RD1
RD9
RD8



LA1305
RD1
RD9
RD9



LA1306
RD1
RD9
RD10



LA1307
RD1
RD9
RD11



LA1308
RD1
RD9
RD12



LA1309
RD1
RD9
RD13



LA1310
RD1
RD9
RD14



LA1311
RD1
RD9
RD15



LA1312
RD1
RD9
RD16



LA1313
RD1
RD9
RD17



LA1314
RD1
RD9
RD18



LA1315
RD1
RD9
RD19



LA1316
RD1
RD9
RD20



LA1317
RD1
RD9
RD21



LA1318
RD1
RD9
RD22



LA1319
RD1
RD9
RD23



LA1320
RD1
RD9
RD24



LA1321
RD1
RD9
RD25



LA1322
RD1
RD9
RD26



LA1323
RD1
RD9
RD27



LA1324
RD1
RD9
RD28



LA1325
RD1
RD9
RD29



LA1326
RD1
RD9
RD30



LA1327
RD1
RD9
RD31



LA1328
RD1
RD9
RD32



LA1329
RD1
RD9
RD33



LA1330
RD1
RD9
RD34



LA1331
RD1
RD9
RD35



LA1332
RD1
RD9
RD36



LA1333
RD1
RD9
RD37



LA1334
RD1
RD9
RD38



LA1335
RD1
RD9
RD39



LA1336
RD1
RD9
RD40



LA1337
RD1
RD9
RD41



LA1338
RD1
RD9
RD42



LA1339
RD1
RD9
RD43



LA1340
RD1
RD9
RD44



LA1341
RD1
RD9
RD45



LA1342
RD1
RD9
RD46



LA1343
RD1
RD9
RD47



LA1344
RD1
RD9
RD48



LA1345
RD1
RD9
RD49



LA1346
RD1
RD9
RD50



LA1347
RD1
RD9
RD51



LA1348
RD1
RD9
RD52



LA1349
RD1
RD9
RD53



LA1350
RD1
RD9
RD54



LA1351
RD1
RD9
RD55



LA1352
RD1
RD9
RD56



LA1353
RD1
RD9
RD57



LA1354
RD1
RD9
RD58



LA1355
RD1
RD9
RD59



LA1356
RD1
RD9
RD60



LA1357
RD1
RD9
RD61



LA1358
RD1
RD9
RD62



LA1359
RD1
RD9
RD63



LA1360
RD1
RD9
RD64



LA1361
RD1
RD9
RD65



LA1362
RD1
RD9
RD66



LA1363
RD1
RD9
RD67



LA1364
RD1
RD9
RD68



LA1365
RD1
RD9
RD69



LA1366
RD1
RD9
RD70



LA1367
RD1
RD9
RD71



LA1368
RD1
RD9
RD72



LA1369
RD1
RD9
RD73



LA1370
RD1
RD9
RD74



LA1371
RD1
RD9
RD75



LA1372
RD1
RD9
RD76



LA1373
RD1
RD9
RD77



LA1374
RD1
RD9
RD78



LA1375
RD1
RD9
RD79



LA1376
RD1
RD9
RD80



LA1377
RD1
RD9
RD81



LA1378
RD1
RD10
RD1



LA1379
RD1
RD10
RD2



LA1380
RD1
RD10
RD3



LA1381
RD1
RD10
RD4



LA1382
RD1
RD10
RD5



LA1383
RD1
RD10
RD6



LA1384
RD1
RD10
RD7



LA1385
RD1
RD10
RD8



LA1386
RD1
RD10
RD9



LA1387
RD1
RD10
RD10



LA1388
RD1
RD10
RD11



LA1389
RD1
RD10
RD12



LA1390
RD1
RD10
RD13



LA1391
RD1
RD10
RD14



LA1392
RD1
RD10
RD15



LA1393
RD1
RD10
RD16



LA1394
RD1
RD10
RD17



LA1395
RD1
RD10
RD18



LA1396
RD1
RD10
RD19



LA1397
RD1
RD10
RD20



LA1398
RD1
RD10
RD21



LA1399
RD1
RD10
RD22



LA1400
RD1
RD10
RD23



LA1401
RD1
RD10
RD24



LA1402
RD1
RD10
RD25



LA1403
RD1
RD10
RD26



LA1404
RD1
RD10
RD27



LA1405
RD1
RD10
RD28



LA1406
RD1
RD10
RD29



LA1407
RD1
RD10
RD30



LA1408
RD1
RD10
RD31



LA1409
RD1
RD10
RD32



LA1410
RD1
RD10
RD33



LA1411
RD1
RD10
RD34



LA1412
RD1
RD10
RD35



LA1413
RD1
RD10
RD36



LA1414
RD1
RD10
RD37



LA1415
RD1
RD10
RD38



LA1416
RD1
RD10
RD39



LA1417
RD1
RD10
RD40



LA1418
RD1
RD10
RD41



LA1419
RD1
RD10
RD42



LA1420
RD1
RD10
RD43



LA1421
RD1
RD10
RD44



LA1422
RD1
RD10
RD45



LA1423
RD1
RD10
RD46



LA1424
RD1
RD10
RD47



LA1425
RD1
RD10
RD48



LA1426
RD1
RD10
RD49



LA1427
RD1
RD10
RD50



LA1428
RD1
RD10
RD51



LA1429
RD1
RD10
RD52



LA1430
RD1
RD10
RD53



LA1431
RD1
RD10
RD54



LA1432
RD1
RD10
RD55



LA1433
RD1
RD10
RD56



LA1434
RD1
RD10
RD57



LA1435
RD1
RD10
RD58



LA1436
RD1
RD10
RD59



LA1437
RD1
RD10
RD60



LA1438
RD1
RD10
RD61



LA1439
RD1
RD10
RD62



LA1440
RD1
RD10
RD63



LA1441
RD1
RD10
RD64



LA1442
RD1
RD10
RD65



LA1443
RD1
RD10
RD66



LA1444
RD1
RD10
RD67



LA1445
RD1
RD10
RD68



LA1446
RD1
RD10
RD69



LA1447
RD1
RD10
RD70



LA1448
RD1
RD10
RD71



LA1449
RD1
RD10
RD72



LA1450
RD1
RD10
RD73



LA1451
RD1
RD10
RD74



LA1452
RD1
RD10
RD75



LA1453
RD1
RD10
RD76



LA1454
RD1
RD10
RD77



LA1455
RD1
RD10
RD78



LA1456
RD1
RD10
RD79



LA1457
RD1
RD10
RD80



LA1458
RD1
RD10
RD81



LA1459
RD2
RD6
RD1



LA1460
RD2
RD6
RD2



LA1461
RD2
RD6
RD3



LA1462
RD2
RD6
RD4



LA1463
RD2
RD6
RD5



LA1464
RD2
RD6
RD6



LA1465
RD2
RD6
RD7



LA1466
RD2
RD6
RD8



LA1467
RD2
RD6
RD9



LA1468
RD2
RD6
RD10



LA1469
RD2
RD6
RD11



LA1470
RD2
RD6
RD12



LA1471
RD2
RD6
RD13



LA1472
RD2
RD6
RD14



LA1473
RD2
RD6
RD15



LA1474
RD2
RD6
RD16



LA1475
RD2
RD6
RD17



LA1476
RD2
RD6
RD18



LA1477
RD2
RD6
RD19



LA1478
RD2
RD6
RD20



LA1479
RD2
RD6
RD21



LA1480
RD2
RD6
RD22



LA1481
RD2
RD6
RD23



LA1482
RD2
RD6
RD24



LA1483
RD2
RD6
RD25



LA1484
RD2
RD6
RD26



LA1485
RD2
RD6
RD27



LA1486
RD2
RD6
RD28



LA1487
RD2
RD6
RD29



LA1488
RD2
RD6
RD30



LA1489
RD2
RD6
RD31



LA1490
RD2
RD6
RD32



LA1491
RD2
RD6
RD33



LA1492
RD2
RD6
RD34



LA1493
RD2
RD6
RD35



LA1494
RD2
RD6
RD36



LA1495
RD2
RD6
RD37



LA1496
RD2
RD6
RD38



LA1497
RD2
RD6
RD39



LA1498
RD2
RD6
RD40



LA1499
RD2
RD6
RD41



LA1500
RD2
RD6
RD42



LA1501
RD2
RD6
RD43



LA1502
RD2
RD6
RD44



LA1503
RD2
RD6
RD45



LA1504
RD2
RD6
RD46



LA1505
RD2
RD6
RD47



LA1506
RD2
RD6
RD48



LA1507
RD2
RD6
RD49



LA1508
RD2
RD6
RD50



LA1509
RD2
RD6
RD51



LA1510
RD2
RD6
RD52



LA1511
RD2
RD6
RD53



LA1512
RD2
RD6
RD54



LA1513
RD2
RD6
RD55



LA1514
RD2
RD6
RD56



LA1515
RD2
RD6
RD57



LA1516
RD2
RD6
RD58



LA1517
RD2
RD6
RD59



LA1518
RD2
RD6
RD60



LA1519
RD2
RD6
RD61



LA1520
RD2
RD6
RD62



LA1521
RD2
RD6
RD63



LA1522
RD2
RD6
RD64



LA1523
RD2
RD6
RD65



LA1524
RD2
RD6
RD66



LA1525
RD2
RD6
RD67



LA1526
RD2
RD6
RD68



LA1527
RD2
RD6
RD69



LA1528
RD2
RD6
RD70



LA1529
RD2
RD6
RD71



LA1530
RD2
RD6
RD72



LA1531
RD2
RD6
RD73



LA1532
RD2
RD6
RD74



LA1533
RD2
RD6
RD75



LA1534
RD2
RD6
RD76



LA1535
RD2
RD6
RD77



LA1536
RD2
RD6
RD78



LA1537
RD2
RD6
RD79



LA1538
RD2
RD6
RD80



LA1539
RD2
RD6
RD81



LA1540
RD2
RD7
RD1



LA1541
RD2
RD7
RD2



LA1542
RD2
RD7
RD3



LA1543
RD2
RD7
RD4



LA1544
RD2
RD7
RD5



LA1545
RD2
RD7
RD6



LA1546
RD2
RD7
RD7



LA1547
RD2
RD7
RD8



LA1548
RD2
RD7
RD9



LA1549
RD2
RD7
RD10



LA1550
RD2
RD7
RD11



LA1551
RD2
RD7
RD12



LA1552
RD2
RD7
RD13



LA1553
RD2
RD7
RD14



LA1554
RD2
RD7
RD15



LA1555
RD2
RD7
RD16



LA1556
RD2
RD7
RD17



LA1557
RD2
RD7
RD18



LA1558
RD2
RD7
RD19



LA1559
RD2
RD7
RD20



LA1560
RD2
RD7
RD21



LA1561
RD2
RD7
RD22



LA1562
RD2
RD7
RD23



LA1563
RD2
RD7
RD24



LA1564
RD2
RD7
RD25



LA1565
RD2
RD7
RD26



LA1566
RD2
RD7
RD27



LA1567
RD2
RD7
RD28



LA1568
RD2
RD7
RD29



LA1569
RD2
RD7
RD30



LA1570
RD2
RD7
RD31



LA1571
RD2
RD7
RD32



LA1572
RD2
RD7
RD33



LA1573
RD2
RD7
RD34



LA1574
RD2
RD7
RD35



LA1575
RD2
RD7
RD36



LA1576
RD2
RD7
RD37



LA1577
RD2
RD7
RD38



LA1578
RD2
RD7
RD39



LA1579
RD2
RD7
RD40



LA1580
RD2
RD7
RD41



LA1581
RD2
RD7
RD42



LA1582
RD2
RD7
RD43



LA1583
RD2
RD7
RD44



LA1584
RD2
RD7
RD45



LA1585
RD2
RD7
RD46



LA1586
RD2
RD7
RD47



LA1587
RD2
RD7
RD48



LA1588
RD2
RD7
RD49



LA1589
RD2
RD7
RD50



LA1590
RD2
RD7
RD51



LA1591
RD2
RD7
RD52



LA1592
RD2
RD7
RD53



LA1593
RD2
RD7
RD54



LA1594
RD2
RD7
RD55



LA1595
RD2
RD7
RD56



LA1596
RD2
RD7
RD57



LA1597
RD2
RD7
RD58



LA1598
RD2
RD7
RD59



LA1599
RD2
RD7
RD60



LA1600
RD2
RD7
RD61



LA1601
RD2
RD7
RD62



LA1602
RD2
RD7
RD63



LA1603
RD2
RD7
RD64



LA1604
RD2
RD7
RD65



LA1605
RD2
RD7
RD66



LA1606
RD2
RD7
RD67



LA1607
RD2
RD7
RD68



LA1608
RD2
RD7
RD69



LA1609
RD2
RD7
RD70



LA1610
RD2
RD7
RD71



LA1611
RD2
RD7
RD72



LA1612
RD2
RD7
RD73



LA1613
RD2
RD7
RD74



LA1614
RD2
RD7
RD75



LA1615
RD2
RD7
RD76



LA1616
RD2
RD7
RD77



LA1617
RD2
RD7
RD78



LA1618
RD2
RD7
RD79



LA1619
RD2
RD7
RD80



LA1620
RD2
RD7
RD81



LA1621
RD2
RD7
RD1



LA1622
RD2
RD7
RD2



LA1623
RD2
RD7
RD3



LA1624
RD2
RD7
RD4



LA1625
RD2
RD7
RD5



LA1626
RD2
RD7
RD6



LA1627
RD2
RD7
RD7



LA1628
RD2
RD7
RD8



LA1629
RD2
RD7
RD9



LA1630
RD2
RD7
RD10



LA1631
RD2
RD7
RD11



LA1632
RD2
RD7
RD12



LA1633
RD2
RD7
RD13



LA1634
RD2
RD7
RD14



LA1635
RD2
RD7
RD15



LA1636
RD2
RD7
RD16



LA1637
RD2
RD7
RD17



LA1638
RD2
RD7
RD18



LA1639
RD2
RD7
RD19



LA1640
RD2
RD7
RD20



LA1641
RD2
RD7
RD21



LA1642
RD2
RD7
RD22



LA1643
RD2
RD7
RD23



LA1644
RD2
RD7
RD24



LA1645
RD2
RD7
RD25



LA1646
RD2
RD7
RD26



LA1647
RD2
RD7
RD27



LA1648
RD2
RD7
RD28



LA1649
RD2
RD7
RD29



LA1650
RD2
RD7
RD30



LA1651
RD2
RD7
RD31



LA1652
RD2
RD7
RD32



LA1653
RD2
RD7
RD33



LA1654
RD2
RD7
RD34



LA1655
RD2
RD7
RD35



LA1656
RD2
RD7
RD36



LA1657
RD2
RD7
RD37



LA1658
RD2
RD7
RD38



LA1659
RD2
RD7
RD39



LA1660
RD2
RD7
RD40



LA1661
RD2
RD7
RD41



LA1662
RD2
RD7
RD42



LA1663
RD2
RD7
RD43



LA1664
RD2
RD7
RD44



LA1665
RD2
RD7
RD45



LA1666
RD2
RD7
RD46



LA1667
RD2
RD7
RD47



LA1668
RD2
RD7
RD48



LA1669
RD2
RD7
RD49



LA1670
RD2
RD7
RD50



LA1671
RD2
RD7
RD51



LA1672
RD2
RD7
RD52



LA1673
RD2
RD7
RD53



LA1674
RD2
RD7
RD54



LA1675
RD2
RD7
RD55



LA1676
RD2
RD7
RD56



LA1677
RD2
RD7
RD57



LA1678
RD2
RD7
RD58



LA1679
RD2
RD7
RD59



LA1680
RD2
RD7
RD60



LA1681
RD2
RD7
RD61



LA1682
RD2
RD7
RD62



LA1683
RD2
RD7
RD63



LA1684
RD2
RD7
RD64



LA1685
RD2
RD7
RD65



LA1686
RD2
RD7
RD66



LA1687
RD2
RD7
RD67



LA1688
RD2
RD7
RD68



LA1689
RD2
RD7
RD69



LA1690
RD2
RD7
RD70



LA1691
RD2
RD7
RD71



LA1692
RD2
RD7
RD72



LA1693
RD2
RD7
RD73



LA1694
RD2
RD7
RD74



LA1695
RD2
RD7
RD75



LA1696
RD2
RD7
RD76



LA1697
RD2
RD7
RD77



LA1698
RD2
RD7
RD78



LA1699
RD2
RD7
RD79



LA1700
RD2
RD7
RD80



LA1701
RD2
RD8
RD81



LA1702
RD2
RD8
RD1



LA1703
RD2
RD8
RD2



LA1704
RD2
RD8
RD3



LA1705
RD2
RD8
RD4



LA1706
RD2
RD8
RD5



LA1707
RD2
RD8
RD6



LA1708
RD2
RD8
RD7



LA1709
RD2
RD8
RD8



LA1710
RD2
RD8
RD9



LA1711
RD2
RD8
RD10



LA1712
RD2
RD8
RD11



LA1713
RD2
RD8
RD12



LA1714
RD2
RD8
RD13



LA1715
RD2
RD8
RD14



LA1716
RD2
RD8
RD15



LA1717
RD2
RD8
RD16



LA1718
RD2
RD8
RD17



LA1719
RD2
RD8
RD18



LA1720
RD2
RD8
RD19



LA1721
RD2
RD8
RD20



LA1722
RD2
RD8
RD21



LA1723
RD2
RD8
RD22



LA1724
RD2
RD8
RD23



LA1725
RD2
RD8
RD24



LA1726
RD2
RD8
RD25



LA1727
RD2
RD8
RD26



LA1728
RD2
RD8
RD27



LA1729
RD2
RD8
RD28



LA1730
RD2
RD8
RD29



LA1731
RD2
RD8
RD30



LA1732
RD2
RD8
RD31



LA1733
RD2
RD8
RD32



LA1734
RD2
RD8
RD33



LA1735
RD2
RD8
RD34



LA1736
RD2
RD8
RD35



LA1737
RD2
RD8
RD36



LA1738
RD2
RD8
RD37



LA1739
RD2
RD8
RD38



LA1740
RD2
RD8
RD39



LA1741
RD2
RD8
RD40



LA1742
RD2
RD8
RD41



LA1743
RD2
RD8
RD42



LA1744
RD2
RD8
RD43



LA1745
RD2
RD8
RD44



LA1746
RD2
RD8
RD45



LA1747
RD2
RD8
RD46



LA1748
RD2
RD8
RD47



LA1749
RD2
RD8
RD48



LA1750
RD2
RD8
RD49



LA1751
RD2
RD8
RD50



LA1752
RD2
RD8
RD51



LA1753
RD2
RD8
RD52



LA1754
RD2
RD8
RD53



LA1755
RD2
RD8
RD54



LA1756
RD2
RD8
RD55



LA1757
RD2
RD8
RD56



LA1758
RD2
RD8
RD57



LA1759
RD2
RD8
RD58



LA1760
RD2
RD8
RD59



LA1761
RD2
RD8
RD60



LA1762
RD2
RD8
RD61



LA1763
RD2
RD8
RD62



LA1764
RD2
RD8
RD63



LA1765
RD2
RD8
RD64



LA1766
RD2
RD8
RD65



LA1767
RD2
RD8
RD66



LA1768
RD2
RD8
RD67



LA1769
RD2
RD8
RD68



LA1770
RD2
RD8
RD69



LA1771
RD2
RD8
RD70



LA1772
RD2
RD8
RD71



LA1773
RD2
RD8
RD72



LA1774
RD2
RD8
RD73



LA1775
RD2
RD8
RD74



LA1776
RD2
RD8
RD75



LA1777
RD2
RD8
RD76



LA1778
RD2
RD8
RD77



LA1779
RD2
RD8
RD78



LA1780
RD2
RD8
RD79



LA1781
RD2
RD8
RD80



LA1782
RD2
RD8
RD81



LA1783
RD2
RD9
RD1



LA1784
RD2
RD9
RD2



LA1785
RD2
RD9
RD3



LA1786
RD2
RD9
RD4



LA1787
RD2
RD9
RD5



LA1788
RD2
RD9
RD6



LA1789
RD2
RD9
RD7



LA1790
RD2
RD9
RD8



LA1791
RD2
RD9
RD9



LA1792
RD2
RD9
RD10



LA1793
RD2
RD9
RD11



LA1794
RD2
RD9
RD12



LA1795
RD2
RD9
RD13



LA1796
RD2
RD9
RD14



LA1797
RD2
RD9
RD15



LA1798
RD2
RD9
RD16



LA1799
RD2
RD9
RD17



LA1800
RD2
RD9
RD18



LA1801
RD2
RD9
RD19



LA1802
RD2
RD9
RD20



LA1803
RD2
RD9
RD21



LA1804
RD2
RD9
RD22



LA1805
RD2
RD9
RD23



LA1806
RD2
RD9
RD24



LA1807
RD2
RD9
RD25



LA1808
RD2
RD9
RD26



LA1809
RD2
RD9
RD27



LA1810
RD2
RD9
RD28



LA1811
RD2
RD9
RD29



LA1812
RD2
RD9
RD30



LA1813
RD2
RD9
RD31



LA1814
RD2
RD9
RD32



LA1815
RD2
RD9
RD33



LA1816
RD2
RD9
RD34



LA1817
RD2
RD9
RD35



LA1818
RD2
RD9
RD36



LA1819
RD2
RD9
RD37



LA1820
RD2
RD9
RD38



LA1821
RD2
RD9
RD39



LA1822
RD2
RD9
RD40



LA1823
RD2
RD9
RD41



LA1824
RD2
RD9
RD42



LA1825
RD2
RD9
RD43



LA1826
RD2
RD9
RD44



LA1827
RD2
RD9
RD45



LA1828
RD2
RD9
RD46



LA1829
RD2
RD9
RD47



LA1830
RD2
RD9
RD48



LA1831
RD2
RD9
RD49



LA1832
RD2
RD9
RD50



LA1833
RD2
RD9
RD51



LA1834
RD2
RD9
RD52



LA1835
RD2
RD9
RD53



LA1836
RD2
RD9
RD54



LA1837
RD2
RD9
RD55



LA1838
RD2
RD9
RD56



LA1839
RD2
RD9
RD57



LA1840
RD2
RD9
RD58



LA1841
RD2
RD9
RD59



LA1842
RD2
RD9
RD60



LA1843
RD2
RD9
RD61



LA1844
RD2
RD9
RD62



LA1845
RD2
RD9
RD63



LA1846
RD2
RD9
RD64



LA1847
RD2
RD9
RD65



LA1848
RD2
RD9
RD66



LA1849
RD2
RD9
RD67



LA1850
RD2
RD9
RD68



LA1851
RD2
RD9
RD69



LA1852
RD2
RD9
RD70



LA1853
RD2
RD9
RD71



LA1854
RD2
RD9
RD72



LA1855
RD2
RD9
RD73



LA1856
RD2
RD9
RD74



LA1857
RD2
RD9
RD75



LA1858
RD2
RD9
RD76



LA1859
RD2
RD9
RD77



LA1860
RD2
RD9
RD78



LA1861
RD2
RD9
RD79



LA1862
RD2
RD9
RD80



LA1863
RD2
RD9
RD81



LA1864
RD2
RD10
RD1



LA1865
RD2
RD10
RD2



LA1866
RD2
RD10
RD3



LA1867
RD2
RD10
RD4



LA1868
RD2
RD10
RD5



LA1869
RD2
RD10
RD6



LA1870
RD2
RD10
RD7



LA1871
RD2
RD10
RD8



LA1872
RD2
RD10
RD9



LA1873
RD2
RD10
RD10



LA1874
RD2
RD10
RD11



LA1875
RD2
RD10
RD12



LA1876
RD2
RD10
RD13



LA1877
RD2
RD10
RD14



LA1878
RD2
RD10
RD15



LA1879
RD2
RD10
RD16



LA1880
RD2
RD10
RD17



LA1881
RD2
RD10
RD18



LA1882
RD2
RD10
RD19



LA1883
RD2
RD10
RD20



LA1884
RD2
RD10
RD21



LA1885
RD2
RD10
RD22



LA1886
RD2
RD10
RD23



LA1887
RD2
RD10
RD24



LA1888
RD2
RD10
RD25



LA1889
RD2
RD10
RD26



LA1890
RD2
RD10
RD27



LA1891
RD2
RD10
RD28



LA1892
RD2
RD10
RD29



LA1893
RD2
RD10
RD30



LA1894
RD2
RD10
RD31



LA1895
RD2
RD10
RD32



LA1896
RD2
RD10
RD33



LA1897
RD2
RD10
RD34



LA1898
RD2
RD10
RD35



LA1899
RD2
RD10
RD36



LA1900
RD2
RD10
RD37



LA1901
RD2
RD10
RD38



LA1902
RD2
RD10
RD39



LA1903
RD2
RD10
RD40



LA1904
RD2
RD10
RD41



LA1905
RD2
RD10
RD42



LA1906
RD2
RD10
RD43



LA1907
RD2
RD10
RD44



LA1908
RD2
RD10
RD45



LA1909
RD2
RD10
RD46



LA1910
RD2
RD10
RD47



LA1911
RD2
RD10
RD48



LA1912
RD2
RD10
RD49



LA1913
RD2
RD10
RD50



LA1914
RD2
RD10
RD51



LA1915
RD2
RD10
RD52



LA1916
RD2
RD10
RD53



LA1917
RD2
RD10
RD54



LA1918
RD2
RD10
RD55



LA1919
RD2
RD10
RD56



LA1920
RD2
RD10
RD57



LA1921
RD2
RD10
RD58



LA1922
RD2
RD10
RD59



LA1923
RD2
RD10
RD60



LA1924
RD2
RD10
RD61



LA1925
RD2
RD10
RD62



LA1926
RD2
RD10
RD63



LA1927
RD2
RD10
RD64



LA1928
RD2
RD10
RD65



LA1929
RD2
RD10
RD66



LA1930
RD2
RD10
RD67



LA1931
RD2
RD10
RD68



LA1932
RD2
RD10
RD69



LA1933
RD2
RD10
RD70



LA1934
RD2
RD10
RD71



LA1935
RD2
RD10
RD72



LA1936
RD2
RD10
RD73



LA1937
RD2
RD10
RD74



LA1938
RD2
RD10
RD75



LA1939
RD2
RD10
RD76



LA1940
RD2
RD10
RD77



LA1941
RD2
RD10
RD78



LA1942
RD2
RD10
RD79



LA1943
RD2
RD10
RD80



LA1944
RD2
RD10
RD81



LA1945
RD1
RD11
RD1



LA1946
RD1
RD11
RD2



LA1947
RD1
RD11
RD3



LA1948
RD1
RD11
RD4



LA1949
RD1
RD11
RD5



LA1950
RD1
RD11
RD6



LA1951
RD1
RD11
RD7



LA1952
RD1
RD11
RD8



LA1953
RD1
RD11
RD9



LA1954
RD1
RD11
RD10



LA1955
RD1
RD11
RD11



LA1956
RD1
RD11
RD12



LA1957
RD1
RD11
RD13



LA1958
RD1
RD11
RD14



LA1959
RD1
RD11
RD15



LA1960
RD1
RD11
RD16



LA1961
RD1
RD11
RD17



LA1962
RD1
RD11
RD18



LA1963
RD1
RD11
RD19



LA1964
RD1
RD11
RD20



LA1965
RD1
RD11
RD21



LA1966
RD1
RD11
RD22



LA1967
RD1
RD11
RD23



LA1968
RD1
RD11
RD24



LA1969
RD1
RD11
RD25



LA1970
RD1
RD11
RD26



LA1971
RD1
RD11
RD27



LA1972
RD1
RD11
RD28



LA1973
RD1
RD11
RD29



LA1974
RD1
RD11
RD30



LA1975
RD1
RD11
RD31



LA1976
RD1
RD11
RD32



LA1977
RD1
RD11
RD33



LA1978
RD1
RD11
RD34



LA1979
RD1
RD11
RD35



LA1980
RD1
RD11
RD36



LA1981
RD1
RD11
RD37



LA1982
RD1
RD11
RD38



LA1983
RD1
RD11
RD39



LA1984
RD1
RD11
RD40



LA1985
RD1
RD11
RD41



LA1986
RD1
RD11
RD42



LA1987
RD1
RD11
RD43



LA1988
RD1
RD11
RD44



LA1989
RD1
RD11
RD45



LA1990
RD1
RD11
RD46



LA1991
RD1
RD11
RD47



LA1992
RD1
RD11
RD48



LA1993
RD1
RD11
RD49



LA1994
RD1
RD11
RD50



LA1995
RD1
RD11
RD51



LA1996
RD1
RD11
RD52



LA1997
RD1
RD11
RD53



LA1998
RD1
RD11
RD54



LA1999
RD1
RD11
RD55



LA2000
RD1
RD11
RD56



LA2001
RD1
RD11
RD57



LA2002
RD1
RD11
RD58



LA2003
RD1
RD11
RD59



LA2004
RD1
RD11
RD60



LA2005
RD1
RD11
RD61



LA2006
RD1
RD11
RD62



LA2007
RD1
RD11
RD63



LA2008
RD1
RD11
RD64



LA2009
RD1
RD11
RD65



LA2010
RD1
RD11
RD66



LA2011
RD1
RD11
RD67



LA2012
RD1
RD11
RD68



LA2013
RD1
RD11
RD69



LA2014
RD1
RD11
RD70



LA2015
RD1
RD11
RD71



LA2016
RD1
RD11
RD72



LA2017
RD1
RD11
RD73



LA2018
RD1
RD11
RD74



LA2019
RD1
RD11
RD75



LA2020
RD1
RD11
RD76



LA2021
RD1
RD11
RD77



LA2022
RD1
RD11
RD78



LA2023
RD1
RD11
RD79



LA2024
RD1
RD11
RD80



LA2025
RD1
RD11
RD81



LA2026
RD1
RD12
RD1



LA2027
RD1
RD12
RD2



LA2028
RD1
RD12
RD3



LA2029
RD1
RD12
RD4



LA2030
RD1
RD12
RD5



LA2031
RD1
RD12
RD6



LA2032
RD1
RD12
RD7



LA2033
RD1
RD12
RD8



LA2034
RD1
RD12
RD9



LA2035
RD1
RD12
RD10



LA2036
RD1
RD12
RD11



LA2037
RD1
RD12
RD12



LA2038
RD1
RD12
RD13



LA2039
RD1
RD12
RD14



LA2040
RD1
RD12
RD15



LA2041
RD1
RD12
RD16



LA2042
RD1
RD12
RD17



LA2043
RD1
RD12
RD18



LA2044
RD1
RD12
RD19



LA2045
RD1
RD12
RD20



LA2046
RD1
RD12
RD21



LA2047
RD1
RD12
RD22



LA2048
RD1
RD12
RD23



LA2049
RD1
RD12
RD24



LA2050
RD1
RD12
RD25



LA2051
RD1
RD12
RD26



LA2052
RD1
RD12
RD27



LA2053
RD1
RD12
RD28



LA2054
RD1
RD12
RD29



LA2055
RD1
RD12
RD30



LA2056
RD1
RD12
RD31



LA2057
RD1
RD12
RD32



LA2058
RD1
RD12
RD33



LA2059
RD1
RD12
RD34



LA2060
RD1
RD12
RD35



LA2061
RD1
RD12
RD36



LA2062
RD1
RD12
RD37



LA2063
RD1
RD12
RD38



LA2064
RD1
RD12
RD39



LA2065
RD1
RD12
RD40



LA2066
RD1
RD12
RD41



LA2067
RD1
RD12
RD42



LA2068
RD1
RD12
RD43



LA2069
RD1
RD12
RD44



LA2070
RD1
RD12
RD45



LA2071
RD1
RD12
RD46



LA2072
RD1
RD12
RD47



LA2073
RD1
RD12
RD48



LA2074
RD1
RD12
RD49



LA2075
RD1
RD12
RD50



LA2076
RD1
RD12
RD51



LA2077
RD1
RD12
RD52



LA2078
RD1
RD12
RD53



LA2079
RD1
RD12
RD54



LA2080
RD1
RD12
RD55



LA2081
RD1
RD12
RD56



LA2082
RD1
RD12
RD57



LA2083
RD1
RD12
RD58



LA2084
RD1
RD12
RD59



LA2085
RD1
RD12
RD60



LA2086
RD1
RD12
RD61



LA2087
RD1
RD12
RD62



LA2088
RD1
RD12
RD63



LA2089
RD1
RD12
RD64



LA2090
RD1
RD12
RD65



LA2091
RD1
RD12
RD66



LA2092
RD1
RD12
RD67



LA2093
RD1
RD12
RD68



LA2094
RD1
RD12
RD69



LA2095
RD1
RD12
RD70



LA2096
RD1
RD12
RD71



LA2097
RD1
RD12
RD72



LA2098
RD1
RD12
RD73



LA2099
RD1
RD12
RD74



LA2100
RD1
RD12
RD75



LA2101
RD1
RD12
RD76



LA2102
RD1
RD12
RD77



LA2103
RD1
RD12
RD78



LA2104
RD1
RD12
RD79



LA2105
RD1
RD12
RD80



LA2106
RD1
RD12
RD81



LA2107
RD1
RD13
RD1



LA2108
RD1
RD13
RD2



LA2109
RD1
RD13
RD3



LA2110
RD1
RD13
RD4



LA2111
RD1
RD13
RD5



LA2112
RD1
RD13
RD6



LA2113
RD1
RD13
RD7



LA2114
RD1
RD13
RD8



LA2115
RD1
RD13
RD9



LA2116
RD1
RD13
RD10



LA2117
RD1
RD13
RD11



LA2118
RD1
RD13
RD12



LA2119
RD1
RD13
RD13



LA2120
RD1
RD13
RD14



LA2121
RD1
RD13
RD15



LA2122
RD1
RD13
RD16



LA2123
RD1
RD13
RD17



LA2124
RD1
RD13
RD18



LA2125
RD1
RD13
RD19



LA2126
RD1
RD13
RD20



LA2127
RD1
RD13
RD21



LA2128
RD1
RD13
RD22



LA2129
RD1
RD13
RD23



LA2130
RD1
RD13
RD24



LA2131
RD1
RD13
RD25



LA2132
RD1
RD13
RD26



LA2133
RD1
RD13
RD27



LA2134
RD1
RD13
RD28



LA2135
RD1
RD13
RD29



LA2136
RD1
RD13
RD30



LA2137
RD1
RD13
RD31



LA2138
RD1
RD13
RD32



LA2139
RD1
RD13
RD33



LA2140
RD1
RD13
RD34



LA2141
RD1
RD13
RD35



LA2142
RD1
RD13
RD36



LA2143
RD1
RD13
RD37



LA2144
RD1
RD13
RD38



LA2145
RD1
RD13
RD39



LA2146
RD1
RD13
RD40



LA2147
RD1
RD13
RD41



LA2148
RD1
RD13
RD42



LA2149
RD1
RD13
RD43



LA2150
RD1
RD13
RD44



LA2151
RD1
RD13
RD45



LA2152
RD1
RD13
RD46



LA2153
RD1
RD13
RD47



LA2154
RD1
RD13
RD48



LA2155
RD1
RD13
RD49



LA2156
RD1
RD13
RD50



LA2157
RD1
RD13
RD51



LA2158
RD1
RD13
RD52



LA2159
RD1
RD13
RD53



LA2160
RD1
RD13
RD54



LA2161
RD1
RD13
RD55



LA2162
RD1
RD13
RD56



LA2163
RD1
RD13
RD57



LA2164
RD1
RD13
RD58



LA2165
RD1
RD13
RD59



LA2166
RD1
RD13
RD60



LA2167
RD1
RD13
RD61



LA2168
RD1
RD13
RD62



LA2169
RD1
RD13
RD63



LA2170
RD1
RD13
RD64



LA2171
RD1
RD13
RD65



LA2172
RD1
RD13
RD66



LA2173
RD1
RD13
RD67



LA2174
RD1
RD13
RD68



LA2175
RD1
RD13
RD69



LA2176
RD1
RD13
RD70



LA2177
RD1
RD13
RD71



LA2178
RD1
RD13
RD72



LA2179
RD1
RD13
RD73



LA2180
RD1
RD13
RD74



LA2181
RD1
RD13
RD75



LA2182
RD1
RD13
RD76



LA2183
RD1
RD13
RD77



LA2184
RD1
RD13
RD78



LA2185
RD1
RD13
RD79



LA2186
RD1
RD13
RD80



LA2187
RD1
RD13
RD81



LA2188
RD1
RD14
RD1



LA2189
RD1
RD14
RD2



LA2190
RD1
RD14
RD3



LA2191
RD1
RD14
RD4



LA2192
RD1
RD14
RD5



LA2193
RD1
RD14
RD6



LA2194
RD1
RD14
RD7



LA2195
RD1
RD14
RD8



LA2196
RD1
RD14
RD9



LA2197
RD1
RD14
RD10



LA2198
RD1
RD14
RD11



LA2199
RD1
RD14
RD12



LA2200
RD1
RD14
RD13



LA2201
RD1
RD14
RD14



LA2202
RD1
RD14
RD15



LA2203
RD1
RD14
RD16



LA2204
RD1
RD14
RD17



LA2205
RD1
RD14
RD18



LA2206
RD1
RD14
RD19



LA2207
RD1
RD14
RD20



LA2208
RD1
RD14
RD21



LA2209
RD1
RD14
RD22



LA2210
RD1
RD14
RD23



LA2211
RD1
RD14
RD24



LA2212
RD1
RD14
RD25



LA2213
RD1
RD14
RD26



LA2214
RD1
RD14
RD27



LA2215
RD1
RD14
RD28



LA2216
RD1
RD14
RD29



LA2217
RD1
RD14
RD30



LA2218
RD1
RD14
RD31



LA2219
RD1
RD14
RD32



LA2220
RD1
RD14
RD33



LA2221
RD1
RD14
RD34



LA2222
RD1
RD14
RD35



LA2223
RD1
RD14
RD36



LA2224
RD1
RD14
RD37



LA2225
RD1
RD14
RD38



LA2226
RD1
RD14
RD39



LA2227
RD1
RD14
RD40



LA2228
RD1
RD14
RD41



LA2229
RD1
RD14
RD42



LA2230
RD1
RD14
RD43



LA2231
RD1
RD14
RD44



LA2232
RD1
RD14
RD45



LA2233
RD1
RD14
RD46



LA2234
RD1
RD14
RD47



LA2235
RD1
RD14
RD48



LA2236
RD1
RD14
RD49



LA2237
RD1
RD14
RD50



LA2238
RD1
RD14
RD51



LA2239
RD1
RD14
RD52



LA2240
RD1
RD14
RD53



LA2241
RD1
RD14
RD54



LA2242
RD1
RD14
RD55



LA2243
RD1
RD14
RD56



LA2244
RD1
RD14
RD57



LA2245
RD1
RD14
RD58



LA2246
RD1
RD14
RD59



LA2247
RD1
RD14
RD60



LA2248
RD1
RD14
RD61



LA2249
RD1
RD14
RD62



LA2250
RD1
RD14
RD63



LA2251
RD1
RD14
RD64



LA2252
RD1
RD14
RD65



LA2253
RD1
RD14
RD66



LA2254
RD1
RD14
RD67



LA2255
RD1
RD14
RD68



LA2256
RD1
RD14
RD69



LA2257
RD1
RD14
RD70



LA2258
RD1
RD14
RD71



LA2259
RD1
RD14
RD72



LA2260
RD1
RD14
RD73



LA2261
RD1
RD14
RD74



LA2262
RD1
RD14
RD75



LA2263
RD1
RD14
RD76



LA2264
RD1
RD14
RD77



LA2265
RD1
RD14
RD78



LA2266
RD1
RD14
RD79



LA2267
RD1
RD14
RD80



LA2268
RD1
RD14
RD81



LA2269
RD1
RD14
RD1



LA2270
RD1
RD14
RD2



LA2271
RD1
RD14
RD3



LA2272
RD1
RD14
RD4



LA2273
RD1
RD14
RD5



LA2274
RD1
RD14
RD6



LA2275
RD1
RD14
RD7



LA2276
RD1
RD14
RD8



LA2277
RD1
RD14
RD9



LA2278
RD1
RD14
RD10



LA2279
RD1
RD14
RD11



LA2280
RD1
RD14
RD12



LA2281
RD1
RD14
RD13



LA2282
RD1
RD14
RD14



LA2283
RD1
RD14
RD15



LA2284
RD1
RD14
RD16



LA2285
RD1
RD14
RD17



LA2286
RD1
RD14
RD18



LA2287
RD1
RD14
RD19



LA2288
RD1
RD14
RD20



LA2289
RD1
RD14
RD21



LA2290
RD1
RD14
RD22



LA2291
RD1
RD14
RD23



LA2292
RD1
RD14
RD24



LA2293
RD1
RD14
RD25



LA2294
RD1
RD14
RD26



LA2295
RD1
RD14
RD27



LA2296
RD1
RD14
RD28



LA2297
RD1
RD14
RD29



LA2298
RD1
RD14
RD30



LA2299
RD1
RD14
RD31



LA2300
RD1
RD14
RD32



LA2301
RD1
RD14
RD33



LA2302
RD1
RD14
RD34



LA2303
RD1
RD14
RD35



LA2304
RD1
RD14
RD36



LA2305
RD1
RD14
RD37



LA2306
RD1
RD14
RD38



LA2307
RD1
RD14
RD39



LA2308
RD1
RD14
RD40



LA2309
RD1
RD14
RD41



LA2310
RD1
RD14
RD42



LA2311
RD1
RD14
RD43



LA2312
RD1
RD14
RD44



LA2313
RD1
RD14
RD45



LA2314
RD1
RD14
RD46



LA2315
RD1
RD14
RD47



LA2316
RD1
RD14
RD48



LA2317
RD1
RD14
RD49



LA2318
RD1
RD14
RD50



LA2319
RD1
RD14
RD51



LA2320
RD1
RD14
RD52



LA2321
RD1
RD14
RD53



LA2322
RD1
RD14
RD54



LA2323
RD1
RD14
RD55



LA2324
RD1
RD14
RD56



LA2325
RD1
RD14
RD57



LA2326
RD1
RD14
RD58



LA2327
RD1
RD14
RD59



LA2328
RD1
RD14
RD60



LA2329
RD1
RD14
RD61



LA2330
RD1
RD14
RD62



LA2331
RD1
RD14
RD63



LA2332
RD1
RD14
RD64



LA2333
RD1
RD14
RD65



LA2334
RD1
RD14
RD66



LA2335
RD1
RD14
RD67



LA2336
RD1
RD14
RD68



LA2337
RD1
RD14
RD69



LA2338
RD1
RD14
RD70



LA2339
RD1
RD14
RD71



LA2340
RD1
RD14
RD72



LA2341
RD1
RD14
RD73



LA2342
RD1
RD14
RD74



LA2343
RD1
RD14
RD75



LA2344
RD1
RD14
RD76



LA2345
RD1
RD14
RD77



LA2346
RD1
RD14
RD78



LA2347
RD1
RD14
RD79



LA2348
RD1
RD14
RD80



LA2349
RD1
RD14
RD81



LA2350
RD1
RD15
RD1



LA2351
RD1
RD15
RD2



LA2352
RD1
RD15
RD3



LA2353
RD1
RD15
RD4



LA2354
RD1
RD15
RD5



LA2355
RD1
RD15
RD6



LA2356
RD1
RD15
RD7



LA2357
RD1
RD15
RD8



LA2358
RD1
RD15
RD9



LA2359
RD1
RD15
RD10



LA2360
RD1
RD15
RD11



LA2361
RD1
RD15
RD12



LA2362
RD1
RD15
RD13



LA2363
RD1
RD15
RD14



LA2364
RD1
RD15
RD15



LA2365
RD1
RD15
RD16



LA2366
RD1
RD15
RD17



LA2367
RD1
RD15
RD18



LA2368
RD1
RD15
RD19



LA2369
RD1
RD15
RD20



LA2370
RD1
RD15
RD21



LA2371
RD1
RD15
RD22



LA2372
RD1
RD15
RD23



LA2373
RD1
RD15
RD24



LA2374
RD1
RD15
RD25



LA2375
RD1
RD15
RD26



LA2376
RD1
RD15
RD27



LA2377
RD1
RD15
RD28



LA2378
RD1
RD15
RD29



LA2379
RD1
RD15
RD30



LA2380
RD1
RD15
RD31



LA2381
RD1
RD15
RD32



LA2382
RD1
RD15
RD33



LA2383
RD1
RD15
RD34



LA2384
RD1
RD15
RD35



LA2385
RD1
RD15
RD36



LA2386
RD1
RD15
RD37



LA2387
RD1
RD15
RD38



LA2388
RD1
RD15
RD39



LA2389
RD1
RD15
RD40



LA2390
RD1
RD15
RD41



LA2391
RD1
RD15
RD42



LA2392
RD1
RD15
RD43



LA2393
RD1
RD15
RD44



LA2394
RD1
RD15
RD45



LA2395
RD1
RD15
RD46



LA2396
RD1
RD15
RD47



LA2397
RD1
RD15
RD48



LA2398
RD1
RD15
RD49



LA2399
RD1
RD15
RD50



LA2400
RD1
RD15
RD51



LA2401
RD1
RD15
RD52



LA2402
RD1
RD15
RD53



LA2403
RD1
RD15
RD54



LA2404
RD1
RD15
RD55



LA2405
RD1
RD15
RD56



LA2406
RD1
RD15
RD57



LA2407
RD1
RD15
RD58



LA2408
RD1
RD15
RD59



LA2409
RD1
RD15
RD60



LA2410
RD1
RD15
RD61



LA2411
RD1
RD15
RD62



LA2412
RD1
RD15
RD63



LA2413
RD1
RD15
RD64



LA2414
RD1
RD15
RD65



LA2415
RD1
RD15
RD66



LA2416
RD1
RD15
RD67



LA2417
RD1
RD15
RD68



LA2418
RD1
RD15
RD69



LA2419
RD1
RD15
RD70



LA2420
RD1
RD15
RD71



LA2421
RD1
RD15
RD72



LA2422
RD1
RD15
RD73



LA2423
RD1
RD15
RD74



LA2424
RD1
RD15
RD75



LA2425
RD1
RD15
RD76



LA2426
RD1
RD15
RD77



LA2427
RD1
RD15
RD78



LA2428
RD1
RD15
RD79



LA2429
RD1
RD15
RD80



LA2430
RD1
RD15
RD81



LA2431
RD2
RD11
RD1



LA2432
RD2
RD11
RD2



LA2433
RD2
RD11
RD3



LA2434
RD2
RD11
RD4



LA2435
RD2
RD11
RD5



LA2436
RD2
RD11
RD6



LA2437
RD2
RD11
RD7



LA2438
RD2
RD11
RD8



LA2439
RD2
RD11
RD9



LA2440
RD2
RD11
RD10



LA2441
RD2
RD11
RD11



LA2442
RD2
RD11
RD12



LA2443
RD2
RD11
RD13



LA2444
RD2
RD11
RD14



LA2445
RD2
RD11
RD15



LA2446
RD2
RD11
RD16



LA2447
RD2
RD11
RD17



LA2448
RD2
RD11
RD18



LA2449
RD2
RD11
RD19



LA2450
RD2
RD11
RD20



LA2451
RD2
RD11
RD21



LA2452
RD2
RD11
RD22



LA2453
RD2
RD11
RD23



LA2454
RD2
RD11
RD24



LA2455
RD2
RD11
RD25



LA2456
RD2
RD11
RD26



LA2457
RD2
RD11
RD27



LA2458
RD2
RD11
RD28



LA2459
RD2
RD11
RD29



LA2460
RD2
RD11
RD30



LA2461
RD2
RD11
RD31



LA2462
RD2
RD11
RD32



LA2463
RD2
RD11
RD33



LA2464
RD2
RD11
RD34



LA2465
RD2
RD11
RD35



LA2466
RD2
RD11
RD36



LA2467
RD2
RD11
RD37



LA2468
RD2
RD11
RD38



LA2469
RD2
RD11
RD39



LA2470
RD2
RD11
RD40



LA2471
RD2
RD11
RD41



LA2472
RD2
RD11
RD42



LA2473
RD2
RD11
RD43



LA2474
RD2
RD11
RD44



LA2475
RD2
RD11
RD45



LA2476
RD2
RD11
RD46



LA2477
RD2
RD11
RD47



LA2478
RD2
RD11
RD48



LA2479
RD2
RD11
RD49



LA2480
RD2
RD11
RD50



LA2481
RD2
RD11
RD51



LA2482
RD2
RD11
RD52



LA2483
RD2
RD11
RD53



LA2484
RD2
RD11
RD54



LA2485
RD2
RD11
RD55



LA2486
RD2
RD11
RD56



LA2487
RD2
RD11
RD57



LA2488
RD2
RD11
RD58



LA2489
RD2
RD11
RD59



LA2490
RD2
RD11
RD60



LA2491
RD2
RD11
RD61



LA2492
RD2
RD11
RD62



LA2493
RD2
RD11
RD63



LA2494
RD2
RD11
RD64



LA2495
RD2
RD11
RD65



LA2496
RD2
RD11
RD66



LA2497
RD2
RD11
RD67



LA2498
RD2
RD11
RD68



LA2499
RD2
RD11
RD69



LA2500
RD2
RD11
RD70



LA2501
RD2
RD11
RD71



LA2502
RD2
RD11
RD72



LA2503
RD2
RD11
RD73



LA2504
RD2
RD11
RD74



LA2505
RD2
RD11
RD75



LA2506
RD2
RD11
RD76



LA2507
RD2
RD11
RD77



LA2508
RD2
RD11
RD78



LA2509
RD2
RD11
RD79



LA2510
RD2
RD11
RD80



LA2511
RD2
RD11
RD81



LA2512
RD2
RD12
RD1



LA2513
RD2
RD12
RD2



LA2514
RD2
RD12
RD3



LA2515
RD2
RD12
RD4



LA2516
RD2
RD12
RD5



LA2517
RD2
RD12
RD6



LA2518
RD2
RD12
RD7



LA2519
RD2
RD12
RD8



LA2520
RD2
RD12
RD9



LA2521
RD2
RD12
RD10



LA2522
RD2
RD12
RD11



LA2523
RD2
RD12
RD12



LA2524
RD2
RD12
RD13



LA2525
RD2
RD12
RD14



LA2526
RD2
RD12
RD15



LA2527
RD2
RD12
RD16



LA2528
RD2
RD12
RD17



LA2529
RD2
RD12
RD18



LA2530
RD2
RD12
RD19



LA2531
RD2
RD12
RD20



LA2532
RD2
RD12
RD21



LA2533
RD2
RD12
RD22



LA2534
RD2
RD12
RD23



LA2535
RD2
RD12
RD24



LA2536
RD2
RD12
RD25



LA2537
RD2
RD12
RD26



LA2538
RD2
RD12
RD27



LA2539
RD2
RD12
RD28



LA2540
RD2
RD12
RD29



LA2541
RD2
RD12
RD30



LA2542
RD2
RD12
RD31



LA2543
RD2
RD12
RD32



LA2544
RD2
RD12
RD33



LA2545
RD2
RD12
RD34



LA2546
RD2
RD12
RD35



LA2547
RD2
RD12
RD36



LA2548
RD2
RD12
RD37



LA2549
RD2
RD12
RD38



LA2550
RD2
RD12
RD39



LA2551
RD2
RD12
RD40



LA2552
RD2
RD12
RD41



LA2553
RD2
RD12
RD42



LA2554
RD2
RD12
RD43



LA2555
RD2
RD12
RD44



LA2556
RD2
RD12
RD45



LA2557
RD2
RD12
RD46



LA2558
RD2
RD12
RD47



LA2559
RD2
RD12
RD48



LA2560
RD2
RD12
RD49



LA2561
RD2
RD12
RD50



LA2562
RD2
RD12
RD51



LA2563
RD2
RD12
RD52



LA2564
RD2
RD12
RD53



LA2565
RD2
RD12
RD54



LA2566
RD2
RD12
RD55



LA2567
RD2
RD12
RD56



LA2568
RD2
RD12
RD57



LA2569
RD2
RD12
RD58



LA2570
RD2
RD12
RD59



LA2571
RD2
RD12
RD60



LA2572
RD2
RD12
RD61



LA2573
RD2
RD12
RD62



LA2574
RD2
RD12
RD63



LA2575
RD2
RD12
RD64



LA2576
RD2
RD12
RD65



LA2577
RD2
RD12
RD66



LA2578
RD2
RD12
RD67



LA2579
RD2
RD12
RD68



LA2580
RD2
RD12
RD69



LA2581
RD2
RD12
RD70



LA2582
RD2
RD12
RD71



LA2583
RD2
RD12
RD72



LA2584
RD2
RD12
RD73



LA2585
RD2
RD12
RD74



LA2586
RD2
RD12
RD75



LA2587
RD2
RD12
RD76



LA2588
RD2
RD12
RD77



LA2589
RD2
RD12
RD78



LA2590
RD2
RD12
RD79



LA2591
RD2
RD12
RD80



LA2592
RD2
RD12
RD81



LA2593
RD2
RD13
RD1



LA2594
RD2
RD13
RD2



LA2595
RD2
RD13
RD3



LA2596
RD2
RD13
RD4



LA2597
RD2
RD13
RD5



LA2598
RD2
RD13
RD6



LA2599
RD2
RD13
RD7



LA2600
RD2
RD13
RD8



LA2601
RD2
RD13
RD9



LA2602
RD2
RD13
RD10



LA2603
RD2
RD13
RD11



LA2604
RD2
RD13
RD12



LA2605
RD2
RD13
RD13



LA2606
RD2
RD13
RD14



LA2607
RD2
RD13
RD15



LA2608
RD2
RD13
RD16



LA2609
RD2
RD13
RD17



LA2610
RD2
RD13
RD18



LA2611
RD2
RD13
RD19



LA2612
RD2
RD13
RD20



LA2613
RD2
RD13
RD21



LA2614
RD2
RD13
RD22



LA2615
RD2
RD13
RD23



LA2616
RD2
RD13
RD24



LA2617
RD2
RD13
RD25



LA2618
RD2
RD13
RD26



LA2619
RD2
RD13
RD27



LA2620
RD2
RD13
RD28



LA2621
RD2
RD13
RD29



LA2622
RD2
RD13
RD30



LA2623
RD2
RD13
RD31



LA2624
RD2
RD13
RD32



LA2625
RD2
RD13
RD33



LA2626
RD2
RD13
RD34



LA2627
RD2
RD13
RD35



LA2628
RD2
RD13
RD36



LA2629
RD2
RD13
RD37



LA2630
RD2
RD13
RD38



LA2631
RD2
RD13
RD39



LA2632
RD2
RD13
RD40



LA2633
RD2
RD13
RD41



LA2634
RD2
RD13
RD42



LA2635
RD2
RD13
RD43



LA2636
RD2
RD13
RD44



LA2637
RD2
RD13
RD45



LA2638
RD2
RD13
RD46



LA2639
RD2
RD13
RD47



LA2640
RD2
RD13
RD48



LA2641
RD2
RD13
RD49



LA2642
RD2
RD13
RD50



LA2643
RD2
RD13
RD51



LA2644
RD2
RD13
RD52



LA2645
RD2
RD13
RD53



LA2646
RD2
RD13
RD54



LA2647
RD2
RD13
RD55



LA2648
RD2
RD13
RD56



LA2649
RD2
RD13
RD57



LA2650
RD2
RD13
RD58



LA2651
RD2
RD13
RD59



LA2652
RD2
RD13
RD60



LA2653
RD2
RD13
RD61



LA2654
RD2
RD13
RD62



LA2655
RD2
RD13
RD63



LA2656
RD2
RD13
RD64



LA2657
RD2
RD13
RD65



LA2658
RD2
RD13
RD66



LA2659
RD2
RD13
RD67



LA2660
RD2
RD13
RD68



LA2661
RD2
RD13
RD69



LA2662
RD2
RD13
RD70



LA2663
RD2
RD13
RD71



LA2664
RD2
RD13
RD72



LA2665
RD2
RD13
RD73



LA2666
RD2
RD13
RD74



LA2667
RD2
RD13
RD75



LA2668
RD2
RD13
RD76



LA2669
RD2
RD13
RD77



LA2670
RD2
RD13
RD78



LA2671
RD2
RD13
RD79



LA2672
RD2
RD13
RD80



LA2673
RD2
RD13
RD81



LA2674
RD2
RD14
RD1



LA2675
RD2
RD14
RD2



LA2676
RD2
RD14
RD3



LA2677
RD2
RD14
RD4



LA2678
RD2
RD14
RD5



LA2679
RD2
RD14
RD6



LA2680
RD2
RD14
RD7



LA2681
RD2
RD14
RD8



LA2682
RD2
RD14
RD9



LA2683
RD2
RD14
RD10



LA2684
RD2
RD14
RD11



LA2685
RD2
RD14
RD12



LA2686
RD2
RD14
RD13



LA2687
RD2
RD14
RD14



LA2688
RD2
RD14
RD15



LA2689
RD2
RD14
RD16



LA2690
RD2
RD14
RD17



LA2691
RD2
RD14
RD18



LA2692
RD2
RD14
RD19



LA2693
RD2
RD14
RD20



LA2694
RD2
RD14
RD21



LA2695
RD2
RD14
RD22



LA2696
RD2
RD14
RD23



LA2697
RD2
RD14
RD24



LA2698
RD2
RD14
RD25



LA2699
RD2
RD14
RD26



LA2700
RD2
RD14
RD27



LA2701
RD2
RD14
RD28



LA2702
RD2
RD14
RD29



LA2703
RD2
RD14
RD30



LA2704
RD2
RD14
RD31



LA2705
RD2
RD14
RD32



LA2706
RD2
RD14
RD33



LA2707
RD2
RD14
RD34



LA2708
RD2
RD14
RD35



LA2709
RD2
RD14
RD36



LA2710
RD2
RD14
RD37



LA2711
RD2
RD14
RD38



LA2712
RD2
RD14
RD39



LA2713
RD2
RD14
RD40



LA2714
RD2
RD14
RD41



LA2715
RD2
RD14
RD42



LA2716
RD2
RD14
RD43



LA2717
RD2
RD14
RD44



LA2718
RD2
RD14
RD45



LA2719
RD2
RD14
RD46



LA2720
RD2
RD14
RD47



LA2721
RD2
RD14
RD48



LA2722
RD2
RD14
RD49



LA2723
RD2
RD14
RD50



LA2724
RD2
RD14
RD51



LA2725
RD2
RD14
RD52



LA2726
RD2
RD14
RD53



LA2727
RD2
RD14
RD54



LA2728
RD2
RD14
RD55



LA2729
RD2
RD14
RD56



LA2730
RD2
RD14
RD57



LA2731
RD2
RD14
RD58



LA2732
RD2
RD14
RD59



LA2733
RD2
RD14
RD60



LA2734
RD2
RD14
RD61



LA2735
RD2
RD14
RD62



LA2736
RD2
RD14
RD63



LA2737
RD2
RD14
RD64



LA2738
RD2
RD14
RD65



LA2739
RD2
RD14
RD66



LA2740
RD2
RD14
RD67



LA2741
RD2
RD14
RD68



LA2742
RD2
RD14
RD69



LA2743
RD2
RD14
RD70



LA2744
RD2
RD14
RD71



LA2745
RD2
RD14
RD72



LA2746
RD2
RD14
RD73



LA2747
RD2
RD14
RD74



LA2748
RD2
RD14
RD75



LA2749
RD2
RD14
RD76



LA2750
RD2
RD14
RD77



LA2751
RD2
RD14
RD78



LA2752
RD2
RD14
RD79



LA2753
RD2
RD14
RD80



LA2754
RD2
RD14
RD81



LA2755
RD2
RD14
RD1



LA2756
RD2
RD14
RD2



LA2757
RD2
RD14
RD3



LA2758
RD2
RD14
RD4



LA2759
RD2
RD14
RD5



LA2760
RD2
RD14
RD6



LA2761
RD2
RD14
RD7



LA2762
RD2
RD14
RD8



LA2763
RD2
RD14
RD9



LA2764
RD2
RD14
RD10



LA2765
RD2
RD14
RD11



LA2766
RD2
RD14
RD12



LA2767
RD2
RD14
RD13



LA2768
RD2
RD14
RD14



LA2769
RD2
RD14
RD15



LA2770
RD2
RD14
RD16



LA2771
RD2
RD14
RD17



LA2772
RD2
RD14
RD18



LA2773
RD2
RD14
RD19



LA2774
RD2
RD14
RD20



LA2775
RD2
RD14
RD21



LA2776
RD2
RD14
RD22



LA2777
RD2
RD14
RD23



LA2778
RD2
RD14
RD24



LA2779
RD2
RD14
RD25



LA2780
RD2
RD14
RD26



LA2781
RD2
RD14
RD27



LA2782
RD2
RD14
RD28



LA2783
RD2
RD14
RD29



LA2784
RD2
RD14
RD30



LA2785
RD2
RD14
RD31



LA2786
RD2
RD14
RD32



LA2787
RD2
RD14
RD33



LA2788
RD2
RD14
RD34



LA2789
RD2
RD14
RD35



LA2790
RD2
RD14
RD36



LA2791
RD2
RD14
RD37



LA2792
RD2
RD14
RD38



LA2793
RD2
RD14
RD39



LA2794
RD2
RD14
RD40



LA2795
RD2
RD14
RD41



LA2796
RD2
RD14
RD42



LA2797
RD2
RD14
RD43



LA2798
RD2
RD14
RD44



LA2799
RD2
RD14
RD45



LA2800
RD2
RD14
RD46



LA2801
RD2
RD14
RD47



LA2802
RD2
RD14
RD48



LA2803
RD2
RD14
RD49



LA2804
RD2
RD14
RD50



LA2805
RD2
RD14
RD51



LA2806
RD2
RD14
RD52



LA2807
RD2
RD14
RD53



LA2808
RD2
RD14
RD54



LA2809
RD2
RD14
RD55



LA2810
RD2
RD14
RD56



LA2811
RD2
RD14
RD57



LA2812
RD2
RD14
RD58



LA2813
RD2
RD14
RD59



LA2814
RD2
RD14
RD60



LA2815
RD2
RD14
RD61



LA2816
RD2
RD14
RD62



LA2817
RD2
RD14
RD63



LA2818
RD2
RD14
RD64



LA2819
RD2
RD14
RD65



LA2820
RD2
RD14
RD66



LA2821
RD2
RD14
RD67



LA2822
RD2
RD14
RD68



LA2823
RD2
RD14
RD69



LA2824
RD2
RD14
RD70



LA2825
RD2
RD14
RD71



LA2826
RD2
RD14
RD72



LA2827
RD2
RD14
RD73



LA2828
RD2
RD14
RD74



LA2829
RD2
RD14
RD75



LA2830
RD2
RD14
RD76



LA2831
RD2
RD14
RD77



LA2832
RD2
RD14
RD78



LA2833
RD2
RD14
RD79



LA2834
RD2
RD14
RD80



LA2835
RD2
RD14
RD81



LA2836
RD2
RD15
RD1



LA2837
RD2
RD15
RD2



LA2838
RD2
RD15
RD3



LA2839
RD2
RD15
RD4



LA2840
RD2
RD15
RD5



LA2841
RD2
RD15
RD6



LA2842
RD2
RD15
RD7



LA2843
RD2
RD15
RD8



LA2844
RD2
RD15
RD9



LA2845
RD2
RD15
RD10



LA2846
RD2
RD15
RD11



LA2847
RD2
RD15
RD12



LA2848
RD2
RD15
RD13



LA2849
RD2
RD15
RD14



LA2850
RD2
RD15
RD15



LA2851
RD2
RD15
RD16



LA2852
RD2
RD15
RD17



LA2853
RD2
RD15
RD18



LA2854
RD2
RD15
RD19



LA2855
RD2
RD15
RD20



LA2856
RD2
RD15
RD21



LA2857
RD2
RD15
RD22



LA2858
RD2
RD15
RD23



LA2859
RD2
RD15
RD24



LA2860
RD2
RD15
RD25



LA2861
RD2
RD15
RD26



LA2862
RD2
RD15
RD27



LA2863
RD2
RD15
RD28



LA2864
RD2
RD15
RD29



LA2865
RD2
RD15
RD30



LA2866
RD2
RD15
RD31



LA2867
RD2
RD15
RD32



LA2868
RD2
RD15
RD33



LA2869
RD2
RD15
RD34



LA2870
RD2
RD15
RD35



LA2871
RD2
RD15
RD36



LA2872
RD2
RD15
RD37



LA2873
RD2
RD15
RD38



LA2874
RD2
RD15
RD39



LA2875
RD2
RD15
RD40



LA2876
RD2
RD15
RD41



LA2877
RD2
RD15
RD42



LA2878
RD2
RD15
RD43



LA2879
RD2
RD15
RD44



LA2880
RD2
RD15
RD45



LA2881
RD2
RD15
RD46



LA2882
RD2
RD15
RD47



LA2883
RD2
RD15
RD48



LA2884
RD2
RD15
RD49



LA2885
RD2
RD15
RD50



LA2886
RD2
RD15
RD51



LA2887
RD2
RD15
RD52



LA2888
RD2
RD15
RD53



LA2889
RD2
RD15
RD54



LA2890
RD2
RD15
RD55



LA2891
RD2
RD15
RD56



LA2892
RD2
RD15
RD55



LA2893
RD2
RD15
RD58



LA2894
RD2
RD15
RD59



LA2895
RD2
RD15
RD60



LA2896
RD2
RD15
RD61



LA2897
RD2
RD15
RD62



LA2898
RD2
RD15
RD63



LA2899
RD2
RD15
RD64



LA2900
RD2
RD15
RD65



LA2901
RD2
RD15
RD66



LA2902
RD2
RD15
RD67



LA2903
RD2
RD15
RD68



LA2904
RD2
RD15
RD69



LA2905
RD2
RD15
RD70



LA2906
RD2
RD15
RD71



LA2907
RD2
RD15
RD72



LA2908
RD2
RD15
RD73



LA2909
RD2
RD15
RD74



LA2910
RD2
RD15
RD75



LA2911
RD2
RD15
RD76



LA2912
RD2
RD15
RD77



LA2913
RD2
RD15
RD78



LA2914
RD2
RD15
RD79



LA2915
RD2
RD15
RD80



LA2916
RD2
RD15
RD81










wherein RD1 to RD81 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the compound has a formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M.


In some embodiments of the compound where the first ligand LA is selected from the group consisting of LAi-I to LAi-XI as defined above, where i is an integer from 1 to 2916, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and LA, LB, and LC are different from each other.


In some embodiments of the compound where the first ligand LA is selected from the group consisting of LAi-I to LAi-XI as defined above, where i is an integer from 1 to 2916, the compound has a formula of Pt(LA)(LB); and LA and LB can be same or different. In some embodiments, LA and LB are connected to form a tetradentate ligand.


In some embodiments of the compound where the first ligand LA is selected from the group consisting of LAi-I to LAi-XI as defined above, where i is an integer from 1 to 2916, LB and LB are each independently selected from the group consisting of




embedded image


embedded image


embedded image



where, each Y1 to Y13 are independently selected from the group consisting of carbon and nitrogen; Y′ is selected from the group consisting of B Re, N Re, P Re, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf can be fused or joined to form a ring; each Ra, Rb, Rc, and Rd can independently represent from mono substitution to the maximum possible number of substitutions, or no substitution; each Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and any two adjacent substituents of Ra, Rb, Re, and Rd can be fused or joined to form a ring or form a multidentate ligand. In some embodiments, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



where, Ra′, and Rb′ each independently represents zero, mono, or up to a maximum allowed substitution to its associated ring; Ra′, and Rb′ each independently hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and two adjacent substituents of Ra′, and Rb′ can be fused or joined to form a ring or form a multidentate ligand.


In some embodiments of the compound where the first ligand LA is selected from the group consisting of LAi-I to LAi-XI as defined above, where i is an integer from 1 to 2916, LB is selected from the group consisting of the following structures:


LBj-1, where j=1 to 200, is based on,




embedded image



LBj-2, where j=1 to 200, is based on,




embedded image



LBj-3, where j=1 to 200, is based on,




embedded image



LBj-4, where j=1 to 200, is based on,




embedded image



LBj-5, where j=1 to 200, is based on,




embedded image



LBj-6, where j=1 to 200, is based on,




embedded image



LBj-7, where j=1 to 200, is based on,




embedded image



LBj-8, where j=1 to 200, is based on,




embedded image



LBj-9, where j=1 to 200, is based on,




embedded image



LBj-10, where j=1 to 200, is based on,




embedded image



LBj-11, where j=1 to 200, is based on,




embedded image



LBj-12, where j=1 to 200, is based on,




embedded image



LBj-13, where j=1 to 200, is based on,




embedded image



LBj-14, where j=1 to 200, is based on,




embedded image



LBj-15, where j=1 to 200, is based on,




embedded image



LBj-16, where j=1 to 200, is based on,




embedded image



LBj-17, where j=1 to 200, is based on,




embedded image



LBj-18, where j=1 to 200, is based on,




embedded image



LBj-19, where j=1 to 200, is based on,




embedded image



LBj-20, where j=1 to 200, is based on,




embedded image



LBj-21, where j=1 to 200, is based on,




embedded image



LBj-22, where j=1 to 200, is based on,




embedded image



LBj-23, where j=1 to 200, is based on,




embedded image



LBj-24, where j=1 to 200, is based on,




embedded image



LBj-25, where j=1 to 200, is based on,




embedded image



LBj-26, where j=1 to 200, is based on,




embedded image



LBj-27, where j=1 to 200, is based on,




embedded image



LBj-28, where j=1 to 200, is based on,




embedded image



LBj-29, where j=1 to 200, is based on,




embedded image



LBj-30, where j=1 to 200, is based on,




embedded image



LBj-31, where j=1 to 200, is based on,




embedded image



LBj-32, where j=1 to 200, is based on,




embedded image



LBj-33, where j=1 to 200, is based on,




embedded image



LBj-34, where j=1 to 200, is based on,




embedded image



LBj-35, where j=1 to 200, is based on,




embedded image



LBj-36, where j=1 to 200, is based on,




embedded image



LBj-37, where j=1 to 200, is based on,




embedded image



LBj-38, where j=1 to 200, is based on,




embedded image



LBj-39, where j=1 to 200, is based on,




embedded image



LBj-40, where j=1 to 200, is based on,




embedded image



LBj-41, where j=1 to 200, is based on,




embedded image



LBj-42, where j=1 to 200, is based on,




embedded image



LBj-43, where j=1 to 200, is based on,




embedded image



LBj-44, where j=1 to 200, is based on,




embedded image



where for each LBj, RE and G are defined as follows:

















Ligand
RE
G









LB1
R1
G1



LB2
R2
G1



LB3
R3
G1



LB4
R4
G1



LB5
R5
G1



LB6
R6
G1



LB7
R7
G1



LB8
R8
G1



LB9
R9
G1



LB10
R10
G1



LB11
R11
G1



LB12
R12
G1



LB13
R13
G1



LB14
R14
G1



LB15
R15
G1



LB16
R16
G1



LB17
R17
G1



LB18
R18
G1



LB19
R19
G1



LB20
R20
G1



LB21
R1
G5



LB22
R2
G5



LB23
R3
G5



LB24
R4
G5



LB25
R5
G5



LB26
R6
G5



LB27
R7
G5



LB28
R8
G5



LB29
R9
G5



LB30
R10
G5



LB31
R11
G5



LB32
R12
G5



LB33
R13
G5



LB34
R14
G5



LB35
R15
G5



LB36
R16
G5



LB37
R17
G5



LB38
R18
G5



LB39
R19
G5



LB40
R20
G5



LB41
R1
G9



LB42
R2
G9



LB43
R3
G9



LB44
R4
G9



LB45
R5
G9



LB46
R6
G9



LB47
R7
G9



LB48
R8
G9



LB49
R9
G9



LB50
R10
G9



LB51
R1
G2



LB52
R2
G2



LB53
R3
G2



LB54
R4
G2



LB55
R5
G2



LB56
R6
G2



LB57
R7
G2



LB58
R8
G2



LB59
R9
G2



LB60
R10
G2



LB61
R11
G2



LB62
R12
G2



LB63
R13
G2



LB64
R14
G2



LB65
R15
G2



LB66
R16
G2



LB67
R17
G2



LB68
R18
G2



LB69
R19
G2



LB70
R20
G2



LB71
R1
G6



LB72
R2
G6



LB73
R3
G6



LB74
R4
G6



LB75
R5
G6



LB76
R6
G6



LB77
R7
G6



LB78
R8
G6



LB79
R9
G6



LB80
R10
G6



LB81
R11
G6



LB82
R12
G6



LB83
R13
G6



LB84
R14
G6



LB85
R15
G6



LB86
R16
G6



LB87
R17
G6



LB88
R18
G6



LB89
R19
G6



LB90
R20
G6



LB91
R11
G9



LB92
R12
G9



LB93
R13
G9



LB94
R14
G9



LB95
R15
G9



LB96
R16
G9



LB97
R17
G9



LB98
R18
G9



LB99
R19
G9



LB100
R20
G9



LB101
R1
G3



LB102
R2
G3



LB103
R3
G3



LB104
R4
G3



LB105
R5
G3



LB106
R6
G3



LB107
R7
G3



LB108
R8
G3



LB109
R9
G3



LB110
R10
G3



LB111
R11
G3



LB112
R12
G3



LB113
R13
G3



LB114
R14
G3



LB115
R15
G3



LB116
R16
G3



LB117
R17
G3



LB118
R18
G3



LB119
R19
G3



LB120
R20
G3



LB121
R1
G7



LB122
R2
G7



LB123
R3
G7



LB124
R4
G7



LB125
R5
G7



LB126
R6
G7



LB127
R7
G7



LB128
R8
G7



LB129
R9
G7



LB130
R10
G7



LB131
R11
G7



LB132
R12
G7



LB133
R13
G7



LB134
R14
G7



LB135
R15
G7



LB136
R16
G7



LB137
R17
G7



LB138
R18
G7



LB139
R19
G7



LB140
R20
G7



LB141
R1
G10



LB142
R2
G10



LB143
R3
G10



LB144
R4
G10



LB145
R5
G10



LB146
R6
G10



LB147
R7
G10



LB148
R8
G10



LB149
R9
G10



LB150
R10
G10



LB151
R1
G4



LB152
R2
G4



LB153
R3
G4



LB154
R4
G4



LB155
R5
G4



LB156
R6
G4



LB157
R7
G4



LB158
R8
G4



LB159
R9
G4



LB160
R10
G4



LB161
R11
G4



LB162
R12
G4



LB163
R13
G4



LB164
R14
G4



LB165
R15
G4



LB166
R16
G4



LB167
R17
G4



LB168
R18
G4



LB169
R19
G4



LB170
R20
G4



LB171
R1
G8



LB172
R2
G8



LB173
R3
G8



LB174
R4
G8



LB175
R5
G8



LB176
R6
G8



LB177
R7
G8



LB178
R8
G8



LB179
R9
G8



LB180
R10
G8



LB181
R11
G8



LB182
R12
G8



LB183
R13
G8



LB184
R14
G8



LB185
R15
G8



LB186
R16
G8



LB187
R17
G8



LB188
R18
G8



LB189
R19
G8



LB190
R20
G8



LB191
R11
G10



LB192
R12
G10



LB193
R13
G10



LB194
R14
G10



LB195
R15
G10



LB196
R16
G10



LB197
R17
G10



LB198
R18
G10



LB199
R19
G10



LB200
R20
G10











where R1 to R20 have the following structures:




embedded image


embedded image


wherein G1 to G10 have the following structures:




embedded image


embedded image


In some embodiments of the compound where the first ligand LA is selected from the group consisting of LAi-I to LAi-XI as defined above, where i is an integer from 1 to 2916, the compound is selected from the group consisting of Ir(LA1-I)(LB1-1)2 to Ir(LA2916-XI)(LB200-44)2, where the ligands LB1-1 to LB200-44 are as defined above.


C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the first organic layer can comprise a compound comprising a first ligand LA of




embedded image



is disclosed. In Formula 1 and Formula 2, Y is selected from the group consisting of R, NRR′, OR, and SR; Z is selected from the group consisting of O, S, and NR″; X1 to X5 are each independently C or N; at least one of X1 to X3 is C; two adjacent X1 to X3 are not N; at least one of X4 and X5 is C; each RA and RB independently represents mono to the maximum allowable substitutions, or no substitution; each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; each R, R′, and R″ is independently alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, silyl, aryl, heteroaryl, and combinations thereof, the ligand LA is complexed to a metal M; the metal M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.


In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some embodiments, the host may be selected from the HOST Group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.


In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.


In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the emissive region may comprise a first organic layer that comprises a compound comprising a first ligand LA of




embedded image



is disclosed. In Formula 1 and Formula 2, Y is selected from the group consisting of R, NRR′, OR, and SR; Z is selected from the group consisting of O, S, and NR″; X1 to X5 are each independently C or N; at least one of X1 to X3 is C; two adjacent X1 to X3 are not N; at least one of X4 and X5 is C; each RA and RB independently represents mono to the maximum allowable substitutions, or no substitution; each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; each R, R′, and R″ is independently alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, silyl, aryl, heteroaryl, and combinations thereof, the ligand LA is complexed to a metal M; the metal M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.


In some embodiments, the consumer product comprises the OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound comprising a first ligand LA of




embedded image



is disclosed. In Formula 1 and Formula 2, Y is selected from the group consisting of R, NRR′, OR, and SR; Z is selected from the group consisting of O, S, and NR″; X1 to X5 are each independently C or N; at least one of X1 to X3 is C; two adjacent X1 to X3 are not N; at least one of X4 and X5 is C; each RA and RB independently represents mono to the maximum allowable substitutions, or no substitution; each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; each R, R′, and R″ is independently alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, silyl, aryl, heteroaryl, and combinations thereof, the ligand LA is complexed to a metal M; the metal M can be coordinated to other ligands; the ligand LA can be linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and any two substituents can be joined or fused together to form a ring.


In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.


Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.


D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


a) Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


embedded image



b) HIL/HTL:


A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, WO201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



c) EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


d) Hosts:


The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, WO201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



e) Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, WO201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO6121811, WO07018067, WO07108362, WO07115970, WO07115981, WO8035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



f) HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.


g) ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



h) Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


Synthesis of Materials


Synthesis of the inventive example compound ((LB54-1)2(LA568-1)




embedded image


A 250 mL round bottom flask was equipped with a stir bar and the rubber septum was rinsed with anhydrous tetrahydrofuran and then purged with nitrogen. 1H-Indole-7-carboxylic acid (3.22 g, 20 mmol, 1.0 equiv) and anhydrous tetrahydrofuran (50 mL) were sequentially added. The reaction mixture was cooled to 0° C. in ice-bath and 1.6M methyllithium in diethyl ether (43.8 ml, 70.0 mmol, 3.5 equiv) was added dropwise, under a nitrogen atmosphere. After the addition was completed, the ice-bath was removed and the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was quenched with water (50 mL) and the product extracted with ethyl acetate (2×50 mL). The combined organic phases were dried over anhydrous sodium sulfate (30 g) and concentrated under reduced pressure. The crude material was purified over silica gel eluting with a gradient of 0 to 20% ethyl acetate in heptanes. The product was recrystallized from hexanes (20 mL) to give 1-(1H-indol-7-yl)ethan-1-one (1.59 g, 50% yield) as a white crystalline solid.




embedded image


A mixture of 1-(3,5-dimethylphenyl)-6-isopropyl-isoquinoline (90 g, 325 mmol, 2.2 equiv) in 2-ethoxyethanol (2 L) and DIUF water (660 mL) was sparged with nitrogen for ten minutes. Iridium(III) chloride hydrate (47 g, 148 mmol, 1.0 equiv) was added and the reaction mixture heated at reflux for 36 hours. The reaction mixture was cooled to room temperature, filtered, the solid washed with methanol then dried under vacuum for a four hours to give di-μ-chloro-tetrakis[(1-(3,5-dimethyphenyl-2′-yl)-6-isopropylisoquinolin-2-yl)]diiridium-(III) (92.5 g, 81% yield) as a red solid. Next, 1-(1H-Indol-7-yl)ethan-1-one (0.557 g, 3.5 mmol, 2.5 equiv) and anhydrous tetrahydrofuran (30 mL) were added to a 40 mL vial. Sodium tert-butoxide (0.296 g, 3.08 mmol, 2.2 equiv) was added and the mixture stirred at room temperature for 5 minutes. Di-μ-chloro-tetrakis[(1-(3,5-dimethyphenyl-2′-yl)-6-isopropylisoquinolin-2-yl)] diiridium(III) (2015-Ir88-1) (2.174 g, 1.4 mmol, 1.0 equiv) was added and the reaction mixture stirred at 50° C. for 1 hour. The mixture was cooled to room temperature and DIUF water (5 mL) added. The slurry was stirred for 10 minutes, filtered and the red solids washed with water (10 mL) and methanol (20 mL) and dried under vacuum for ˜1 hour at room temperature. The crude product was dissolved in dichloromethane (50 mL) and filtered through a pad of basic alumina (100 g) rinsing with dichloromethane (700 mL). The filtrate was concentrated under reduced pressure and the residue dried under vacuum at 50° C. for 2 hours to afford bis[((1-(3,5-dimethylphenyl)-2′-yl)-6-isopropyl-isoquinolin-2-yl)]-(7-acetylindolo-k2N,O) iridium(III) (2.18 g, 86% yield), the inventive example compound ((LB54-1)2(LA568-1) as a red solid.


Synthesis of the Comparative Example Compound



embedded image



A mixture of 1-(3,5-dimethylphenyl)-6-isopropyl-isoquinoline (90 g, 325 mmol, 2.2 equiv) in 2-ethoxyethanol (2 L) and DIUF water (660 mL) was sparged with nitrogen for ten minutes. Iridium(III) chloride hydrate (47 g, 148 mmol, 1.0 equiv) was added and the reaction mixture was heated at reflux for 36 hours. The reaction mixture was cooled to room temperature, filtered, the solid washed with methanol then dried under vacuum for a few hours to give di-μ-chloro-tetrakis[(1-(3,5-dimethyphenyl-2′-yl)-6-isopropylisoquinolin-2-yl)]diiridium-(III) (92.5 g, 81% yield) as a red solid. Next, 1-(1H-Pyrrol-2-yl)ethan-1-one (0.351 g, 3.22 mmol, 2.3 equiv) and di-μ-chloro-tetrakis[(1-(3,5-dimethyphenyl-2′-yl)-6-isopropylisoquinolin-2-yl)]diiridium-(III) (2.174 g, 1.4 mmol, 1.0 equiv) were added to a 40 mL vial equipped with a stir bar. 2-Ethoxyethanol (22 mL) and powdered potassium carbonate (0.774 g, 5.6 mmol, 4.0 equiv) were added, and the mixture sparged with nitrogen for 5 minutes. The vial was capped and the reaction mixture was stirred at 50° C. for 18 hours. The mixture was cooled to room temperature and DIUF water (80 mL) added. The slurry was stirred for 10 minutes, filtered and the red-orange solids washed with water (30 mL), then methanol (80 mL) and dried under vacuum for 2 hours at room temperature. The crude material was purified over silica gel (200 g), eluting with a gradient of 0 to 100% dichloromethane in hexanes to afford bis[((1-(3,5-dimethylphenyl)-2′-yl)-6-isopropyl-isoquinolin-2-yl)]-(2-acetylpyrrolo-k2N,O) iridium(III) (1.923 g, 80% yield), the Comparative example compound, as a red solid.


Photoluminescence (PL) spectra of both the inventive example compound ((LB54-1)2LA568-1) and the comparative compound are shown in FIG. 3. PL was measured in 2-methylTHF solution at room temperature. The PL intensities are normalized to the maximum of the first emission peaks. The emission maximum of the inventive example compound ((LB54-1)2LA568-I) is 638 nm, and 613 nm for the comparative example compound. It can be seen that the inventive example shows redshifted emission and more saturated red color compared to the comparative example compound owing to the unique structure of the inventive ligand. When the inventive example compound is used as an emitting dopant in an organic electroluminescence device, it would be expected to emit more saturated red light than the comparative example compound which is highly desirable for display industry. This can further improve device performance, such as high electroluminescence efficiency and lower power consumption.


It is understood that the various embodiments described herein are byway of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound comprising a first ligand LA of
  • 2. The compound of claim 1, wherein each R1, R2, R3, R4, RA, and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.
  • 3. The compound of claim 1, wherein Z is O.
  • 4. The compound of claim 1, wherein Y is selected from the group consisting of R and OR.
  • 5. The compound of claim 1, wherein X1 to X5 are each C.
  • 6. The compound of claim 1, wherein two RA substituents are joined together to form a 6-membered aromatic ring.
  • 7. The compound of claim 1, wherein each RA substituent is an alkyl group.
  • 8. The compound of claim 1, wherein M is Ir or Pt.
  • 9. The compound of claim 1, wherein each R1, R2, R3, and R4 is a hydrogen or a substituent selected from the group consisting of deuterium, alkyl, cycloalkyl, and combinations thereof.
  • 10. The compound of claim 1, wherein at least one of X1 to X3 is N.
  • 11. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of:
  • 12. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of: LAi-I that are based on a structure
  • 13. The compound of claim 1, wherein the compound has a formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M.
  • 14. The compound of claim 13, wherein LB and LC are each independently selected from the group consisting of:
  • 15. The compound of claim 12, wherein the compound is selected from the group consisting of Ir(LA1-I)(LB1-1)2 to Ir(LA2916-XI)(LB200-44)2 based on the general formula of Ir(LAi-n)(LBj-k)2, wherein i is an integer from 1 to 2916, n is a Roman numeral from I to IX, j is an integer from 1 to 200, and k is an integer from 1 to 44; wherein LBj-k is selected from the group consisting of the following structures: LBj-1, where j=1 to 200, is based on,
  • 16. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound comprising a first ligand LA of
  • 17. The OLED of claim 16, wherein the organic layer further comprises a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 18. The OLED of claim 17, wherein the host is selected from the group consisting of:
  • 19. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound comprising a first ligand LA of
  • 20. A formulation comprising a compound according to claim 1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/844,434, filed on May 7, 2019, the entire contents of which are incorporated herein by reference.

US Referenced Citations (83)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
7781960 Saitou et al. Aug 2010 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090156783 Shiang et al. Jun 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20100051869 Chichak et al. Mar 2010 A1
20110108807 Ye et al. May 2011 A1
20170033300 Jeon Feb 2017 A1
20190019963 Ji Jan 2019 A1
20190067601 Ji Feb 2019 A1
Foreign Referenced Citations (53)
Number Date Country
108187750 Jun 2018 CN
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
10-2014-006726 Jan 2014 KR
20190025788 Mar 2019 KR
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006073112 Jul 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009079039 Jun 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2010093176 Aug 2010 WO
Non-Patent Literature Citations (48)
Entry
Graf, Marion et al., “Cyclometalated rhodium(III) and iridium(III) complexes containing amino acids as N,O-chelates”, Inorganica Chimica Acta 371 (2011) 42-46.
Lu, Zhongkai et al., “Water oxidation catalyzed by a charge-neutral mononuclear ruthenium(III) complex”, Dalton Trans., 2017, 46, 1304.
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett, 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electro phosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi et al., “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-{2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164(2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl Phys Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota,Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis(dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8)1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91:209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N{circumflex over (0)}C{circumflex over (0)}N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Related Publications (1)
Number Date Country
20200358008 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62844434 May 2019 US