Organic electroluminescent materials and devices

Abstract
Imidazo[1,2-f]phenanthridine compounds are provided. The compounds have a twisted aryl moiety further substituted by alkyl having four or more atoms. The compounds may be used in organic light emitting devices, particularly as emissive dopants, providing devices with improved efficiency, stability, and manufacturing. In particular, the compounds provided herein may be used in blue devices having high efficiency.
Description
FIELD OF THE INVENTION

The present invention relates to organic light emitting devices (OLEDs), and specifically phosphorescent organic materials used in such devices. More specifically, the invention relates to imidazo[1,2-f]phenanthridine compounds and devices containing these compounds.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) indium, denoted Ir(ppy)3, which has the structure of Formula I:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

Compounds are provided having the formula:




embedded image



R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, and aryl. At least one of R1 and R2 is an alkyl having four or more atoms. R3, R4, and R5 may represent mono, di, tri, or tetra substitutions. R3, R4, and R5 are independently selected from the group consisting of hydrogen, alkyl, and aryl. In one aspect, R1 and R2 are the same. In another aspect, R1 and R2 are different. In yet another aspect, one of R1 and R2 is an aryl.


The alkyl having four or more atoms may be a branched alkyl, a cyclic alkyl, a bicyclic alkyl, or a multicyclic alkyl.


In one aspect, the alkyl having four or more atoms may contain all carbon atoms. In another aspect, the alkyl having four or more atoms may be a substituted alkyl which may further contain at least one of oxygen atoms, nitrogen atoms, and sulfur atoms.


The compound may have the formula




embedded image


Specific examples of the compound are provided including Compounds 1-36. Preferably, the compound is Compound 1 or Compound 2.


Additionally, a compound including a ligand is provided. The ligand has the formula:




embedded image



R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, and aryl, and at least one of R1 and R2 is an alkyl having four or more atoms. R3, R4, and R5 may represent mono, di, tri, or tetra substitutions. R3, R4, and R5 are independently selected from the group consisting of hydrogen, alkyl, and aryl.


An organic light emitting device is also provided. The device has an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer further comprises a compound having FORMULA I. Preferably the organic layer is an emissive layer having a host and an emissive dopant, and the compound is the emissive dopant.


A consumer product is also provided. The product contains a device that has an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer further comprises a compound having FORMULA I.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows an imidazo[1,2-f]phenanthridine compound.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 maybe referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.


Imidazo 1,2-f]phenanthridine (herein called “imidazophenanthridine”) compounds containing a twisted aryl moiety further substituted with an alkyl having four or more atoms are provided. FIG. 3 shows a structure for such substituted imidazophenanthridine compounds. These compounds can be used in phosphorescent organic light emitting devices to provide high efficiency, high stability, long lifetime, improved manufacturing and improved color. Specifically, phosphorescent organic light emitting devices containing imidazo[1,2-f]phenanthridine iridium complexes containing a twisted aryl moiety further substituted with bulky alkyl groups (i.e., alkyl groups containing four or more atoms) as the emitting materials can have significantly higher efficiency than devices containing emitting materials which lack the bulky alkyl substituted twisted aryl group. The compounds may be used as phosphorescent emissive dopants in color OLEDs and white OLEDs. In particular, the compounds can be used as emissive dopants in high efficiency blue phosphorescent OLEDs. The development of dopant materials, such as the substituted imidazophenanthridine compounds provided herein, suitable for use in blue emissive devices are particularly desirable.


The indium imidazo[1,2-f]phenanthridine complexes contain a twisted aryl moiety that is further substituted at the 2 and/or n position, wherein n is the number of atoms in the aryl moiety, and the atom of the aryl moiety connected to the imiadzole is the 1 position, with an alkyl group having four or more atoms. These compounds containing bulky alkyl groups may have high photoluminescence (PL) and high electroluminescence (EL) efficiencies. Without being bound by theory, it is believed that the bulky alkyl substituents on the twisted aryl provide steric protection of the imidazole which is especially sensitive to self-quenching interactions. Imidazoles are prone to stacking because of their more polar nature, and the stacking of the imidazole rings may readily deactivates the active state of the complex via self-quenching. It is thought that bulky alkyl substituents present on the twisted aryl moiety of the compound may prevent stacking of the imidazole rings thereby inhibiting self-quenching. In particular, the three dimensional arrangement of the 2, n alkyl groups having four or more atoms is particularly good at protecting the imidazole heterocycle. In addition, the steric protection provided by the 2, n bulky alkyl substituents may then result in an increased quantum yield. Therefore, the addition of bulky alkyl groups to the aryl may improve device efficiency and device lifetime.


While substituted imidazophenanthridine compounds and their use in OLEDs are known, several problems may be associated with devices containing these compounds. For example, as shown in Table 2, substitution with an alkyl group at the 2 position of imidazophenanthridine, such as in Comparative Example 1, high PL and EL efficiencies can be obtained but the device lifetime is poor. Another example is the twisted aryl at the 3 position of imidazophenanthridine with less bulky R1 and R2 groups (e.g., alkyl containing one, two, or three atoms), such as in Comparative Example 2, can increase the device lifetime, but PL efficiency is low, thus resulting in low device efficiency. Therefore, it is desirable to develop a dopant that can provide high device efficiency and high device lifetime.


In order to increase efficiency and maintain lifetime, compounds were synthesized in which bulky alkyl groups were added to the 2 and/or n positions of the twisted aryl moiety of the imidazophenanthridine compound. Both the size of the alkyl group (i.e., a bulky alkyl having four or more atoms) and the site of substitution (i.e., the 2 and/or n positions of the twisted aryl moiety) are believed to be important for the beneficial properties of the compounds provided herein. As discussed above, the bulky alkyl groups can improve the quantum yield and provide high efficiency likely due to steric protection of the imidazole. The bulky alkyl substituents may also lead to improved luminescence quantum yield by protecting the imidazole from reacting with oxygen, a pathway which decreases quantum yield. Again, the position of the bulky alkyl is thought to be important in order to obtain increased quantum yield. For example, a compound containing a bulky alkyl substituent at another position on the imidazophenanthridine compound may not demonstrate the same EL and PL (see Comparative example 3 in Table 2). Moreover, the compounds provided herein may provide devices having long lifetimes. For example, device lifetimes for inventive compound, such as Compounds 1 and 2, can be significantly longer then device lifetimes for other imidazophenanthridine compounds lacking the bulky alkyl substituted twisted aryl (see Table 2). In addition, certain bulky alkyl groups at the 2 and n positions may provide cleaner sublimation thus improving device performance and processing.


Asymmetric compounds in which R1 and R2 are not the same, but at least one of R1 and R2 is an alkyl having four or more atoms, are also provided. These asymmetrical compounds may provide improved lifetime and efficiency as well as offer several additional advantages. For example, asymmetric compounds may offer advantages for sublimation and processing. Asymmetric compounds maintain the advantages of the symmetric compounds discussed above, and may further benefit from having a less bulky (e.g., hydrogen, alkyl having 3 or fewer atoms) substituent at the other of R1 and R2. By having one less bulky substituent and one more bulky substituent, these compounds may have a lower molecular weight and thus may be expected to have a lower sublimation temperature while preserving the benefits of high luminescence quantum yield. So then, asymmetric compounds may provide a means to further tune the properties of the emissive dopant having beneficial properties in device lifetime and device stability.


In addition, synthesis of the imidazophenanthridine compounds containing a twisted aryl further substituted by alkyl having four or more atoms provided herein involves only one intermediate. Therefore, the synthesis of these compounds may be advantageous compared to the synthesis of other compounds which require more steps and more intermediates in order to yield product.


Imidazo[1,2-f]phenanthridine compounds are provided, which may be advantageously used in OLEDs, having the formula:




embedded image



where R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, and aryl, and at least one of R1 and R2 is an alkyl having four or more atoms. R3, R4, and R5 may represent mono, di, tri, or tetra substitutions, and R3, R4, and R5 are independently selected from the group consisting of hydrogen, alkyl, and aryl. In one aspect, R1 and R2 are the same. In another aspect, R1 and R2 are different. In yet another aspect, one of R1 and R2 is an aryl.


In one aspect, the alkyl having four or more atoms is a branched alkyl. A branched alkyl substituent having four or more atoms may further prevent stacking of the imidazole rings by providing additional bulk (i.e., more atoms) thereby increasing the steric protection provided by the bulky alkyl substituent and improving quantum yield. In another aspect, the alkyl having four or more atoms is a cyclic alkyl. In particular, the cyclic alkyl can be a bicyclic alkyl and a multicyclic alkyl. Similarly, the presence of a cyclic, bicyclic and/or multicyclic alkyl at R1 and R2 may provide increased bulk and greater steric protection thereby improving quantum yield.


In one aspect, the alkyl having four or more atoms contains only carbon atoms. In another aspect, the alkyl having four or more atoms is a heteroalkyl. As used herein, “heteroalkyl” refers to an alkyl having four or more atoms wherein at least one of the atoms is a commonly used heteroatom. As used herein, “heteroatom” refers to an atom other than carbon or hydrogen including, but not limited to, oxygen, nitrogen, phosphorous, sulfur, selenium, arsenic, chlorine, bromine, silicon, and fluoride. Preferably, the heteroalkyl contains an oxygen atom. The heteroalkyl substituent acts as an electron withdrawing group thereby reducing the LUMO level (i.e., increasing electron stability) and improving the device stability. Moreover, based on standard calculations, the heteroalkyl may result in minimal red-shifting of the compound. Thus, these compounds provide good blue emission as well as improved stability, lifetime and processing.


In one aspect, the compound has the formula:




embedded image


Particular examples of compounds described herein include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


More preferably, the compound is selected from the group consisting of Compound 1 and Compound 2.


A compound including a ligand is also provided, wherein the ligand has the formula:




embedded image



R1 and R2 are independently selected from the group consisting of hydrogen, alkyl, and aryl, and at least one of R1 and R2 is an alkyl having four or more atoms. R3, R4, and R5 may represent mono, di, tri, or tetra substitutions. R3, R4, and R5 are independently selected from the group consisting of hydrogen, alkyl, and aryl. The dashed lines represent attachment of the ligand to a metal. Metals consisting of the non-radioactive metals with atomic numbers greater than 40 may be suitable for use in the complex. For example, the complex may include a metal selected from the group consisting of Re, Ru, Os, Rh, Ir, Pd, Pt, Cu and Au. Preferably, the metal is Ir. Moreover, the complex including the ligand provided may be a homoleptic complex or a heteroleptic complex. Preferably, the complex containing the ligand provided is a tris Ir complex.


Additionally, an organic light emitting device is also provided. The device may include an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode. The organic emissive layer further comprises a compound having FORMULA I. Preferably, the organic layer further comprises a compound selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


More preferably, the organic layer contains a compound selected from the group consisting of Compound 1 and Compound 2. Devices containing these compounds have been shown to have particularly good properties, such as high efficiency and long lifetime.


The organic layer may be an emissive layer in which the compound having FORMULA I is an emissive compound. The organic emissive layer may further comprise a host. Preferably, the host has the formula:




embedded image



wherein each of R1 through R6 are independently selected from the group consisting of any alkyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl, heteroaryl and hydrogen, and where each of R1 through R6 may represent multiple substitutions.


A consumer product comprising a device is also provided, wherein the device further comprises an anode, a cathode and an organic layer. The organic layer further comprises a compounds having FORMULA I.


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 1 below. Table 1 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.














MATERIAL
EXAMPLES OF MATERIAL
PUBLICATIONS















Hole injection materials









Phthalocyanine and porphryin compounds


embedded image


Appl. Phys. Lett. 69, 2160 (1996)





Starburst triarylamines


embedded image


J. Lumin. 72-74, 985 (1997)





CFx Fluorohydrocarbon polymer


embedded image


Appl. Phys. Lett. 78, 673 (2001)





Conducting polymers (e.g., PEDOT:PSS, polyaniline, polypthiophene)


embedded image


Synth. Met. 87, 171 (1997)





Arylamines complexed with metal oxides such as molybdenum and tungsten oxides


embedded image


SID Symposium Digest, 37, 923 (2006)










Hole transporting materials









Triarylamines (e.g., TPD, α-NPD)


embedded image


Appl. Phys. Lett. 51, 913 (1987)








embedded image


U.S. Pat. No. 5,061,569








embedded image


EP650955








embedded image


J. Mater. Chem. 3, 319 (1993)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)





Triaylamine on spirofluorene core


embedded image


Synth. Met. 91, 209 (1997)





Arylamine carbazole compounds


embedded image


Adv. Mater. 6, 677 (1994)





Indolocarbazoles


embedded image


Synth. Met. 111, 421 (2000)





Isoindole compounds


embedded image


Chem. Mater. 15, 3148 (2003)










Phosphorescent OLED host materials


Red hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)





Metal 8-hydroxyquinolates (e.g., Alq3, BAlq)


embedded image


Nature 395, 151 (1998)








embedded image


US20060202194








embedded image


WO200501455





Metal phenoxybenzothiazole compounds


embedded image


Appl. Phys. Lett. 90, 123509 (2007)





Conjugated oligomers and polymers (e.g., polyfluorene)


embedded image


Org. Electron. 1, 15 (2000)










Green hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US2003175553








embedded image


WO2001039234





Aryltriphenylene compounds


embedded image


US20060280965








embedded image


US20060280965





Polymers (e.g., PVK)


embedded image


Appl. Phys. Lett. 77, 2280 (2000)





Spirofluorene compounds


embedded image


WO2004093207





Metal phenoxybenzooxazole compounds


embedded image


WO05089025








embedded image


WO06132173








embedded image


JP200511610





Spirofluorene- carbazole compounds


embedded image


JP2007254297








embedded image


JP2007254297





Indolocabazoles


embedded image


WO07063796








embedded image


WO07063754





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)


embedded image


J. Appl. Phys. 90, 5048 (2001)








embedded image


WO04107822





Metal phenoxypyridine compounds


embedded image


WO05030900










Blue hosts









Arylcarbazoles


embedded image


Appl. Phys. Lett, 82, 2422 (2003)








embedded image


US20070190359





Dibenzothiopbene- carbazole compounds


embedded image


WO2006114966










Phosphorescent dopants


Red dopants









Heavy metal porphyrins (e.g., PtOEP)


embedded image


Nature 395, 151 (1998)





Iridium(III) organometallic complexes


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


U.S. Pat. No. 06,835,469








embedded image


U.S. Pat. No. 06,835,469








embedded image


US20060202194








embedded image


US20060202194








embedded image


U.S. Pat. No. 07,087,321








embedded image


U.S. Pat. No. 07,087,321








embedded image


Adv. Mater. 19, 739 (2007)





Platinum(II) organotmetallic complexes


embedded image


WO2003040257





Osminum(III) complexes


embedded image


Chem. Mater. 17, 3532 (2005)





Ruthenium(II) complexes


embedded image


Adv. Mater. 17, 1059 (2005)










Green dopants









Iridium(III) organometallic complexes


embedded image

  and its derivatives

Inorg. Chem. 40, 1704 (2001)








embedded image


US2002034656








embedded image


U.S. Pat. No. 06,687,266








embedded image


Chem. Mater. 16, 2480 (2004)








embedded image


US2007190359








embedded image


US 2006008670 JP2007123392








embedded image


Adv. Mater. 16, 2003 (2004)








embedded image


Angew. Chem. Int. Ed. 2006, 45, 7800





Pt(ll) organometallic complexes


embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Chem. Lett. 34, 592 (2005)





Gold complexes


embedded image


Chem. Commun. 2906 (2005)





Rhenium(III) complexes


embedded image


Inorg. Chem. 42, 1248 (2003)










Blue dopants









Iridium(III) organometallic complexes


embedded image


WO2002002714








embedded image


WO2006009024








embedded image


US2006251923








embedded image


WO2006056418, US2005260441








embedded image


US2007190359








embedded image


US2002134984








embedded image


Angew. Chern. Int. Ed. 47, 1 (2008)








embedded image


Chem. Mater. 18, 5119 (2006)








embedded image


Inorg. Chem. 46, 4308 (2007)








embedded image


WO05123873








embedded image


WO05123873








embedded image


WO07004380








embedded image


WO06082742





Osmium(II) complexes


embedded image


US2005260449








embedded image


Organometallics 23, 3745 (2004)





Gold complexes


embedded image


Appl. Phys. Lett. 74, 1361 (1999)





Platinum(II) complexes


embedded image


WO06098120, WO06103874










Exciton/hole blocking layer materials









Bathocuprine compounds (e.g., BCP, BPhen)


embedded image


Appl. Phys, Lett. 75, 4 (1999)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





Metal 8-hydroxyquinolates (e.g., BAlq)


embedded image


Appl. Phys. Lett. 81, 162 (2002)





5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidaxole


embedded image


Appl. Phys. Lett. 81, 162 (2002)





Triphenylene compounds


embedded image


U320050025993





Fluorinated aromatic compounds


embedded image


Appl. Phys. Lett. 79, 156 (2001)










Electron transporting materials









Anthracene- benzoimidazole compounds


embedded image


WO03060956





Anthracene- benzothiazole compounds


embedded image


Appl. Phys. Lett. 89, 063504 (2006)





Metal 8-hydroxyquinolates (e.g., Alq3)


embedded image


Appl. Phys, Lett. 51, 913 (1987)





Metal hydroxy- benoquinolates


embedded image


Chem. Lett. 5, 905 (1993)





Bathocuprine compounds such as BCP, BPhen, etc


embedded image


Appl. Phys. Lett. 91, 263503 (2007)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)


embedded image


Appl. Phys. Lett. 74, 865 (1999)








embedded image


Appl. Phys. Lett. 55, 1489 (1989)








embedded image


Jpn. J. Apply. Phys. 32, L917 (1993)





Silole compounds


embedded image


Org. Electron. 4, 113 (2003)





Arylborane compounds


embedded image


J. Am. Chem. Soc. 120, 9714 (1998)





Fluorinated aromatic compounds


embedded image


J. Am. Chem. Soc. 122, 1832 (2000)









EXPERIMENTAL
Compound Examples
Synthesis of Comparative Example 2

Step 1




embedded image


Into a 1000 mL 3-neck flask equipped with magnetic stirring, a condenser and a thermocouple was charged with 100 mL of 2.0 M Lithium diisopropylamide (LDA) in THF. This solution was cooled to −75° C. Next, 1,3-Dibromobenzene (39.3 g, 0.167 mol) dissolved in 200 mL of anhydrous THF was added dropwise over a ½ h period to the cooled solution of LDA. The internal temperature was maintained at −75° C. (+/−5° C.) for 2 h. Next, dimethylformamide (30.8 g, 0.4 mol) dissolved in 50 mL of anhydrous THF and was added dropwise to the cooled reaction mixture over a ½ h period. The internal temperature was maintained at −75° C. (+/−5° C.) for 2 h. The reaction mixture was quenched by dropwise addition of 100 mL of 5% sulfuric acid. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature. The organic layer was separated and the aqueous was extracted with 1×100 mL of diethyl ether and 1×50 mL of ethyl acetate. The organics were combined and washed 1×100 mL of brine. The organic extracts were then dried over sodium sulfate, filtered and concentrated under vacuum. The crude product was recrystallized from hexanes to yield 21.6 g (49% yield) of product.


Step 2




embedded image


(Methoxymethyl)triphenylphosphonium chloride (34.3 g, 0.10 mol) was charged into a 500 mL 3-neck flask with 75 mL of THF. This solution was cooled to −78° C. followed by dropwise addition of 100 mL (0.1 mol) of 1.0 M of lithium bis(trimethylsilyl)amide in THF. Addition time was approximately 20 minutes and the internal temperature was maintained at −78° C. to −70° C. The cooling bath was then removed and the reaction mixture was allowed to warm to 0 to 3° C. The reaction mixture was then cooled back down to −78° C. Next, 2,6-dibromobenzaldehyde (22.8 g, 0.086 mol) dissolved in 75 mL of THF was added dropwise to the cooled reaction mixture over a 20 min period. The internal temperature was maintained between at −78° C. to −70° C. The reaction mixture was then allowed to gradually warm to room temperature. The reaction mixture was quenched with aqueous ammonium chloride and then extracted with 3×300 mL of ethyl acetate. The organic extracts were combined, washed once with 200 mL of 10% LiCl solution and were dried over magnesium sulfate. The extracts were then filtered and the solvent removed under vacuum. The crude product was purified by vacuum distillation to yield 22.5 g (90%) of product as a light-orange oil.


Step 3




embedded image


70 mL of conc. HCl was slowly added to a 500 mL round bottom flask containing 110 mL of water. o-Methyl 2,6-dibromophenylacetaldehyde (22.5 g, 0.077 mol) was dissolved in 70 mL of 1,4-dioxane and this solution was added all at once to the 500 mL round bottom flask. The reaction mixture was stirred and heated at a gentle reflux for 18 h. The reaction mixture was cooled to room temperature and was extracted with 2×400 mL ethyl acetate. These extracts were combined and were washed with 1×100 mL aq. 10% LiCl. The extracts were then dried over sodium sulfate, filtered and the solvent removed under vacuum. The 2,6-dibromophenyl acetaldehyde was purified using silica gel chromatography with 15%/75% methylene chloride/hexanes as the eluent. 17.1 g (80% yield) of white solids was obtained as the product.


Step 4




embedded image


To a 200 mL round bottom flask was added 3.75 g (0.013 mol) of the 2,6-dibromophenylacetaldehyde, 30 mL of methylene chloride and 60 mL of 1,4-dioxane. Next, 2.32 g, (0.014 mol) of bromine was dissolved in 30 mL of methylene chloride and was added dropwise to the reaction mixture at room temperature over a 10 min period. Stirring was continued at room temperature for 2 h. An additional (0.23 g, 0.001 mol) of bromine was added to the reaction mixture. This mixture was stirred for one hour at room temperature. The reaction mixture was concentrated under vacuum. The crude product was then dissolved in 50 mL of diethyl ether and was washed 1×50 mL aqueous sodium bisulfite and 1×50 mL aqueous 10% lithium chloride. The ethereal extract was dried over sodium sulfate then was filtered and the solvent removed under vacuum to yield 4.2 g (90% yield) of a yellow viscous oil as the product which was immediately used for the next step.


Step 5




embedded image


To a 1 L 3-neck flask was added 19 g (0.11 mol) of 2-bromoaniline, 27.7 g (0.12 mol) of 2-cyanophenylboronic acid pinacol ester, 74.5 g (0.32 mol) of potassium phosphate tribasic monohydrate and 1.8 g (0.002 mol) of [1,1′-bis[(diphenylphosphino)ferrocene]dichoro-palladium(II) complex with dichloromethane(1:1). This mixture was degassed and backfilled with nitrogen. Next, water (13 mL) and 350 mL of 1,4-dioxane were added to the reaction mixture and the degassing procedure was repeated. The reaction mixture was stirred and heated under nitrogen at reflux for 18 h. After cooling, the reaction mixture was diluted with 350 mL of water. The reaction mixture was extracted with 3×250 mL of ethyl acetate. These extracts were combined and dried over magnesium sulfate. The extracts were filtered and the solvent removed under vacuum. The crude product was triturated with a hexane/ethyl acetate mixture. A light gray solid was isolated via filtration.




embedded image


A 200 mL round bottom flask was charged with 0.77 g (0.004 mol) of 6-aminophenanthridine and 50 mL of anhydrous 2-propanol. To this mixture was added 1.42 g (0.004 mol) of α-bromo-2,6-dibromophenylacetaldehyde all at once. This mixture was then heated at reflux for 24 h. Next, the reaction mixture was cooled to 60° C. and 0.67 g (0.008 mol) of sodium bicarbonate was added all at once. This mixture was then heated at reflux for 24 h. The reaction mixture was cooled to room temperature, diluted with 300 mL of water and then was extracted with 3×200 mL of ethyl acetate. These organic extracts were combined, were washed 1×100 mL of aqueous 10% LiCl, were dried over sodium sulfate, then were filtered and concentrated under vacuum. The crude product was purified by silica gel column chromatography (1-7% ethyl acetate/methylene) to yield 1 g (55% yield) of off-white solids as the product.


Step 7




embedded image


To a 200 mL flask was added dibromide from Step 6 (2.34 g, 5.175 mmol), isopropenyl boronic acid pinacol ester (10.44 g, 62.1 mmol), palladium(II) acetate (0.17 g, 0.76 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (0.62 g, 1.52 mmol), potassium phosphate tribasic monohydrate (5.96 g, 25.88 mmol), 122 mL of toluene and 122 mL of water. The reaction mixture was fully degassed by freezing-pump-thaw technique. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 16 h. The reaction mixture was filtered through a pad of Celite. The toluene layer was separated and the aqueous was extracted once with 75 mL of toluene. The toluene extracts were combined, dried over sodium sulfate, then were filtered and concentrated under vacuum. The product was purified using silica gel chromatography with 1-8% ethyl acetate/methylene chloride as the eluent to give 1.7 g (87% yield) of product.


Step 8




embedded image


2,6-diisopropenylimidazophenanthridine (1.7 g, 4.6 mmol) was dissolved in 75 mL of toluene. This solution was added to a Parr hydrogenator vessel that was purged with N2 and contained 1.5 g of chlorotris(triphenylphosphine) rhodium(I). This vessel was placed on the Parr hydrogenator and the vessel was filled with hydrogen and evacuated (repeated a total of three times). The vessel was then filled with hydrogen to 45 psi. This mixture was reacted with shaking for 21 h. The solvent from the reaction mixture was removed under vacuum. The crude product was chromatographed using a silica gel column with 1-8% ethyl acetate/methylene chloride as the eluent to yield 1.65 g of product.


Step 9




embedded image


Comparative Example 2

To a 50 mL Schlenk tube was added the ligand from Step 8 (1.47 g, 3.88 mmol), Ir(acac)3 (0.38 g, 0.78 mmol) and tridecane (50 drops). The mixture was degassed and heated in a sand bath at 240° C.-250° C. with stirring under a nitrogen for 66 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2:hexanes=1:1) and subject to flash column chromatography with 1:1 CH2Cl2:hexanes as the eluent. The solid after column chromatography was recrystallized from a mixture of CH2Cl2 and methanol to yield 0.65 g (65%) of product.


Synthesis of Compound 1




embedded image


Step 1:


To a 200 mL flask was added dibromide (1.0 g, 2.2 mmol), isobutyl boronic acid (2.7 g, 26.5 mmol), Pd2(dba)3 (0.15 g, 0.16 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (0.27 g, 0.65 mmol), potassium phosphate tribasic monohydrate (8.7 g, 37.58 mmol) and 100 mL of toluene. The reaction mixture was fully degassed by freezing-pump-thaw technique. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 16 h. The reaction mixture was filtered through a pad of Celite. The toluene layer was separated and the aqueous was extracted once with 75 mL of toluene. The toluene extracts were combined, dried over sodium sulfate, then were filtered and concentrated under vacuum. The product was purified using silica gel chromatography with 1-8% ethyl acetate/methylene chloride as the eluent to give 0.76 g of product (84% yield).




embedded image


Step 2:


To a 50 mL Schlenk tube was added the ligand (2.8 g, 6.89 mmol), Ir(acac)3 (0.68 g, 1.38 mmol) and tridecane (50 drops). The mixture was degassed and heated in a sand bath at 240-250° C. with stirring under a nitrogen for 73 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2:hexanes=1:1) and subject to flash column chromatography with 1:1 CH2Cl2:hexanes as the eluent. The solid after column chromatography was recrystallized from a mixture of CH2Cl2 and methanol to yield 1.69 g (87%) of product.


Synthesis of Compound 2




embedded image


Step 1:


To a 200 mL flask was added the dibromide (4 g, 8.84 mmol), 1-cyclohexene boronic acid pinacol ester (18.37 g, 88.27 mmol), Pd(OAc)2 (1.98 g, 2.9 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (2.4 g, 5.83 mmol), potassium phosphate tribasic monohydrate (10.18 g, 44.23 mmol), 100 mL of toluene and 100 mL of water. The reaction mixture was fully degassed by freezing-pump-thaw technique. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 16 h. The reaction mixture was filtered through a pad of Celite. The toluene layer was separated from the filtrate. The aqueous layer was extracted with 75 mL of toluene. The toluene extracts were combined, dried over sodium sulfate, then were filtered and concentrated under vacuum. The crude product was purified by column chromatography with 1-4% ethyl acetate/methylene chloride as the eluent to yield 3.2 g of product.




embedded image


Step 2:


3.2 g (0.007 mol) of the cyclohexenyl compound was dissolved in 150 mL of toluene. This solution was added to a Parr hydrogenation vessel that was purged with nitrogen and was charged with 2.8 g of 10% palladium on activated carbon and 1.4 g of platinum, 5 wt % (dry basis) on activated carbon wet, Degussa type F101. This heterogeneous mixture was shaken on the Parr hydrogenator for 72 h. The reaction mixture was filtered through a pad of Celite. The toluene filtrate was concentrated under vacuum. The crude product was purified by column chromatography with 1-5% ethyl acetate/methylene chloride as the eluent to yield 3.1 g of product.




embedded image


Step 3:


To a 50 mL Schlenk tube were added ligand (2.3 g, 5.08 mmol), Ir(acac)3 (0.5 g, 1.01 mmol and tridecane (50 drops). The mixture was degassed and heated in a sand bath with stirring under a nitrogen for 73 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2:hexanes=1:1) and subject to flash column chromatography with 1:1 CH2Cl2:hexanes as the eluent. The solid after column chromatography was recrystallized from a mixture of CH2Cl2 and methanol to yield 0.93 g (58%) of product.


Synthesis of Compound 3




embedded image


Step 1.


To a 500 mL 3-neck flask was charged diisopropylamine (9.9 g, 0.098 mol) and 100 mL of THF. This solution was cooled to −78° C. and 45.6 mL, 0.073 mol of n-BuLi 1.6 M in hexanes were added to the cooled reaction mixture via syringe. This mixture was stirred for ½ h at −78° C., then cycloheptanone (6.0 g, 0.054 mol) in 30 mL of THF was added dropwise to the cooled reaction mixture. This solution was stirred at −78° C. for 2 h. A THF solution of N-phenyl-bis-trifluoromethane sulfoimide (21.2 g, 0.059 mol) was added dropwise to the cooled mixture. The mixture was then allowed to gradually warm to room temperature and was stirred overnight. The reaction mixture was quenched with aqueous ammonium chloride then was extracted 2×300 mL of ethyl acetate. The extracts were then dried over magnesium sulfate and were filtered and concentrated under vacuum. The crude product was chromatographed with 30-40% methylene chloride/hexanes as the eluent to yield 9.0 g (69% yield) of product.




embedded image


Step 2.


PdCl2(PPh3)2 (1.722 g, 2.45 mmol), PPh3 (1.28 g, 4.9 mmol), bis(pinacolato)diboron (90.76 g, 357 mmol) and KOPh (16.2 g, 122.7 mmol) were added to a flask. The flask was flushed with nitrogen and then charged with toluene (300 mL) and the triflate (20 g, 81.8 mmol). The mixture was then stirred at 50° C. for 16 h. The reaction mixture was diluted with 200 mL of water. The toluene layer was separated. The aqueous layer was extracted 200 mL of toluene. The toluene extracts were combined, washed 100 mL of aqueous 10% lithium chloride, dried over magnesium sulfate, filtered and concentrated under vacuum. The crude product was distilled using a Kugelrohr distillation setup. The pot temperature was started at 85° C. and was increased to 115° C. This distilled mixture was chromatographed with 20-25% methylene chloride/hexanes as the eluent to yield 9.85 g (55% yield) of product.




embedded image


Step 3.


To a 500 mL round bottom flask was added the dibromide (4.7 g, 0.01 mol), the boronic acid pinacol ester (9.81 g, 0.0442 mol), Pd(OAc)2 (0.75 g, 0.0033 mol), dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (2.73 g, 0.007 mol), potassium phosphate tribasic monohydrate (12.0 g, 0.052 mol), 200 mL of toluene and 75 mL of water. The reaction mixture was evacuated and back-filled with nitrogen. The reaction was then heated to reflux and stirred under a nitrogen atmosphere for 16 h. The mixture was filtered through a pad of Celite. The toluene layer was separated and the aqueous was extracted with 100 mL of toluene. The toluene portions were combined and dried over magnesium sulfate. This dried organic mixture was then filtered and concentrated under vacuum. The crude product was purified by silica gel chromatography. The first purification involved eluting the column with 1-4% ethyl acetate/methylene chloride. The second purification involved eluting the column with 2-12% ethyl acetate/hexanes. The yield was 4.1 g (82%).




embedded image


Step 4.


The alkenyl product from Step 3 was dissolved in 200 mL of toluene and was charged into a Parr hydrogenation bottle containing 2.8 g of 10% Pd/C and 1.4 g of 5% Pt/C Degussa Type F101 RA/W. This mixture was placed on the Parr hydrogenator for 18 h. The reaction mixture was filtered through a pad of Celite and the pad was rinsed with 200 mL of toluene. The toluene filtrate was concentrated under vacuum. The crude product was purified by silica gel chromatography with 5-15% ethyl acetate/hexanes as the eluent. The product obtained (3.6 g, 0.0074 mol) was dissolved in THF and was cooled to −78° C. To this cooled solution was added 6.3 mL of 1.6M n-BuLi in hexanes via syringe over a 5 min period. The reaction mixture was stirred for an additional 5 min then was quenched by adding 50 mL of water dropwise. This mixture was warmed to room temperature then was extracted 2×150 mL ethyl acetate. These extracts were dried over magnesium sulfate then were filtered and concentrated under vacuum. These extracts were then passed through a neutral alumina (deactivated by the addition of 6% (w/w) water) column that was eluted with 20-70% methylene chloride/hexanes. The material was dissolved in 50 mL of methylene chloride and was stirred at room temperature for 18 h with 0.8 g of Si-TAAcoH and 0.8 g of Si-Thiourea. This mixture was then filtered, concentrated under vacuum and the resulting material was recrystallized from hexanes to yield 2.93 g (71% yield) of product.




embedded image


Step 5.


To a 50 mL Schlenk tube were added the ligand (2.93 g, 6.03 mmol), Ir(acac)3 (0.59 g, 1.205 mmol) and tridecane (50 drops). The mixture was degassed and heated in a sand bath with stirring under a nitrogen for 73 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2hexanes=1:1) and subject to flash column chromatography with 1:1 CH2Cl2:hexanes as the eluent. The solid after column chromatography was recrystallized from a mixture of CH2Cl2 and methanol to yield 1.18 g of product.


Synthesis of Compound 4




embedded image


Step 1.


10.0 g (0.08 mol) of 4,4-dimethylcyclohex-2-enone was dissolved in 150 mL of ethanol. This solution was added to a Parr hydrogenation vessel that was purged with nitrogen and was charged with 0.5 g of 10% palladium on activated carbon. This heterogeneous mixture was shaken on the Parr hydrogenator for 8 h. The reaction mixture was filtered through Celite and evaporated to dryness to yield 7.9 g of product.




embedded image


Step 2.


A mixture of p-tolylsulfonylhydrazine (6.8 g, 36.7 mmol), 60 mL of absolute ethanol and the ketone (4.64 g, 36.76 mmol) was heated to reflux at 100° C. After heating for 2 h, the reaction mixture was cooled using an ice-water bath to precipitate the majority of the hydrazone. The resulting solid was collected by filtration and was washed thoroughly with ice-cold ethanol. Air drying for 1 h afforded 7.67 g of the required hydrazone.




embedded image


Step 3.


To a dried 500 mL round-bottom flask equipped with a magnetic stirbar and rubber septum, hydrazone (5 g, 17 mmol) was added followed by 100 mL of anhydrous hexanes. To this mixture 100 mL of anhydrous TMEDA were added, and the reaction mixture was cooled to −78° C. and maintained at this temperature for 15 min, after which 60.6 mL (84.9 mmol) of 2.5M sec-BuLi was added over 15 min. The reaction mixture was then stirred for 1 h at −78° C. and then brought to room temperature and stirred for 1.5 h. The mixture was cooled down to −78° C. again and 15.8 g (84.9 mmol) of pinacol isopropyl borate was then added. The reaction was stirred for another hour at −78° C. and then brought to room temperature and stirred for 3 h. The reaction was quenched with the addition of saturated NH4Cl and then extracted three times with ether. The combined organic extracts were dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The residue was subject to flash chromatography (40% CH2Cl2 in hexanes) to afford 1.53 g (38%) of desired product.




embedded image


Step 4.


To a 200 mL flask was added dibromide (5 g, 11.06 mmol), bornic acid pinacol ester from step 3 (11.26 g, 47.67 mmol), Pd(OAc)2 (819 mg, 3.64 mmol), dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (2.9 g, 7.3 mmol), potassium phosphate tribasic monohydrate (12.73 g, 55.29 mmol), 150 mL of toluene and 150 mL of water. The reaction mixture was fully degassed by freezing-pump-thaw technique. The reaction was heated to reflux and stirred under a nitrogen atmosphere for 16 h. The reaction mixture was filtered through a pad of Celite. The toluene layer was separated from the filtrate. The aqueous layer was extracted 75 mL of toluene. The toluene extracts were combined, dried over sodium sulfate, then were filtered and concentrated under vacuum. The crude product was passed through a silica gel column. The column was eluted with 10% ethyl acetate in hexanes to yield 4.5 g of desired product.




embedded image


Step 5.


4.5 (8.81 mol) of the cyclohexenyl product from step 4 was dissolved in 150 mL of toluene. This solution was added to a Parr hydrogenation vessel that was purged with nitrogen and was charged with 3.2 g of 10% palladium on activated carbon and 2.8 g of Platinum, 5 wt % (dry basis) on activated carbon wet, Degussa type F101. This heterogeneous mixture was shaken on the Parr hydrogenator for 16 h. The reaction mixture was filtered through a pad of Celite. The toluene filtrate was concentrated under vacuum. The crude product was passed through a silica gel column. The column was eluted with 10% ethyl acetate in hexanes to yield 4.24 g of product.




embedded image


Step 6.


To a 50 mL Schlenk tube were added ligand (2.57 g, 5.03 mmol), Ir(acac)3 (0.495 g, 1.006 mmol) and tridecane (50 drops). The mixture was degassed and heated in a sand bath with stirring under a nitrogen atmosphere for 73 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2:dexanes=1:1) and subject to flash column chromatography (CH2Cl2:dexanes=1:1). The solid after column chromatography was recrystallized from a mixture of CH2Cl2 and methanol to yield 0.8 g of product.


Synthesis of Compound 5




embedded image


Step 1.


A mixture of 4-tert-butylcyclohexanone (26.5 g, 0.172 mol), p-toluenesulfonylhydrazide (31.74 g, 0.171 mol) and 450 mL of anhydrous ethanol was heated to reflux for 4 h then cooled to room temperature. The reaction mixture was filtered and dried under vacuum to yield 35 g of product.




embedded image


Step 2.


To a dried 500 mL round-bottom flask equipped with a magnetic stirbar and rubber septum, hydrazone (7.5 g, 0.023 mol) was added followed by 70 mL of anhydrous hexanes. To this mixture 70 mL of anhydrous TMEDA was added and the reaction mixture was cooled to −78° C. and maintained at this temperature for 15 min, after which 37 mL (0.092 mol) of 2.5M n-BuLi in hexanes were added over 15 min. The reaction mixture was then stirred for 1 h at −78° C. and then brought to room temperature and stirred for 3.5 h. The mixture was brought to −78° C. again and 17 g (0.092 mol) of pinacol isopropyl borate were added. The reaction was stirred for another hour at −78° C. and then brought to room temperature and stirred for overnight. The reaction was quenched with the addition of saturated NH4Cl and then was partitioned with 200 mL of ether. This heterogeneous mixture was passed through a Celite pad. The ether layer was separated and the aqueous was extracted 300 mL of ether. The combined organic extracts were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. The crude product was passed through a silica gel column (20-40% methylene chloride/hexanes). 4.4 g (72% yield) of product was obtained.




embedded image


Step 3.


To a 1 L round bottom flask was added dibromide (5 g, 0.011 mol), boronic acid pinacol ester from step 2 (7.3 g, 0.0276 mol), tris(dibenzylideneacetone)dipalladium(O) (0.2 g, 0.22 mmol), dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (0.36 g, 0.88 mmol), potassium phosphate tribasic monohydrate (14.0 g, 0.066 mol), 300 mL of toluene and 80 mL of water. The reaction mixture was evacuated and back-filled with nitrogen. The reaction was then heated to reflux and stirred under a nitrogen atmosphere for 16 h. The heterogeneous reaction mixture was filtered through a pad of Celite. The toluene layer was separated and the aqueous was extracted 100 mL of toluene. The toluene portions were combined and dried over magnesium sulfate. This dried organic mixture was then filtered and concentrated under vacuum. The crude product was purified by silica gel chromatography. The column was eluted with 1-4% ethyl acetate/methylene chloride. 5 g (80% yield) of product was obtained.




embedded image


Step 4.


The alkenyl product (5.0 g, 0.0088 mol) from Step3 was dissolved in 200 mL of toluene and was charged into a Parr hydrogenation bottle that already contained 3.8 g of 10% Pd/C and 3.0 g of 5% Pt/C Degussa Type F101 RA/W. This mixture was placed on the Parr hydrogenator for 58 h. The reaction mixture was filtered through a pad of Celite and the pad was rinsed with 200 mL of toluene. The toluene filtrate was concentrated under vacuum to yield 4.3 g of crude product. The crude product was purified by silica gel chromatography. The column was eluted with 1-5% ethyl acetate/methylene chloride. Next, the product obtained from the column was dissolved in 50 mL of methylene chloride and was stirred at room temperature for 18 h with 1.1 g of Si-TAAcoH and 1.1 g of Si-Thiourea. This is to remove any residual palladium. The product obtained (3.9 g, 0.0068 mol) was dissolved in THF and was cooled to −78° C. To this cooled solution was added 5.8 mL of 1.6 M n-BuLi in hexanes via syringe over a 5 min period. The reaction mixture was stirred for an additional 5 minutes then was quenched by adding 50 mL of water drop wise. This mixture was warmed to room temperature then was extracted 2×150 mL ethyl acetate. These extracts were dried over magnesium sulfate then were filtered and concentrated under vacuum. These extracts were then passed through a neutral alumina (deactivated by the addition of 6% (w/w) water) column that was eluted with 30-60% methylene chloride/hexanes. 3.6 g of product was obtained. The product obtained from the neutral alumina column was recrystallized from hexanes/ethyl acetate. 2.90 g of product was obtained.




embedded image


Step 5.


To a 50 mL Schlenk tube were added ligand (2.78 g, 4.86 mmol), Ir(acac)3 (0.478 g, 0.97 mmol) and tridecane (50 drops). The mixture was degassed and heated in a sand bath with stirring under a nitrogen for 70 h. After cooling, the reaction mixture was dissolved with a mixture of solvent (CH2Cl2:dexanes=1:1) and subject to flash column chromatography CH2Cl2:hexanes=1:1). The solid after column chromatography was recrystallized from a mixture Of CH2Cl2 and methanol to yield 1.0 g of product.


Device Examples

All device examples were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode is 1200 Å of indium tin oxide (ITO). The cathode consisted of IOA of LiF followed by 1000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.


The organic stack of the Device Examples 1 and 2 in Table 2, consisted of sequentially, from the ITO surface, 10 nm of H3 or H4 as the hole injection layer (HIL), 30 nm of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting later (HTL), 30 nm of the H2 doped with 9% of the dopant emitter (e.g., invention Compounds 1-2) as the emissive layer (EML), 5 nm of H2 as the ETL2 and 40 nm of AIq as ETL1.


Comparative Examples 1-3 were fabricated similarly to the Device Examples except E1, E2, or E3 was used as the emissive dopant and H1 was used as the host in the EML and as the ETL2 material.


As used herein, the following compounds have the following structures:




embedded image


embedded image


Particular emissive dopants for the emissive layer of an OLED are provided which may lead to devices having particularly good properties. The device structure and the results from device testing are provided in Table 2. Devices having an emissive layer using Compounds 1 and 2 as the emissive dopant show improved device efficiency and stability as well as improved color indicating that these substituted imidazophenanthridine compounds may be beneficial.


Solid state photoluminescent quantum yields (PL %) were determined from 1 weight % of the dopant in polymethylmethacrylate (PMMA), an optically inert polymer matrix. The samples are prepared by dissolving the dopant and PMMA in 1 mL of toluene per 100 mg solids (90 mg of PMMA and 10 mg of the dopant). The samples were filtered and drop-casted onto a pre-cleaned quartz substrate. After the solvent has evaporated, PL quantum yields were measured using a Hamamatsu Absolute PL Quantum Yield Measurement System. The system is comprised of an integrating sphere, xenon light source, monochromater, and multi-channel CCD spectrometer, and is housed in an inert atmosphere glove box to prevent quenching by oxygen. The excitation wavelength was 342 nm.



















TABLE 2







EQE











Emitter
(%) at
V (V) at
T1/2 (h)


Device
(doping
1000
1000
at 2000

Sublimation


Example
%)
cd/m2
cd/m2
cd/m2
CIE
temp. (° C.)
HIL
HOST
ETL2
PL %

























Comparative 1
E1 (9)
12
8
70
0.15, 0.23
330
H3
H1
H1
52


Comparative 2
E2 (9)
7
8
200
0.15, 0.24
300
H4
H1
H1
26


Comparative 3
E3 (9)
8
8
180
0.15, 0.26
320
H4
H1
H1
40


1
1 (9)
12
7
200
0.15, 0.24
265
H3
H2
H2
56


2
2 (9)
12
8
300
0.15, 0.23
310
H4
H2
H2
60









From Device Examples 1 and 2, it can be seen that the device efficiencies correlate with the solid state PL quantum yields. Comparative Example 1 gives a higher PL efficiency compared to Comparative Example 2. It is believed that the alkyl substitution present in E1 used in Comparative Example 1 inhibits self quenching leading to higher PL and EL efficiencies. Comparative Example 2 uses E2 which has 2,6-dimethyl twisted aryl groups and relatively low PL quantum efficiencies. In these cases the 2,6 alkyl substitutions are not bulky enough to inhibit self quenching. Furthermore, Comparative example 3 uses E3 which has a bulky neopentyl group substituted on the other ring of the ligand, yet this does not lead to a large improvement in PL quantum yield. Compounds 1 and 2 with bulky alkyl groups substituted to the twisted aryl are found to have higher PL quantum yield and therefore improved device efficiency. Alkyl groups particularly beneficial as these lead to minimal red-shifting. The use of bulky alkyl substituents (i.e., alkyl groups containing four or more atoms) is believed to be a novel way to modify the compound to inhibit self quenching. These bulky substituted compounds do not suffer the lifetime limitation of compounds having alkyl groups substituted to the 4-imidazole position, as seen for E1 used in Comparative Example 1.


Attaching a methyl group to the 2 position of the imidazophenanthridine, as shown for E1 in Comparative example 1, increased solid state quantum yield of the dopant and lead to higher device efficiency. However, several examples demonstrated that the addition of alkyl substituents at this position can lead to devices having short lifetimes (i.e., less than 100 hours at 2000 nits). Alternatively, it was found that attaching bulky alkyl groups (i.e., alkyls having four or more atoms) increased photoluminescent efficiency and device efficiency. For example, Compounds 1 and 2 have high efficiency, similar to Comparative example 1, and greater efficiency than Comparative examples 2 and 3. Both the selection of bulky alkyl substituents and the site of substitution (i.e., 2 and/or n position of the twisted aryl) may be important to obtain the increased efficiency. For example, E3 used in Comparative example 3 has a bulky neopentyl group substituted away from the imidazole, yet this compound has a relatively low PL yield of 40%. Notably, the compounds provided herein demonstrate significantly long device lifetimes. For example, the device lifetime of invention Compounds 1 and 2 are 3-4 times longer when compared to Comparative example 1. Bulky alkyl substitution on the twisted aryl may also improve device processing. For example, Compound 1 has an isobutyl substitution and has a sublimation temperature of 265° C., which is the lowest sublimation temperature to be observed to date in this family of imidazo[1,2-f] phenanthridine iridium complexes.


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound having the formula:
  • 2. The compound of claim 1, wherein the alkyl that is cyclic and has four or more carbon atoms is a branched alkyl.
  • 3. The compound of claim 1, wherein the alkyl that is cyclic and has four or more carbon atoms is a bicyclic alkyl.
  • 4. The compound of claim 1, wherein the alkyl that is cyclic and has four or more carbon atoms is a multicyclic alkyl.
  • 5. The compound of claim 1, wherein the alkyl that is cyclic and has four or more carbon atoms does not include any heteroatoms.
  • 6. The compound of claim 1, wherein the alkyl that is cyclic and has four or more carbon atoms is a heteroalkyl that contains at least one of an oxygen atom, a nitrogen atom, or a sulfur atom.
  • 7. The compound of claim 1, wherein R1 and R2 are the same.
  • 8. The compound of claim 1, wherein R1 and R2 are different.
  • 9. The compound of claim 1, wherein one of R1 and R2 is an aryl.
  • 10. The compound of claim 1, wherein the compound has the formula:
  • 11. The compound of claim 1, wherein the compound is selected from the group consisting of:
  • 12. A first device comprising an organic light emitting device, further comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, the organic layer comprising a compound having the formula:
  • 13. The first device of claim 12, wherein the first device is a consumer product.
  • 14. The first device of claim 12, wherein the compound is selected from the group consisting of:
  • 15. The first device of claim 12, wherein the organic layer further comprises a second compound selected from the group consisting of:
  • 16. The first device of claim 12, wherein the organic layer is an emissive layer and the compound having the formula
  • 17. The first device of claim 12, wherein the organic layer further comprises a host having the formula:
Parent Case Info

This application is a continuation of U.S. application Ser. No. 12/632,251, filed Dec. 7, 2009, now U.S. Pat. No. 8,815,415, which claims priority to U.S. Provisional Application No. 61/122,259, filed Dec. 12, 2008, the disclosures of which are expressly incorporated herein by reference in their entirety. The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

US Referenced Citations (81)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7333722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
7915415 Knowles et al. Mar 2011 B2
8815415 Tsai et al. Aug 2014 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030068526 Kamatani et al. Apr 2003 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080272692 Hashimoto et al. Nov 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090066226 Sugita et al. Mar 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
Foreign Referenced Citations (54)
Number Date Country
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2005097549 Apr 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
2010062023 Mar 2010 JP
2001039234 May 2001 WO
2002002714 Jan 2002 WO
02015645 Feb 2002 WO
0244189 Jun 2002 WO
2003040257 May 2003 WO
2003060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2007095118 Aug 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2008140114 Nov 2008 WO
2008142976 Nov 2008 WO
2008143059 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
Non-Patent Literature Citations (46)
Entry
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90:183503-1-183503-3, (2007).
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1:15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Snythetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi and Tokito, Shizuo, “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C, et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shin-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota,Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis (dimesitylboryl)-2.2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metal, 91:209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on p-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic LIght-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergrd et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 87:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Related Publications (1)
Number Date Country
20140319504 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61122259 Dec 2008 US
Continuations (1)
Number Date Country
Parent 12632251 Dec 2009 US
Child 14330351 US