Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11390639
  • Patent Number
    11,390,639
  • Date Filed
    Tuesday, March 26, 2019
    5 years ago
  • Date Issued
    Tuesday, July 19, 2022
    2 years ago
Abstract
A compound having a first ligand LA of Formula I
Description
FIELD

The present invention relates to compounds for use as emitters, and devices, such as organic light emitting diodes, including the same.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative) Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY

A compound comprising a first ligand LA of Formula I




embedded image



is disclosed. In Formula I, Z1 to Z4 are each independently C or N; at least one of Z1 to Z4 is N; ring A is a structure of Formula II




embedded image



where each RA and R4 independently represents mono substitution to a maximum possible number of substitutions, or no substitution, Z5 to Z8 are each independently C or N; R3 is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, aryl, and heteroaryl; each RA and R4 is independently a hydrogen or a substituent selected from the general substituents defined above; any two substituents in the compound can be joined or fused together to form a ring; R3 and ring A do not have identical formulas; the ligand LA is complexed to a metal M; M is optionally coordinated to other ligands; the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and when Z1 is N, the compound is homoleptic, or M is complexed to at least one substituted or unsubstituted acetylacetonate ligand.


An OLED comprising the compound of the present disclosure in an organic layer therein is also disclosed.


A consumer product comprising the OLED is also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.


Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from −40 degree C. to +80 degree C.


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.


The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).


The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.


The term “ether” refers to an —ORs radical.


The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a —SRs radical.


The term “sulfinyl” refers to a —S(O)—Rs radical.


The term “sulfonyl” refers to a —SO2—Rs radical.


The term “phosphino” refers to a —P(Rs)3 radical, wherein each R can be same or different.


The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.


In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.


The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group is optionally substituted.


The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group is optionally substituted.


The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group is optionally substituted.


The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group is optionally substituted.


The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group is optionally substituted.


The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group is optionally substituted.


The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.


The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group is optionally substituted.


The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group is optionally substituted.


Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.


The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.


In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.


In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, aryl, heteroaryl, sulfanyl, and combinations thereof.


In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.


The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution) Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.


As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.


The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.


It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.


In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2,2′ positions in a biphenyl, or 1,8 position in a naphthalene, as long as they can form a stable fused ring system.


According to an embodiment, a compound comprising a first ligand LA of Formula I




embedded image



is disclosed. In Formula I, Z1 to Z4 are each independently C or N; at least one of Z1 to Z4 is N; ring A is a structure of Formula II




embedded image



where each RA and R4 independently represents mono substitution to a maximum possible number of substitutions, or no substitution, Z5 to Z8 are each independently C or N; R3 is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, aryl, and heteroaryl; each RA and R4 is independently a hydrogen or a substituent selected from the general substituents defined above; any two substituents in the compound can be joined or fused together to form a ring; R3 and ring A do not have identical formulas; the ligand LA is complexed to a metal M; M is optionally coordinated to other ligands; the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and when Z1 is N, the compound is homoleptic, or M is complexed to at least one substituted or unsubstituted acetylacetonate ligand.


In some embodiments of the compound, each RA and R4 is independently a hydrogen or a substituent selected from the preferred general substituents defined above.


In some embodiments, Z1 and Z4 are N, and Z2 and Z3 are C. In some embodiments, Z2 and Z3 are N, and Z1 and Z4 are C. In some embodiments, Z1 and Z3 are N, and Z2 and Z4 are C. In some embodiments, Z2 and Z4 are N, and Z1 and Z3 are C. In some embodiments, one of Z1 to Z4 is N, and the remainder are C. In some embodiments, two of Z1 to Z4 are N, and the remainder are C.


In some embodiments, RA represents a fused ring. In some embodiments, Z7 and Z8 are C, and are fused to a 6-membered aromatic ring.


In some embodiments, Z6 and Z7 are C, and are fused to a 6-membered aromatic ring.


In some embodiments, Z5 and Z6 are C, and are fused to a 6-membered aromatic ring.


In some embodiments, Z6 is C and is attached to an alkyl group.


In some embodiments, R3 is a 5-membered heteroaryl group. In some embodiments, R3 is a 6-membered aryl or heteroaryl group.


In some embodiments, M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, and Au. In some embodiments, M is selected from the group consisting of Ir and Pt. In some embodiments, M is selected from the group consisting of Ir(III) and Pt(II).


The compound can be homoleptic or heteroleptic.


In some embodiments, the compound further comprises a substituted or unsubstituted acetylacetonate ligand. This means that the compound comprises an acetylacetonate ligand independent of whether Z1 is N or not.


In some embodiments, the first ligand LA is selected from the group consisting of:




embedded image


embedded image



wherein R1 and R2 are each independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In some embodiments of the compound, the first ligand LA is selected from the group consisting of


ligands IV-Ai that are based on a structure of Formula IV




embedded image



ligands VI-Ai that are based on a structure of Formula VI




embedded image



ligands VIII-Ai that are based on a structure of Formula VIII




embedded image



ligands X-Ai that are based on a structure of Formula X




embedded image



ligands XII-Ai that are based on a structure of Formula XII




embedded image



ligands XIV-Ai that are based on a structure of Formula XIV




embedded image



ligands XVI-Ai that are based on a structure of Formula XVI




embedded image



and


ligands XVIII-Ai that are based on a structure of Formula XVIII




embedded image


wherein i is an integer from 1 to 840 and for each i, R1, R2, R3, and R4 in the formulas IV, VI, VIII, X, XII, XIV, XVI, XVIII are defined as follows:



















i
R1
R2
R3
R4









  1.
RB1
RB1
RB3
H



  2.
RB1
RB1
RB6
H



  3.
RB1
RB1
RB7
H



  4.
RB1
RB1
RB12
H



  5.
RB1
RB1
RB20
H



  6.
RB1
RB1
RB25
H



  7.
RB1
RB1
RB1
H



  8.
RB1
RB1
RA37
H



  9.
RB1
RB1
RA43
H



 10.
RB1
RB1
RC1
H



 11.
RB1
RB1
RC4
H



 12.
RB1
RB1
RC5
H



 13.
RB1
RB1
RC7
H



 14.
RB1
RB1
RC9
H



 15.
RB1
RB1
RC21
H



 16.
RB1
RB1
RC24
H



 17.
RB1
RB1
RC26
H



 18.
RB1
RB1
RC54
H



 19.
RB1
RB1
RC65
H



 20.
RB1
RB1
RC68
H



 21.
RB1
RB1
RC110
H



 22.
RB1
RB1
RC115
H



 23.
RB1
RB1
RC117
H



 24.
RB1
RB1
RC141
H



 25.
RB1
RB1
RC168
H



 26.
RB1
RB1
RC209
H



 27.
RB1
RB1
RC231
H



 28.
RB1
RB1
RC243
H



 29.
RB1
RB1
RC269
H



 30.
RB1
RB1
RC276
H



 31.
RB1
RB1
RB3
RB3



 32.
RB1
RB1
RB6
RB3



 33.
RB1
RB1
RB7
RB3



 34.
RB1
RB1
RB12
RB3



 35.
RB1
RB1
RB20
RB3



 36.
RB1
RB1
RB25
RB3



 37.
RB1
RB1
RB1
RB3



 38.
RB1
RB1
RA37
RB3



 39.
RB1
RB1
RA43
RB3



 40.
RB1
RB1
RC1
RB3



 41.
RB1
RB1
RC4
RB3



 42.
RB1
RB1
RC5
RB3



 43.
RB1
RB1
RC7
RB3



 44.
RB1
RB1
RC9
RB3



 45.
RB1
RB1
RC21
RB3



 46.
RB1
RB1
RC24
RB3



 47.
RB1
RB1
RC26
RB3



 48.
RB1
RB1
RC54
RB3



 49.
RB1
RB1
RC65
RB3



 50.
RB1
RB1
RC68
RB3



 51.
RB1
RB1
RC110
RB3



 52.
RB1
RB1
RC115
RB3



 53.
RB1
RB1
RC117
RB3



 54.
RB1
RB1
RC141
RB3



 55.
RB1
RB1
RC168
RB3



 56.
RB1
RB1
RC209
RB3



 57.
RB1
RB1
RC231
RB3



 58.
RB1
RB1
RC243
RB3



 59.
RB1
RB1
RC269
RB3



 60.
RB1
RB1
RC276
RB3



 61.
RB1
RB1
RB3
RB4



 62.
RB1
RB1
RB6
RB4



 63.
RB1
RB1
RB7
RB4



 64.
RB1
RB1
RB12
RB4



 65.
RB1
RB1
RB20
RB4



 66.
RB1
RB1
RB25
RB4



 67.
RB1
RB1
RB1
RB4



 68.
RB1
RB1
RA37
RB4



 69.
RB1
RB1
RA43
RB4



 70.
RB1
RB1
RC1
RB4



 71.
RB1
RB1
RC4
RB4



 72.
RB1
RB1
RC5
RB4



 73.
RB1
RB1
RC7
RB4



 74.
RB1
RB1
RC9
RB4



 75.
RB1
RB1
RC21
RB4



 76.
RB1
RB1
RC24
RB4



 77.
RB1
RB1
RC26
RB4



 78.
RB1
RB1
RC54
RB4



 79.
RB1
RB1
RC65
RB4



 80.
RB1
RB1
RC68
RB4



 81.
RB1
RB1
RC110
RB4



 82.
RB1
RB1
RC115
RB4



 83.
RB1
RB1
RC117
RB4



 84.
RB1
RB1
RC141
RB4



 85.
RB1
RB1
RC168
RB4



 86.
RB1
RB1
RC209
RB4



 87.
RB1
RB1
RC231
RB4



 88.
RB1
RB1
RC243
RB4



 89.
RB1
RB1
RC269
RB4



 90.
RB1
RB1
RC276
RB4



 91.
RB1
RB1
RB3
RB18



 92.
RB1
RB1
RB6
RB18



 93.
RB1
RB1
RB7
RB18



 94.
RB1
RB1
RB12
RB18



 95.
RB1
RB1
RB20
RB18



 96.
RB1
RB1
RB25
RB18



 97.
RB1
RB1
RB1
RB18



 98.
RB1
RB1
RA37
RB18



 99.
RB1
RB1
RA43
RB18



100.
RB1
RB1
RC1
RB18



101.
RB1
RB1
RC4
RB18



102.
RB1
RB1
RC5
RB18



103.
RB1
RB1
RC7
RB18



104.
RB1
RB1
RC9
RB18



105.
RB1
RB1
RC21
RB18



106.
RB1
RB1
RC24
RB18



107.
RB1
RB1
RC26
RB18



108.
RB1
RB1
RC54
RB18



109.
RB1
RB1
RC65
RB18



110.
RB1
RB1
RC68
RB18



111.
RB1
RB1
RC110
RB18



112.
RB1
RB1
RC115
RB18



113.
RB1
RB1
RC117
RB18



114.
RB1
RB1
RC141
RB18



115.
RB1
RB1
RC168
RB18



116.
RB1
RB1
RC209
RB18



117.
RB1
RB1
RC231
RB18



118.
RB1
RB1
RC243
RB18



119.
RB1
RB1
RC269
RB18



120.
RB1
RB1
RC276
RB18



121.
RB1
RB1
RB3
RA3



122.
RB1
RB1
RB6
RA3



123.
RB1
RB1
RB7
RA3



124.
RB1
RB1
RB12
RA3



125.
RB1
RB1
RB20
RA3



126.
RB1
RB1
RB25
RA3



127.
RB1
RB1
RB1
RA3



128.
RB1
RB1
RA37
RA3



129.
RB1
RB1
RA43
RA3



130.
RB1
RB1
RC1
RA3



131.
RB1
RB1
RC4
RA3



132.
RB1
RB1
RC5
RA3



133.
RB1
RB1
RC7
RA3



134.
RB1
RB1
RC9
RA3



135.
RB1
RB1
RC21
RA3



136.
RB1
RB1
RC24
RA3



137.
RB1
RB1
RC26
RA3



138.
RB1
RB1
RC54
RA3



139.
RB1
RB1
RC65
RA3



140.
RB1
RB1
RC68
RA3



141.
RB1
RB1
RC110
RA3



142.
RB1
RB1
RC115
RA3



143.
RB1
RB1
RC117
RA3



144.
RB1
RB1
RC141
RA3



145.
RB1
RB1
RC168
RA3



146.
RB1
RB1
RC209
RA3



147.
RB1
RB1
RC231
RA3



148.
RB1
RB1
RC243
RA3



149.
RB1
RB1
RC269
RA3



150.
RB1
RB1
RC276
RA3



151.
RB1
RB1
RB3
RA34



152.
RB1
RB1
RB6
RA34



153.
RB1
RB1
RB7
RA34



154.
RB1
RB1
RB12
RA34



155.
RB1
RB1
RB20
RA34



156.
RB1
RB1
RB25
RA34



157.
RB1
RB1
RB1
RA34



158.
RB1
RB1
RA37
RA34



159.
RB1
RB1
RA43
RA34



160.
RB1
RB1
RC1
RA34



161.
RB1
RB1
RC4
RA34



162.
RB1
RB1
RC5
RA34



163.
RB1
RB1
RC7
RA34



164.
RB1
RB1
RC9
RA34



165.
RB1
RB1
RC21
RA34



166.
RB1
RB1
RC24
RA34



167.
RB1
RB1
RC26
RA34



168.
RB1
RB1
RC54
RA34



169.
RB1
RB1
RC65
RA34



170.
RB1
RB1
RC68
RA34



171.
RB1
RB1
RC110
RA34



172.
RB1
RB1
RC115
RA34



173.
RB1
RB1
RC117
RA34



174.
RB1
RB1
RC141
RA34



175.
RB1
RB1
RC168
RA34



176.
RB1
RB1
RC209
RA34



177.
RB1
RB1
RC231
RA34



178.
RB1
RB1
RC243
RA34



179.
RB1
RB1
RC269
RA34



180.
RB1
RB1
RC276
RA34



181.
RB1
RB1
RB3
RA52



182.
RB1
RB1
RB6
RA52



183.
RB1
RB1
RB7
RA52



184.
RB1
RB1
RB12
RA52



185.
RB1
RB1
RB20
RA52



186.
RB1
RB1
RB25
RA52



187.
RB1
RB1
RB1
RA52



188.
RB1
RB1
RA37
RA52



189.
RB1
RB1
RA43
RA52



190.
RB1
RB1
RC1
RA52



191.
RB1
RB1
RC4
RA52



192.
RB1
RB1
RC5
RA52



193.
RB1
RB1
RC7
RA52



194.
RB1
RB1
RC9
RA52



195.
RB1
RB1
RC21
RA52



196.
RB1
RB1
RC24
RA52



197.
RB1
RB1
RC26
RA52



198.
RB1
RB1
RC54
RA52



199.
RB1
RB1
RC65
RA52



200.
RB1
RB1
RC68
RA52



201.
RB1
RB1
RC110
RA52



202.
RB1
RB1
RC115
RA52



203.
RB1
RB1
RC117
RA52



204.
RB1
RB1
RC141
RA52



205.
RB1
RB1
RC168
RA52



206.
RB1
RB1
RC209
RA52



207.
RB1
RB1
RC231
RA52



208.
RB1
RB1
RC243
RA52



209.
RB1
RB1
RC269
RA52



210.
RB1
RB1
RC276
RA52



211.
RB44
RB44
RB3
H



212.
RB44
RB44
RB6
H



213.
RB44
RB44
RB7
H



214.
RB44
RB44
RB12
H



215.
RB44
RB44
RB20
H



216.
RB44
RB44
RB25
H



217.
RB44
RB44
RB1
H



218.
RB44
RB44
RA37
H



219.
RB44
RB44
RA43
H



220.
RB44
RB44
RC1
H



221.
RB44
RB44
RC4
H



222.
RB44
RB44
RC5
H



223.
RB44
RB44
RC7
H



224.
RB44
RB44
RC9
H



225.
RB44
RB44
RC21
H



226.
RB44
RB44
RC24
H



227.
RB44
RB44
RC26
H



228.
RB44
RB44
RC54
H



229.
RB44
RB44
RC65
H



230.
RB44
RB44
RC68
H



231.
RB44
RB44
RC110
H



232.
RB44
RB44
RC115
H



233.
RB44
RB44
RC117
H



234.
RB44
RB44
RC141
H



235.
RB44
RB44
RC168
H



236.
RB44
RB44
RC209
H



237.
RB44
RB44
RC231
H



238.
RB44
RB44
RC243
H



239.
RB44
RB44
RC269
H



240.
RB44
RB44
RC276
H



241.
RB44
RB44
RB3
RB3



242.
RB44
RB44
RB6
RB3



243.
RB44
RB44
RB7
RB3



244.
RB44
RB44
RB12
RB3



245.
RB44
RB44
RB20
RB3



246.
RB44
RB44
RB25
RB3



247.
RB44
RB44
RB1
RB3



248.
RB44
RB44
RA37
RB3



249.
RB44
RB44
RA43
RB3



250.
RB44
RB44
RC1
RB3



251.
RB44
RB44
RC4
RB3



252.
RB44
RB44
RC5
RB3



253.
RB44
RB44
RC7
RB3



254.
RB44
RB44
RC9
RB3



255.
RB44
RB44
RC21
RB3



256.
RB44
RB44
RC24
RB3



257.
RB44
RB44
RC26
RB3



258.
RB44
RB44
RC54
RB3



259.
RB44
RB44
RC65
RB3



260.
RB44
RB44
RC68
RB3



261.
RB44
RB44
RC110
RB3



262.
RB44
RB44
RC115
RB3



263.
RB44
RB44
RC117
RB3



264.
RB44
RB44
RC141
RB3



265.
RB44
RB44
RC168
RB3



266.
RB44
RB44
RC209
RB3



267.
RB44
RB44
RC231
RB3



268.
RB44
RB44
RC243
RB3



269.
RB44
RB44
RC269
RB3



270.
RB44
RB44
RC276
RB3



271.
RB44
RB44
RB3
RB4



272.
RB44
RB44
RB6
RB4



273.
RB44
RB44
RB7
RB4



274.
RB44
RB44
RB12
RB4



275.
RB44
RB44
RB20
RB4



276.
RB44
RB44
RB25
RB4



277.
RB44
RB44
RB1
RB4



278.
RB44
RB44
RA37
RB4



279.
RB44
RB44
RA43
RB4



280.
RB44
RB44
RC1
RB4



281.
RB44
RB44
RC4
RB4



282.
RB44
RB44
RC5
RB4



283.
RB44
RB44
RC7
RB4



284.
RB44
RB44
RC9
RB4



285.
RB44
RB44
RC21
RB4



286.
RB44
RB44
RC24
RB4



287.
RB44
RB44
RC26
RB4



288.
RB44
RB44
RC54
RB4



289.
RB44
RB44
RC65
RB4



290.
RB44
RB44
RC68
RB4



291.
RB44
RB44
RC110
RB4



292.
RB44
RB44
RC115
RB4



293.
RB44
RB44
RC117
RB4



294.
RB44
RB44
RC141
RB4



295.
RB44
RB44
RC168
RB4



296.
RB44
RB44
RC209
RB4



297.
RB44
RB44
RC231
RB4



298.
RB44
RB44
RC243
RB4



299.
RB44
RB44
RC269
RB4



300.
RB44
RB44
RC276
RB4



301.
RB44
RB44
RB3
RB18



302.
RB44
RB44
RB6
RB18



303.
RB44
RB44
RB7
RB18



304.
RB44
RB44
RB12
RB18



305.
RB44
RB44
RB20
RB18



306.
RB44
RB44
RB25
RB18



307.
RB44
RB44
RB1
RB18



308.
RB44
RB44
RA37
RB18



309.
RB44
RB44
RA43
RB18



310.
RB44
RB44
RC1
RB18



311.
RB44
RB44
RC4
RB18



312.
RB44
RB44
RC5
RB18



313.
RB44
RB44
RC7
RB18



314.
RB44
RB44
RC9
RB18



315.
RB44
RB44
RC21
RB18



316.
RB44
RB44
RC24
RB18



317.
RB44
RB44
RC26
RB18



318.
RB44
RB44
RC54
RB18



319.
RB44
RB44
RC65
RB18



320.
RB44
RB44
RC68
RB18



321.
RB44
RB44
RC110
RB18



322.
RB44
RB44
RC115
RB18



323.
RB44
RB44
RC117
RB18



324.
RB44
RB44
RC141
RB18



325.
RB44
RB44
RC168
RB18



326.
RB44
RB44
RC209
RB18



327.
RB44
RB44
RC231
RB18



328.
RB44
RB44
RC243
RB18



329.
RB44
RB44
RC269
RB18



330.
RB44
RB44
RC276
RB18



331.
RB44
RB44
RB3
RA3



332.
RB44
RB44
RB6
RA3



333.
RB44
RB44
RB7
RA3



334.
RB44
RB44
RB12
RA3



335.
RB44
RB44
RB20
RA3



336.
RB44
RB44
RB25
RA3



337.
RB44
RB44
RB1
RA3



338.
RB44
RB44
RA37
RA3



339.
RB44
RB44
RA43
RA3



340.
RB44
RB44
RC1
RA3



341.
RB44
RB44
RC4
RA3



342.
RB44
RB44
RC5
RA3



343.
RB44
RB44
RC7
RA3



344.
RB44
RB44
RC9
RA3



345.
RB44
RB44
RC21
RA3



346.
RB44
RB44
RC24
RA3



347.
RB44
RB44
RC26
RA3



348.
RB44
RB44
RC54
RA3



349.
RB44
RB44
RC65
RA3



350.
RB44
RB44
RC68
RA3



351.
RB44
RB44
RC110
RA3



352.
RB44
RB44
RC115
RA3



353.
RB44
RB44
RC117
RA3



354.
RB44
RB44
RC141
RA3



355.
RB44
RB44
RC168
RA3



356.
RB44
RB44
RC209
RA3



357.
RB44
RB44
RC231
RA3



358.
RB44
RB44
RC243
RA3



359.
RB44
RB44
RC269
RA3



360.
RB44
RB44
RC276
RA3



361.
RB44
RB44
RB3
RA34



362.
RB44
RB44
RB6
RA34



363.
RB44
RB44
RB7
RA34



364.
RB44
RB44
RB12
RA34



365.
RB44
RB44
RB20
RA34



366.
RB44
RB44
RB25
RA34



367.
RB44
RB44
RB1
RA34



368.
RB44
RB44
RA37
RA34



369.
RB44
RB44
RA43
RA34



370.
RB44
RB44
RC1
RA34



371.
RB44
RB44
RC4
RA34



372.
RB44
RB44
RC5
RA34



373.
RB44
RB44
RC7
RA34



374.
RB44
RB44
RC9
RA34



375.
RB44
RB44
RC21
RA34



376.
RB44
RB44
RC24
RA34



377.
RB44
RB44
RC26
RA34



378.
RB44
RB44
RC54
RA34



379.
RB44
RB44
RC65
RA34



380.
RB44
RB44
RC68
RA34



381.
RB44
RB44
RC110
RA34



382.
RB44
RB44
RC115
RA34



383.
RB44
RB44
RC117
RA34



384.
RB44
RB44
RC141
RA34



385.
RB44
RB44
RC168
RA34



386.
RB44
RB44
RC209
RA34



387.
RB44
RB44
RC231
RA34



388.
RB44
RB44
RC243
RA34



389.
RB44
RB44
RC269
RA34



390.
RB44
RB44
RC276
RA34



391.
RB44
RB44
RB3
RA52



392.
RB44
RB44
RB6
RA52



393.
RB44
RB44
RB7
RA52



394.
RB44
RB44
RB12
RA52



395.
RB44
RB44
RB20
RA52



396.
RB44
RB44
RB25
RA52



397.
RB44
RB44
RB1
RA52



398.
RB44
RB44
RA37
RA52



399.
RB44
RB44
RA43
RA52



400.
RB44
RB44
RC1
RA52



401.
RB44
RB44
RC4
RA52



402.
RB44
RB44
RC5
RA52



403.
RB44
RB44
RC7
RA52



404.
RB44
RB44
RC9
RA52



405.
RB44
RB44
RC21
RA52



406.
RB44
RB44
RC24
RA52



407.
RB44
RB44
RC26
RA52



408.
RB44
RB44
RC54
RA52



409.
RB44
RB44
RC65
RA52



410.
RB44
RB44
RC68
RA52



411.
RB44
RB44
RC110
RA52



412.
RB44
RB44
RC115
RA52



413.
RB44
RB44
RC117
RA52



414.
RB44
RB44
RC141
RA52



415.
RB44
RB44
RC168
RA52



416.
RB44
RB44
RC209
RA52



417.
RB44
RB44
RC231
RA52



418.
RB44
RB44
RC243
RA52



419.
RB44
RB44
RC269
RA52



420.
RB44
RB44
RC276
RA52



421.
RB1
RB6
RB3
H



422.
RB1
RB6
RB6
H



423.
RB1
RB6
RB7
H



424.
RB1
RB6
RB12
H



425.
RB1
RB6
RB20
H



426.
RB1
RB6
RB25
H



427.
RB1
RB6
RB1
H



428.
RB1
RB6
RA37
H



429.
RB1
RB6
RA43
H



430.
RB1
RB6
RC1
H



431.
RB1
RB6
RC4
H



432.
RB1
RB6
RC5
H



433.
RB1
RB6
RC7
H



434.
RB1
RB6
RC9
H



435.
RB1
RB6
RC21
H



436.
RB1
RB6
RC24
H



437.
RB1
RB6
RC26
H



438.
RB1
RB6
RC54
H



439.
RB1
RB6
RC65
H



440.
RB1
RB6
RC68
H



441.
RB1
RB6
RC110
H



442.
RB1
RB6
RC115
H



443.
RB1
RB6
RC117
H



444.
RB1
RB6
RC141
H



445.
RB1
RB6
RC168
H



446.
RB1
RB6
RC209
H



447.
RB1
RB6
RC231
H



448.
RB1
RB6
RC243
H



449.
RB1
RB6
RC269
H



450.
RB1
RB6
RC276
H



451.
RB1
RB6
RB3
RB3



452.
RB1
RB6
RB6
RB3



453.
RB1
RB6
RB7
RB3



454.
RB1
RB6
RB12
RB3



455.
RB1
RB6
RB20
RB3



456.
RB1
RB6
RB25
RB3



457.
RB1
RB6
RB1
RB3



458.
RB1
RB6
RA37
RB3



459.
RB1
RB6
RA43
RB3



460.
RB1
RB6
RC1
RB3



461.
RB1
RB6
RC4
RB3



462.
RB1
RB6
RC5
RB3



463.
RB1
RB6
RC7
RB3



464.
RB1
RB6
RC9
RB3



465.
RB1
RB6
RC21
RB3



466.
RB1
RB6
RC24
RB3



467.
RB1
RB6
RC26
RB3



468.
RB1
RB6
RC54
RB3



469.
RB1
RB6
RC65
RB3



470.
RB1
RB6
RC68
RB3



471.
RB1
RB6
RC110
RB3



472.
RB1
RB6
RC115
RB3



473.
RB1
RB6
RC117
RB3



474.
RB1
RB6
RC141
RB3



475.
RB1
RB6
RC168
RB3



476.
RB1
RB6
RC209
RB3



477.
RB1
RB6
RC231
RB3



478.
RB1
RB6
RC243
RB3



479.
RB1
RB6
RC269
RB3



480.
RB1
RB6
RC279
RB3



481.
RB1
RB6
RB3
RB4



482.
RB1
RB6
RB6
RB4



483.
RB1
RB6
RB7
RB4



484.
RB1
RB6
RB12
RB4



485.
RB1
RB6
RB20
RB4



486.
RB1
RB6
RB25
RB4



487.
RB1
RB6
RB1
RB4



488.
RB1
RB6
RA37
RB4



489.
RB1
RB6
RA43
RB4



490.
RB1
RB6
RC1
RB4



491.
RB1
RB6
RC4
RB4



492.
RB1
RB6
RC5
RB4



493.
RB1
RB6
RC7
RB4



494.
RB1
RB6
RC9
RB4



495.
RB1
RB6
RC21
RB4



496.
RB1
RB6
RC24
RB4



497.
RB1
RB6
RC26
RB4



498.
RB1
RB6
RC54
RB4



499.
RB1
RB6
RC65
RB4



500.
RB1
RB6
RC68
RB4



501.
RB1
RB6
RC110
RB4



502.
RB1
RB6
RC115
RB4



503.
RB1
RB6
RC117
RB4



504.
RB1
RB6
RC141
RB4



505.
RB1
RB6
RC168
RB4



506.
RB1
RB6
RC209
RB4



507.
RB1
RB6
RC231
RB4



508.
RB1
RB6
RC243
RB4



509.
RB1
RB6
RC269
RB4



510.
RB1
RB6
RC276
RB4



511.
RB1
RB6
RB3
RB18



512.
RB1
RB6
RB6
RB18



513.
RB1
RB6
RB7
RB18



514.
RB1
RB6
RB12
RB18



515.
RB1
RB6
RB20
RB18



516.
RB1
RB6
RB25
RB18



517.
RB1
RB6
RB1
RB18



518.
RB1
RB6
RA37
RB18



519.
RB1
RB6
RA43
RB18



520.
RB1
RB6
RC1
RB18



521.
RB1
RB6
RC4
RB18



522.
RB1
RB6
RC5
RB18



523.
RB1
RB6
RC7
RB18



524.
RB1
RB6
RC9
RB18



525.
RB1
RB6
RC21
RB18



526.
RB1
RB6
RC24
RB18



527.
RB1
RB6
RC26
RB18



528.
RB1
RB6
RC54
RB18



529.
RB1
RB6
RC65
RB18



530.
RB1
RB6
RC68
RB18



531.
RB1
RB6
RC110
RB18



532.
RB1
RB6
RC115
RB18



533.
RB1
RB6
RC117
RB18



534.
RB1
RB6
RC141
RB18



535.
RB1
RB6
RC168
RB18



536.
RB1
RB6
RC209
RB18



537.
RB1
RB6
RC231
RB18



538.
RB1
RB6
RC243
RB18



539.
RB1
RB6
RC269
RB18



540.
RB1
RB6
RC276
RB18



541.
RB1
RB6
RB3
RA3



542.
RB1
RB6
RB6
RA3



543.
RB1
RB6
RB7
RA3



544.
RB1
RB6
RB12
RA3



545.
RB1
RB6
RB20
RA3



546.
RB1
RB6
RB25
RA3



547.
RB1
RB6
RB1
RA3



548.
RB1
RB6
RA37
RA3



549.
RB1
RB6
RA43
RA3



550.
RB1
RB6
RC1
RA3



551.
RB1
RB6
RC4
RA3



552.
RB1
RB6
RC5
RA3



553.
RB1
RB6
RC7
RA3



554.
RB1
RB6
RC9
RA3



555.
RB1
RB6
RC21
RA3



556.
RB1
RB6
RC24
RA3



557.
RB1
RB6
RC26
RA3



558.
RB1
RB6
RC54
RA3



559.
RB1
RB6
RC65
RA3



560.
RB1
RB6
RC68
RA3



561.
RB1
RB6
RC110
RA3



562.
RB1
RB6
RC115
RA3



563.
RB1
RB6
RC117
RA3



564.
RB1
RB6
RC141
RA3



565.
RB1
RB6
RC168
RA3



566.
RB1
RB6
RC209
RA3



567.
RB1
RB6
RC231
RA3



568.
RB1
RB6
RC243
RA3



569.
RB1
RB6
RC269
RA3



570.
RB1
RB6
RC276
RA3



571.
RB1
RB6
RB3
RA34



572.
RB1
RB6
RB6
RA34



573.
RB1
RB6
RB7
RA34



574.
RB1
RB6
RB12
RA34



575.
RB1
RB6
RB20
RA34



576.
RB1
RB6
RB25
RA34



577.
RB1
RB6
RB1
RA34



578.
RB1
RB6
RA37
RA34



579.
RB1
RB6
RA43
RA34



580.
RB1
RB6
RC1
RA34



581.
RB1
RB6
RC4
RA34



582.
RB1
RB6
RC5
RA34



583.
RB1
RB6
RC7
RA34



584.
RB1
RB6
RC9
RA34



585.
RB1
RB6
RC21
RA34



586.
RB1
RB6
RC24
RA34



587.
RB1
RB6
RC26
RA34



588.
RB1
RB6
RC54
RA34



589.
RB1
RB6
RC65
RA34



590.
RB1
RB6
RC68
RA34



591.
RB1
RB6
RC110
RA34



592.
RB1
RB6
RC115
RA34



593.
RB1
RB6
RC117
RA34



594.
RB1
RB6
RC141
RA34



595.
RB1
RB6
RC168
RA34



596.
RB1
RB6
RC209
RA34



597.
RB1
RB6
RC231
RA34



598.
RB1
RB6
RC243
RA34



599.
RB1
RB6
RC269
RA34



600.
RB1
RB6
RC276
RA34



601.
RB1
RB6
RB3
RA52



602.
RB1
RB6
RB6
RA52



603.
RB1
RB6
RB7
RA52



604.
RB1
RB6
RB12
RA52



605.
RB1
RB6
RB20
RA52



606.
RB1
RB6
RB25
RA52



607.
RB1
RB6
RB1
RA52



608.
RB1
RB6
RA37
RA52



609.
RB1
RB6
RA43
RA52



610.
RB1
RB6
RC1
RA52



611.
RB1
RB6
RC4
RA52



612.
RB1
RB6
RC5
RA52



613.
RB1
RB6
RC7
RA52



614.
RB1
RB6
RC9
RA52



615.
RB1
RB6
RC21
RA52



616.
RB1
RB6
RC24
RA52



617.
RB1
RB6
RC26
RA52



618.
RB1
RB6
RC54
RA52



619.
RB1
RB6
RC65
RA52



620.
RB1
RB6
RC68
RA52



621.
RB1
RB6
RC110
RA52



622.
RB1
RB6
RC115
RA52



623.
RB1
RB6
RC117
RA52



624.
RB1
RB6
RC141
RA52



625.
RB1
RB6
RC168
RA52



626.
RB1
RB6
RC209
RA52



627.
RB1
RB6
RC231
RA52



628.
RB1
RB6
RC243
RA52



629.
RB1
RB6
RC269
RA52



630.
RB1
RB6
RC276
RA52



631.
RB1
RB45
RB3
H



632.
RB1
RB45
RB6
H



633.
RB1
RB45
RB7
H



634.
RB1
RB45
RB12
H



635.
RB1
RB45
RB20
H



636.
RB1
RB45
RB25
H



637.
RB1
RB45
RB1
H



638.
RB1
RB45
RA37
H



639.
RB1
RB45
RA43
H



640.
RB1
RB45
RC1
H



641.
RB1
RB45
RC4
H



642.
RB1
RB45
RC5
H



643.
RB1
RB45
RC7
H



644.
RB1
RB45
RC9
H



645.
RB1
RB45
RC21
H



646.
RB1
RB45
RC24
H



647.
RB1
RB45
RC26
H



648.
RB1
RB45
RC54
H



649.
RB1
RB45
RC65
H



650.
RB1
RB45
RC68
H



651.
RB1
RB45
RC110
H



652.
RB1
RB45
RC115
H



653.
RB1
RB45
RC117
H



654.
RB1
RB45
RC141
H



655.
RB1
RB45
RC168
H



656.
RB1
RB45
RC209
H



657.
RB1
RB45
RC231
H



658.
RB1
RB45
RC243
H



659.
RB1
RB45
RC269
H



660.
RB1
RB45
RC276
H



661.
RB1
RB45
RB3
RB3



662.
RB1
RB45
RB6
RB3



663.
RB1
RB45
RB7
RB3



664.
RB1
RB45
RB12
RB3



665.
RB1
RB45
RB20
RB3



666.
RB1
RB45
RB25
RB3



667.
RB1
RB45
RB1
RB3



668.
RB1
RB45
RA37
RB3



669.
RB1
RB45
RA43
RB3



670.
RB1
RB45
RC1
RB3



671.
RB1
RB45
RC4
RB3



672.
RB1
RB45
RC5
RB3



673.
RB1
RB45
RC7
RB3



674.
RB1
RB45
RC9
RB3



675.
RB1
RB45
RC21
RB3



676.
RB1
RB45
RC24
RB3



677.
RB1
RB45
RC26
RB3



678.
RB1
RB45
RC54
RB3



679.
RB1
RB45
RC65
RB3



680.
RB1
RB45
RC68
RB3



681.
RB1
RB45
RC110
RB3



682.
RB1
RB45
RC115
RB3



683.
RB1
RB45
RC117
RB3



684.
RB1
RB45
RC141
RB3



685.
RB1
RB45
RC168
RB3



686.
RB1
RB45
RC209
RB3



687.
RB1
RB45
RC231
RB3



688.
RB1
RB45
RC243
RB3



689.
RB1
RB45
RC269
RB3



690.
RB1
RB45
RC276
RB3



691.
RB1
RB45
RB3
RB4



692.
RB1
RB45
RB6
RB4



693.
RB1
RB45
RB7
RB4



694.
RB1
RB45
RB12
RB4



695.
RB1
RB45
RB20
RB4



696.
RB1
RB45
RB25
RB4



697.
RB1
RB45
RB1
RB4



698.
RB1
RB45
RA37
RB4



699.
RB1
RB45
RA43
RB4



700.
RB1
RB45
RC1
RB4



701.
RB1
RB45
RC4
RB4



702.
RB1
RB45
RC5
RB4



703.
RB1
RB45
RC7
RB4



704.
RB1
RB45
RC9
RB4



705.
RB1
RB45
RC21
RB4



706.
RB1
RB45
RC24
RB4



707.
RB1
RB45
RC26
RB4



708.
RB1
RB45
RC54
RB4



709.
RB1
RB45
RC65
RB4



710.
RB1
RB45
RC68
RB4



711.
RB1
RB45
RC110
RB4



712.
RB1
RB45
RC115
RB4



713.
RB1
RB45
RC117
RB4



714.
RB1
RB45
RC141
RB4



715.
RB1
RB45
RC168
RB4



716.
RB1
RB45
RC209
RB4



717.
RB1
RB45
RC231
RB4



718.
RB1
RB45
RC243
RB4



719.
RB1
RB45
RC269
RB4



720.
RB1
RB45
RC276
RB4



721.
RB1
RB45
RB3
RB18



722.
RB1
RB45
RB6
RB18



723.
RB1
RB45
RB7
RB18



724.
RB1
RB45
RB12
RB18



725.
RB1
RB45
RB20
RB18



726.
RB1
RB45
RB25
RB18



727.
RB1
RB45
RB1
RB18



728.
RB1
RB45
RA37
RB18



729.
RB1
RB45
RA43
RB18



730.
RB1
RB45
RC1
RB18



731.
RB1
RB45
RC4
RB18



732.
RB1
RB45
RC5
RB18



733.
RB1
RB45
RC7
RB18



734.
RB1
RB45
RC9
RB18



735.
RB1
RB45
RC21
RB18



736.
RB1
RB45
RC24
RB18



737.
RB1
RB45
RC26
RB18



738.
RB1
RB45
RC54
RB18



739.
RB1
RB45
RC65
RB18



740.
RB1
RB45
RC68
RB18



741.
RB1
RB45
RC110
RB18



742.
RB1
RB45
RC115
RB18



743.
RB1
RB45
RC117
RB18



744.
RB1
RB45
RC141
RB18



745.
RB1
RB45
RC168
RB18



746.
RB1
RB45
RC209
RB18



747.
RB1
RB45
RC231
RB18



748.
RB1
RB45
RC243
RB18



749.
RB1
RB45
RC269
RB18



750.
RB1
RB45
RC276
RB18



751.
RB1
RB45
RB3
RA3



752.
RB1
RB45
RB6
RA3



753.
RB1
RB45
RB7
RA3



754.
RB1
RB45
RB12
RA3



755.
RB1
RB45
RB20
RA3



756.
RB1
RB45
RB25
RA3



757.
RB1
RB45
RB1
RA3



758.
RB1
RB45
RA37
RA3



759.
RB1
RB45
RA43
RA3



760.
RB1
RB45
RC1
RA3



761.
RB1
RB45
RC4
RA3



762.
RB1
RB45
RC5
RA3



763.
RB1
RB45
RC7
RA3



764.
RB1
RB45
RC9
RA3



765.
RB1
RB45
RC21
RA3



766.
RB1
RB45
RC24
RA3



767.
RB1
RB45
RC26
RA3



768.
RB1
RB45
RC54
RA3



769.
RB1
RB45
RC65
RA3



770.
RB1
RB45
RC68
RA3



771.
RB1
RB45
RC110
RA3



772.
RB1
RB45
RC115
RA3



773.
RB1
RB45
RC117
RA3



774.
RB1
RB45
RC141
RA3



775.
RB1
RB45
RC168
RA3



776.
RB1
RB45
RC209
RA3



777.
RB1
RB45
RC231
RA3



778.
RB1
RB45
RC243
RA3



779.
RB1
RB45
RC269
RA3



780.
RB1
RB45
RC276
RA3



781.
RB1
RB45
RB3
RA34



782.
RB1
RB45
RB6
RA34



783.
RB1
RB45
RB7
RA34



784.
RB1
RB45
RB12
RA34



785.
RB1
RB45
RB20
RA34



786.
RB1
RB45
RB25
RA34



787.
RB1
RB45
RB1
RA34



788.
RB1
RB45
RA37
RA34



789.
RB1
RB45
RA43
RA34



790.
RB1
RB45
RC1
RA34



791.
RB1
RB45
RC4
RA34



792.
RB1
RB45
RC5
RA34



793.
RB1
RB45
RC7
RA34



794.
RB1
RB45
RC9
RA34



795.
RB1
RB45
RC21
RA34



796.
RB1
RB45
RC24
RA34



797.
RB1
RB45
RC26
RA34



798.
RB1
RB45
RC54
RA34



799.
RB1
RB45
RC65
RA34



800.
RB1
RB45
RC68
RA34



801.
RB1
RB45
RC110
RA34



802.
RB1
RB45
RC115
RA34



803.
RB1
RB45
RC117
RA34



804.
RB1
RB45
RC141
RA34



805.
RB1
RB45
RC168
RA34



806.
RB1
RB45
RC209
RA34



807.
RB1
RB45
RC231
RA34



808.
RB1
RB45
RC243
RA34



809.
RB1
RB45
RC269
RA34



810.
RB1
RB45
RC276
RA34



811.
RB1
RB45
RB3
RA52



812.
RB1
RB45
RB6
RA52



813.
RB1
RB45
RB7
RA52



814.
RB1
RB45
RB12
RA52



815.
RB1
RB45
RB20
RA52



816.
RB1
RB45
RB25
RA52



817.
RB1
RB45
RB1
RA52



818.
RB1
RB45
RA37
RA52



819.
RB1
RB45
RA43
RA52



820.
RB1
RB45
RC1
RA52



821.
RB1
RB45
RC4
RA52



822.
RB1
RB45
RC5
RA52



823.
RB1
RB45
RC7
RA52



824.
RB1
RB45
RC9
RA52



825.
RB1
RB45
RC21
RA52



826.
RB1
RB45
RC24
RA52



827.
RB1
RB45
RC26
RA52



828.
RB1
RB45
RC54
RA52



829.
RB1
RB45
RC65
RA52



830.
RB1
RB45
RC68
RA52



831.
RB1
RB45
RC110
RA52



832.
RB1
RB45
RC115
RA52



833.
RB1
RB45
RC117
RA52



834.
RB1
RB45
RC141
RA52



835.
RB1
RB45
RC168
RA52



836.
RB1
RB45
RC209
RA52



837.
RB1
RB45
RC231
RA52



838.
RB1
RB45
RC243
RA52



839.
RB1
RB45
RC269
RA52



840.
RB1
RB45
RC276
RA52










In some embodiments of the compound, the first ligand LA is selected from the group consisting of,


ligands V-Ai that are based on a structure of Formula V




embedded image



ligands VII-Ai that are based on a structure of Formula VII




embedded image



ligands IX-Ai that are based on a structure of Formula IX




embedded image



ligands XI-Ai that are based on a structure of Formula XI




embedded image



ligands XIII-Ai that are based on a structure of Formula XIII




embedded image



ligands XV-Ai that are based on a structure of Formula XV




embedded image



ligands XVII-Ai that are based on a structure of Formula XVII




embedded image



ligands XIX-Ai that are based on a structure of Formula XIX




embedded image


wherein i is an integer from 841 to 1680, and for each i, R2, R3, and R4 in formulas V, VII, IX, XI, XIII, XV, XVII, and XIX are defined as follows:


















i
R2
R3
R4









 841.
RB1
RB3
H



 842.
RB1
RB6
H



 843.
RB1
RB7
H



 844.
RB1
RB12
H



 845.
RB1
RB20
H



 846.
RB1
RB25
H



 847.
RB1
RB1
H



 848.
RB1
RA37
H



 849.
RB1
RA43
H



 850.
RB1
RC1
H



 851.
RB1
RC4
H



 852.
RB1
RC5
H



 853.
RB1
RC7
H



 854.
RB1
RC9
H



 855.
RB1
RC21
H



 856.
RB1
RC24
H



 857.
RB1
RC26
H



 858.
RB1
RC54
H



 859.
RB1
RC65
H



 860.
RB1
RC68
H



 861.
RB1
RC110
H



 862.
RB1
RC115
H



 863.
RB1
RC117
H



 864.
RB1
RC141
H



 865.
RB1
RC168
H



 866.
RB1
RC209
H



 867.
RB1
RC231
H



 868.
RB1
RC243
H



 869.
RB1
RC269
H



 870.
RB1
RC276
H



 871.
RB1
RB3
RB3



 872.
RB1
RB6
RB3



 873.
RB1
RB7
RB3



 874.
RB1
RB12
RB3



 875.
RB1
RB20
RB3



 876.
RB1
RB25
RB3



 877.
RB1
RB1
RB3



 878.
RB1
RA37
RB3



 879.
RB1
RA43
RB3



 880.
RB1
RC1
RB3



 881.
RB1
RC4
RB3



 882.
RB1
RC5
RB3



 883.
RB1
RC7
RB3



 884.
RB1
RC9
RB3



 885.
RB1
RC21
RB3



 886.
RB1
RC24
RB3



 887.
RB1
RC26
RB3



 888.
RB1
RC54
RB3



 889.
RB1
RC65
RB3



 890.
RB1
RC68
RB3



 891.
RB1
RC110
RB3



 892.
RB1
RC115
RB3



 893.
RB1
RC117
RB3



 894.
RB1
RC141
RB3



 895.
RB1
RC168
RB3



 896.
RB1
RC209
RB3



 897.
RB1
RC231
RB3



 898.
RB1
RC243
RB3



 899.
RB1
RC269
RB3



 900.
RB1
RC276
RB3



 901.
RB1
RB3
RB4



 902.
RB1
RB6
RB4



 903.
RB1
RB7
RB4



 904.
RB1
RB12
RB4



 905.
RB1
RB20
RB4



 906.
RB1
RB25
RB4



 907.
RB1
RB1
RB4



 908.
RB1
RA37
RB4



 909.
RB1
RA43
RB4



 910.
RB1
RC1
RB4



 911.
RB1
RC4
RB4



 912.
RB1
RC5
RB4



 913.
RB1
RC7
RB4



 914.
RB1
RC9
RB4



 915.
RB1
RC21
RB4



 916.
RB1
RC24
RB4



 917.
RB1
RC26
RB4



 918.
RB1
RC54
RB4



 919.
RB1
RC65
RB4



 920.
RB1
RC68
RB4



 921.
RB1
RC110
RB4



 922.
RB1
RC115
RB4



 923.
RB1
RC117
RB4



 924.
RB1
RC141
RB4



 925.
RB1
RC168
RB4



 926.
RB1
RC209
RB4



 927.
RB1
RC231
RB4



 928.
RB1
RC243
RB4



 929.
RB1
RC269
RB4



 930.
RB1
RC276
RB4



 931.
RB1
RB3
RB18



 932.
RB1
RB6
RB18



 933.
RB1
RB7
RB18



 934.
RB1
RB12
RB18



 935.
RB1
RB20
RB18



 936.
RB1
RB25
RB18



 937.
RB1
RB1
RB18



 938.
RB1
RA37
RB18



 939.
RB1
RA43
RB18



 940.
RB1
RC1
RB18



 941.
RB1
RC4
RB18



 942.
RB1
RC5
RB18



 943.
RB1
RC7
RB18



 944.
RB1
RC9
RB18



 945.
RB1
RC21
RB18



 946.
RB1
RC24
RB18



 947.
RB1
RC26
RB18



 948.
RB1
RC54
RB18



 949.
RB1
RC65
RB18



 950.
RB1
RC68
RB18



 951.
RB1
RC110
RB18



 952.
RB1
RC115
RB18



 953.
RB1
RC117
RB18



 954.
RB1
RC141
RB18



 955.
RB1
RC168
RB18



 956.
RB1
RC209
RB18



 957.
RB1
RC231
RB18



 958.
RB1
RC243
RB18



 959.
RB1
RC269
RB18



 960.
RB1
RC276
RB18



 961.
RB1
RB3
RA3



 962.
RB1
RB6
RA3



 963.
RB1
RB7
RA3



 964.
RB1
RB12
RA3



 965.
RB1
RB20
RA3



 966.
RB1
RB25
RA3



 967.
RB1
RB1
RA3



 968.
RB1
RA37
RA3



 969.
RB1
RA43
RA3



 970.
RB1
RC1
RA3



 971.
RB1
RC4
RA3



 972.
RB1
RC5
RA3



 973.
RB1
RC7
RA3



 974.
RB1
RC9
RA3



 975.
RB1
RC21
RA3



 976.
RB1
RC24
RA3



 977.
RB1
RC26
RA3



 978.
RB1
RC54
RA3



 979.
RB1
RC65
RA3



 980.
RB1
RC68
RA3



 981.
RB1
RC110
RA3



 982.
RB1
RC115
RA3



 983.
RB1
RC117
RA3



 984.
RB1
RC141
RA3



 985.
RB1
RC168
RA3



 986.
RB1
RC209
RA3



 987.
RB1
RC231
RA3



 988.
RB1
RC243
RA3



 989.
RB1
RC269
RA3



 990.
RB1
RC276
RA3



 991.
RB1
RB3
RA34



 992.
RB1
RB6
RA34



 993.
RB1
RB7
RA34



 994.
RB1
RB12
RA34



 995.
RB1
RB20
RA34



 996.
RB1
RB25
RA34



 997.
RB1
RB1
RA34



 998.
RB1
RA37
RA34



 999.
RB1
RA43
RA34



1000.
RB1
RC1
RA34



1001.
RB1
RC4
RA34



1002.
RB1
RC5
RA34



1003.
RB1
RC7
RA34



1004.
RB1
RC9
RA34



1005.
RB1
RC21
RA34



1006.
RB1
RC24
RA34



1007.
RB1
RC26
RA34



1008.
RB1
RC54
RA34



1009.
RB1
RC65
RA34



1010.
RB1
RC68
RA34



1011.
RB1
RC110
RA34



1012.
RB1
RC115
RA34



1013.
RB1
RC117
RA34



1014.
RB1
RC141
RA34



1015.
RB1
RC168
RA34



1016.
RB1
RC209
RA34



1017.
RB1
RC231
RA34



1018.
RB1
RC243
RA34



1019.
RB1
RC269
RA34



1020.
RB1
RC276
RA34



1021.
RB1
RB3
RA52



1022.
RB1
RB6
RA52



1023.
RB1
RB7
RA52



1024.
RB1
RB12
RA52



1025.
RB1
RB20
RA52



1026.
RB1
RB25
RA52



1027.
RB1
RB1
RA52



1028.
RB1
RA37
RA52



1029.
RB1
RA43
RA52



1030.
RB1
RC1
RA52



1031.
RB1
RC4
RA52



1032.
RB1
RC5
RA52



1033.
RB1
RC7
RA52



1034.
RB1
RC9
RA52



1035.
RB1
RC21
RA52



1036.
RB1
RC24
RA52



1037.
RB1
RC26
RA52



1038.
RB1
RC54
RA52



1039.
RB1
RC65
RA52



1040.
RB1
RC68
RA52



1041.
RB1
RC110
RA52



1042.
RB1
RC115
RA52



1043.
RB1
RC117
RA52



1044.
RB1
RC141
RA52



1045.
RB1
RC168
RA52



1046.
RB1
RC209
RA52



1047.
RB1
RC231
RA52



1048.
RB1
RC243
RA52



1049.
RB1
RC269
RA52



1050.
RB1
RC276
RA52



1051.
RB44
RB3
H



1052.
RB44
RB6
H



1053.
RB44
RB7
H



1054.
RB44
RB12
H



1055.
RB44
RB20
H



1056.
RB44
RB25
H



1057.
RB44
RB1
H



1058.
RB44
RA37
H



1059.
RB44
RA43
H



1060.
RB44
RC1
H



1061.
RB44
RC4
H



1062.
RB44
RC5
H



1063.
RB44
RC7
H



1064.
RB44
RC9
H



1065.
RB44
RC21
H



1066.
RB44
RC24
H



1067.
RB44
RC26
H



1068.
RB44
RC54
H



1069.
RB44
RC65
H



1070.
RB44
RC68
H



1071.
RB44
RC110
H



1072.
RB44
RC115
H



1073.
RB44
RC117
H



1074.
RB44
RC141
H



1075.
RB44
RC168
H



1076.
RB44
RC209
H



1077.
RB44
RC231
H



1078.
RB44
RC243
H



1079.
RB44
RC269
H



1080.
RB44
RC276
H



1081.
RB44
RB3
RB3



1082.
RB44
RB6
RB3



1083.
RB44
RB7
RB3



1084.
RB44
RB12
RB3



1085.
RB44
RB20
RB3



1086.
RB44
RB25
RB3



1087.
RB44
RB1
RB3



1088.
RB44
RA37
RB3



1089.
RB44
RA43
RB3



1090.
RB44
RC1
RB3



1091.
RB44
RC4
RB3



1092.
RB44
RC5
RB3



1093.
RB44
RC7
RB3



1094.
RB44
RC9
RB3



1095.
RB44
RC21
RB3



1096.
RB44
RC24
RB3



1097.
RB44
RC26
RB3



1098.
RB44
RC54
RB3



1099.
RB44
RC65
RB3



1100.
RB44
RC68
RB3



1101.
RB44
RC110
RB3



1102.
RB44
RC115
RB3



1103.
RB44
RC117
RB3



1104.
RB44
RC141
RB3



1105.
RB44
RC168
RB3



1106.
RB44
RC209
RB3



1107.
RB44
RC231
RB3



1108.
RB44
RC243
RB3



1109.
RB44
RC269
RB3



1110.
RB44
RC276
RB3



1111.
RB44
RB3
RB4



1112.
RB44
RB6
RB4



1113.
RB44
RB7
RB4



1114.
RB44
RB12
RB4



1115.
RB44
RB20
RB4



1116.
RB44
RB25
RB4



1117.
RB44
RB1
RB4



1118.
RB44
RA37
RB4



1119.
RB44
RA43
RB4



1120.
RB44
RC1
RB4



1121.
RB44
RC4
RB4



1122.
RB44
RC5
RB4



1123.
RB44
RC7
RB4



1124.
RB44
RC9
RB4



1125.
RB44
RC21
RB4



1126.
RB44
RC24
RB4



1127.
RB44
RC26
RB4



1128.
RB44
RC54
RB4



1129.
RB44
RC65
RB4



1130.
RB44
RC68
RB4



1131.
RB44
RC110
RB4



1132.
RB44
RC115
RB4



1133.
RB44
RC117
RB4



1134.
RB44
RC141
RB4



1135.
RB44
RC168
RB4



1136.
RB44
RC209
RB4



1137.
RB44
RC231
RB4



1138.
RB44
RC243
RB4



1139.
RB44
RC269
RB4



1140.
RB44
RC276
RB4



1141.
RB44
RB3
RB18



1142.
RB44
RB6
RB18



1143.
RB44
RB7
RB18



1144.
RB44
RB12
RB18



1145.
RB44
RB20
RB18



1146.
RB44
RB25
RB18



1147.
RB44
RB1
RB18



1148.
RB44
RA37
RB18



1149.
RB44
RA43
RB18



1150.
RB44
RC1
RB18



1151.
RB44
RC4
RB18



1152.
RB44
RC5
RB18



1153.
RB44
RC7
RB18



1154.
RB44
RC9
RB18



1155.
RB44
RC21
RB18



1156.
RB44
RC24
RB18



1157.
RB44
RC26
RB18



1158.
RB44
RC54
RB18



1159.
RB44
RC65
RB18



1160.
RB44
RC68
RB18



1161.
RB44
RC110
RB18



1162.
RB44
RC115
RB18



1163.
RB44
RC117
RB18



1164.
RB44
RC141
RB18



1165.
RB44
RC168
RB18



1166.
RB44
RC209
RB18



1167.
RB44
RC231
RB18



1168.
RB44
RC243
RB18



1169.
RB44
RC269
RB18



1170.
RB44
RC276
RB18



1171.
RB44
RB3
RA3



1172.
RB44
RB6
RA3



1173.
RB44
RB7
RA3



1174.
RB44
RB12
RA3



1175.
RB44
RB20
RA3



1176.
RB44
RB25
RA3



1177.
RB44
RB1
RA3



1178.
RB44
RA37
RA3



1179.
RB44
RA43
RA3



1180.
RB44
RC1
RA3



1181.
RB44
RC4
RA3



1182.
RB44
RC5
RA3



1183.
RB44
RC7
RA3



1184.
RB44
RC9
RA3



1185.
RB44
RC21
RA3



1186.
RB44
RC24
RA3



1187.
RB44
RC26
RA3



1188.
RB44
RC54
RA3



1189.
RB44
RC65
RA3



1190.
RB44
RC68
RA3



1191.
RB44
RC110
RA3



1192.
RB44
RC115
RA3



1193.
RB44
RC117
RA3



1194.
RB44
RC141
RA3



1195.
RB44
RC168
RA3



1196.
RB44
RC209
RA3



1197.
RB44
RC231
RA3



1198.
RB44
RC243
RA3



1199.
RB44
RC269
RA3



1200.
RB44
RC276
RA3



1201.
RB44
RB3
RA34



1202.
RB44
RB6
RA34



1203.
RB44
RB7
RA34



1204.
RB44
RB12
RA34



1205.
RB44
RB20
RA34



1206.
RB44
RB25
RA34



1207.
RB44
RB1
RA34



1208.
RB44
RA37
RA34



1209.
RB44
RA43
RA34



1210.
RB44
RC1
RA34



1211.
RB44
RC4
RA34



1212.
RB44
RC5
RA34



1213.
RB44
RC7
RA34



1214.
RB44
RC9
RA34



1215.
RB44
RC21
RA34



1216.
RB44
RC24
RA34



1217.
RB44
RC26
RA34



1218.
RB44
RC54
RA34



1219.
RB44
RC65
RA34



1220.
RB44
RC68
RA34



1221.
RB44
RC110
RA34



1222.
RB44
RC115
RA34



1223.
RB44
RC117
RA34



1224.
RB44
RC141
RA34



1225.
RB44
RC168
RA34



1226.
RB44
RC209
RA34



1227.
RB44
RC231
RA34



1228.
RB44
RC243
RA34



1229.
RB44
RC269
RA34



1230.
RB44
RC276
RA34



1231.
RB44
RB3
RA52



1232.
RB44
RB6
RA52



1233.
RB44
RB7
RA52



1234.
RB44
RB12
RA52



1235.
RB44
RB20
RA52



1236.
RB44
RB25
RA52



1237.
RB44
RB1
RA52



1238.
RB44
RA37
RA52



1239.
RB44
RA43
RA52



1240.
RB44
RC1
RA52



1241.
RB44
RC4
RA52



1242.
RB44
RC5
RA52



1243.
RB44
RC7
RA52



1244.
RB44
RC9
RA52



1245.
RB44
RC21
RA52



1246.
RB44
RC24
RA52



1247.
RB44
RC26
RA52



1248.
RB44
RC54
RA52



1249.
RB44
RC65
RA52



1250.
RB44
RC68
RA52



1251.
RB44
RC110
RA52



1252.
RB44
RC115
RA52



1253.
RB44
RC117
RA52



1254.
RB44
RC141
RA52



1255.
RB44
RC168
RA52



1256.
RB44
RC209
RA52



1257.
RB44
RC231
RA52



1258.
RB44
RC243
RA52



1259.
RB44
RC269
RA52



1260.
RB44
RC276
RA52



1261.
RB6
RB3
H



1262.
RB6
RB6
H



1263.
RB6
RB7
H



1264.
RB6
RB12
H



1265.
RB6
RB20
H



1266.
RB6
RB25
H



1267.
RB6
RB1
H



1268.
RB6
RA37
H



1269.
RB6
RA43
H



1270.
RB6
RC1
H



1271.
RB6
RC4
H



1272.
RB6
RC5
H



1273.
RB6
RC7
H



1274.
RB6
RC9
H



1275.
RB6
RC21
H



1276.
RB6
RC24
H



1277.
RB6
RC26
H



1278.
RB6
RC54
H



1279.
RB6
RC65
H



1280.
RB6
RC68
H



1281.
RB6
RC110
H



1282.
RB6
RC115
H



1283.
RB6
RC117
H



1284.
RB6
RC141
H



1285.
RB6
RC168
H



1286.
RB6
RC209
H



1287.
RB6
RC231
H



1288.
RB6
RC243
H



1289.
RB6
RC269
H



1290.
RB6
RC276
H



1291.
RB6
RB3
RB3



1292.
RB6
RB6
RB3



1293.
RB6
RB7
RB3



1294.
RB6
RB12
RB3



1295.
RB6
RB20
RB3



1296.
RB6
RB25
RB3



1297.
RB6
RB1
RB3



1298.
RB6
RA37
RB3



1299.
RB6
RA43
RB3



1300.
RB6
RC1
RB3



1301.
RB6
RC4
RB3



1302.
RB6
RC5
RB3



1303.
RB6
RC7
RB3



1304.
RB6
RC9
RB3



1305.
RB6
RC21
RB3



1306.
RB6
RC24
RB3



1307.
RB6
RC26
RB3



1308.
RB6
RC54
RB3



1309.
RB6
RC65
RB3



1310.
RB6
RC68
RB3



1311.
RB6
RC110
RB3



1312.
RB6
RC115
RB3



1313.
RB6
RC117
RB3



1314.
RB6
RC141
RB3



1315.
RB6
RC168
RB3



1316.
RB6
RC209
RB3



1317.
RB6
RC231
RB3



1318.
RB6
RC243
RB3



1319.
RB6
RC269
RB3



1320.
RB6
RC276
RB3



1321.
RB6
RB3
RB4



1322.
RB6
RB6
RB4



1323.
RB6
RB7
RB4



1324.
RB6
RB12
RB4



1325.
RB6
RB20
RB4



1326.
RB6
RB25
RB4



1327.
RB6
RB1
RB4



1328.
RB6
RA37
RB4



1329.
RB6
RA43
RB4



1330.
RB6
RC1
RB4



1331.
RB6
RC4
RB4



1332.
RB6
RC5
RB4



1333.
RB6
RC7
RB4



1334.
RB6
RC9
RB4



1335.
RB6
RC21
RB4



1336.
RB6
RC24
RB4



1337.
RB6
RC26
RB4



1338.
RB6
RC54
RB4



1339.
RB6
RC65
RB4



1340.
RB6
RC68
RB4



1341.
RB6
RC110
RB4



1342.
RB6
RC115
RB4



1343.
RB6
RC117
RB4



1344.
RB6
RC141
RB4



1345.
RB6
RC168
RB4



1346.
RB6
RC209
RB4



1347.
RB6
RC231
RB4



1348.
RB6
RC243
RB4



1349.
RB6
RC269
RB4



1350.
RB6
RC276
RB4



1351.
RB6
RB3
RB18



1352.
RB6
RB6
RB18



1353.
RB6
RB7
RB18



1354.
RB6
RB12
RB18



1355.
RB6
RB20
RB18



1356.
RB6
RB25
RB18



1357.
RB6
RB1
RB18



1358.
RB6
RA37
RB18



1359.
RB6
RA43
RB18



1360.
RB6
RC1
RB18



1361.
RB6
RC4
RB18



1362.
RB6
RC5
RB18



1363.
RB6
RC7
RB18



1364.
RB6
RC9
RB18



1365.
RB6
RC21
RB18



1366.
RB6
RC24
RB18



1367.
RB6
RC26
RB18



1368.
RB6
RC54
RB18



1369.
RB6
RC65
RB18



1370.
RB6
RC68
RB18



1371.
RB6
RC110
RB18



1372.
RB6
RC115
RB18



1373.
RB6
RC117
RB18



1374.
RB6
RC141
RB18



1375.
RB6
RC168
RB18



1376.
RB6
RC209
RB18



1377.
RB6
RC231
RB18



1378.
RB6
RC243
RB18



1379.
RB6
RC269
RB18



1380.
RB6
RC276
RB18



1381.
RB6
RB3
RA3



1382.
RB6
RB6
RA3



1383.
RB6
RB7
RA3



1384.
RB6
RB12
RA3



1385.
RB6
RB20
RA3



1386.
RB6
RB25
RA3



1387.
RB6
RB1
RA3



1388.
RB6
RA37
RA3



1389.
RB6
RA43
RA3



1390.
RB6
RC1
RA3



1391.
RB6
RC4
RA3



1392.
RB6
RC5
RA3



1393.
RB6
RC7
RA3



1394.
RB6
RC9
RA3



1395.
RB6
RC21
RA3



1396.
RB6
RC24
RA3



1397.
RB6
RC26
RA3



1398.
RB6
RC54
RA3



1399.
RB6
RC65
RA3



1400.
RB6
RC68
RA3



1401.
RB6
RC110
RA3



1402.
RB6
RC115
RA3



1403.
RB6
RC117
RA3



1404.
RB6
RC141
RA3



1405.
RB6
RC168
RA3



1406.
RB6
RC209
RA3



1407.
RB6
RC231
RA3



1408.
RB6
RC243
RA3



1409.
RB6
RC269
RA3



1410.
RB6
RC276
RA3



1411.
RB6
RB3
RA34



1412.
RB6
RB6
RA34



1413.
RB6
RB7
RA34



1414.
RB6
RB12
RA34



1415.
RB6
RB20
RA34



1416.
RB6
RB25
RA34



1417.
RB6
RB1
RA34



1418.
RB6
RA37
RA34



1419.
RB6
RA43
RA34



1420.
RB6
RC1
RA34



1421.
RB6
RC4
RA34



1422.
RB6
RC5
RA34



1423.
RB6
RC7
RA34



1424.
RB6
RC9
RA34



1425.
RB6
RC21
RA34



1426.
RB6
RC24
RA34



1427.
RB6
RC26
RA34



1428.
RB6
RC54
RA34



1429.
RB6
RC65
RA34



1430.
RB6
RC68
RA34



1431.
RB6
RC110
RA34



1432.
RB6
RC115
RA34



1433.
RB6
RC117
RA34



1434.
RB6
RC141
RA34



1435.
RB6
RC168
RA34



1436.
RB6
RC209
RA34



1437.
RB6
RC231
RA34



1438.
RB6
RC243
RA34



1439.
RB6
RC269
RA34



1440.
RB6
RC276
RA34



1441.
RB6
RB3
RA52



1442.
RB6
RB6
RA52



1443.
RB6
RB7
RA52



1444.
RB6
RB12
RA52



1445.
RB6
RB20
RA52



1446.
RB6
RB25
RA52



1447.
RB6
RB1
RA52



1448.
RB6
RA37
RA52



1449.
RB6
RA43
RA52



1450.
RB6
RC1
RA52



1451.
RB6
RC4
RA52



1452.
RB6
RC5
RA52



1453.
RB6
RC7
RA52



1454.
RB6
RC9
RA52



1455.
RB6
RC21
RA52



1456.
RB6
RC24
RA52



1457.
RB6
RC26
RA52



1458.
RB6
RC54
RA52



1459.
RB6
RC65
RA52



1460.
RB6
RC68
RA52



1461.
RB6
RC110
RA52



1462.
RB6
RC115
RA52



1463.
RB6
RC117
RA52



1464.
RB6
RC141
RA52



1465.
RB6
RC168
RA52



1466.
RB6
RC209
RA52



1467.
RB6
RC231
RA52



1468.
RB6
RC243
RA52



1469.
RB6
RC269
RA52



1470.
RB6
RC276
RA52



1471.
RB45
RB6
H



1472.
RB45
RB6
H



1473.
RB45
RB7
H



1474.
RB45
RB12
H



1475.
RB45
RB20
H



1476.
RB45
RB25
H



1477.
RB45
RB1
H



1478.
RB45
RA37
H



1479.
RB45
RA43
H



1480.
RB45
RC1
H



1481.
RB45
RC4
H



1482.
RB45
RC5
H



1483.
RB45
RC7
H



1484.
RB45
RC9
H



1485.
RB45
RC21
H



1486.
RB45
RC24
H



1487.
RB45
RC26
H



1488.
RB45
RC54
H



1489.
RB45
RC65
H



1490.
RB45
RC68
H



1491.
RB45
RC110
H



1492.
RB45
RC115
H



1493.
RB45
RC117
H



1494.
RB45
RC141
H



1495.
RB45
RC168
H



1496.
RB45
RC209
H



1497.
RB45
RC231
H



1498.
RB45
RC243
H



1499.
RB45
RC269
H



1500.
RB45
RC276
H



1501.
RB45
RB3
RB3



1502.
RB45
RB6
RB3



1503.
RB45
RB7
RB3



1504.
RB45
RB12
RB3



1505.
RB45
RB20
RB3



1506.
RB45
RB25
RB3



1507.
RB45
RB1
RB3



1508.
RB45
RA37
RB3



1509.
RB45
RA43
RB3



1510.
RB45
RC1
RB3



1511.
RB45
RC4
RB3



1512.
RB45
RC5
RB3



1513.
RB45
RC7
RB3



1514.
RB45
RC9
RB3



1515.
RB45
RC21
RB3



1516.
RB45
RC24
RB3



1517.
RB45
RC26
RB3



1518.
RB45
RC54
RB3



1519.
RB45
RC65
RB3



1520.
RB45
RC68
RB3



1521.
RB45
RC110
RB3



1522.
RB45
RC115
RB3



1523.
RB45
RC117
RB3



1524.
RB45
RC141
RB3



1525.
RB45
RC168
RB3



1526.
RB45
RC209
RB3



1527.
RB45
RC231
RB3



1528.
RB45
RC243
RB3



1529.
RB45
RC269
RB3



1530.
RB45
RC276
RB3



1531.
RB45
RB3
RB4



1532.
RB45
RB6
RB4



1533.
RB45
RB7
RB4



1534.
RB45
RB12
RB4



1535.
RB45
RB20
RB4



1536.
RB45
RB25
RB4



1537.
RB45
RB1
RB4



1538.
RB45
RA37
RB4



1539.
RB45
RA43
RB4



1540.
RB45
RC1
RB4



1541.
RB45
RC4
RB4



1542.
RB45
RC5
RB4



1543.
RB45
RC7
RB4



1544.
RB45
RC9
RB4



1545.
RB45
RC21
RB4



1546.
RB45
RC24
RB4



1547.
RB45
RC26
RB4



1548.
RB45
RC54
RB4



1549.
RB45
RC65
RB4



1550.
RB45
RC68
RB4



1551.
RB45
RC110
RB4



1552.
RB45
RC115
RB4



1553.
RB45
RC117
RB4



1554.
RB45
RC141
RB4



1555.
RB45
RC168
RB4



1556.
RB45
RC209
RB4



1557.
RB45
RC231
RB4



1558.
RB45
RC243
RB4



1559.
RB45
RC269
RB4



1560.
RB45
RC276
RB4



1561.
RB45
RB3
RB18



1562.
RB45
RB6
RB18



1563.
RB45
RB7
RB18



1564.
RB45
RB12
RB18



1565.
RB45
RB20
RB18



1566.
RB45
RB25
RB18



1567.
RB45
RB1
RB18



1568.
RB45
RA37
RB18



1569.
RB45
RA43
RB18



1570.
RB45
RC1
RB18



1571.
RB45
RC4
RB18



1572.
RB45
RC5
RB18



1573.
RB45
RC7
RB18



1574.
RB45
RC9
RB18



1575.
RB45
RC21
RB18



1576.
RB45
RC24
RB18



1577.
RB45
RC26
RB18



1578.
RB45
RC54
RB18



1579.
RB45
RC65
RB18



1580.
RB45
RC68
RB18



1581.
RB45
RC110
RB18



1582.
RB45
RC115
RB18



1583.
RB45
RC117
RB18



1584.
RB45
RC141
RB18



1585.
RB45
RC168
RB18



1586.
RB45
RC209
RB18



1587.
RB45
RC231
RB18



1588.
RB45
RC243
RB18



1589.
RB45
RC269
RB18



1590.
RB45
RC276
RB18



1591.
RB45
RB3
RA3



1592.
RB45
RB6
RA3



1593.
RB45
RB7
RA3



1594.
RB45
RB12
RA3



1595.
RB45
RB20
RA3



1596.
RB45
RB25
RA3



1597.
RB45
RB1
RA3



1598.
RB45
RA37
RA3



1599.
RB45
RA43
RA3



1600.
RB45
RC1
RA3



1601.
RB45
RC4
RA3



1602.
RB45
RC5
RA3



1603.
RB45
RC7
RA3



1604.
RB45
RC9
RA3



1605.
RB45
RC21
RA3



1606.
RB45
RC24
RA3



1607.
RB45
RC26
RA3



1608.
RB45
RC54
RA3



1609.
RB45
RC65
RA3



1610.
RB45
RC68
RA3



1611.
RB45
RC110
RA3



1612.
RB45
RC115
RA3



1613.
RB45
RC117
RA3



1614.
RB45
RC141
RA3



1615.
RB45
RC168
RA3



1616.
RB45
RC209
RA3



1617.
RB45
RC231
RA3



1618.
RB45
RC243
RA3



1619.
RB45
RC269
RA3



1620.
RB45
RC276
RA3



1621.
RB45
RB3
RA34



1622.
RB45
RB6
RA34



1623.
RB45
RB7
RA34



1624.
RB45
RB12
RA34



1625.
RB45
RB20
RA34



1626.
RB45
RB25
RA34



1627.
RB45
RB1
RA34



1628.
RB45
RA37
RA34



1629.
RB45
RA43
RA34



1630.
RB45
RC1
RA34



1631.
RB45
RC4
RA34



1632.
RB45
RC5
RA34



1633.
RB45
RC7
RA34



1634.
RB45
RC9
RA34



1635.
RB45
RC21
RA34



1636.
RB45
RC24
RA34



1637.
RB45
RC26
RA34



1638.
RB45
RC54
RA34



1639.
RB45
RC65
RA34



1640.
RB45
RC68
RA34



1641.
RB45
RC110
RA34



1642.
RB45
RC115
RA34



1643.
RB45
RC117
RA34



1644.
RB45
RC141
RA34



1645.
RB45
RC168
RA34



1646.
RB45
RC209
RA34



1647.
RB45
RC231
RA34



1648.
RB45
RC243
RA34



1649.
RB45
RC269
RA34



1650.
RB45
RC276
RA34



1651.
RB45
RB3
RA52



1652.
RB45
RB6
RA52



1653.
RB45
RB7
RA52



1654.
RB45
RB12
RA52



1655.
RB45
RB20
RA52



1656.
RB45
RB25
RA52



1657.
RB45
RB1
RA52



1658.
RB45
RA37
RA52



1659.
RB45
RA43
RA52



1660.
RB45
RC1
RA52



1661.
RB45
RC4
RA52



1662.
RB45
RC5
RA52



1663.
RB45
RC7
RA52



1664.
RB45
RC9
RA52



1665.
RB45
RC21
RA52



1666.
RB45
RC24
RA52



1667.
RB45
RC26
RA52



1668.
RB45
RC54
RA52



1669.
RB45
RC65
RA52



1670.
RB45
RC68
RA52



1671.
RB45
RC110
RA52



1672.
RB45
RC115
RA52



1673.
RB45
RC117
RA52



1674.
RB45
RC141
RA52



1675.
RB45
RC168
RA52



1676.
RB45
RC209
RA52



1677.
RB45
RC231
RA52



1678.
RB45
RC243
RA52



1679.
RB45
RC269
RA52



1680.
RB45
RC276
RA52











wherein RA1 to RA52 have the following structures:




embedded image


embedded image


embedded image


embedded image



wherein RB1 to RB44 have the following structures:




embedded image


embedded image


embedded image


embedded image



and


wherein RC1 to RC292 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of the compound, the compound has a formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand; x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M. In some embodiments of the compound, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand, the compound has a formula of Pt(LA)(LB); and LA and LB can be same or different. In some embodiments, LA and LB are connected to form a tetradentate ligand. In some embodiments, LA and LB are connected at two places to form a macrocyclic tetradentate ligand.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image



where each X1 to X13 are independently selected from the group consisting of carbon and nitrogen;


where X is selected from the group consisting of BR′, NR′, PR′, O, S, Se, C═P, S═P, SO2, CR′R″, SiR′R″, and GeR′R″;


where R′ and R″ are optionally fused or joined to form a ring;


where each Ra, Rb, Rc, and Rd represents from mono substitution to a possible maximum number of substitutions, or no substitution;


where R′, R″, Ra, Rb, Rc, and Rd are each independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and


where any two adjacent substitutents of Ra, Rb, Rc, and Rd are optionally fused or joined to form a ring or form a multidentate ligand.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand, LB and LC are each independently selected from the group consisting of:




embedded image


embedded image


embedded image



where each Ra, Rb, and Rc, represents from mono substitution to a possible maximum number of substitutions, or no substitution;


where Ra, Rb, and Rc are each independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and where any two adjacent substitutents of Ra, Rb, and Rc are optionally fused or joined to form a ring or form a multidentate ligand.


In some embodiments of the compound having the formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand, the compound is Compound P-Ax having the formula Ir(LP-Ai)3, Compound P—By having the formula Ir(LP-Ai)(LBk)2, or Compound P-Cz having the formula Ir(LP-Ai)2(LCj);


where the variables x, y, and z are defined as: x=i, y=460i+k−460, and z=1260i+j−1260;


where the variable P is IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, or XIX, the variable i is an integer from 1 to 13,440, the variable k is an integer from 1 to 460, and the variable j is an integer from 1 to 1260;


where LB1 to LB460 have the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and where


LC1 through LC1260 based on a structure of Formula X




embedded image



in which R1, R2, and R3 are defined as:


















Ligand
R1
R2
R3









LC1
RD1
RD1
H



LC2
RD2
RD2
H



LC3
RD3
RD3
H



LC4
RD4
RD4
H



LC5
RD5
RD5
H



LC6
RD6
RD6
H



LC7
RD7
RD7
H



LC8
RD8
RD8
H



LC9
RD9
RD9
H



LC10
RD10
RD10
H



LC11
RD11
RD11
H



LC12
RD12
RD12
H



LC13
RD13
RD13
H



LC14
RD14
RD14
H



LC15
RD15
RD15
H



LC16
RD16
RD16
H



LC17
RD17
RD17
H



LC18
RD18
RD18
H



LC19
RD19
RD19
H



LC20
RD20
RD20
H



LC21
RD21
RD21
H



LC22
RD22
RD22
H



LC23
RD23
RD23
H



LC24
RD24
RD24
H



LC25
RD25
RD25
H



LC26
RD26
RD26
H



LC27
RD27
RD27
H



LC28
RD28
RD28
H



LC29
RD29
RD29
H



LC30
RD30
RD30
H



LC31
RD31
RD31
H



LC32
RD32
RD32
H



LC33
RD33
RD33
H



LC34
RD34
RD34
H



LC35
RD35
RD35
H



LC36
RD40
RD40
H



LC37
RD41
RD41
H



LC38
RD42
RD42
H



LC39
RD64
RD64
H



LC40
RD66
RD66
H



LC41
RD68
RD68
H



LC42
RD76
RD76
H



LC43
RD1
RD2
H



LC44
RD1
RD3
H



LC45
RD1
RD4
H



LC46
RD1
RD5
H



LC47
RD1
RD6
H



LC48
RD1
RD7
H



LC49
RD1
RD8
H



LC50
RD1
RD9
H



LC51
RD1
RD10
H



LC52
RD1
RD11
H



LC53
RD1
RD12
H



LC54
RD1
RD13
H



LC55
RD1
RD14
H



LC56
RD1
RD15
H



LC57
RD1
RD16
H



LC58
RD1
RD17
H



LC59
RD1
RD18
H



LC60
RD1
RD19
H



LC61
RD1
RD20
H



LC62
RD1
RD21
H



LC63
RD1
RD22
H



LC64
RD1
RD23
H



LC65
RD1
RD24
H



LC66
RD1
RD25
H



LC67
RD1
RD26
H



LC68
RD1
RD27
H



LC69
RD1
RD28
H



LC70
RD1
RD29
H



LC71
RD1
RD30
H



LC72
RD1
RD31
H



LC73
RD1
RD32
H



LC74
RD1
RD33
H



LC75
RD1
RD34
H



LC76
RD1
RD35
H



LC77
RD1
RD40
H



LC78
RD1
RD41
H



LC79
RD1
RD42
H



LC80
RD1
RD64
H



LC81
RD1
RD66
H



LC82
RD1
RD68
H



LC83
RD1
RD76
H



LC84
RD2
RD1
H



LC85
RD2
RD3
H



LC86
RD2
RD4
H



LC87
RD2
RD5
H



LC88
RD2
RD6
H



LC89
RD2
RD7
H



LC90
RD2
RD8
H



LC91
RD2
RD9
H



LC92
RD2
RD10
H



LC93
RD2
RD11
H



LC94
RD2
RD12
H



LC95
RD2
RD13
H



LC96
RD2
RD14
H



LC97
RD2
RD15
H



LC98
RD2
RD16
H



LC99
RD2
RD17
H



LC100
RD2
RD18
H



LC101
RD2
RD19
H



LC102
RD2
RD20
H



LC103
RD2
RD21
H



LC104
RD2
RD22
H



LC105
RD2
RD23
H



LC106
RD2
RD24
H



LC107
RD2
RD25
H



LC108
RD2
RD26
H



LC109
RD2
RD27
H



LC110
RD2
RD28
H



LC111
RD2
RD29
H



LC112
RD2
RD30
H



LC113
RD2
RD31
H



LC114
RD2
RD32
H



LC115
RD2
RD33
H



LC116
RD2
RD34
H



LC117
RD2
RD35
H



LC118
RD2
RD40
H



LC119
RD2
RD41
H



LC120
RD2
RD42
H



LC121
RD2
RD64
H



LC122
RD2
RD66
H



LC123
RD2
RD68
H



LC124
RD2
RD76
H



LC125
RD3
RD4
H



LC126
RD3
RD5
H



LC127
RD3
RD6
H



LC128
RD3
RD7
H



LC129
RD3
RD8
H



LC130
RD3
RD9
H



LC131
RD3
RD10
H



LC132
RD3
RD11
H



LC133
RD3
RD12
H



LC134
RD3
RD13
H



LC135
RD3
RD14
H



LC136
RD3
RD15
H



LC137
RD3
RD16
H



LC138
RD3
RD17
H



LC139
RD3
RD18
H



LC140
RD3
RD19
H



LC141
RD3
RD20
H



LC142
RD3
RD21
H



LC143
RD3
RD22
H



LC144
RD3
RD23
H



LC145
RD3
RD24
H



LC146
RD3
RD25
H



LC147
RD3
RD26
H



LC148
RD3
RD27
H



LC149
RD3
RD28
H



LC150
RD3
RD29
H



LC151
RD3
RD30
H



LC152
RD3
RD31
H



LC153
RD3
RD32
H



LC154
RD3
RD33
H



LC155
RD3
RD34
H



LC156
RD3
RD35
H



LC157
RD3
RD40
H



LC158
RD3
RD41
H



LC159
RD3
RD42
H



LC160
RD3
RD64
H



LC161
RD3
RD66
H



LC162
RD3
RD68
H



LC163
RD3
RD76
H



LC164
RD4
RD5
H



LC165
RD4
RD6
H



LC166
RD4
RD7
H



LC167
RD4
RD8
H



LC168
RD4
RD9
H



LC169
RD4
RD10
H



LC170
RD4
RD11
H



LC171
RD4
RD12
H



LC172
RD4
RD13
H



LC173
RD4
RD14
H



LC174
RD4
RD15
H



LC175
RD4
RD16
H



LC176
RD4
RD17
H



LC177
RD4
RD18
H



LC178
RD4
RD19
H



LC179
RD4
RD20
H



LC180
RD4
RD21
H



LC181
RD4
RD22
H



LC182
RD4
RD23
H



LC183
RD4
RD24
H



LC184
RD4
RD25
H



LC185
RD4
RD26
H



LC186
RD4
RD27
H



LC187
RD4
RD28
H



LC188
RD4
RD29
H



LC189
RD4
RD30
H



LC190
RD4
RD31
H



LC191
RD4
RD32
H



LC192
RD4
RD33
H



LC193
RD4
RD34
H



LC194
RD4
RD35
H



LC195
RD4
RD40
H



LC196
RD4
RD41
H



LC197
RD4
RD42
H



LC198
RD4
RD64
H



LC199
RD4
RD66
H



LC200
RD4
RD68
H



LC201
RD4
RD76
H



LC202
RD4
RD1
H



LC203
RD7
RD5
H



LC204
RD7
RD6
H



LC205
RD7
RD8
H



LC206
RD7
RD9
H



LC207
RD7
RD10
H



LC208
RD7
RD11
H



LC209
RD7
RD12
H



LC210
RD7
RD13
H



LC211
RD7
RD14
H



LC212
RD7
RD15
H



LC213
RD7
RD16
H



LC214
RD7
RD17
H



LC215
RD7
RD18
H



LC216
RD7
RD19
H



LC217
RD7
RD20
H



LC218
RD7
RD21
H



LC219
RD7
RD22
H



LC220
RD7
RD23
H



LC221
RD7
RD24
H



LC222
RD7
RD25
H



LC223
RD7
RD26
H



LC224
RD7
RD27
H



LC225
RD7
RD28
H



LC226
RD7
RD29
H



LC227
RD7
RD30
H



LC228
RD7
RD31
H



LC229
RD7
RD32
H



LC230
RD7
RD33
H



LC231
RD7
RD34
H



LC232
RD7
RD35
H



LC233
RD7
RD40
H



LC234
RD7
RD41
H



LC235
RD7
RD42
H



LC236
RD7
RD64
H



LC237
RD7
RD66
H



LC238
RD7
RD68
H



LC239
RD7
RD76
H



LC240
RD8
RD5
H



LC241
RD8
RD6
H



LC242
RD8
RD9
H



LC243
RD8
RD10
H



LC244
RD8
RD11
H



LC245
RD8
RD12
H



LC246
RD8
RD13
H



LC247
RD8
RD14
H



LC248
RD8
RD15
H



LC249
RD8
RD16
H



LC250
RD8
RD17
H



LC251
RD8
RD18
H



LC252
RD8
RD19
H



LC253
RD8
RD20
H



LC254
RD8
RD21
H



LC255
RD8
RD22
H



LC256
RD8
RD23
H



LC257
RD8
RD24
H



LC258
RD8
RD25
H



LC259
RD8
RD26
H



LC260
RD8
RD27
H



LC261
RD8
RD28
H



LC262
RD8
RD29
H



LC263
RD8
RD30
H



LC264
RD8
RD31
H



LC265
RD8
RD32
H



LC266
RD8
RD33
H



LC267
RD8
RD34
H



LC268
RD8
RD35
H



LC269
RD8
RD40
H



LC270
RD8
RD41
H



LC271
RD8
RD42
H



LC272
RD8
RD64
H



LC273
RD8
RD66
H



LC274
RD8
RD68
H



LC275
RD8
RD76
H



LC276
RD11
RD5
H



LC277
RD11
RD6
H



LC278
RD11
RD9
H



LC279
RD11
RD10
H



LC280
RD11
RD12
H



LC281
RD11
RD13
H



LC282
RD11
RD14
H



LC283
RD11
RD15
H



LC284
RD11
RD16
H



LC285
RD11
RD17
H



LC286
RD11
RD18
H



LC287
RD11
RD19
H



LC288
RD11
RD20
H



LC289
RD11
RD21
H



LC290
RD11
RD22
H



LC291
RD11
RD23
H



LC292
RD11
RD24
H



LC293
RD11
RD25
H



LC294
RD11
RD26
H



LC295
RD11
RD27
H



LC296
RD11
RD28
H



LC297
RD11
RD29
H



LC298
RD11
RD30
H



LC299
RD11
RD31
H



LC300
RD11
RD32
H



LC301
RD11
RD33
H



LC302
RD11
RD34
H



LC303
RD11
RD35
H



LC304
RD11
RD40
H



LC305
RD11
RD41
H



LC306
RD11
RD42
H



LC307
RD11
RD64
H



LC308
RD11
RD66
H



LC309
RD11
RD68
H



LC310
RD11
RD76
H



LC311
RD13
RD5
H



LC312
RD13
RD6
H



LC313
RD13
RD9
H



LC314
RD13
RD10
H



LC315
RD13
RD12
H



LC316
RD13
RD14
H



LC317
RD13
RD15
H



LC318
RD13
RD16
H



LC319
RD13
RD17
H



LC320
RD13
RD18
H



LC321
RD13
RD19
H



LC322
RD13
RD20
H



LC323
RD13
RD21
H



LC324
RD13
RD22
H



LC325
RD13
RD23
H



LC326
RD13
RD24
H



LC327
RD13
RD25
H



LC328
RD13
RD26
H



LC329
RD13
RD27
H



LC330
RD13
RD28
H



LC331
RD13
RD29
H



LC332
RD13
RD30
H



LC333
RD13
RD31
H



LC334
RD13
RD32
H



LC335
RD13
RD33
H



LC336
RD13
RD34
H



LC337
RD13
RD35
H



LC338
RD13
RD40
H



LC339
RD13
RD41
H



LC340
RD13
RD42
H



LC341
RD13
RD64
H



LC342
RD13
RD66
H



LC343
RD13
RD68
H



LC344
RD13
RD76
H



LC345
RD14
RD5
H



LC346
RD14
RD6
H



LC347
RD14
RD9
H



LC348
RD14
RD10
H



LC349
RD14
RD12
H



LC350
RD14
RD15
H



LC351
RD14
RD16
H



LC352
RD14
RD17
H



LC353
RD14
RD18
H



LC354
RD14
RD19
H



LC355
RD14
RD20
H



LC356
RD14
RD21
H



LC357
RD14
RD22
H



LC358
RD14
RD23
H



LC359
RD14
RD24
H



LC360
RD14
RD25
H



LC361
RD14
RD26
H



LC362
RD14
RD27
H



LC363
RD14
RD28
H



LC364
RD14
RD29
H



LC365
RD14
RD30
H



LC366
RD14
RD31
H



LC367
RD14
RD32
H



LC368
RD14
RD33
H



LC369
RD14
RD34
H



LC370
RD14
RD35
H



LC371
RD14
RD40
H



LC372
RD14
RD41
H



LC373
RD14
RD42
H



LC374
RD14
RD64
H



LC375
RD14
RD66
H



LC376
RD14
RD68
H



LC377
RD14
RD76
H



LC378
RD22
RD5
H



LC379
RD22
RD6
H



LC380
RD22
RD9
H



LC381
RD22
RD10
H



LC382
RD22
RD12
H



LC383
RD22
RD15
H



LC384
RD22
RD16
H



LC385
RD22
RD17
H



LC386
RD22
RD18
H



LC387
RD22
RD19
H



LC388
RD22
RD20
H



LC389
RD22
RD21
H



LC390
RD22
RD23
H



LC391
RD22
RD24
H



LC392
RD22
RD25
H



LC393
RD22
RD26
H



LC394
RD22
RD27
H



LC395
RD22
RD28
H



LC396
RD22
RD29
H



LC397
RD22
RD30
H



LC398
RD22
RD31
H



LC399
RD22
RD32
H



LC400
RD22
RD33
H



LC401
RD22
RD34
H



LC402
RD22
RD35
H



LC403
RD22
RD40
H



LC404
RD22
RD41
H



LC405
RD22
RD42
H



LC406
RD22
RD64
H



LC407
RD22
RD66
H



LC408
RD22
RD68
H



LC409
RD22
RD76
H



LC410
RD26
RD5
H



LC411
RD26
RD6
H



LC412
RD26
RD9
H



LC413
RD26
RD10
H



LC414
RD26
RD12
H



LC415
RD26
RD15
H



LC416
RD26
RD16
H



LC417
RD26
RD17
H



LC418
RD26
RD18
H



LC419
RD26
RD19
H



LC420
RD26
RD20
H



LC421
RD26
RD21
H



LC422
RD26
RD23
H



LC423
RD26
RD24
H



LC424
RD26
RD25
H



LC425
RD26
RD27
H



LC426
RD26
RD28
H



LC427
RD26
RD29
H



LC428
RD26
RD30
H



LC429
RD26
RD31
H



LC430
RD26
RD32
H



LC431
RD26
RD33
H



LC432
RD26
RD34
H



LC433
RD26
RD35
H



LC434
RD26
RD40
H



LC435
RD26
RD41
H



LC436
RD26
RD42
H



LC437
RD26
RD64
H



LC438
RD26
RD66
H



LC439
RD26
RD68
H



LC440
RD26
RD76
H



LC441
RD35
RD5
H



LC442
RD35
RD6
H



LC443
RD35
RD9
H



LC444
RD35
RD10
H



LC445
RD35
RD12
H



LC446
RD35
RD15
H



LC447
RD35
RD16
H



LC448
RD35
RD17
H



LC449
RD35
RD18
H



LC450
RD35
RD19
H



LC451
RD35
RD20
H



LC452
RD35
RD21
H



LC453
RD35
RD23
H



LC454
RD35
RD24
H



LC455
RD35
RD25
H



LC456
RD35
RD27
H



LC457
RD35
RD28
H



LC458
RD35
RD29
H



LC459
RD35
RD30
H



LC460
RD35
RD31
H



LC461
RD35
RD32
H



LC462
RD35
RD33
H



LC463
RD35
RD34
H



LC464
RD35
RD35
H



LC465
RD35
RD40
H



LC466
RD35
RD41
H



LC467
RD35
RD42
H



LC468
RD35
RD64
H



LC469
RD35
RD66
H



LC470
RD35
RD68
H



LC471
RD40
RD5
H



LC472
RD40
RD6
H



LC473
RD40
RD9
H



LC474
RD40
RD10
H



LC475
RD40
RD12
H



LC476
RD40
RD15
H



LC477
RD40
RD16
H



LC478
RD40
RD17
H



LC479
RD40
RD18
H



LC480
RD40
RD19
H



LC481
RD40
RD20
H



LC482
RD40
RD21
H



LC483
RD40
RD23
H



LC484
RD40
RD24
H



LC485
RD40
RD25
H



LC486
RD40
RD27
H



LC487
RD40
RD28
H



LC488
RD40
RD29
H



LC489
RD40
RD30
H



LC490
RD40
RD31
H



LC491
RD40
RD32
H



LC492
RD40
RD33
H



LC493
RD40
RD34
H



LC494
RD40
RD41
H



LC495
RD40
RD42
H



LC496
RD40
RD64
H



LC497
RD40
RD66
H



LC498
RD40
RD68
H



LC499
RD40
RD76
H



LC500
RD41
RD5
H



LC501
RD41
RD6
H



LC502
RD41
RD9
H



LC503
RD41
RD10
H



LC504
RD41
RD12
H



LC505
RD41
RD15
H



LC506
RD41
RD16
H



LC507
RD41
RD17
H



LC508
RD41
RD18
H



LC509
RD41
RD19
H



LC510
RD41
RD20
H



LC511
RD41
RD21
H



LC512
RD41
RD23
H



LC513
RD41
RD24
H



LC514
RD41
RD25
H



LC515
RD41
RD27
H



LC516
RD41
RD28
H



LC517
RD41
RD29
H



LC518
RD41
RD30
H



LC519
RD41
RD31
H



LC520
RD41
RD32
H



LC521
RD41
RD33
H



LC522
RD41
RD34
H



LC523
RD41
RD42
H



LC524
RD41
RD64
H



LC525
RD41
RD66
H



LC526
RD41
RD68
H



LC527
RD41
RD76
H



LC528
RD64
RD5
H



LC529
RD64
RD6
H



LC530
RD64
RD9
H



LC531
RD64
RD10
H



LC532
RD64
RD12
H



LC533
RD64
RD15
H



LC534
RD64
RD16
H



LC535
RD64
RD17
H



LC536
RD64
RD18
H



LC537
RD64
RD19
H



LC538
RD64
RD20
H



LC539
RD64
RD21
H



LC540
RD64
RD23
H



LC541
RD64
RD24
H



LC542
RD64
RD25
H



LC543
RD64
RD27
H



LC544
RD64
RD28
H



LC545
RD64
RD29
H



LC546
RD64
RD30
H



LC547
RD64
RD31
H



LC548
RD64
RD32
H



LC549
RD64
RD33
H



LC550
RD64
RD34
H



LC551
RD64
RD42
H



LC552
RD64
RD64
H



LC553
RD64
RD66
H



LC554
RD64
RD68
H



LC555
RD64
RD76
H



LC556
RD66
RD5
H



LC557
RD66
RD6
H



LC558
RD66
RD9
H



LC559
RD66
RD10
H



LC560
RD66
RD12
H



LC561
RD66
RD15
H



LC562
RD66
RD16
H



LC563
RD66
RD17
H



LC564
RD66
RD18
H



LC565
RD66
RD19
H



LC566
RD66
RD20
H



LC567
RD66
RD21
H



LC568
RD66
RD23
H



LC569
RD66
RD24
H



LC570
RD66
RD25
H



LC571
RD66
RD27
H



LC572
RD66
RD28
H



LC573
RD66
RD29
H



LC574
RD66
RD30
H



LC575
RD66
RD31
H



LC576
RD66
RD32
H



LC577
RD66
RD33
H



LC578
RD66
RD34
H



LC579
RD66
RD42
H



LC580
RD66
RD68
H



LC581
RD66
RD76
H



LC582
RD68
RD5
H



LC583
RD68
RD6
H



LC584
RD68
RD9
H



LC585
RD68
RD10
H



LC586
RD68
RD12
H



LC587
RD68
RD15
H



LC588
RD68
RD16
H



LC589
RD68
RD17
H



LC590
RD68
RD18
H



LC591
RD68
RD19
H



LC592
RD68
RD20
H



LC593
RD68
RD21
H



LC594
RD68
RD23
H



LC595
RD68
RD24
H



LC596
RD68
RD25
H



LC597
RD68
RD27
H



LC598
RD68
RD28
H



LC599
RD68
RD29
H



LC600
RD68
RD30
H



LC601
RD68
RD31
H



LC602
RD68
RD32
H



LC603
RD68
RD33
H



LC604
RD68
RD34
H



LC605
RD68
RD42
H



LC606
RD68
RD76
H



LC607
RD76
RD5
H



LC608
RD76
RD6
H



LC609
RD76
RD9
H



LC610
RD76
RD10
H



LC611
RD76
RD12
H



LC612
RD76
RD15
H



LC613
RD76
RD16
H



LC614
RD76
RD17
H



LC615
RD76
RD18
H



LC616
RD76
RD19
H



LC617
RD76
RD20
H



LC618
RD76
RD21
H



LC619
RD76
RD23
H



LC620
RD76
RD24
H



LC621
RD76
RD25
H



LC622
RD76
RD27
H



LC623
RD76
RD28
H



LC624
RD76
RD29
H



LC625
RD76
RD30
H



LC626
RD76
RD31
H



LC627
RD76
RD32
H



LC628
RD76
RD33
H



LC629
RD76
RD34
H



LC630
RD76
RD42
H



LC631
RD1
RD1
RD1



LC632
RD2
RD2
RD1



LC633
RD3
RD3
RD1



LC634
RD4
RD4
RD1



LC635
RD5
RD5
RD1



LC636
RD6
RD6
RD1



LC637
RD7
RD7
RD1



LC638
RD8
RD8
RD1



LC639
RD9
RD9
RD1



LC640
RD10
RD10
RD1



LC641
RD11
RD11
RD1



LC642
RD12
RD12
RD1



LC643
RD13
RD13
RD1



LC644
RD14
RD14
RD1



LC645
RD15
RD15
RD1



LC646
RD16
RD16
RD1



LC647
RD17
RD17
RD1



LC648
RD18
RD18
RD1



LC649
RD19
RD19
RD1



LC650
RD20
RD20
RD1



LC651
RD21
RD21
RD1



LC652
RD22
RD22
RD1



LC653
RD23
RD23
RD1



LC654
RD24
RD24
RD1



LC655
RD25
RD25
RD1



LC656
RD26
RD26
RD1



LC657
RD27
RD27
RD1



LC658
RD28
RD28
RD1



LC659
RD29
RD29
RD1



LC660
RD30
RD30
RD1



LC661
RD31
RD31
RD1



LC662
RD32
RD32
RD1



LC663
RD33
RD33
RD1



LC664
RD34
RD34
RD1



LC665
RD35
RD35
RD1



LC666
RD40
RD40
RD1



LC667
RD41
RD41
RD1



LC668
RD42
RD42
RD1



LC669
RD64
RD64
RD1



LC670
RD66
RD66
RD1



LC671
RD68
RD68
RD1



LC672
RD76
RD76
RD1



LC673
RD1
RD2
RD1



LC674
RD1
RD3
RD1



LC675
RD1
RD4
RD1



LC676
RD1
RD5
RD1



LC677
RD1
RD6
RD1



LC678
RD1
RD7
RD1



LC679
RD1
RD8
RD1



LC680
RD1
RD9
RD1



LC681
RD1
RD10
RD1



LC682
RD1
RD11
RD1



LC683
RD1
RD12
RD1



LC684
RD1
RD13
RD1



LC685
RD1
RD14
RD1



LC686
RD1
RD15
RD1



LC687
RD1
RD16
RD1



LC688
RD1
RD17
RD1



LC689
RD1
RD18
RD1



LC690
RD1
RD19
RD1



LC691
RD1
RD20
RD1



LC692
RD1
RD21
RD1



LC693
RD1
RD22
RD1



LC694
RD1
RD23
RD1



LC695
RD1
RD24
RD1



LC696
RD1
RD25
RD1



LC697
RD1
RD26
RD1



LC698
RD1
RD27
RD1



LC699
RD1
RD28
RD1



LC700
RD1
RD29
RD1



LC701
RD1
RD30
RD1



LC702
RD1
RD31
RD1



LC703
RD1
RD32
RD1



LC704
RD1
RD33
RD1



LC705
RD1
RD34
RD1



LC706
RD1
RD35
RD1



LC707
RD1
RD40
RD1



LC708
RD1
RD41
RD1



LC709
RD1
RD42
RD1



LC710
RD1
RD64
RD1



LC711
RD1
RD66
RD1



LC712
RD1
RD68
RD1



LC713
RD1
RD76
RD1



LC714
RD2
RD1
RD1



LC715
RD2
RD3
RD1



LC716
RD2
RD4
RD1



LC717
RD2
RD5
RD1



LC718
RD2
RD6
RD1



LC719
RD2
RD7
RD1



LC720
RD2
RD8
RD1



LC721
RD2
RD9
RD1



LC722
RD2
RD10
RD1



LC723
RD2
RD11
RD1



LC724
RD2
RD12
RD1



LC725
RD2
RD13
RD1



LC726
RD2
RD14
RD1



LC727
RD2
RD15
RD1



LC728
RD2
RD16
RD1



LC729
RD2
RD17
RD1



LC730
RD2
RD18
RD1



LC731
RD2
RD19
RD1



LC732
RD2
RD20
RD1



LC733
RD2
RD21
RD1



LC734
RD2
RD22
RD1



LC735
RD2
RD23
RD1



LC736
RD2
RD24
RD1



LC737
RD2
RD25
RD1



LC738
RD2
RD26
RD1



LC739
RD2
RD27
RD1



LC740
RD2
RD28
RD1



LC741
RD2
RD29
RD1



LC742
RD2
RD30
RD1



LC743
RD2
RD31
RD1



LC744
RD2
RD32
RD1



LC745
RD2
RD33
RD1



LC746
RD2
RD34
RD1



LC747
RD2
RD35
RD1



LC748
RD2
RD40
RD1



LC749
RD2
RD41
RD1



LC750
RD2
RD42
RD1



LC751
RD2
RD64
RD1



LC752
RD2
RD66
RD1



LC753
RD2
RD68
RD1



LC754
RD2
RD76
RD1



LC755
RD3
RD4
RD1



LC756
RD3
RD5
RD1



LC757
RD3
RD6
RD1



LC758
RD3
RD7
RD1



LC759
RD3
RD8
RD1



LC760
RD3
RD9
RD1



LC761
RD3
RD10
RD1



LC762
RD3
RD11
RD1



LC763
RD3
RD12
RD1



LC764
RD3
RD13
RD1



LC765
RD3
RD14
RD1



LC766
RD3
RD15
RD1



LC767
RD3
RD16
RD1



LC768
RD3
RD17
RD1



LC769
RD3
RD18
RD1



LC770
RD3
RD19
RD1



LC771
RD3
RD20
RD1



LC772
RD3
RD21
RD1



LC773
RD3
RD22
RD1



LC774
RD3
RD23
RD1



LC775
RD3
RD24
RD1



LC776
RD3
RD25
RD1



LC777
RD3
RD26
RD1



LC778
RD3
RD27
RD1



LC779
RD3
RD28
RD1



LC780
RD3
RD29
RD1



LC781
RD3
RD30
RD1



LC782
RD3
RD31
RD1



LC783
RD3
RD32
RD1



LC784
RD3
RD33
RD1



LC785
RD3
RD34
RD1



LC786
RD3
RD35
RD1



LC787
RD3
RD40
RD1



LC788
RD3
RD41
RD1



LC789
RD3
RD42
RD1



LC790
RD3
RD64
RD1



LC791
RD3
RD66
RD1



LC792
RD3
RD68
RD1



LC793
RD3
RD76
RD1



LC794
RD4
RD5
RD1



LC795
RD4
RD6
RD1



LC796
RD4
RD7
RD1



LC797
RD4
RD8
RD1



LC798
RD4
RD9
RD1



LC799
RD4
RD10
RD1



LC800
RD4
RD11
RD1



LC801
RD4
RD12
RD1



LC802
RD4
RD13
RD1



LC803
RD4
RD14
RD1



LC804
RD4
RD15
RD1



LC805
RD4
RD16
RD1



LC806
RD4
RD17
RD1



LC807
RD4
RD18
RD1



LC808
RD4
RD19
RD1



LC809
RD4
RD20
RD1



LC810
RD4
RD21
RD1



LC811
RD4
RD22
RD1



LC812
RD4
RD23
RD1



LC813
RD4
RD24
RD1



LC814
RD4
RD25
RD1



LC815
RD4
RD26
RD1



LC816
RD4
RD27
RD1



LC817
RD4
RD28
RD1



LC818
RD4
RD29
RD1



LC819
RD4
RD30
RD1



LC820
RD4
RD31
RD1



LC821
RD4
RD32
RD1



LC822
RD4
RD33
RD1



LC823
RD4
RD34
RD1



LC824
RD4
RD35
RD1



LC825
RD4
RD40
RD1



LC826
RD4
RD41
RD1



LC827
RD4
RD42
RD1



LC828
RD4
RD64
RD1



LC829
RD4
RD66
RD1



LC830
RD4
RD68
RD1



LC831
RD4
RD76
RD1



LC832
RD4
RD1
RD1



LC833
RD7
RD5
RD1



LC834
RD7
RD6
RD1



LC835
RD7
RD8
RD1



LC836
RD7
RD9
RD1



LC837
RD7
RD10
RD1



LC838
RD7
RD11
RD1



LC839
RD7
RD12
RD1



LC840
RD7
RD13
RD1



LC841
RD7
RD14
RD1



LC842
RD7
RD15
RD1



LC843
RD7
RD16
RD1



LC844
RD7
RD17
RD1



LC845
RD7
RD18
RD1



LC846
RD7
RD19
RD1



LC847
RD7
RD20
RD1



LC848
RD7
RD21
RD1



LC849
RD7
RD22
RD1



LC850
RD7
RD23
RD1



LC851
RD7
RD24
RD1



LC852
RD7
RD25
RD1



LC853
RD7
RD26
RD1



LC854
RD7
RD27
RD1



LC855
RD7
RD28
RD1



LC856
RD7
RD29
RD1



LC857
RD7
RD30
RD1



LC858
RD7
RD31
RD1



LC859
RD7
RD32
RD1



LC860
RD7
RD33
RD1



LC861
RD7
RD34
RD1



LC862
RD7
RD35
RD1



LC863
RD7
RD40
RD1



LC864
RD7
RD41
RD1



LC865
RD7
RD42
RD1



LC866
RD7
RD64
RD1



LC867
RD7
RD66
RD1



LC868
RD7
RD68
RD1



LC869
RD7
RD76
RD1



LC870
RD8
RD5
RD1



LC871
RD8
RD6
RD1



LC872
RD8
RD9
RD1



LC873
RD8
RD10
RD1



LC874
RD8
RD11
RD1



LC875
RD8
RD12
RD1



LC876
RD8
RD13
RD1



LC877
RD8
RD14
RD1



LC878
RD8
RD15
RD1



LC879
RD8
RD16
RD1



LC880
RD8
RD17
RD1



LC881
RD8
RD18
RD1



LC882
RD8
RD19
RD1



LC883
RD8
RD20
RD1



LC884
RD8
RD21
RD1



LC885
RD8
RD22
RD1



LC886
RD8
RD23
RD1



LC887
RD8
RD24
RD1



LC888
RD8
RD25
RD1



LC889
RD8
RD26
RD1



LC890
RD8
RD27
RD1



LC891
RD8
RD28
RD1



LC892
RD8
RD29
RD1



LC893
RD8
RD30
RD1



LC894
RD8
RD31
RD1



LC895
RD8
RD32
RD1



LC896
RD8
RD33
RD1



LC897
RD8
RD34
RD1



LC898
RD8
RD35
RD1



LC899
RD8
RD40
RD1



LC900
RD8
RD41
RD1



LC901
RD8
RD42
RD1



LC902
RD8
RD64
RD1



LC903
RD8
RD66
RD1



LC904
RD8
RD68
RD1



LC905
RD8
RD76
RD1



LC906
RD11
RD5
RD1



LC907
RD11
RD6
RD1



LC908
RD11
RD9
RD1



LC909
RD11
RD10
RD1



LC910
RD11
RD12
RD1



LC911
RD11
RD13
RD1



LC912
RD11
RD14
RD1



LC913
RD11
RD15
RD1



LC914
RD11
RD16
RD1



LC915
RD11
RD17
RD1



LC916
RD11
RD18
RD1



LC917
RD11
RD19
RD1



LC918
RD11
RD20
RD1



LC919
RD11
RD21
RD1



LC920
RD11
RD22
RD1



LC921
RD11
RD23
RD1



LC922
RD11
RD24
RD1



LC923
RD11
RD25
RD1



LC924
RD11
RD26
RD1



LC925
RD11
RD27
RD1



LC926
RD11
RD28
RD1



LC927
RD11
RD29
RD1



LC928
RD11
RD30
RD1



LC929
RD11
RD31
RD1



LC930
RD11
RD32
RD1



LC931
RD11
RD33
RD1



LC932
RD11
RD34
RD1



LC933
RD11
RD35
RD1



LC934
RD11
RD40
RD1



LC935
RD11
RD41
RD1



LC936
RD11
RD42
RD1



LC937
RD11
RD64
RD1



LC938
RD11
RD66
RD1



LC939
RD11
RD68
RD1



LC940
RD11
RD76
RD1



LC941
RD13
RD5
RD1



LC942
RD13
RD6
RD1



LC943
RD13
RD9
RD1



LC944
RD13
RD10
RD1



LC945
RD13
RD12
RD1



LC946
RD13
RD14
RD1



LC947
RD13
RD15
RD1



LC948
RD13
RD16
RD1



LC949
RD13
RD17
RD1



LC950
RD13
RD18
RD1



LC951
RD13
RD19
RD1



LC952
RD13
RD20
RD1



LC953
RD13
RD21
RD1



LC954
RD13
RD22
RD1



LC955
RD13
RD23
RD1



LC956
RD13
RD24
RD1



LC957
RD13
RD25
RD1



LC958
RD13
RD26
RD1



LC959
RD13
RD27
RD1



LC960
RD13
RD28
RD1



LC961
RD13
RD29
RD1



LC962
RD13
RD30
RD1



LC963
RD13
RD31
RD1



LC964
RD13
RD32
RD1



LC965
RD13
RD33
RD1



LC966
RD13
RD34
RD1



LC967
RD13
RD35
RD1



LC968
RD13
RD40
RD1



LC969
RD13
RD41
RD1



LC970
RD13
RD42
RD1



LC971
RD13
RD64
RD1



LC972
RD13
RD66
RD1



LC973
RD13
RD68
RD1



LC974
RD13
RD76
RD1



LC975
RD14
RD5
RD1



LC976
RD14
RD6
RD1



LC977
RD14
RD9
RD1



LC978
RD14
RD10
RD1



LC979
RD14
RD12
RD1



LC980
RD14
RD15
RD1



LC981
RD14
RD16
RD1



LC982
RD14
RD17
RD1



LC983
RD14
RD18
RD1



LC984
RD14
RD19
RD1



LC985
RD14
RD20
RD1



LC986
RD14
RD21
RD1



LC987
RD14
RD22
RD1



LC988
RD14
RD23
RD1



LC989
RD14
RD24
RD1



LC990
RD14
RD25
RD1



LC991
RD14
RD26
RD1



LC992
RD14
RD27
RD1



LC993
RD14
RD28
RD1



LC994
RD14
RD29
RD1



LC995
RD14
RD30
RD1



LC996
RD14
RD31
RD1



LC997
RD14
RD32
RD1



LC998
RD14
RD33
RD1



LC999
RD14
RD34
RD1



LC1000
RD14
RD35
RD1



LC1001
RD14
RD40
RD1



LC1002
RD14
RD41
RD1



LC1003
RD14
RD42
RD1



LC1004
RD14
RD64
RD1



LC1005
RD14
RD66
RD1



LC1006
RD14
RD68
RD1



LC1007
RD14
RD76
RD1



LC1008
RD22
RD5
RD1



LC1009
RD22
RD6
RD1



LC1010
RD22
RD9
RD1



LC1011
RD22
RD10
RD1



LC1012
RD22
RD12
RD1



LC1013
RD22
RD15
RD1



LC1014
RD22
RD16
RD1



LC1015
RD22
RD17
RD1



LC1016
RD22
RD18
RD1



LC1017
RD22
RD19
RD1



LC1018
RD22
RD20
RD1



LC1019
RD22
RD21
RD1



LC1020
RD22
RD23
RD1



LC1021
RD22
RD24
RD1



LC1022
RD22
RD25
RD1



LC1023
RD22
RD26
RD1



LC1024
RD22
RD27
RD1



LC1025
RD22
RD28
RD1



LC1026
RD22
RD29
RD1



LC1027
RD22
RD30
RD1



LC1028
RD22
RD31
RD1



LC1029
RD22
RD32
RD1



LC1030
RD22
RD33
RD1



LC1031
RD22
RD34
RD1



LC1032
RD22
RD35
RD1



LC1033
RD22
RD40
RD1



LC1034
RD22
RD41
RD1



LC1035
RD22
RD42
RD1



LC1036
RD22
RD64
RD1



LC1037
RD22
RD66
RD1



LC1038
RD22
RD68
RD1



LC1039
RD22
RD76
RD1



LC1040
RD26
RD5
RD1



LC1041
RD26
RD6
RD1



LC1042
RD26
RD9
RD1



LC1043
RD26
RD10
RD1



LC1044
RD26
RD12
RD1



LC1045
RD26
RD15
RD1



LC1046
RD26
RD16
RD1



LC1047
RD26
RD17
RD1



LC1048
RD26
RD18
RD1



LC1049
RD26
RD19
RD1



LC1050
RD26
RD20
RD1



LC1051
RD26
RD21
RD1



LC1052
RD26
RD23
RD1



LC1053
RD26
RD24
RD1



LC1054
RD26
RD25
RD1



LC1055
RD26
RD27
RD1



LC1056
RD26
RD28
RD1



LC1057
RD26
RD29
RD1



LC1058
RD26
RD30
RD1



LC1059
RD26
RD31
RD1



LC1060
RD26
RD32
RD1



LC1061
RD26
RD33
RD1



LC1062
RD26
RD34
RD1



LC1063
RD26
RD35
RD1



LC1064
RD26
RD40
RD1



LC1065
RD26
RD41
RD1



LC1066
RD26
RD42
RD1



LC1067
RD26
RD64
RD1



LC1068
RD26
RD66
RD1



LC1069
RD26
RD68
RD1



LC1070
RD26
RD76
RD1



LC1071
RD35
RD5
RD1



LC1072
RD35
RD6
RD1



LC1073
RD35
RD9
RD1



LC1074
RD35
RD10
RD1



LC1075
RD35
RD12
RD1



LC1076
RD35
RD15
RD1



LC1077
RD35
RD16
RD1



LC1078
RD35
RD17
RD1



LC1079
RD35
RD18
RD1



LC1080
RD35
RD19
RD1



LC1081
RD35
RD20
RD1



LC1082
RD35
RD21
RD1



LC1083
RD35
RD23
RD1



LC1084
RD35
RD24
RD1



LC1085
RD35
RD25
RD1



LC1086
RD35
RD27
RD1



LC1087
RD35
RD28
RD1



LC1088
RD35
RD29
RD1



LC1089
RD35
RD30
RD1



LC1090
RD35
RD31
RD1



LC1091
RD35
RD32
RD1



LC1092
RD35
RD33
RD1



LC1093
RD35
RD34
RD1



LC1094
RD35
RD40
RD1



LC1095
RD35
RD41
RD1



LC1096
RD35
RD42
RD1



LC1097
RD35
RD64
RD1



LC1098
RD35
RD66
RD1



LC1099
RD35
RD68
RD1



LC1100
RD35
RD76
RD1



LC1101
RD40
RD5
RD1



LC1102
RD40
RD6
RD1



LC1103
RD40
RD9
RD1



LC1104
RD40
RD10
RD1



LC1105
RD40
RD12
RD1



LC1106
RD40
RD15
RD1



LC1107
RD40
RD16
RD1



LC1108
RD40
RD17
RD1



LC1109
RD40
RD18
RD1



LC1110
RD40
RD19
RD1



LC1111
RD40
RD20
RD1



LC1112
RD40
RD21
RD1



LC1113
RD40
RD23
RD1



LC1114
RD40
RD24
RD1



LC1115
RD40
RD25
RD1



LC1116
RD40
RD27
RD1



LC1117
RD40
RD28
RD1



LC1118
RD40
RD29
RD1



LC1119
RD40
RD30
RD1



LC1120
RD40
RD31
RD1



LC1121
RD40
RD32
RD1



LC1122
RD40
RD33
RD1



LC1123
RD40
RD34
RD1



LC1124
RD40
RD41
RD1



LC1125
RD40
RD42
RD1



LC1126
RD40
RD64
RD1



LC1127
RD40
RD66
RD1



LC1128
RD40
RD68
RD1



LC1129
RD40
RD76
RD1



LC1130
RD41
RD5
RD1



LC1131
RD41
RD6
RD1



LC1132
RD41
RD9
RD1



LC1133
RD41
RD10
RD1



LC1134
RD41
RD12
RD1



LC1135
RD41
RD15
RD1



LC1136
RD41
RD16
RD1



LC1137
RD41
RD17
RD1



LC1138
RD41
RD18
RD1



LC1139
RD41
RD19
RD1



LC1140
RD41
RD20
RD1



LC1141
RD41
RD21
RD1



LC1142
RD41
RD23
RD1



LC1143
RD41
RD24
RD1



LC1144
RD41
RD25
RD1



LC1145
RD41
RD27
RD1



LC1146
RD41
RD28
RD1



LC1147
RD41
RD29
RD1



LC1148
RD41
RD30
RD1



LC1149
RD41
RD31
RD1



LC1150
RD41
RD32
RD1



LC1151
RD41
RD33
RD1



LC1152
RD41
RD34
RD1



LC1153
RD41
RD42
RD1



LC1154
RD41
RD64
RD1



LC1155
RD41
RD66
RD1



LC1156
RD41
RD68
RD1



LC1157
RD41
RD76
RD1



LC1158
RD64
RD5
RD1



LC1159
RD64
RD6
RD1



LC1160
RD64
RD9
RD1



LC1161
RD64
RD10
RD1



LC1162
RD64
RD12
RD1



LC1163
RD64
RD15
RD1



LC1164
RD64
RD16
RD1



LC1165
RD64
RD17
RD1



LC1166
RD64
RD18
RD1



LC1167
RD64
RD19
RD1



LC1168
RD64
RD20
RD1



LC1169
RD64
RD21
RD1



LC1170
RD64
RD23
RD1



LC1171
RD64
RD24
RD1



LC1172
RD64
RD25
RD1



LC1173
RD64
RD27
RD1



LC1174
RD64
RD28
RD1



LC1175
RD64
RD29
RD1



LC1176
RD64
RD30
RD1



LC1177
RD64
RD31
RD1



LC1178
RD64
RD32
RD1



LC1179
RD64
RD33
RD1



LC1180
RD64
RD34
RD1



LC1181
RD64
RD42
RD1



LC1182
RD64
RD64
RD1



LC1183
RD64
RD66
RD1



LC1184
RD64
RD68
RD1



LC1185
RD64
RD76
RD1



LC1186
RD66
RD5
RD1



LC1187
RD66
RD6
RD1



LC1188
RD66
RD9
RD1



LC1189
RD66
RD10
RD1



LC1190
RD66
RD12
RD1



LC1191
RD66
RD15
RD1



LC1192
RD66
RD16
RD1



LC1193
RD66
RD17
RD1



LC1194
RD66
RD18
RD1



LC1195
RD66
RD19
RD1



LC1196
RD66
RD20
RD1



LC1197
RD66
RD21
RD1



LC1198
RD66
RD23
RD1



LC1199
RD66
RD24
RD1



LC1200
RD66
RD25
RD1



LC1201
RD66
RD27
RD1



LC1202
RD66
RD28
RD1



LC1203
RD66
RD29
RD1



LC1204
RD66
RD30
RD1



LC1205
RD66
RD31
RD1



LC1206
RD66
RD32
RD1



LC1207
RD66
RD33
RD1



LC1208
RD66
RD34
RD1



LC1209
RD66
RD42
RD1



LC1210
RD66
RD68
RD1



LC1211
RD66
RD76
RD1



LC1212
RD68
RD5
RD1



LC1213
RD68
RD6
RD1



LC1214
RD68
RD9
RD1



LC1215
RD68
RD10
RD1



LC1216
RD68
RD12
RD1



LC1217
RD68
RD15
RD1



LC1218
RD68
RD16
RD1



LC1219
RD68
RD17
RD1



LC1220
RD68
RD18
RD1



LC1221
RD68
RD19
RD1



LC1222
RD68
RD20
RD1



LC1223
RD68
RD21
RD1



LC1224
RD68
RD23
RD1



LC1225
RD68
RD24
RD1



LC1226
RD68
RD25
RD1



LC1227
RD68
RD27
RD1



LC1228
RD68
RD28
RD1



LC1229
RD68
RD29
RD1



LC1230
RD68
RD30
RD1



LC1231
RD68
RD31
RD1



LC1232
RD68
RD32
RD1



LC1233
RD68
RD33
RD1



LC1234
RD68
RD34
RD1



LC1235
RD68
RD42
RD1



LC1236
RD68
RD76
RD1



LC1237
RD76
RD5
RD1



LC1238
RD76
RD6
RD1



LC1239
RD76
RD9
RD1



LC1240
RD76
RD10
RD1



LC1241
RD76
RD12
RD1



LC1242
RD76
RD15
RD1



LC1243
RD76
RD16
RD1



LC1244
RD76
RD17
RD1



LC1245
RD76
RD18
RD1



LC1246
RD76
RD19
RD1



LC1247
RD76
RD20
RD1



LC1248
RD76
RD21
RD1



LC1249
RD76
RD23
RD1



LC1250
RD76
RD24
RD1



LC1251
RD76
RD25
RD1



LC1252
RD76
RD27
RD1



LC1253
RD76
RD28
RD1



LC1254
RD76
RD29
RD1



LC1255
RD76
RD30
RD1



LC1256
RD76
RD31
RD1



LC1257
RD76
RD32
RD1



LC1258
RD76
RD33
RD1



LC1259
RD76
RD34
RD1



LC1260
RD76
RD42
RD1











where RD1 to RD21 has the following structures:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


An OLED is disclosed comprising: an anode; a cathode; and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound comprising a first ligand LA of Formula I




embedded image



where Z1 to Z4 are each independently C or N;


where at least one of Z1 to Z4 is N;


where ring A is Formula II




embedded image



where each RA and R4 independently represents mono substitution to a maximum possible number of substitutions, or no substitution;


where Z5 to Z8 are each independently C or N;


where R3 is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, aryl, and heteroaryl;


where each RA and R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;


where any two substituents can be joined or fused together to form a ring;


where R3 and ring A do not have identical formulas;


where the ligand LA is complexed to a metal M;


where M is optionally coordinated to other ligands;


where the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and


where when Z1 is N, the compound is homoleptic, or M is complexed to at least one acetylacetonate ligand.


A consumer product is disclosed where the consumer product comprises the OLED comprising: an anode; a cathode; and an organic layer, disposed between the anode and the cathode, comprising a compound that comprises a first ligand LA of Formula I




embedded image



where Z1 to Z4 are each independently C or N;


where at least one of Z1 to Z4 is N;


where ring A is Formula II




embedded image



where each R2 and R4 independently represents mono substitution to a maximum possible number of substitutions, or no substitution;


where Z5 to Z8 are each independently C or N;


where R3 is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, aryl, and heteroaryl;


where each R2 and R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;


where any two substituents can be joined or fused together to form a ring;


where R3 and ring A do not have identical formulas;


where the ligand LA is complexed to a metal M;


where M is optionally coordinated to other ligands;


where the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and


where when Z1 is N, the compound is homoleptic, or M is complexed to at least one acetylacetonate ligand.


In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved.


In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.


In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.


An emissive region in an organic light emitting device, the emissive region comprising a compound that comprises a first ligand LA of Formula I




embedded image



where Z1 to Z4 are each independently C or N;


where at least one of Z1 to Z4 is N;


where ring A is Formula II




embedded image



where each R2 and R4 independently represents mono substitution to a maximum possible number of substitutions, or no substitution;


where Z5 to Z8 are each independently C or N;


where R3 is a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, aryl, and heteroaryl;


where each R2 and R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;


where any two substituents can be joined or fused together to form a ring;


where R3 and ring A do not have identical formulas;


where the ligand LA is complexed to a metal M;


where M is optionally coordinated to other ligands;


where the ligand LA is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate, or hexadentate ligand; and


where when Z1 is N, the compound is homoleptic, or M is complexed to at least one substituted or unsubstituted acetylacetonate ligand.


In some embodiments of the emissive region, the compound is an emissive dopant or a non-emissive dopant. In some embodiments, the emissive region further comprises a host, wherein the host contains at least one group selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.


In some embodiments of the emissive region, the emissive region further comprises a host, wherein the host is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others).


In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.


According to another aspect, a formulation comprising the compound described herein is also disclosed.


The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.


The organic layer can also include a host. In some embodiments, two or more hosts are preferred. In some embodiments, the hosts used may be a) bipolar, b) electron transporting, c) hole transporting or d) wide band gap materials that play little role in charge transport. In some embodiments, the host can include a metal complex. The host can be a triphenylene containing benzo-fused thiophene or benzo-fused furan. Any substituent in the host can be an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡C—CnH2n+1, Ar1, Ar1-Ar2, and CnH2n—Ar1, or the host has no substitutions. In the preceding substituents n can range from 1 to 10; and Ar1 and Ar2 can be independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof. The host can be an inorganic compound. For example a Zn containing inorganic material e.g. ZnS.


The host can be a compound comprising at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. The host can include a metal complex. The host can be, but is not limited to, a specific compound selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



and combinations thereof.


Additional information on possible hosts is provided below.


In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.


The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure. In other words, the inventive compound can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule).


Combination with Other Materials


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


Conductivity Dopants:


A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.


Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.




embedded image


embedded image


embedded image



HIL/HTL:


A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.


Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:




embedded image


Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:




embedded image



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.


Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:




embedded image



wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.


Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



EBL:


An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.


Host:


The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.


Examples of metal complexes used as host are preferred to have the following general formula:




embedded image



wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.


In one aspect, the metal complexes are:




embedded image



wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.


In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.


In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


In one aspect, the host compound contains at least one of the following groups in the molecule:




embedded image


embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to Y108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.


Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Additional Emitters:


One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.


Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Pat. Nos. 6,699,599, 6,916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



HBL:


A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.


In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.


In another aspect, compound used in HBL contains at least one of the following groups in the molecule:




embedded image



wherein k is an integer from 1 to 20; L101 is an another ligand, k′ is an integer from 1 to 3.


ETL:


Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.


In one aspect, compound used in ETL contains at least one of the following groups in the molecule:




embedded image



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.


In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:




embedded image



wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.


Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



Charge Generation Layer (CGL)


In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.


In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.


EXPERIMENTAL

Density function theory (DFT) calculations were performed to determine S1, T1, HOMO, and LUMO energy levels of the compounds. The data was gathered using the program Gaussian16. Geometries were optimized using B3LYP functional and CEP-31G basis set. Excited state energies were computed by TDDFT at the optimized ground state geometries. THF solvent was simulated using a self-consistent reaction field to further improve agreement with experiment.
















DFT Calcuations














HOMO
LUMO
S1
T1


Compound #
Structure
eV
eV
nm
nm





Ir[LXIII-A1270]2LC22


embedded image


−5.32
−3.28
863
1042





Ir[LXIII-A1267]2LC22


embedded image


−5.26
−3.12
768
 972





CC-1


embedded image


−5.11
−2.67
665
 805





CC-2


embedded image


−5.11
−2.62
647
 784









As shown from the DFT calculation results, the addition of extra nitrogen atom on ligand LA has multiple effects on the optoelectronic properties of the final metal complexes. The HOMO energy should be lower by around 0.2 eV going from comparative compounds (CC-1 and CC-2) to the inventive compounds (Ir[LXIII-A1270]2LC22 and Ir[LXIII-A1267]2LC22). The LUMO energy levels are also affected, being lower by 0.5 eV. The LUMO typically being localized on quinoxaline, adding nitrogen atoms to the core will produce an even more electron deficient moiety shifting the LUMO energy lower. The most unexpected result is that the T1 energies of the inventive compounds have shifted completely to the near IR regime going from 780-800 nm for the comparative compounds CC-1 and CC-2 compared to 970 to 1040 nm for the inventive compounds Ir[LXIII-A1270]2LC22 and Ir[LXIII-A1267]2LC22.


The calculations obtained with the above-identified DFT functional set and basis set are theoretical. Computational composite protocols, such as the Gaussian09 with B3LYP and CEP-31G protocol used herein, rely on the assumption that electronic effects are additive and, therefore, larger basis sets can be used to extrapolate to the complete basis set (CBS) limit. However, when the goal of a study is to understand variations in HOMO, LUMO, S1, T1, bond dissociation energies, etc. over a series of structurally-related compounds, the additive effects are expected to be similar. Accordingly, while absolute errors from using the B3LYP may be significant compared to other computational methods, the relative differences between the HOMO, LUMO, S1, T1, and bond dissociation energy values calculated with B3LYP protocol are expected to reproduce experiment quite well. See, e.g., Hong et al., Chem. Mater. 2016, 28, 5791-98, 5792-93 and Supplemental Information (discussing the reliability of DFT calculations in the context of OLED materials). Moreover, with respect to iridium or platinum complexes that are useful in the OLED art, the data obtained from DFT calculations correlates very well to actual experimental data. See Tavasli et al., J. Mater. Chem. 2012, 22, 6419-29, 6422 (Table 3) (showing DFT calculations closely correlating with actual data for a variety of emissive complexes); Morello, G. R., J. Mol. Model. 2017, 23:174 (studying of a variety of DFT functional sets and basis sets and concluding the combination of B3LYP and CEP-31G is particularly accurate for emissive complexes).


Synthetic Schemes


Synthesis of Ir[LXIII-A1267]2LC22




embedded image


embedded image


The synthesis of aza-quinoxaline ligand is described as follows. A solution of 2-(4-(tert-butyl)naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and copper(II) bromide in MeOH and water was stirred at 90° C. overnight, resulting in formation of 3-bromo-1-(tert-butyl)naphthalene as a colorless oil. (See Thompson, Alicia L. S.; Kabalka, George W.; Akula, Murthy R.; Huffman, John W. “The Conversion of Phenols to the Corresponding Aryl Halides Under Mild Conditions,” Synthesis, (4), 547-550 (2005), the contents of which are incorporated herein by reference). Treatment of bromo-1-(tert-butyl)naphthalene with isopropylmagnesium bromide in tetrahydrofuran at −78° C. yields a solution of (4-(tert-butyl)naphthalen-2-yl)magnesium bromide. This cold Grignard solution was then canulated into the solution of ethyl pyruvate in situ at −78° C., and the reaction mixture was stirred for 1 hr to give 1-(4-(tert-butyl)naphthalen-2-yl)propane-1,2-dione. By condensation of 1,2-diketone and pyrazine-2,3-diamine in acetic acid under reflux, 2-(4-(tert-butyl)naphthalen-2-yl)-3-methylpyrazino[2,3-b]pyrazine was afforded as the desired ligand. (See Nyquist, Edwin B.; Joullie, Madeleine M. “Novel routes to pyrazino[2,3-b]quinoxalines,” J. Chem. Soc. C, 0 (8), 947-949, (1968), the contents of which are incorporated herein by reference). The formation of Iridium chloro bridged dimer and the final metal complex are both described in U.S. patent Application Pub. No. 20180240988 A1, the contents of which are incorporated herein by reference.


Synthesis of Ir[LXIII-A1270]2LC22




embedded image


embedded image



The unsymmetrical alkyne, 1-(tert-butyl)-3-((2,6-dimethylphenyl)ethynyl)naphthalene, was synthesized by the standard Sonogashira Coupling reaction. (See Sonogashira, K. “Development of Pd—Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides”, J. Organomet. Chem., 653 (1-2), 46-49, 2002, the contents of which are incorporated herein by reference). The resulting alkyne was further oxidized by Wacker-type oxidation into 1,2-diketone using catalytic amounts of PdBr2 and CuBr2 under O2 atmosphere. (See Ren, Wei; Xia, Yuanzhi; Ji, Shun-Jun; Zhang, Yong; Wan, Xiaobing; Zhao, Jing “Wacker-Type Oxidation of Alkynes into 1,2-Diketones Using Molecular Oxygen” Org. Lett., 11 (8), 1841-1844, (2009) the contents of which are incorporated herein by reference). Following the same condensation reaction described above, the desired ligand, 2-(4-(tert-butyl)naphthalen-2-yl)-3-(2,6-dimethylphenyl)pyrazino[2,3-b]pyrazine, was afforded by the reaction of 1,2-diketone with pyrazine-2,3-diamine in acetic acid under reflux. The formation of Iridium chloro bridged dimer and the final metal complex are both described in U.S. patent Pub. No. 20180240988 A1, the contents of which are incorporated herein by reference.


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound comprising a first ligand LA of Formula I
  • 2. The compound of claim 1, wherein each RA and R4 is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.
  • 3. The compound of claim 1, wherein two of Z1 to Z4 are N, and the remainder are C.
  • 4. The compound of claim 1, wherein one of Z1 to Z4 is N, and the remainder are C.
  • 5. The compound of claim 1, wherein RA represents a fused ring.
  • 6. The compound of claim 1, wherein Z6 is C and is attached to an alkyl group.
  • 7. The compound of claim 1, wherein R3 is a 5-membered heteroaryl group or a 6-membered aryl or heteroaryl group.
  • 8. The compound of claim 1, wherein M is selected from the group consisting of Os, Ir, Pd, Pt, Cu, and Au.
  • 9. A formulation comprising the compound of claim 1.
  • 10. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of:
  • 11. The compound of claim 1, wherein the first ligand LA is selected from the group consisting of ligands LIV-Ai that are based on a structure of Formula IV
  • 12. The compound of claim 1, wherein the compound has a formula of M(LA)x(LB)y(LC)z wherein LB and LC are each a bidentate ligand; and wherein x is 1, 2, or 3;y is 0, 1, or 2;z is 0, 1, or 2; andx+y+z is the oxidation state of the metal M.
  • 13. The compound of claim 12, wherein LB and LC are each independently selected from the group consisting of:
  • 14. The compound of claim 11, wherein the compound is Compound P-Ax having the formula Ir(LP-Ai)3, or the Compound P-Cz having the formula Ir(LP-Ai)2(LCj); wherein x=i, and z=1260i+j−1260;wherein P is IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, orXIX, i is an integer from 1 to 13,440, and j is an integer from 1 to 1,260;whereinLC1 through LC1,260 are based on a structure of Formula X
  • 15. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound comprising a first ligand LA of Formula I
  • 16. The OLED of claim 15, wherein the organic layer is an emissive layer and the compound is an emissive dopant or a non-emissive dopant.
  • 17. The OLED of claim 15, wherein the organic layer further comprises a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.
  • 18. The OLED of claim 17, wherein the host is selected from the group consisting of:
  • 19. A consumer product comprising an organic light-emitting device (OLED) comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, comprising a compound a compound comprising a first ligand LA of Formula I
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/657,079, filed Apr. 13, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (96)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
8431243 Kwong Apr 2013 B2
8586203 Kwong Nov 2013 B2
10862055 Boudreault Dec 2020 B2
11081658 Boudreault Aug 2021 B2
11201298 Boudreault Dec 2021 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030072964 Kwong Apr 2003 A1
20030138657 Li et al. Jul 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030162053 Marks et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080261076 Kwong Oct 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Prakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
20110049496 Fukuzaki Mar 2011 A1
20130032785 Ma Feb 2013 A1
20130169148 Alleyne Jul 2013 A1
20130328019 Xia Dec 2013 A1
20170092880 Boudreault Mar 2017 A1
20170125695 Pentlehner May 2017 A1
20180097179 Boudreault Apr 2018 A1
20180097187 Boudreault Apr 2018 A1
20180134718 Ma May 2018 A1
20180240988 Boudreault Aug 2018 A1
20180323382 Boudreault Nov 2018 A1
20190237683 Boudreault Aug 2019 A1
20190248818 Boudreault Aug 2019 A1
Foreign Referenced Citations (55)
Number Date Country
106397340 Feb 2017 CN
106397489 Feb 2017 CN
106397490 Feb 2017 CN
106397494 Feb 2017 CN
106432350 Feb 2017 CN
106588993 Apr 2017 CN
0650955 May 1995 EP
1725079 Nov 2006 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008074939 Apr 2008 JP
2015037138 Feb 2015 JP
0139234 May 2001 WO
0202714 Jan 2002 WO
02015654 Feb 2002 WO
03040257 May 2003 WO
03060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072092 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
2013174471 Nov 2013 WO
Non-Patent Literature Citations (47)
Entry
English Translation of CN 106397340 A, Feb. 15, 2017. (Year: 2017).
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90, Apr. 30, 2007, 183503-1-183503-3.
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence from a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1: 15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato)beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi et al., “Highly Efficient Phosphorescence from Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino)triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1)162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota, Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis(dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, 91: 209-215 (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic LIght-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 88:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
Related Publications (1)
Number Date Country
20190315788 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
62657079 Apr 2018 US