Organic field effect transistor with off-set threshold voltage and the use thereof

Information

  • Patent Grant
  • 7064345
  • Patent Number
    7,064,345
  • Date Filed
    Thursday, September 12, 2002
    22 years ago
  • Date Issued
    Tuesday, June 20, 2006
    18 years ago
Abstract
The invention relates to an organic field effect transistor with off-set threshold voltage. Said OFET has an intermediate layer that defines a space charge region between the insulator and the semiconductor.
Description

This application is a 371 of PCT/DE02/04520, Sep. 12, 2002, which claims benefit of Germany application 101 60 732.6, filed Dec. 11, 2001


Organic field effect transistor with offset threshold voltage and the use thereof


The invention relates to an organic field effect transistor with offset threshold voltage.


A key parameter in the case of organic field effect transistors (OFETs) is the position of the threshold voltage. This voltage indicates the, gate voltage at which the current channel of the transistor originates or becomes conductive. If it is around 0V, two problems arise when setting up integrated circuits from these OFETs: two voltage supplies are required instead of one and roughly double the number of transistors are needed, as the output voltages of the logic elements have to be offset, before they can be used to activate further logic elements. The result of these problems is for example a significant increase in power consumption, which complicates the use of polymer electronics, i.e. electronics based on organic materials, for applications such as RF-ID (radio frequency identification) tags.


In the case of the most promising OFETS for future applications, those based on polyalkylthiophene, as known for example from the publication by H. Sirringhaus (H. Sirringhaus, N. Tessler, et al. (1999). Elsevier Synthetic Metals 102: 857–860), the threshold voltage is around 0V. In the case of OFETs with pentacene as the semiconductor, the threshold voltage is even at positive voltages (C. D. Sheraw, J. A. Nichols et al. (2000), IEDM 20-00, p. 619–22). The problems set out above therefore result. As OFETs are based on the principle of charge carrier accumulation, the position of the threshold voltage cannot be adjusted by means of the channel thickness, as is usually the case for example with Si-MOS-FETs (silicon metal oxide field effect transistors). Even a thicker insulator layer only offsets the threshold voltage to an insignificant extent. It would also have a significantly detrimental effect on the on/off relationship of the OFETs at the same time. The obvious option for offsetting the threshold voltage, namely using a gate electrode, which has a lower work function, is not a feasible solution, as in practice these cannot be made from a conductive organic material.


The object of the invention is therefore to provide an option for offsetting the threshold voltage in OFETs, in particular in those with a threshold voltage close to 0V or in the positive range. The object of the invention is also to disclose uses for OFETs with an offset threshold voltage.


The object of the invention is an OFET comprising at least a substrate, structured source/drain electrodes, which are embedded in an organic semiconductor layer, adjacent to which are an insulator layer and a gate electrode, whereby there is an intermediate layer between the semiconductor layer and the insulator layer that defines a space charge region there.


The “space charge region” is an area in which there are no free charge carriers.


The intermediate layer generates a space charge region, which prevents the formation of a conductive current channel at low gate voltages. Normal generation of a current channel only takes place at higher gate voltages. This means that the threshold voltage is offset without disadvantages such as deterioration of the ON/OFF relationship, etc. or lower output currents. Whether the threshold voltage offset is 2V, 5V or over 10V depends on the thickness and donor concentration of the intermediate layer and can be adjusted as required by means of an appropriate selection. This represents an important advantage of the invention disclosure.


A further advantage of the invention is that OFETs with such an intermediate layer are significantly less susceptible to unintentional background doping of the semiconductor, as this is actively compensated for by the intermediate layer. This simplifies OFET production, as they do not have to be produced subject to oxygen exclusion.


According to one embodiment, the intermediate layer is made from small, polarizable molecules with internal dipole moment (e.g. disulfide dipole molecules) or silanes, fullerenes or perylenes.


According to one embodiment, the intermediate layer is a few to several 10s of nanometers thick.


When producing organic transistors or organic integrated circuits, the intermediate layer can either be applied to the semiconductor layer (in the case of top gate OFETs) or the insulator layer (in the case of bottom gate OFETs). Application can be effected by centrifuging, casting, printing, vapor, immersion in a solution or another application method.


The invention can be used with both positively conductive and negatively conductive OFETs. As however the focus of interest is on negatively conductive OFETs at present, the description below, based on figures showing exemplary embodiments of the invention, is restricted to positively conductive OFETs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a to 1c show the prior art for comparison;



FIGS. 2
a to 2c show the same views for an exemplary embodiment of the invention.






FIG. 1
a shows a cross-section through a conventional OFET with a substrate 8 (e.g. a plastic film), the structured source/drain electrodes 7, the organic semiconductor layer 6, the insulator layer 2 and the gate electrode 1. FIG. 1b shows the associated position of the LUMO and HOMO energies for the layer sequence gate electrode/insulator/semiconductor: LUMO energy 3 (corresponds to the energy position of the conduction band), HOMO energy 5 (corresponds to the energy position of the valence band) and the Fermi level 4. An increase in the gate voltage of ΔU1 results in an accumulation of charge carriers at the interface between insulator and semiconductor (9 in FIG. 1c). This leads to an increase in the energy level in the organic semiconductor layer 6 close to the interface. The increase in gate voltage therefore results directly in the formation of a current channel 9 in the OFET.



FIG. 2
a shows the structure of an OFET according to one embodiment of the invention. The space charge generating layer 10 is located between the insulator layer 2 and the semiconductive layer 10. The main properties of this layer are a low work function, a Fermi level close to the LUMO 3 and a high number of donors. These properties mean that the charge carriers of the adjacent semiconductor layer are tied to these donors. This results in the definition of a space charge region, i.e. an area in which there are no free charge carriers. In FIG. 2b this space charge region is identified by the downward curving LUMO and HOMO levels 3 and 4 close to the semiconductor/insulator interface. If the gate voltage is increased to this OFET, a current channel still cannot be generated at low voltages, as it is first necessary to fill all the donors with holes. Only at a higher voltage ΔU2, when the donors are compensated for, can a current channel 9 be generated in the OFET (see FIG. 2c). The difference between the voltage ΔU1 (in FIG. 1c) and ΔU2 (in FIG. 2c) corresponds to the threshold voltage offset.


The subject matter of the invention is the insertion of a very thin, nonconductive layer between the semiconductive material and the insulator in the OFET. The invention allows the threshold voltage of an OFET to be offset for the first time and the production of the OFET to be simplified at the same time, as there is no need for oxygen exclusion during production.

Claims
  • 1. An OFET, having a threshold voltage, comprising: a substrate;an active semiconductor layer; andan intermediate layer adjacent to the active semiconductive layer, which intermediate layer offsets the threshold voltage of the OFET by defining a space charge region in the active layer.
  • 2. OFET according to claim 1, whereby the intermediate layer is located between the substrate and the active layer.
  • 3. OFET according to claim 1, including a gate insulation layer, whereby the intermediate layer is located between the active layer and the gate insulator layer.
  • 4. OFET according to one of claims 1, 2 or 3, whereby the intermediate layer consists of small, polarizable molecules with internal dipole moment (e.g. disulfide dipole molecules) or of silanes, fullerenes or perylenes.
  • 5. OFET according to claim 1 which has a threshold voltage in the range −1V to −10V.
  • 6. OFET according to claim 1 wherein the semiconductive material of which is polyalkylthiophene.
  • 7. OFET according to claim 1 wherein the intermediate layer has a thickness in the range 1 to 50 nm.
  • 8. Use of the OFET according to claim 1 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 9. Use of the OFET according to claim 2 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 10. Use of the OFET according to claim 3 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 11. Use of the OFET according to claim 4 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 12. Use of the OFET according to claim 5 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 13. Use of the OFET according to claim 6 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
  • 14. Use of the OFET according to claim 7 in an RFID tag, a sensor array, a photovoltaic cell, as a “wearable electronic”, as an active display, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a baggage label and/or as an electronic ticket.
Priority Claims (1)
Number Date Country Kind
101 60 732 Dec 2001 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE02/04520 9/12/2002 WO 00 6/10/2004
Publishing Document Publishing Date Country Kind
WO03/054970 7/3/2003 WO A
US Referenced Citations (88)
Number Name Date Kind
3512052 Maclver et al. May 1970 A
3769096 Ashkin Oct 1973 A
3955098 Kawamoto May 1976 A
4302648 Sado et al. Nov 1981 A
4340657 Rowe Jul 1982 A
4442019 Marks Apr 1984 A
4865197 Craig Sep 1989 A
4937119 Nickles et al. Jun 1990 A
5173835 Cornett et al. Dec 1992 A
5206525 Yamamoto et al. Apr 1993 A
5259926 Kuwabara et al. Nov 1993 A
5321240 Takahira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5395504 Hoffman et al. Mar 1995 A
5480839 Ezawa et al. Jan 1996 A
5486851 Gehner et al. Jan 1996 A
5502396 Desarzens Mar 1996 A
5546889 Wakita et al. Aug 1996 A
5569879 Gloton et al. Oct 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5578513 Maegawa Nov 1996 A
5580794 Allen Dec 1996 A
5625199 Baumbach et al. Apr 1997 A
5630986 Charlton et al. May 1997 A
5652645 Jain Jul 1997 A
5691089 Smayling Nov 1997 A
5705826 Aratani et al. Jan 1998 A
5729428 Sakata et al. Mar 1998 A
5854139 Aratani et al. Dec 1998 A
5869972 Birch et al. Feb 1999 A
5883397 Isoda et al. Mar 1999 A
5892244 Tanaka et al. Apr 1999 A
5967048 Fromson et al. Oct 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Beigel Oct 1999 A
5994773 Hirakawa Nov 1999 A
5997817 Crismore et al. Dec 1999 A
5998805 Shi et al. Dec 1999 A
6036919 Thym et al. Mar 2000 A
6045977 Chandross et al. Apr 2000 A
6072716 Jacobsen et al. Jun 2000 A
6083104 Choi Jul 2000 A
6087196 Sturm et al. Jul 2000 A
6133835 De Leeuw et al. Oct 2000 A
6150668 Bao et al. Nov 2000 A
6197663 Chandross et al. Mar 2001 B1
6207472 Calligari et al. Mar 2001 B1
6215130 Dodabalapur Apr 2001 B1
6221553 Wolk et al. Apr 2001 B1
6251513 Rector et al. Jun 2001 B1
6284562 Batlogg et al. Sep 2001 B1
6300141 Segal et al. Oct 2001 B1
6321571 Themont et al. Nov 2001 B1
6322736 Bao et al. Nov 2001 B1
6329226 Jones et al. Dec 2001 B1
6330464 Colvin et al. Dec 2001 B1
6335539 Dimitrakopoulos et al. Jan 2002 B1
6340822 Brown et al. Jan 2002 B1
6344662 Dimitrakopoulos et al. Feb 2002 B1
6362509 Hart Mar 2002 B1
6384804 Dodabalapur et al. May 2002 B1
6403396 Gudesen et al. Jun 2002 B1
6429450 Mutsaers et al. Aug 2002 B1
6498114 Amundson et al. Dec 2002 B1
6517995 Jacobsen et al. Feb 2003 B1
6555840 Hudson et al. Apr 2003 B1
6593690 McCormick et al. Jul 2003 B1
6603139 Tessler et al. Aug 2003 B1
6621098 Jackson et al. Sep 2003 B1
6852583 Bernds et al. Feb 2005 B1
20020022284 Haeger et al. Feb 2002 A1
20020025391 Angelopoulos et al. Feb 2002 A1
20020053320 Duthaler May 2002 A1
20020056839 Joo et al. May 2002 A1
20020068392 Lee et al. Jun 2002 A1
20020130042 Stiene Sep 2002 A1
20020167003 Campbell et al. Nov 2002 A1
20020170897 Hall Nov 2002 A1
20020195644 Dodabalapur et al. Dec 2002 A1
20030059987 Henning et al. Mar 2003 A1
20030112576 Brewer et al. Jun 2003 A1
20030175427 Loo et al. Sep 2003 A1
20040002176 Xu Jan 2004 A1
20040013982 Jacobson et al. Jan 2004 A1
20040026689 Bernds et al. Feb 2004 A1
20040084670 Tripsas et al. May 2004 A1
20040211329 Funahata et al. Oct 2004 A1
Foreign Referenced Citations (136)
Number Date Country
33 38 597 May 1985 DE
4243832 Jun 1994 DE
198 52312 May 1999 DE
198 16 860 Nov 1999 DE
19918193 Nov 1999 DE
198 51703 May 2000 DE
19851703 May 2000 DE
100 06257 Sep 2000 DE
199 21024 Nov 2000 DE
19933757 Jan 2001 DE
69519782 Jan 2001 DE
199 35 527 Feb 2001 DE
199 37 262 Mar 2001 DE
100 12204 Sep 2001 DE
10033112 Jan 2002 DE
100 45 192 Apr 2002 DE
100 47 171 Apr 2002 DE
100 43204 Apr 2002 DE
100 58 559 May 2002 DE
10061297 Jun 2002 DE
101 20 687 Oct 2002 DE
102 19905 Dec 2003 DE
0 108650 May 1984 EP
0 128 529 Dec 1984 EP
0 268 370 May 1988 EP
0 268 370 May 1988 EP
0 350 179 Jan 1990 EP
0 418504 Mar 1991 EP
0 442123 Aug 1991 EP
0460242 Dec 1991 EP
0 528 662 Aug 1992 EP
0501456 Sep 1992 EP
0501456 Sep 1992 EP
0 511807 Nov 1992 EP
0 528662 Feb 1993 EP
0685985 Dec 1995 EP
0716458 Jun 1996 EP
0 786820 Jul 1997 EP
0962984 Dec 1999 EP
0966182 Dec 1999 EP
0 979715 Feb 2000 EP
0981165 Feb 2000 EP
0989614 Mar 2000 EP
1 048 912 Nov 2000 EP
1 052 594 Nov 2000 EP
1065725 Jan 2001 EP
1065725 Jan 2001 EP
1 102 335 May 2001 EP
1 104 035 May 2001 EP
1 103916 May 2001 EP
1 134 694 Sep 2001 EP
1224999 Jul 2002 EP
1237207 Sep 2002 EP
1 318 084 Jun 2003 EP
2793089 Nov 2000 FR
723598 Feb 1955 GB
2 058 462 Apr 1981 GB
54069392 Jun 1979 JP
61167854 Jul 1986 JP
362065477 Mar 1987 JP
05152560 Jun 1993 JP
05259434 Oct 1993 JP
05347422 Dec 1993 JP
08197788 Aug 1996 JP
2969184 Nov 1999 JP
2001085272 Mar 2001 JP
WO 93 16491 Aug 1993 WO
WO 9417556 Aug 1994 WO
WO 9506240 Mar 1995 WO
WO 95 31831 Nov 1995 WO
WO 95 31831 Dec 1995 WO
WO 96 02924 Feb 1996 WO
WO 9712349 Apr 1997 WO
WO 9718944 May 1997 WO
WO 09718944 May 1997 WO
WO 98 18186 Apr 1998 WO
WO9818156 Apr 1998 WO
WO 9840930 Sep 1998 WO
WO 9907189 Feb 1999 WO
WO 9910929 Mar 1999 WO
WO 99 10939 Mar 1999 WO
WO 99 21233 Apr 1999 WO
WO 99 30432 Jun 1999 WO
WO 99 39373 Aug 1999 WO
WO 99 40631 Aug 1999 WO
WO 99 54936 Oct 1999 WO
WO 9954936 Oct 1999 WO
WO 9966540 Dec 1999 WO
WO 0033063 Jun 2000 WO
WO 0036666 Jun 2000 WO
WO 0103126 Jan 2001 WO
WO 0106442 Jan 2001 WO
WO 0108241 Feb 2001 WO
WO 01 15233 Mar 2001 WO
WO 0115233 Mar 2001 WO
WO 0117029 Mar 2001 WO
WO 01 17041 Mar 2001 WO
WO 0127998 Apr 2001 WO
WO 0146987 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 01 47045 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0173109 Oct 2001 WO
WO 0173109 Oct 2001 WO
WO 0205361 Jan 2002 WO
WO 0215264 Feb 2002 WO
WO 02 19443 Mar 2002 WO
WO 0229912 Apr 2002 WO
WO 0243071 May 2002 WO
WO 0247183 Jun 2002 WO
WO 0247183 Jun 2002 WO
WO 02065557 Aug 2002 WO
WO 02071139 Sep 2002 WO
WO 02071505 Sep 2002 WO
WO 02076924 Oct 2002 WO
WO 02091495 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02099908 Dec 2002 WO
WO 0299907 Dec 2002 WO
WO 03046922 Jun 2003 WO
WO 03069552 Aug 2003 WO
WO 03067680 Aug 2003 WO
WO 03081671 Oct 2003 WO
WO 03095175 Nov 2003 WO
WO 2004032257 Apr 2004 WO
WO 2004042837 May 2004 WO
WO 04042837 May 2004 WO
WO 0407194 Jun 2004 WO
WO 0407194 Jun 2004 WO
WO 04047144 Jun 2004 WO
WO 04047144 Jun 2004 WO
WO 2004083859 Sep 2004 WO
WO 00 79617 Dec 2004 WO
Related Publications (1)
Number Date Country
20050211972 A1 Sep 2005 US