1. Field of the Invention
The present invention relates to an organic light emitting device (OLED) in which a charge transport material is used as the host material and/or as the charge transport layer.
2. Description of the Related Art
Significant efforts have been expended in developing suitable materials for use in organic light emitting devices (OLEDs). Such devices are commercially attractive because they offer the promise of low-cost fabrication of high-density pixeled displays exhibiting bright electroluminescence with long life times, high efficiency and wide color range.
A typical OLED is fabricated by sandwiching an emissive layer between an anode and a cathode. Improved performance can be obtained by the provision of additional layers around the emissive layers so as to provide charge transport capabilities, such as an electron transport layer or a hole transport layer.
The stability and lifetime of an OLED may change with the various combinations of emissive material and charge transport material. As most luminescent materials have limited charge injection and transporting ability, and/or unbalanced charge injection ability in the device, the doping of emissive material (with a volume content less than 20%) into a host material can lead to much better performance because the host material can either enhance electron transport or enhance hole transport. Since electron injection of organic luminescent material has been less efficient than hole injection of organic luminescent material, host materials that have an electron enhancement function, have been widely used for high performance OLEDs. For example, U.S. Pat. No. 5,935,720 shows an OLED utilizing tris(8-hyroxyquinoline) aluminum Alq3 as host material because of its electron enhancement function. Due to its high electron affinity, Alq3 has also been widely explored as electron transport material for OLEDs.
However, recent scientific evidence showed that an OLED with Alq3 as the emissive layer and/or host material has intrinsic instability due to the poor hole injection ability of Alq3. In addition, current findings show that Alq3 has little electrochemical reversibility even under normal electrochemical reduction process.
Accordingly, because of consumer expectations of good efficiency, long lifetime and pure color for OLEDs, a need still exists for development of suitable materials used for OLEDs.
It is an object of the invention to provide an improved OLED in which pyrylium salt or its derivatives are used as the charge transport material in a pure charge transport layer or in a host material to enhance charge transport property.
Thus, in one aspect, the invention is an OLED in which an emissive layer is sandwiched between at least a cathode and an anode, and in which the OLED includes a pyrylium salt or its derivatives such as thiapyrylium, selenapyrylium, and telluropyrylium as a charge transport material. Suitable pyrylium salts and their derivatives are expressed according to the following general formula (I):
wherein R1, R2 and R3 represent an alkyl, aryl, or heteroaryl having up to 50 carbon atoms; Z represents an anionic function-including ion, such as Cl−, Br−, F−, tetrafluoroborate, perchlorate, methanesulfonate, or phosphohexafluoride; and X is oxygen, sulfur, or selenium. The compound expressed according to formula (I) can be used directly as transport layer, can be used as a dopant in a charge transport layer, or can be incorporated into an emissive layer as a host to enhance the emissive layer's charge transport property.
Fabrication of a suitable charge transport layer using a pyrylium salt or its derivatives according to the above formula (I) can be accomplished through use of thermal deposition in a vacuum, or by spin coating of a solution thereof. In addition, high-density pixeled displays can be fabricated through use of suitable masking procedures, or by use of thermal or piezoelectric ink jet printing techniques.
The compound expressed according to formula (I) can be used directly as the charge transport layer, or can be incorporated into a polymer as a unit or as a pendent side group. In addition, the compound of the expressed formula can be doped into a matrix medium when the charge transport layer comprises a charge transport functional material plus a dopant. Further, the compound can be used as a host to enhance charge injection and transport property wherein a dopant emitter may be doped for controlling emission color.
The compound expressed according to formula (I) exhibits characteristics of high electron affinity and excellent reversibility. Representative charge transport mechanisms are shown below in accordance with Schemes 1 and 2, which show examples of the charge injection process for 2,4,6-triphenylpyrylium salt and 4,4′-bipyryllium salt, respectively.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiment thereof in connection with the attached drawings.
The pyrylium salt and its derivatives used in the present invention have the following general structure:
In the above formula (I), R1, R2 and R3 represent an alkyl, aryl, or heteroaryl having up to 50 carbon atoms; Z represents an anionic function-including ion, such as Cl−, Br−, F−, tetrafluoroborate, perchlorate, methanesulfonate, or phosphohexafluoride; and X is oxygen, sulfur, or selenium.
The compound expressed according to formula (I) exhibits characteristics of high electron affinity and excellent reversibility. Representative charge transport mechanisms are shown below in accordance with schemes 1 and 2, which show examples of the charge injection process for 2,4,6-triphenylpyrylium salt and 4,4′-bipyryllium salt, respectively.
Some preferred pyrylium salts or pyrylium derivatives represented by formula (I) include the following compounds:
In the above preferred pyrylium salts or pyrylium derivatives, X is either O or S; and Z is an anionic function-including ion, such as Cl−, Br−, F−, tetrafluoroborate, perchlorate, methanesulfonate, or phosphohexafluoride.
The compound expressed according to formula (I) can be used directly as the charge transport layer, or can be incorporated into a polymer as a unit or as a pendant side group. In addition, such a pyrylium salt or pyrylium derivative can be doped into a matrix medium when the charge transport layer comprises a charge transport functional material plus a dopant. Further, the pyrylium salt or pyrylium derivative can be used as a host to enhance charge injection and transport property wherein a dopant emitter may be doped for controlling emission color.
In one typical application, the compound expressed according to the above formula (I) can be used directly as the transport layer in multi-layer devices, such as a two layer device, shown in
In
In
General procedures for an fabrication of an OLED are as follows: To contruct a three layer device, as in
Fabrication of a suitable charge transport layer using a pyrylium salt or its derivatives according to the above formula (I) can be accomplished through use of thermal deposition in a vacuum, or by spin coating of a solution thereof. In addition, high-density pixeled displays can be fabricated through use of suitable masking procedures, or by use of thermal or piezoelectric ink jet printing techniques.
In another typical application, the compound expressed according to the above formula (I) can be incorporated into an emissive layer as a host to enhance charge transport property in a single layer device, as shown in
In
Cyclic voltametric (CV) analysis of known electron transport material, tris(8-hyroxyquinoline) aluminum (Alq3), was carried out using tetrabutylammonium tetrafluoroborate (TBABF4, 0.1 M in acetonitrile) as an electrolyte, Pt as a work electrode and Ag/Ag+ (0.1 M) as a reference electrode at a scan speed of 100 mV/s.
A similar CV measurement for a pyrylium salt, 2,4,6-triphenyl pyrylium tetrafluoroborate (TPPFB4), was performed according to the same conditions as above, in the measurement of Alq3.
An OLED device was fabricated with the device structure of ITO/α-NPD 30 nm/Alq3+DCM2 (2%) 20 nm/TPPFB4 30 nm/Al 100 nm, in which ITO refers to indium tin oxide coated glass substrate, α-NPD refers to a hole transport layer with N,N′-Di(naphthalen-1-yl)-N,N′diphenyl-benzidine, DCM2 refers to a red dopant emitter, 4-(Dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran, and TPPFB4 refers to 2,4,6-triphenyl pyrylium tetrafluoroborate as the electron transport layer. The device was fabricated according to procedures known in the art. The device emitted red light with a brightness of 315 cd/m2 when a forward bias voltage of 5.2 V was applied. The brightness changed to 250 cd/m2 at 5.2 V (retained 80% original brightness) after continuously working for 6 hours at 5.2 V.
An OLED device was fabricated in a similar manner as described in Example 2, with the exception of using Alq3 as the electron transport layer. The OLED had a device structure of ITO/α-NPD 30 nm/Alq3+DCM2 (2%) 20 nm/Alq3 30 nm/Al 100 nm. The device emitted red light with a brightness of 315 cd/m2 when a forward bias voltage of 5.8 V was applied. The brightness changed to 180 cd/m2 at 5.8 V (retained 58% original brightness) after continuously working for 6 hours at 5.8 V.
An OLED device was fabricated in a similar manner as described in Example 2, with the exception of using TPPBF4 as a host material. The OLED had a device structure of ITO/α-NPD 30 nm/TPPBF4+DCM2 (2%) 20 nm/TPPBF4 30 nm/Al 100 nm. The device emitted red light with a brightness of 315 cd/m2 when a forward bias voltage of 4.8 V was applied. The brightness changed to 300 cd/m2 at 4.8 V (retained 95% original brightness) after continuously working for 6 hours.
Number | Name | Date | Kind |
---|---|---|---|
3615414 | Light | Oct 1971 | A |
3697528 | Andrews et al. | Oct 1972 | A |
4175960 | Berwick et al. | Nov 1979 | A |
4424268 | Berwick et al. | Jan 1984 | A |
4584258 | Detty et al. | Apr 1986 | A |
4767826 | Liang et al. | Aug 1988 | A |
4769292 | Tang et al. | Sep 1988 | A |
4916127 | Detty | Apr 1990 | A |
5079128 | Katagiri et al. | Jan 1992 | A |
5278026 | Katagiri et al. | Jan 1994 | A |
5443922 | Nishizaki et al. | Aug 1995 | A |
5817430 | Hsieh | Oct 1998 | A |
5846666 | Hu et al. | Dec 1998 | A |
5932363 | Hu et al. | Aug 1999 | A |
5935720 | Chen et al. | Aug 1999 | A |
5989737 | Xie et al. | Nov 1999 | A |
6022961 | Yamamoto et al. | Feb 2000 | A |
6048573 | Tang et al. | Apr 2000 | A |
6057048 | Hu et al. | May 2000 | A |
6066357 | Tang et al. | May 2000 | A |
6083651 | Kobayashi et al. | Jul 2000 | A |
6215971 | Sakoh et al. | Apr 2001 | B1 |
6225017 | Sato et al. | May 2001 | B1 |
6225467 | Esteghamatian et al. | May 2001 | B1 |
6228547 | Kobayashi et al. | May 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040209114 A1 | Oct 2004 | US |