ORGANIC LIGHT EMITTING DEVICE

Information

  • Patent Application
  • 20240099133
  • Publication Number
    20240099133
  • Date Filed
    February 18, 2022
    2 years ago
  • Date Published
    March 21, 2024
    8 months ago
Abstract
Provided is an organic light emitting device comprising an anode; a cathode; and a light emitting layer therebetween, the light emitting layer comprising a compound of Chemical Formula 1 and a compound of Chemical Formula 2, the device having improved driving voltage, efficiency and lifetime:
Description
TECHNICAL FIELD

The present disclosure relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.


BACKGROUND

In general, an organic light-emitting phenomenon refers to a phenomenon where electric energy is converted into light energy by using an organic material. The organic light emitting device using the organic light-emitting phenomenon has characteristics such as a wide viewing angle, an excellent contrast, a fast response time, an excellent luminance, driving voltage and response speed, and thus many studies have proceeded.


The organic light emitting device generally has a structure which comprises an anode, a cathode, and an organic material layer interposed between the anode and the cathode. The organic material layer frequently has a multilayered structure that comprises different materials in order to enhance efficiency and stability of the organic light emitting device, and for example, the organic material layer can be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, if a voltage is applied between two electrodes, the holes are injected from an anode into the organic material layer and the electrons are injected from the cathode into the organic material layer, and when the injected holes and electrons meet each other, an exciton is formed, and light is emitted when the exciton falls to a ground state again.


In the organic light emitting devices as described above, there is a continuing need for the development of an organic light emitting device having improved driving voltage, efficiency and lifetime.


PRIOR ART LITERATURE
Patent Literature



  • (Patent Literature 1) Korean Unexamined Patent Publication No. 10-2000-0051826



BRIEF DESCRIPTION
Technical Problem

It is an object of the present disclosure to provide an organic light emitting device having improved driving voltage, efficiency and lifetime.


Technical Solution

The present disclosure provides the following organic light emitting device:

    • An organic light emitting device comprising: an anode; a cathode; and a light emitting layer interposed between the anode and the cathode,
    • wherein the light emitting layer comprises a compound of the following Chemical Formula 1 and a compound of the following Chemical Formula 2:




embedded image




    • wherein in Chemical Formula 1:

    • Ar1 and Ar2 are each independently a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S;

    • L1 to L3 are each independently a single bond or a substituted or unsubstituted C6-60 arylene;

    • R1 is hydrogen, deuterium, a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S; and

    • a is an integer of 0 to 7;







embedded image




    • wherein in Chemical Formula 2:

    • any one of R′1 to R′12 is the following Chemical Formula 3, and the rest are hydrogen or deuterium:







embedded image




    • wherein in Chemical Formula 3:

    • L′1 is a single bond or a substituted or unsubstituted C6-60 arylene;

    • L′2 and L′3 are each independently a single bond, a substituted or unsubstituted C6-60 arylene, or a substituted or unsubstituted C2-60 heteroarylene containing any one or more heteroatoms selected from the group consisting of N, O and S; and

    • Ar′1 and Ar′2 are each independently a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S.





Advantageous Effects

The above-mentioned organic light emitting device includes the compound of Chemical Formula 1 and the compound of Chemical Formula 2 and thus, can improve the efficiency, achieve low driving voltage and/or improve lifetime characteristics in the organic light emitting device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.



FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer 9 and a cathode 4.





DETAILED DESCRIPTION

Hereinafter, embodiments of the present disclosure will be described in more detail to assist in the understanding of the invention.


As used herein, the notation




embedded image


or




embedded image


means a bond linked to another substituent group.


As used herein, the term “substituted or unsubstituted” means being unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, a halogen group, a nitrile group, a nitro group, a hydroxy group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, an alkoxy group, an aryloxy group, an alkylthioxy group, an arylthioxy group, an alkylsulfoxy group, an arylsulfoxy group, a silyl group, a boron group, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an aralkenyl group, an alkylaryl group, an alkylamine group, an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group containing at least one of N, O and S atoms, or being unsubstituted or substituted with a substituent to which two or more substituents of the above-exemplified substituents are linked. For example, “a substituent in which two or more substituents are linked” can be a biphenyl group. Namely, a biphenyl group can be an aryl group, or it can also be interpreted as a substituent in which two phenyl groups are linked.


In the present disclosure, the carbon number of a carbonyl group is not particularly limited, but is preferably 1 to 40. Specifically, the carbonyl group can be a substituent group having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, an ester group can have a structure in which oxygen of the ester group can be substituted by a straight-chain, branched-chain, or cyclic alkyl group having 1 to 25 carbon atoms, or an aryl group having 6 to 25 carbon atoms. Specifically, the ester group can be a substituent group having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, the carbon number of an imide group is not particularly limited, but is preferably 1 to 25. Specifically, the imide group can be a substituent group having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, a silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like, but is not limited thereto.


In the present disclosure, a boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group, but is not limited thereto.


In the present disclosure, examples of a halogen group include fluorine, chlorine, bromine, or iodine.


In the present disclosure, the alkyl group can be straight-chain or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.


In the present disclosure, the alkenyl group can be straight-chain or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 2 to 40. According to one embodiment, the carbon number of the alkenyl group is 2 to 20. According to another embodiment, the carbon number of the alkenyl group is 2 to 10. According to still another embodiment, the carbon number of the alkenyl group is 2 to 6. Specific examples thereof include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1-butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-(naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, a stilbenyl group, a styrenyl group, and the like, but are not limited thereto.


In the present disclosure, a cycloalkyl group is not particularly limited, but the carbon number thereof is preferably 3 to 60. According to one embodiment, the carbon number of the cycloalkyl group is 3 to 30. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to still another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.


In the present disclosure, an aryl group is not particularly limited, but the carbon number thereof is preferably 6 to 60, and it can be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the carbon number of the aryl group is 6 to 30. According to one embodiment, the carbon number of the aryl group is 6 to 20. The aryl group can be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group includes a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, or the like, but is not limited thereto.


In the present disclosure, the fluorenyl group can be substituted, and two substituents can be connected to each other to form a spiro structure. In the case where the fluorenyl group is substituted,




embedded image


and the like can be formed. However, the structure is not limited thereto.


In the present disclosure, a heterocyclic group is a heterocyclic group containing at least one of O, N, Si and S as a heteroatom, and the carbon number thereof is not particularly limited, but is preferably 2 to 60. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazol group, an oxadiazol group, a triazol group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group, a pyridazine group, a pyrazinyl group, a quinolinyl group, a quinazoline group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, a pyridopyrazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, an indole group, a carbazole group, a benzoxazole group, a benzoimidazole group, a benzothiazol group, a benzocarbazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthroline group, an isoxazolyl group, a thiadiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but are not limited thereto.


In the present disclosure, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the above-mentioned examples of the aryl group. In the present disclosure, the alkyl group in the aralkyl group, the alkylaryl group and the alkylamine group is the same as the above-mentioned examples of the alkyl group. In the present disclosure, the heteroaryl in the heteroarylamine can be applied to the above-mentioned description of the heterocyclic group. In the present disclosure, the alkenyl group in the aralkenyl group is the same as the above-mentioned examples of the alkenyl group. In the present disclosure, the above-mentioned description of the aryl group can be applied except that the arylene is a divalent group. In the present disclosure, the above-mentioned description of the heterocyclic group can be applied except that the heteroarylene is a divalent group. In the present disclosure, the above-mentioned description of the aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group but formed by combining two substituent groups. In the present disclosure, the above-mentioned description of the heterocyclic group can be applied, except that the heterocycle is not a monovalent group but formed by combining two substituent groups.


Hereinafter, the present disclosure will be described in detail for each configuration.


Anode and Cathode


The anode and cathode used herein mean electrodes used in an organic light emitting device.


As the anode material, generally, a material having a large work function is preferably used so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chrome, copper, zinc, and gold, or an alloy thereof; metal oxides such as zinc oxides, indium oxides, indium tin oxides (ITO), and indium zinc oxides (IZO); a combination of metals and oxides, such as ZnO:Al or SNO2:Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, and the like, but are not limited thereto.


As the cathode material, generally, a material having a small work function is preferably used so that electrons can be easily injected into the organic material layer. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or an alloy thereof, a multilayered structure material such as LiF/Al or LiO2/Al, and the like, but are not limited thereto.


Hole Injection Layer


The organic light emitting device according to the present disclosure can further include a hole injection layer on the anode, if necessary.


The hole injection layer is a layer injecting holes from an electrode, and the hole injection material is preferably a compound which has a capability of transporting the holes, has a hole injection effect in the anode and an excellent hole injection effect to the light emitting layer or the light emitting material, prevents movement of an exciton generated in the light emitting layer to the electron injection layer or the electron injection material, and is excellent in the ability to form a thin film. Further, it is preferable that a HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the anode material and a HOMO of a peripheral organic material layer.


Specific examples of the hole injection material include metal porphyrine, oligothiophene, an arylamine-based organic material, a hexanitrilehexaazatriphenylene-based organic material, a quinacridone-based organic material, a perylene-based organic material, anthraquinone, polyaniline and polythiophene-based conductive polymer, and the like, but are not limited thereto.


Hole Transport Layer


The organic light emitting device according to the present disclosure can further include a hole transport layer on the anode (or on a hole injection layer when the hole injection layer exists), if necessary.


The hole transport layer is a layer that receives holes from an anode or a hole injection layer and transports the holes to the light emitting layer. The hole transport material is suitably a material having large mobility to the holes, which can receive holes from the anode or the hole injection layer and transfer the holes to the light emitting layer.


Specific examples of the hole transport material include an arylamine-based organic material, a conductive polymer, a block copolymer in which a conjugate portion and a non-conjugate portion are present together, and the like, but are not limited thereto.


Electron Blocking Layer


The organic light emitting device according to the present disclosure can include an electron blocking layer on the anode (or on a hole injection layer when the hole injection layer exists, on an electron transport layer when the electron transport layer exists), if necessary.


The electron blocking layer is a layer provided between the hole transport layer and the light emitting layer in order to prevent the electrons injected in the cathode from being transferred to the hole transport layer without being recombined in the light emitting layer, which can also be referred to as an electron inhibition layer or an electron stopping layer. The electron blocking layer is preferably a material having a smaller electron affinity than the electron transport layer.


Light Emitting Layer


The light emitting layer used in the present disclosure means a layer that can emit light in the visible light region by combining holes and electrons transported from the anode and the cathode. Generally, the light emitting layer includes a host material and a dopant material, and in the present disclosure, the compound of Chemical Formula 1 and the compound of Chemical Formula 2 is included as a host.


Preferably, the compound of Chemical Formula 1 can be a compound of the following Chemical Formula 1 Å:




embedded image




    • wherein in Chemical Formula 1 Å,

    • Ar1 and Ar2, L1 to L3, R1 and a are as defined in Chemical Formula 1.





Preferably, the compound of Chemical Formula 1 can be a compound of any one of the following Chemical Formula 1-1 to Chemical Formula 1-3:




embedded image




    • wherein in Chemical Formulas 1-1 to 1-3,

    • Ar1 and Ar2, L1 to L3 and R1 are as defined in Chemical Formula 1.





Preferably, Ar1 and Ar2 can be each independently a substituted or unsubstituted C6-20 aryl or a substituted or unsubstituted C2-20 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S.


More preferably, Ar1 and Ar2 can be each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.


Most preferably, Ar1 and Ar2 can be each independently any one selected from the group consisting of:




embedded image


embedded image


Preferably, L1 to L3 can be each independently a single bond or a substituted or unsubstituted C6-20 arylene.


More preferably, L1 to L3 can be each independently a single bond, phenylene, biphenylylene, or naphthylene.


Most preferably, L1 to L3 can be each independently a single bond or any one selected from the group consisting of:




embedded image


Preferably, R1 can be hydrogen, deuterium. a substituted or unsubstituted C6-20 aryl, or a substituted or unsubstituted C2-20 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S.


More preferably, R1 can be hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthyl phenyl, phenyl naphthyl, fluoranthenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.


Preferably, a can be 0 or 1.


Representative examples of the compound of Chemical Formula 1 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The compound of Chemical Formula 1 can be prepared by the preparation method as shown in the following Reaction Scheme 1 as an example, and the other remaining compounds can be prepared in a similar manner.




embedded image


In Reaction Scheme 1, Ar1, Ar2, L1 to L3, R1 and a are the same as those defined in Chemical Formula 1, X is halogen, and preferably X is chloro or bromo.


Reaction Scheme 1 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactive group for the Suzuki coupling reaction can be modified as known in the art. The above preparation method can be further embodied in Preparation Examples described hereinafter.


Preferably, any one of R′1, R′3 to R′10 and R′12 can be a substituent of Chemical Formula 3, the rest can be each independently hydrogen or deuterium, and R′2 and R′11 can be each independently hydrogen or deuterium. More preferably, any one of R′1, R′3 to R′10 and R′12 can be a substituent of Chemical Formula 3, the rest can be hydrogen, and R′2 and R′11 can be hydrogen.


Preferably, the compound of Chemical Formula 2 can be a compound of any one of the following Chemical Formula 2-1 to Chemical Formula 2-6:




embedded image


embedded image




    • wherein in Chemical Formulas 2-1 to 2-6,

    • R′1 to R′12, L′1 to L′3, Ar′1 and Ar′2 are as defined in Chemical Formula 2.





Preferably, L′1 can be a single bond or a substituted or unsubstituted C6-20 arylene.


More preferably, L′1 can be a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenyldiyl, or a substituted or unsubstituted naphthalenediyl.


More preferably, L′1 can be any one selected from the group consisting of:




embedded image


embedded image


embedded image


Most preferably, L′1 can be any one selected from the group consisting of:




embedded image


embedded image


Preferably, L′2 and L′3 can be each independently a single bond, a substituted or unsubstituted C6-20 arylene; or a substituted or unsubstituted C2-20 heteroarylene containing any one or more heteroatoms selected from the group consisting of N, O and S.


More preferably, L′2 and L′3 can be each independently a single bond, phenylene, phenylene substituted with one phenyl, biphenyldiyl, or naphthalenediyl.


Most preferably, L′2 and L′3 can be each independently a single bond or any one selected from the group consisting of:




embedded image


embedded image


Preferably, Ar′1 and Ar′2 can be each independently a substituted or unsubstituted C6-20 aryl or a substituted or unsubstituted C2-20 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S.


Preferably, Ar′1 and Ar′2 can be each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.


Preferably, Ar′1 and Ar′2 can be each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9-phenyl-9H-carbazole, dimethyl fluorenyl, benzo[b]naphtho[2,1-d]furanyl, benzo[b]naphtho[2,3-d]furanyl, benzo[b]naphtho[1,2-d]furanyl, benzo[b]naphtho[2,1-d]thiophenyl, benzo[b]naphtho[2,3-d]thiophenyl, or benzo[b]naphtho[1,2-d]thiophenyl.


More preferably, Ar′1 and Ar′2 can be each independently any one selected from the group consisting of:




embedded image


embedded image


embedded image


More preferably, Ar′1 and Ar′2 can be each independently any one selected from the group consisting of:




embedded image


embedded image


embedded image


Representative examples of the compound of Chemical Formula 2 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The compounds of Chemical Formula 2, wherein any one of R′1 to R′12 is a substituent of Chemical Formula 3, and the rest is hydrogen, can be prepared by the preparation method as shown in the following Reaction Scheme 2 as an example, and the other remaining compound can be prepared in the similar manner.




embedded image


In Reaction Scheme 2, L′1 to L′3, Ar′1 and Ar′2 are as defined in Chemical Formula 2, X is halogen, and preferably X is chloro or bromo.


Reaction Scheme 2 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactive group for the Suzuki coupling reaction can be modified as known in the art. The above preparation method can be further embodied in Preparation Examples described hereinafter.


Preferably, the weight ratio between the compound of Chemical Formula 1 and the compound of Chemical Formula 2 in the light emitting layer is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70:30, or 40:60 to 60:40.


Meanwhile, the light emitting layer can further include a dopant in addition to the host. The dopant material is not particularly limited as long as it is a material used for the organic light emitting device. As an example, an aromatic amine derivative, a styrylamine compound, a boron complex, a fluoranthene compound, a metal complex, and the like can be mentioned. Specific examples of the aromatic amine derivatives include substituted or unsubstituted fused aromatic ring derivatives having an arylamino group, examples thereof include pyrene, anthracene, chrysene, and periflanthene having the arylamino group, and the like. The styrylamine compound is a compound where at least one arylvinyl group is substituted in substituted or unsubstituted arylamine, wherein one or two or more substituent groups selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specific examples thereof include styrylamine, styryldiamine, styryltriamine, styryltetramine, and the like, but are not limited thereto. Further, examples of the metal complex include an iridium complex, a platinum complex, and the like, but are not limited thereto.


Preferably, the dopant material can be at least one selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Hole Blocking Layer


The organic light emitting device according to the present disclosure can include a hole blocking layer on the light emitting layer, if necessary.


The hole blocking layer a layer provided between the electron transport layer and the light emitting layer in order to prevent the holes injected in the anode from being transferred to the electron transport layer without being recombined in the light emitting layer, which can also be referred to as a hole inhibition layer. The hole blocking layer is preferably a material having a large ionization energy.


Electron Transport Layer


The organic light emitting device according to the present disclosure can include an electron transport layer on the light emitting layer (or on a hole blocking layer when the hole blocking layer exists).


The electron transport layer is a layer that receives electrons from a cathode and an electron injection layer formed on the cathode and transports the electrons to the light emitting layer, and that suppress the transfer of holes from the light emitting layer, and an electron transport material is suitably a material which can receive electrons well from a cathode and transfer the electrons to a light emitting layer, and has a large mobility for electrons.


Specific examples of the electron transport material include: an Al complex of 8-hydroxyquinoline; a complex including Alq3; an organic radical compound; a hydroxyflavone-metal complex, and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material, as used according to a conventional technique. In particular, appropriate examples of the cathode material are a typical material which has a low work function, followed by an aluminum layer or a silver layer. Specific examples thereof include cesium, barium, calcium, ytterbium, and samarium, in each case followed by an aluminum layer or a silver layer.


Electron Injection Layer


The organic light emitting device according to the present disclosure can further include an electron injection layer on the light emitting layer (or on an electron transport layer when the electron transport layer exists), if necessary.


The electron injection layer is a layer which injects electrons from an electrode, and is preferably a compound which has a capability of transporting electrons, has an effect of injecting electrons from a cathode and an excellent effect of injecting electrons into a light emitting layer or a light emitting material, prevents excitons produced from the light emitting layer from moving to a hole injection layer, and is also excellent in the ability to form a thin film.


Specific examples of the materials that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and the like, and derivatives thereof, a metal complex compound, a nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.


Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h]quinolinato)-beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, and the like, but are not limited thereto.


Meanwhile, in the present disclosure, the “electron injection and transport layer” is a layer that performs both the roles of the electron injection layer and the electron transport layer, and the materials that perform the roles of each layer can be used alone or in combination, without being limited thereto.


Organic Light Emitting Device


The structure of the organic light emitting device according to the present disclosure is illustrated in FIGS. 1 and 2. FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4. FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer 9 and a cathode 4.


The organic light emitting device according to the present disclosure can be manufactured by sequentially stacking the above-described structures. In this case, the organic light emitting device can be manufactured by depositing a metal, metal oxides having conductivity, or an alloy thereof on the substrate by using a PVD (physical vapor deposition) method such as a sputtering method or an e-beam evaporation method to form the anode, forming the respective layers described above thereon, and then depositing a material that can be used as the cathode thereon. In addition to such a method, the organic light emitting device can be manufactured by sequentially depositing from the cathode material to the anode material on a substrate in the reverse order of the above-mentioned configuration (WO 2003/012890). Further, the light emitting layer can be formed by subjecting hosts and dopants to a vacuum deposition method and a solution coating method. Herein, the solution coating method means a spin coating, a dip coating, a doctor blading, an inkjet printing, a screen printing, a spray method, a roll coating, or the like, but is not limited thereto.


Meanwhile, the organic light emitting device according to the present disclosure can be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, can be a bottom emission device that requires relatively high luminous efficiency.


Hereinafter, preferred examples are presented to assist in the understanding of the present disclosure. However, the following examples are only provided for a better understanding of the present disclosure, and is not intended to limit the content of the present disclosure.


PREPARATION EXAMPLES
Preparation Example 1-1



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz1 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.8 g, 121.7 mmol) was dissolved in 50 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.9 g of Compound sub1-A-1. (Yield: 71%, MS: [M+H]+=484)




embedded image


Compound sub1-A-1 (15 g, 31 mmol) and Compound sub1 (6.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.3 g of Compound 1-1. (Yield: 66%, MS: [M+H]+=602)


Preparation Example 1-2



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of Compound sub1-A-2. (Yield: 74%, MS: [M+H]+=434)




embedded image


Compound sub1-A-2 (15 g, 34.6 mmol) and Compound sub2 (9.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of Compound 1-2. (Yield: 66%, MS: [M+H]+=626)


Preparation Example 1-3



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.2 g of Compound sub1-A-3. (Yield: 79%, MS: [M+H]+=484)




embedded image


Compound sub1-A-3 (15 g, 31 mmol) and Compound sub3 (7.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 1-3. (Yield: 66%, MS: [M+H]+=632)


Preparation Example 1-4



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz4 (27 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26 g of Compound sub1-A-4. (Yield: 70%, MS: [M+H]+=610)




embedded image


Compound sub1-A-4 (15 g, 24.6 mmol) and Compound sub4 (5.6 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (6.8 g, 49.2 mmol) was dissolved in 20 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of Compound 1-4. (Yield: 60%, MS: [M+H]+=758)


Preparation Example 1-5



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz5 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.2 g of Compound sub1-B-1. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-B-1 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 1-5. (Yield: 80%, MS: [M+H]+=602)


Preparation Example 1-6



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz3(19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.2 g of Compound sub1-B-2. (Yield: 62%, MS: [M+H]+=484)




embedded image


Compound sub1-B-2 (15 g, 31 mmol) and Compound sub6 (7.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of Compound 1-6. (Yield: 76%, MS: [M+H]+=650)


Preparation Example 1-7



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of Compound sub1-B-3. (Yield: 79%, MS: [M+H]+=434)




embedded image


Compound sub1-B-3 (15 g, 34.6 mmol) and Compound sub7 (8.6 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.4 g of Compound 1-7. (Yield: 74%, MS: [M+H]+=602)


Preparation Example 1-8



embedded image


Compound sub1-B-2 (15 g, 31 mmol) and Compound sub8 (8.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.5 g of Compound 1-8. (Yield: 75%, MS: [M+H]+=666)


Preparation Example 1-9



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz6 (22.4 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.7 g of Compound sub1-B-4. (Yield: 73%, MS: [M+H]+=534)




embedded image


Compound sub1-B-4 (15 g, 28.1 mmol) and Compound sub9 (6 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.8 g, 56.2 mmol) was dissolved in 23 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.6 g of Compound 1-9. (Yield: 62%, MS: [M+H]+=666)


Preparation Example 1-10



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz7 (28.6 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.6 g of Compound sub1-B-5. (Yield: 74%, MS: [M+H]+=636)




embedded image


Compound sub1-B-5 (15 g, 23.6 mmol) and Compound sub5 (2.9 g, 23.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (6.5 g, 47.2 mmol) was dissolved in 20 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.4 g of Compound 1-10. (Yield: 65%, MS: [M+H]+=678)


Preparation Example 1-11



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz8 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.1 g of Compound sub1-B-6. (Yield: 63%, MS: [M+H]+=524)




embedded image


Compound sub1-B-6 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.9 g, 57.3 mmol) was dissolved in 24 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.4 g of Compound 1-11. (Yield: 65%, MS: [M+H]+=616)


Preparation Example 1-12



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of Compound sub1-C-1. (Yield: 60%, MS: [M+H]+=484)




embedded image


Compound sub1-C-1 (15 g, 31 mmol) and Compound sub10 (5.3 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of Compound 1-12. (Yield: 72%, MS: [M+H]+=576)


Preparation Example 1-13



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz9 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.5 g of Compound sub1-C-2. (Yield: 69%, MS: [M+H]+=560)




embedded image


Compound sub1-C-2 (15 g, 26.8 mmol) and Compound sub10 (4.6 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of Compound 1-13. (Yield: 80%, MS: [M+H]+=652)


Preparation Example 1-14



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.5 g of Compound sub1-C-3. (Yield: 66%, MS: [M+H]+=510)




embedded image


Compound sub1-C-3 (15 g, 29.4 mmol) and Compound sub11 (7.3 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.1 g, 58.8 mmol) was dissolved in 24 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of Compound 1-14. (Yield: 77%, MS: [M+H]+=678)


Preparation Example 1-15



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.7 g of Compound sub1-C-4. (Yield: 71%, MS: [M+H]+=434)




embedded image


Compound sub1-C-4 (15 g, 37.1 mmol) and Compound sub12 (9.7 g, 37.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.3 g, 74.3 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of Compound 1-15. (Yield: 64%, MS: [M+H]+=616)


Preparation Example 1-16



embedded image


Compound sub1-C-3 (15 g, 26.8 mmol) and Compound sub13 (7.4 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.2 g of Compound 1-16. (Yield: 80%, MS: [M+H]+=758)


Preparation Example 1-17



embedded image


Compound sub1-C-4 (15 g, 34.6 mmol) and Compound sub14 (7.7 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.3 g of Compound 1-17. (Yield: 62%, MS: [M+H]+=576)


Preparation Example 1-18



embedded image


Compound sub1-C-1 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12 g of Compound 1-18. (Yield: 63%, MS: [M+H]+=616)


Preparation Example 1-19



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz11 (22.4 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.4 g of Compound sub1-C-5. (Yield: 69%, MS: [M+H]+=534)




embedded image


Compound sub1-C-5 (15 g, 28.1 mmol) and Compound sub15 (6 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.8 g, 56.2 mmol) was dissolved in 23 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of Compound 1-19. (Yield: 71%, MS: [M+H]+=666)


Preparation Example 1-20



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz12 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21 g of Compound sub1-C-6. (Yield: 66%, MS: [M+H]+=524)




embedded image


Compound sub1-C-6 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.3 g of Compound 1-20. (Yield: 70%, MS: [M+H]+=616)


Preparation Example 1-21



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.2 g of Compound sub1-C-7. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-C-7 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.5 g of Compound 1-21. (Yield: 65%, MS: [M+H]+=602)


Preparation Example 1-22



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz14 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.9 g of Compound sub1-D-1. (Yield: 67%, MS: [M+H]+=586)




embedded image


Compound sub1-D-1 (15 g, 25.6 mmol) and Compound sub5 (3.1 g, 25.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.6 g, 76.8 mmol) was dissolved in 32 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.3 g of Compound 1-22. (Yield: 64%, MS: [M+H]+=628)


Preparation Example 1-23



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20 g of Compound sub1-D-2. (Yield: 76%, MS: [M+H]+=434)




embedded image


Compound sub1-D-2 (15 g, 34.6 mmol) and Compound sub16 (9.1 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of Compound 1-23. (Yield: 66%, MS: [M+H]+=616)


Preparation Example 1-24



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of Compound sub1-D-3. (Yield: 67%, MS: [M+H]+=510)




embedded image


Compound sub1-D-3 (15 g, 29.4 mmol) and Compound sub17 (7.7 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of Compound 1-24. (Yield: 61%, MS: [M+H]+=692)


Preparation Example 1-25



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz15 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.3 g of Compound sub1-D-4. (Yield: 67%, MS: [M+H]+=524)




embedded image


Compound sub1-D-4 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.7 g of Compound 1-25. (Yield: 61%, MS: [M+H]+=616)


Preparation Example 1-26



embedded image


Compound sub1-D-3 (15 g, 29.4 mmol) and Compound sub18 (6.2 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of Compound 1-26. (Yield: 76%, MS: [M+H]+=642)


Preparation Example 1-27



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz16 (27 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.1 g of Compound sub1-D-5. (Yield: 73%, MS: [M+H]+=610)




embedded image


Compound sub1-D-5 (15 g, 24.6 mmol) and Compound sub9 (5.2 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of Compound 1-27. (Yield: 70%, MS: [M+H]+=742)


Preparation Example 1-28



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of Compound sub1-D-6. (Yield: 61%, MS: [M+H]+=560)




embedded image


Compound sub1-D-6 (15 g, 26.8 mmol) and Compound sub10 (4.6 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of Compound 1-28. (Yield: 70%, MS: [M+H]+=652)


Preparation Example 1-29



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.1 g of Compound sub1-E-1. (Yield: 65%, MS: [M+H]+=434)




embedded image


Compound sub1-E-1 (15 g, 34.6 mmol) and Compound sub2 (9.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of Compound 1-29. (Yield: 67%, MS: [M+H]+=626)


Preparation Example 1-30



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz9 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.9 g of Compound sub1-E-2. (Yield: 79%, MS: [M+H]+=560)




embedded image


Compound sub1-E-2 (15 g, 26.8 mmol) and Compound sub19 (7 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.9 g of Compound 1-30. (Yield: 80%, MS: [M+H]+=742)


Preparation Example 1-31



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz17 (22.4 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.3 g of Compound sub1-E-3. (Yield: 78%, MS: [M+H]+=534)




embedded image


Compound sub1-E-3 (15 g, 28.1 mmol) and Compound sub20 (7.8 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.8 g of Compound 1-31. (Yield: 72%, MS: [M+H]+=732)


Preparation Example 1-32



embedded image


Compound sub1-E-1 (15 g, 34.6 mmol) and Compound sub21 (7.7 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 1-32. (Yield: 65%, MS: [M+H]+=576)


Preparation Example 1-33



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz15 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.5 g of Compound sub1-E-4. (Yield: 80%, MS: [M+H]+=524)




embedded image


Compound sub1-E-4 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of Compound 1-33. (Yield: 60%, MS: [M+H]+=616)


Preparation Example 1-34



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of Compound sub1-E-5. (Yield: 60%, MS: [M+H]+=484)




embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.4 g of Compound 1-34. (Yield: 60%, MS: [M+H]+=616)


Preparation Example 1-35



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.7 g of Compound sub1-E-6. (Yield: 70%, MS: [M+H]+=510)




embedded image


Compound sub1-E-6 (15 g, 29.4 mmol) and Compound sub22 (7.7 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of Compound 1-35. (Yield: 72%, MS: [M+H]+=692)


Preparation Example 1-36



embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub23 (8.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of Compound 1-36. (Yield: 60%, MS: [M+H]+=666)


Preparation Example 1-37



embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub10 (5.3 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.1 g of Compound 1-37. (Yield: 79%, MS: [M+H]+=576)


Preparation Example 1-38



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz18 (27 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.1 g of Compound sub1-E-7. (Yield: 65%, MS: [M+H]+=576)




embedded image


Compound sub1-E-7 (15 g, 24.6 mmol) and Compound sub5 (3 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.1 g of Compound 1-38. (Yield: 63%, MS: [M+H]+=652)


Preparation Example 1-39



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.2 g of Compound sub1-E-8. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-E-8 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.9 g of Compound 1-39. (Yield: 68%, MS: [M+H]+=602)


Preparation Example 1-40



embedded image


Compound 1-F (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.2 g of Compound sub1-F-1. (Yield: 73%, MS: [M+H]+=434)




embedded image


Compound 1-F-1 (15 g, 34.6 mmol) and Compound sub6 (8.5 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of Compound 1-40. (Yield: 71%, MS: [M+H]+=600)


Preparation Example 1-41



embedded image


Compound 1-F (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.1 g of Compound sub1-F-2. (Yield: 68%, MS: [M+H]+=510)




embedded image


Compound sub1-F-2 (15 g, 29.4 mmol) and Compound sub1 (5.8 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of Compound 1-41. (Yield: 77%, MS: [M+H]+=628)


Preparation Example 1-42



embedded image


Compound Trz7 (15 g, 31.9 mmol) and Compound sub9 (6.8 g, 31.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of Compound 1-42. (Yield: 79%, MS: [M+H]+=602)


Preparation Example 1-43



embedded image


Compound Trz16 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15 g of Compound 1-43. (Yield: 77%, MS: [M+H]+=576)


Preparation Example 1-44



embedded image


Compound Trz4 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of Compound 1-44. (Yield: 73%, MS: [M+H]+=576)


Preparation Example 1-45



embedded image


Compound Trz1 (15 g, 35.7 mmol) and Compound sub9 (7.6 g, 35.7 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in 44 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of Compound 1-45. (Yield: 62%, MS: [M+H]+=552)


Preparation Example 1-46



embedded image


Compound Trz19 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of Compound 1-46. (Yield: 70%, MS: [M+H]+=576)


Preparation Example 1-47



embedded image


Compound Trz20 (15 g, 35.9 mmol) and Compound sub9 (7.6 g, 35.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 45 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15 g of Compound 1-47. (Yield: 76%, MS: [M+H]+=550)


Preparation Example 1-48



embedded image


Compound Trz3 (15 g, 47.2 mmol) and Compound sub24 (9.7 g, 47.2 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (19.6 g, 141.6 mmol) was dissolved in 59 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of Compound sub1-G-1. (Yield: 62%, MS: [M+H]+=444)




embedded image


Compound sub1-G-1 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of Compound 1-48. (Yield: 78%, MS: [M+H]+=576)


Preparation Example 1-49



embedded image


Compound Trz15 (15 g, 41.9 mmol) and Compound sub25 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.6 g of Compound sub1-G-2. (Yield: 62%, MS: [M+H]+=484)




embedded image


Compound sub1-G-2 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.7 g of Compound 1-49. (Yield: 72%, MS: [M+H]+=616)


Preparation Example 1-50



embedded image


Compound Trz21 (15 g, 36.8 mmol) and Compound sub26 (5.8 g, 36.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of Compound sub1-G-3. (Yield: 72%, MS: [M+H]+=484)




embedded image


Compound sub1-G-3 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of Compound 1-50. (Yield: 69%, MS: [M+H]+=616)


Preparation Example 1-51



embedded image


Compound Trz16 (15 g, 33.8 mmol) and Compound sub27 (5.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of Compound sub1-G-4. (Yield: 76%, MS: [M+H]+=520)




embedded image


Compound sub1-G-4 (15 g, 28.8 mmol) and Compound sub9 (6.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of Compound 1-51. (Yield: 71%, MS: [M+H]+=652)


Preparation Example 1-52



embedded image


Compound Trz22 (15 g, 36.8 mmol) and Compound sub28 (5.8 g, 36.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of Compound sub1-G-5. (Yield: 72%, MS: [M+H]+=484)




embedded image


Compound sub1-G-5 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of Compound 1-52. (Yield: 68%, MS: [M+H]+=616)


Preparation Example 1-53



embedded image


Compound Trz23 (15 g, 34.6 mmol) and Compound sub27 (5.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.3 g of Compound sub1-G-6. (Yield: 64%, MS: [M+H]+=510)




embedded image


Compound sub1-G-6 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of Compound 1-53. (Yield: 68%, MS: [M+H]+=616)


Preparation Example 1-54



embedded image


Compound sub1-G-1 (15 g, 33.8 mmol) and Compound 1-E (8.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.4 g of Compound sub1-E-9. (Yield: 70%, MS: [M+H]+=610)




embedded image


Compound sub1-E-9 (15 g, 24.6 mmol) and Compound sub5 (3 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of Compound 1-54. (Yield: 76%, MS: [M+H]+=652)


Preparation Example 1-55



embedded image


Compound Trz2 (15 g, 56 mmol) and Compound sub24 (11.6 g, 56 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.2 g, 168.1 mmol) was dissolved in 70 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.6 g of Compound sub1-G-7. (Yield: 71%, MS: [M+H]+=394)




embedded image


Compound sub1-G-7 (15 g, 38.1 mmol) and Compound 1-B (9.4 g, 38.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of Compound sub1-B-7. (Yield: 65%, MS: [M+H]+=560)




embedded image


Compound sub1-B-7(15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 1-55. (Yield: 80%, MS: [M+H]+=602)


Preparation Example 1-56



embedded image


Compound Trz24 (15 g, 38.1 mmol) and Compound sub25 (9.4 g, 38.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of Compound sub1-G-8. (Yield: 65%, MS: [M+H]+=560)




embedded image


Compound sub1-G-8 (15 g, 30 mmol) and Compound sub9 (6.4 g, 30 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of Compound 1-56. (Yield: 71%, MS: [M+H]+=632)


Preparation Example 1-57



embedded image


Compound Trz25 (15 g, 41.9 mmol) and Compound sub24 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of Compound sub1-G-9. (Yield: 61%, MS: [M+H]+=484)




embedded image


Compound sub1-G-9 (15 g, 31 mmol) and Compound 1-F (7.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.5 g of Compound sub1-F-3. (Yield: 62%, MS: [M+H]+=650)




embedded image


Compound sub1-F-3 (15 g, 23.1 mmol) and Compound sub5 (2.8 g, 23.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.2 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of Compound 1-57. (Yield: 80%, MS: [M+H]+=692)


Preparation Example 1-58



embedded image


Compound Trz26 (15 g, 33.8 mmol) and Compound sub26 (5.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.5 g of Compound sub1-G-10. (Yield: 60%, MS: [M+H]+=520)




embedded image


Compound sub1-G-10 (15 g, 28.8 mmol) and Compound 1-D (7.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15 g of Compound sub1-D-7. (Yield: 76%, MS: [M+H]+=686)




embedded image


Compound sub1-D-7 (15 g, 21.9 mmol) and Compound sub5 (2.7 g, 21.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.1 g, 65.6 mmol) was dissolved in 27 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 9.9 g of Compound 1-58. (Yield: 62%, MS: [M+H]+=728)


Preparation Example 1-59



embedded image


Compound Trz15 (15 g, 41.9 mmol) and Compound sub24 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of Compound sub1-G-11. (Yield: 61%, MS: [M+H]+=484)




embedded image


Compound sub1-G-11 (15 g, 28.8 mmol) and Compound 1-F (7.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15 g of Compound sub1-F-4. (Yield: 76%, MS: [M+H]+=686)




embedded image


Compound sub1-F-4 (15 g, 23.1 mmol) and Compound sub5 (2.8 g, 23.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.2 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.1 g of Compound 1-59. (Yield: 76%, MS: [M+H]+=692)


Preparation Example 1-60



embedded image


Compound Trz12 (15 g, 41.9 mmol) and Compound sub28 (6.6 g, 41.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.1 g of Compound sub1-G-12. (Yield: 61%, MS: [M+H]+=434)




embedded image


Compound sub1-G-12 (15 g, 34.6 mmol) and Compound 1-D (8.5 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate(14.3 g, 103.7 mmol) was dissolved in 43 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of Compound sub1-D-8. (Yield: 79%, MS: [M+H]+=500)




embedded image


Compound sub1-D-8 (15 g, 25 mmol) and Compound sub10 (4.3 g, 25 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.4 g, 75 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of Compound 1-60. (Yield: 77%, MS: [M+H]+=692)


Preparation Example 1-61



embedded image


Compound Trz27 (15 g, 31.9 mmol) and Compound sub9 (6.8 g, 31.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate(13.2 g, 95.8 mmol) was dissolved in 40 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.4 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10 g of Compound 1-61. (Yield: 52%, MS: [M+H]+=602)


Preparation Example 1-62



embedded image


Compound Trz28 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.4 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.2 g of Compound 1-62. (Yield: 63%, MS: [M+H]+=576)


Preparation Example 1-63



embedded image


Compound Trz29 (15 g, 31.9 mmol) and Compound sub9 (6.8 g, 31.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.4 g, 0.3 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.7 g of Compound 1-63. (Yield: 66%, MS: [M+H]+=602)


Preparation Example 1-64



embedded image


Compound Trz30 (15 g, 31.9 mmol) and Compound sub9 (6.8 g, 31.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.4 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of Compound 1-64. (Yield: 69%, MS: [M+H]+=602)


Preparation Example 1-65



embedded image


Compound Trz31 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.4 g, 0.3 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of Compound 1-65. (Yield: 75%, MS: [M+H]+=576)


Preparation Example 1-66



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz30 (28.6 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.7 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.3 g of Compound sub1-B-7. (Yield: 50%, MS: [M+H]+=636)




embedded image


Compound sub1-B-7 (15 g, 23.6 mmol) and Compound sub5 (2.9 g, 23.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.8 g, 70.7 mmol) was dissolved in 29 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.3 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.5 g of Compound 1-66. (Yield: 53%, MS: [M+H]+=678)


Preparation Example 1-67



embedded image


Compound 1-C(15 g, 60.9 mmol) and Compound Trz32 (25.6 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.7 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.9 g of Compound sub1-C-8. (Yield: 70%, MS: [M+H]+=586)




embedded image


Compound sub1-C-8 (15 g, 25.6 mmol) and Compound sub5 (3.1 g, 25.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.6 g, 76.8 mmol) was dissolved in 32 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.3 g, 0.3 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.6 g of Compound 1-67. (Yield: 66%, MS: [M+H]+=628)


Preparation Example 1-68



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz33 (27 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.7 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.7 g of Compound sub1-D-7. (Yield: 80%, MS: [M+H]+=610)




embedded image


Compound sub1-D-7 (15 g, 24.6 mmol) and Compound sub5 (3 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.3 g, 0.2 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.2 g of Compound 1-68. (Yield: 70%, MS: [M+H]+=652)


Preparation Example 1-69



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz34 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.7 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of Compound sub1-E-9. (Yield: 64%, MS: [M+H]+=560)




embedded image


Compound sub1-E-9 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water and added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (0.3 g, 0.3 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10 g of Compound 1-69. (Yield: 62%, MS: [M+H]+=602)


Preparation Example 2-1



embedded image


Compound 2-A (15 g, 57.1 mmol) and Compound amine1 (29.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.9 g of Compound 2-1. (Yield: 31%, MS: [M+H]+=674)


Preparation Example 2-2



embedded image


Compound 2-A (15 g, 57.1 mmol) and Compound amine2 (31.3 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of Compound 2-2. (Yield: 38%, MS: [M+H]+=704)


Preparation Example 2-3



embedded image


Compound 2-A (15 g, 57.1 mmol) and Compound amine3 (26.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.4 g of Compound 2-3. (Yield: 32%, MS: [M+H]+=624)


Preparation Example 2-4



embedded image


Compound 2-A (15 g, 57.1 mmol) and Compound amine4 (35.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.6 g of Compound 2-4. (Yield: 33%, MS: [M+H]+=776)


Preparation Example 2-5



embedded image


Compound 2-A (15 g, 57.1 mmol) and Compound amine5 (35.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15 g of Compound 2-5. (Yield: 34%, MS: [M+H]+=776)


Preparation Example 2-6



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine6 (24.9 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.6 g of Compound 2-6. (Yield: 72%, MS: [M+H]+=598)


Preparation Example 2-7



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine7 (26.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.7 g of Compound 2-7. (Yield: 75%, MS: [M+H]+=624)


Preparation Example 2-8



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine8 (27.3 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.6 g of Compound 2-8. (Yield: 65%, MS: [M+H]+=638)


Preparation Example 2-9



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine9 (22.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of Compound 2-9. (Yield: 68%, MS: [M+H]+=562)


Preparation Example 2-10



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine10 (29.1 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27 g of Compound 2-10. (Yield: 71%, MS: [M+H]+=668)


Preparation Example 2-11



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine11 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 33 g of Compound 2-11. (Yield: 80%, MS: [M+H]+=724)


Preparation Example 2-12



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine12 (38.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 33.5 g of Compound 2-12. (Yield: 71%, MS: [M+H]+=826)


Preparation Example 2-13



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine13 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.3 g of Compound 2-13. (Yield: 66%, MS: [M+H]+=724)


Preparation Example 2-14



embedded image


Compound 2-B (15 g, 57.1 mmol) and Compound amine14 (34 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.8 g of Compound 2-14. (Yield: 72%, MS: [M+H]+=750)


Preparation Example 2-15



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine15 (26.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.5 g of Compound 2-15. (Yield: 80%, MS: [M+H]+=624)


Preparation Example 2-16



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine16 (29.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.8 g of Compound 2-16. (Yield: 62%, MS: [M+H]+=674)


Preparation Example 2-17



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine17 (27.2 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.7 g of Compound 2-17. (Yield: 68%, MS: [M+H]+=637)


Preparation Example 2-18



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine18 (28.1 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 28.3 g of Compound 2-18. (Yield: 76%, MS: [M+H]+=652)


Preparation Example 2-19



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine19 (30.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.5 g of Compound 2-19. (Yield: 77%, MS: [M+H]+=694)


Preparation Example 2-20



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine20 (25.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.4 g of Compound 2-20. (Yield: 70%, MS: [M+H]+=612)


Preparation Example 2-21



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine21 (29.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.4 g of Compound 2-21. (Yield: 66%, MS: [M+H]+=674)


Preparation Example 2-22



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine22 (38.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.2 g of Compound 2-22. (Yield: 64%, MS: [M+H]+=826)


Preparation Example 2-23



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine23 (38.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 33.9 g of Compound 2-23. (Yield: 72%, MS: [M+H]+=826)


Preparation Example 2-24



embedded image


Compound 2-C(15 g, 57.1 mmol) and Compound amine24 (29.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.8 g of Compound 2-24. (Yield: 62%, MS: [M+H]+=674)


Preparation Example 2-25



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine25 (31 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.5 g of Compound 2-25. (Yield: 74%, MS: [M+H]+=700)


Preparation Example 2-26



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine26 (30.1 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 9 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.4 g of Compound 2-26. (Yield: 65%, MS: [M+H]+=684)


Preparation Example 2-27



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine27 (28.9 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.2 g of Compound 2-27. (Yield: 77%, MS: [M+H]+=664)


Preparation Example 2-28



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine28 (26.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of Compound 2-28. (Yield: 61%, MS: [M+H]+=628)


Preparation Example 2-29



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine29 (31 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.9 g of Compound 2-29. (Yield: 80%, MS: [M+H]+=700)


Preparation Example 2-30



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine30 (37 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 32.4 g of Compound 2-30. (Yield: 71%, MS: [M+H]+=800)


Preparation Example 2-31



embedded image


Compound 2-D (15 g, 57.1 mmol) and Compound amine31 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.3 g of Compound 2-31. (Yield: 71%, MS: [M+H]+=724)


Preparation Example 2-32



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine32 (21.9 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.1 g of Compound 2-32. (Yield: 61%, MS: [M+H]+=548)


Preparation Example 2-33



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine33 (35.6 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.9 g of Compound 2-33. (Yield: 72%, MS: [M+H]+=776)


Preparation Example 2-34



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine34 (28.3 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25 g of Compound 2-34. (Yield: 67%, MS: [M+H]+=654)


Preparation Example 2-35



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine35 (31.8 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.4 g of Compound 2-35. (Yield: 65%, MS: [M+H]+=713)


Preparation Example 2-36



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine36 (24.3 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.1 g of Compound 2-36. (Yield: 63%, MS: [M+H]+=588)


Preparation Example 2-37



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine37 (25.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.5 g of Compound 2-37. (Yield: 73%, MS: [M+H]+=612)


Preparation Example 2-38



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine38 (26.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.1 g of Compound 2-38. (Yield: 65%, MS: [M+H]+=624)


Preparation Example 2-39



embedded image


Compound 2-E (15 g, 57.1 mmol) and Compound amine39 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.2 g of Compound 2-39. (Yield: 61%, MS: [M+H]+=724)


Preparation Example 2-40



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine40 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26 g of Compound 2-40. (Yield: 63%, MS: [M+H]+=724)


Preparation Example 2-41



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine41 (27.9 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 11 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.6 g of Compound 2-41. (Yield: 72%, MS: [M+H]+=648)


Preparation Example 2-42



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine42 (27.3 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.1 g of Compound 2-42. (Yield: 80%, MS: [M+H]+=638)


Preparation Example 2-43



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine43 (26.7 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.3 g of Compound 2-43. (Yield: 65%, MS: [M+H]+=628)


Preparation Example 2-44



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine44 (26.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26 g of Compound 2-44. (Yield: 73%, MS: [M+H]+=624)


Preparation Example 2-45



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine45 (32.5 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 12 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 30.6 g of Compound 2-45. (Yield: 74%, MS: [M+H]+=724)


Preparation Example 2-46



embedded image


Compound 2-F (15 g, 57.1 mmol) and Compound amine46 (31 g, 59.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.7 g, 171.3 mmol) was dissolved in 71 ml of water and added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 8 hours, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25.6 g of Compound 2-46. (Yield: 64%, MS: [M+H]+=700)


EXAMPLES
Example 1

A glass substrate on which a thin film of ITO (indium tin oxide) was coated in a thickness of 1,000 Å was put into distilled water containing a detergent dissolved therein and ultrasonically washed. In this case, the detergent used was a product commercially available from Fischer Co. and the distilled water was one which had been twice filtered by using a filter commercially available from Millipore Co. The ITO was washed for 30 minutes, and ultrasonic washing was then repeated twice for 10 minutes by using distilled water. After the washing with distilled water was completed, the substrate was ultrasonically washed with isopropyl alcohol, acetone, and methanol solvent, and dried, after which it was transported to a plasma cleaner. Then, the substrate was cleaned with oxygen plasma for 5 minutes, and then transferred to a vacuum evaporator.


On the ITO transparent electrode thus prepared, the following compound HI-1 was formed in a thickness of 1150 Å as a hole injection layer, but the following compound A-1 was p-doped at a concentration of 1.5 wt. %. The following compound HT-1 was vacuum deposited on the hole injection layer to form a hole transport layer with a film thickness of 800 Å. Then, the following compound EB-1 was vacuum-deposited on the hole transport layer to a thickness of 150 Å to form an electron blocking layer. Then, the previously prepared compound 1-2, compound 2-1 and the following compound Dp-7 were vacuum-deposited in a weight ratio of 49:49:2 on the EB-1 deposited film to form a red light emitting layer with a thickness of 400 Å. The following compound HB-1 was vacuum-deposited on the light emitting layer to a film thickness of 30 Å to form a hole blocking layer. Then, the following compound ET-1 and the following compound LiQ were vacuum-deposited in a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. Lithium fluoride (LiF) and aluminum were sequentially deposited to have a thickness of 12 Å and 1,000 Å, respectively, on the electron injection and transport layer, thereby forming a cathode.




embedded image


embedded image


In the above-mentioned processes, the deposition rates of the organic materials were maintained at 0.4-0.7 Å/sec, the deposition rates of lithium fluoride and the aluminum of the cathode were maintained at 0.3 Å/sec and 2 Å/sec, respectively, and the degree of vacuum during the deposition was maintained at 2×10−7˜5×10−6 torr, thereby manufacturing an organic light emitting device.


Examples 2 to Example 200

The organic light emitting devices were manufactured in the same manner as in Example 1, except that the first host compound and the second host compound described in Tables 1 to 5 were co-deposited and used in a 1:1 ratio instead of Compound 1-2 and/or Compound 2-1 used in the organic light emitting device of Example 1.


Comparative Example 1 to Comparative Example 60

The organic light emitting devices were manufactured in the same manner as in Example 1, except that the first host compound and the second host compound described in Tables 6 and 7 were co-deposited and used in a 1:1 ratio instead of Compound 1-2 and/or Compound 2-1 used in the organic light emitting device of Example 1. The structures of Compound B-1 to Compound B-12 in Tables 6 and 7 are as follows.




embedded image


embedded image


embedded image


embedded image


embedded image


Comparative Example 61 to Comparative Example 132

The organic light emitting devices were manufactured in the same manner as in Example 1, except that the first host compound and the second host compound described in Tables 8 and 9 were co-deposited and used in a 1:1 ratio instead of Compound 1-2 and/or Compound 2-1 used in the organic light emitting device of Example 1. The structures of Compound C-1 to Compound C-9 in Tables 8 and 9 are as follows.




embedded image


embedded image


embedded image


EXPERIMENTAL EXAMPLES

The driving voltage and efficiency were measured (15 mA/cm2) by applying a current to the organic light emitting devices manufactured in Examples 1 to Example 200 and Comparative Example 1 to Comparative Example 132, and the results are shown in Table 1 to Table 9 below. Lifetime T95 was measured based on 7000 nits, and T95 means the time required for the lifetime to be reduced to 95% of the initial lifetime.















TABLE 1








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Example 1
Compound
Compound
3.58
23.01
221
Red



1-2
2-1






Example 2
Compound
Compound
3.70
23.21
210
Red



1-2
2-7






Example 3
Compound
Compound
3.66
23.34
213
Red



1-2
2-15






Example 4
Compound
Compound
3.59
22.88
221
Red



1-2
2-25






Example 5
Compound
Compound
3.63
22.72
215
Red



1-2
2-32






Example 6
Compound
Compound
3.59
22.79
217
Red



1-3
2-2






Example 7
Compound
Compound
3.60
22.40
209
Red



1-3
2-8






Example 8
Compound
Compound
3.63
22.50
209
Red



1-3
2-16






Example 9
Compound
Compound
3.65
23.28
211
Red



1-3
2-26






Example 10
Compound
Compound
3.65
23.36
225
Red



1-3
2-41






Example 11
Compound
Compound
3.42
23.96
252
Red



1-8
2-3






Example 12
Compound
Compound
3.43
23.25
246
Red



1-8
2-9






Example 13
Compound
Compound
3.46
23.52
264
Red



1-8
2-17






Example 14
Compound
Compound
3.48
23.02
247
Red



1-8
2-27






Example 15
Compound
Compound
3.43
23.46
252
Red



1-8
2-34






Example 16
Compound
Compound
3.74
23.96
232
Red



1-9
2-4






Example 17
Compound
Compound
3.81
23.25
230
Red



1-9
2-10






Example 18
Compound
Compound
3.73
23.52
239
Red



1-9
2-18






Example 19
Compound
Compound
3.72
23.02
233
Red



1-9
2-28






Example 20
Compound
Compound
3.81
23.46
238
Red



1-9
2-43






Example 21
Compound
Compound
3.40
21.48
245
Red



1-10
2-5






Example 22
Compound
Compound
3.51
21.87
263
Red



1-10
2-11






Example 23
Compound
Compound
3.37
21.82
255
Red



1-10
2-19






Example 24
Compound
Compound
3.51
21.75
261
Red



1-10
2-29






Example 25
Compound
Compound
3.51
21.69
261
Red



1-10
2-36






Example 26
Compound
Compound
3.65
22.88
222
Red



1-12
2-6






Example 27
Compound
Compound
3.63
22.47
208
Red



1-12
2-12






Example 28
Compound
Compound
3.62
23.19
207
Red



1-12
2-20






Example 29
Compound
Compound
3.60
22.99
220
Red



1-12
2-30






Example 30
Compound
Compound
3.72
23.19
208
Red



1-12
2-45






















TABLE 2








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Example 31
Compound
Compound
3.67
23.08
207
Red



1-15
2-1






Example 32
Compound
Compound
3.71
22.84
220
Red



1-15
2-7






Example 33
Compound
Compound
3.57
22.63
206
Red



1-15
2-15






Example 34
Compound
Compound
3.60
22.66
218
Red



1-15
2-25






Example 35
Compound
Compound
3.68
23.28
214
Red



1-15
2-40






Example 36
Compound
Compound
3.62
21.23
237
Red



1-16
2-2






Example 37
Compound
Compound
3.56
21.01
228
Red



1-16
2-8






Example 38
Compound
Compound
3.47
20.87
239
Red



1-16
2-16






Example 39
Compound
Compound
3.61
21.04
248
Red



1-16
2-26






Example 40
Compound
Compound
3.60
20.38
233
Red



1-16
2-33






Example 41
Compound
Compound
3.61
20.48
229
Red



1-17
2-3






Example 42
Compound
Compound
3.48
21.04
229
Red



1-17
2-9






Example 43
Compound
Compound
3.53
20.75
230
Red



1-17
2-17






Example 44
Compound
Compound
3.47
20.62
227
Red



1-17
2-27






Example 45
Compound
Compound
3.61
20.29
240
Red



1-17
2-42






Example 46
Compound
Compound
3.67
23.39
225
Red



1-20
2-4






Example 47
Compound
Compound
3.67
23.43
237
Red



1-20
2-10






Example 48
Compound
Compound
3.74
23.12
237
Red



1-20
2-18






Example 49
Compound
Compound
3.69
23.23
220
Red



1-20
2-28






Example 50
Compound
Compound
3.80
23.62
231
Red



1-20
2-35






Example 51
Compound
Compound
3.46
23.39
245
Red



1-21
2-5






Example 52
Compound
Compound
3.51
23.29
254
Red



1-21
2-11






Example 53
Compound
Compound
3.48
23.93
247
Red



1-21
2-19






Example 54
Compound
Compound
3.48
23.35
257
Red



1-21
2-29






Example 55
Compound
Compound
3.49
23.94
265
Red



1-21
2-44






Example 56
Compound
Compound
3.71
23.51
233
Red



1-24
2-6






Example 57
Compound
Compound
3.67
23.38
238
Red



1-24
2-12






Example 58
Compound
Compound
3.68
24.00
231
Red



1-24
2-20






Example 59
Compound
Compound
3.68
23.45
235
Red



1-24
2-30






Example 60
Compound
Compound
3.82
23.02
228
Red



1-24
2-37






Example 61
Compound
Compound
3.80
24.09
227
Red



1-27
2-1






Example 62
Compound
Compound
3.73
23.33
228
Red



1-27
2-7






Example 63
Compound
Compound
3.75
23.67
233
Red



1-27
2-13






Example 64
Compound
Compound
3.80
23.09
228
Red



1-27
2-25






Example 65
Compound
Compound
3.68
23.74
229
Red



1-27
2-32






Example 66
Compound
Compound
3.46
22.23
250
Red



1-28
2-2






Example 67
Compound
Compound
3.50
21.45
260
Red



1-28
2-8






Example 68
Compound
Compound
3.42
22.28
255
Red



1-28
2-21






Example 69
Compound
Compound
3.49
21.57
253
Red



1-28
2-26






Example 70
Compound
Compound
3.40
21.88
250
Red



1-28
2-41






















TABLE 3








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Example 71
Compound
Compound
3.71
22.91
215
Red



1-31
2-3






Example 72
Compound
Compound
3.70
22.50
208
Red



1-31
2-9






Example 73
Compound
Compound
3.69
22.60
226
Red



1-31
2-31






Example 74
Compound
Compound
3.62
22.44
215
Red



1-31
2-27






Example 75
Compound
Compound
3.68
22.70
215
Red



1-31
2-34






Example 76
Compound
Compound
3.50
21.32
248
Red



1-33
2-4






Example 77
Compound
Compound
3.41
21.10
252
Red



1-33
2-10






Example 78
Compound
Compound
3.52
21.55
264
Red



1-33
2-38






Example 79
Compound
Compound
3.37
21.83
247
Red



1-33
2-28






Example 80
Compound
Compound
3.37
22.13
260
Red



1-33
2-43






Example 81
Compound
Compound
3.47
23.81
265
Red



1-37
2-5






Example 82
Compound
Compound
3.39
23.42
246
Red



1-37
2-11






Example 83
Compound
Compound
3.46
23.85
258
Red



1-37
2-39






Example 84
Compound
Compound
3.40
23.88
256
Red



1-37
2-29






Example 85
Compound
Compound
3.45
23.83
253
Red



1-37
2-36






Example 86
Compound
Compound
3.49
23.78
247
Red



1-39
2-6






Example 87
Compound
Compound
3.51
23.46
266
Red



1-39
2-12






Example 88
Compound
Compound
3.41
23.36
256
Red



1-39
2-46






Example 89
Compound
Compound
3.41
23.57
263
Red



1-39
2-30






Example 90
Compound
Compound
3.47
23.02
263
Red



1-39
2-45






Example 91
Compound
Compound
3.82
23.41
225
Red



1-40
2-1






Example 92
Compound
Compound
3.75
23.49
235
Red



1-40
2-7






Example 93
Compound
Compound
3.67
23.06
227
Red



1-40
2-13






Example 94
Compound
Compound
3.79
23.42
231
Red



1-40
2-25






Example 95
Compound
Compound
3.82
23.39
231
Red



1-40
2-40






Example 96
Compound
Compound
3.72
23.89
236
Red



1-41
2-2






Example 97
Compound
Compound
3.70
23.76
237
Red



1-41
2-8






Example 98
Compound
Compound
3.78
23.67
229
Red



1-41
2-21






Example 99
Compound
Compound
3.72
23.34
237
Red



1-41
2-26






Example 100
Compound
Compound
3.68
23.68
232
Red



1-41
2-33






Example 101
Compound
Compound
3.39
21.53
259
Red



1-42
2-3






Example 102
Compound
Compound
3.49
21.50
259
Red



1-42
2-9






Example 103
Compound
Compound
3.46
21.99
251
Red



1-42
2-31






Example 104
Compound
Compound
3.51
21.52
262
Red



1-42
2-27






Example 105
Compound
Compound
3.41
22.01
255
Red



1-42
2-42






Example 106
Compound
Compound
3.51
21.72
261
Red



1-43
2-4






Example 107
Compound
Compound
3.40
21.57
245
Red



1-43
2-10






Example 108
Compound
Compound
3.38
21.35
258
Red



1-43
2-38






Example 109
Compound
Compound
3.50
21.79
252
Red



1-43
2-28






Example 110
Compound
Compound
3.48
21.83
265
Red



1-43
2-35






















TABLE 4








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Example 111
Compound
Compound
3.39
23.97
259
Red



1-44
2-5






Example 112
Compound
Compound
3.49
23.74
259
Red



1-44
2-11






Example 113
Compound
Compound
3.46
23.72
251
Red



1-44
2-39






Example 114
Compound
Compound
3.51
23.57
262
Red



1-44
2-29






Example 115
Compound
Compound
3.41
23.89
255
Red



1-44
2-44






Example 116
Compound
Compound
3.51
23.61
261
Red



1-48
2-6






Example 117
Compound
Compound
3.40
23.61
245
Red



1-48
2-12






Example 118
Compound
Compound
3.38
23.21
258
Red



1-48
2-46






Example 119
Compound
Compound
3.50
23.83
252
Red



1-48
2-30






Example 120
Compound
Compound
3.48
23.24
265
Red



1-48
2-37






Example 121
Compound
Compound
3.67
23.36
224
Red



1-52
2-1






Example 122
Compound
Compound
3.70
23.33
205
Red



1-52
2-7






Example 123
Compound
Compound
3.60
22.77
226
Red



1-52
2-14






Example 124
Compound
Compound
3.67
22.38
211
Red



1-52
2-25






Example 125
Compound
Compound
3.70
22.75
224
Red



1-52
2-32






Example 126
Compound
Compound
3.66
22.39
211
Red



1-53
2-2






Example 127
Compound
Compound
3.61
22.57
206
Red



1-53
2-8






Example 128
Compound
Compound
3.65
22.38
226
Red



1-53
2-22






Example 129
Compound
Compound
3.63
22.44
213
Red



1-53
2-26






Example 130
Compound
Compound
3.61
23.11
227
Red



1-53
2-41






Example 131
Compound
Compound
3.38
23.83
245
Red



1-55
2-3






Example 132
Compound
Compound
3.37
23.48
259
Red



1-55
2-9






Example 133
Compound
Compound
3.52
23.59
248
Red



1-55
2-31






Example 134
Compound
Compound
3.45
23.07
257
Red



1-55
2-27






Example 135
Compound
Compound
3.46
23.73
247
Red



1-55
2-34






Example 136
Compound
Compound
3.65
23.23
224
Red



1-56
2-4






Example 137
Compound
Compound
3.61
22.65
186
Red



1-56
2-10






Example 138
Compound
Compound
3.58
22.48
193
Red



1-56
2-38






Example 139
Compound
Compound
3.70
22.56
189
Red



1-56
2-28






Example 140
Compound
Compound
3.60
22.97
192
Red



1-56
2-43






Example 141
Compound
Compound
3.68
22.11
199
Red



1-57
2-5






Example 142
Compound
Compound
3.59
22.51
219
Red



1-57
2-11






Example 143
Compound
Compound
3.65
22.71
197
Red



1-57
2-39






Example 144
Compound
Compound
3.59
22.10
207
Red



1-57
2-29






Example 145
Compound
Compound
3.70
22.39
194
Red



1-57
2-36






Example 146
Compound
Compound
3.62
22.97
205
Red



1-58
2-6






Example 147
Compound
Compound
3.69
22.75
191
Red



1-58
2-12






Example 148
Compound
Compound
3.67
22.77
219
Red



1-58
2-46






Example 149
Compound
Compound
3.65
22.91
227
Red



1-58
2-30






Example 150
Compound
Compound
3.64
22.13
223
Red



1-58
2-45






Example 151
Compound
Compound
3.70
23.05
211
Red



1-60
2-1






Example 152
Compound
Compound
3.68
22.75
183
Red



1-60
2-7






Example 153
Compound
Compound
3.63
22.80
204
Red



1-60
2-14






Example 154
Compound
Compound
3.67
23.00
192
Red



1-60
2-25






Example 155
Compound
Compound
3.60
22.15
206
Red



1-60
2-40






Example 156
Compound
Compound
3.48
23.85
247
Red



1-61
2-2






Example 157
Compound
Compound
3.50
23.80
249
Red



1-61
2-8






Example 158
Compound
Compound
3.50
23.31
248
Red



1-61
2-22






Example 159
Compound
Compound
3.39
23.61
260
Red



1-61
2-26






Example 160
Compound
Compound
3.37
23.38
246
Red



1-61
2-33






















TABLE 5








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Example 161
Compound
Compound
3.81
23.85
225
Red



1-62
2-3






Example 162
Compound
Compound
3.81
23.80
218
Red



1-62
2-9






Example 163
Compound
Compound
3.68
23.31
230
Red



1-62
2-31






Example 164
Compound
Compound
3.71
23.61
222
Red



1-62
2-27






Example 165
Compound
Compound
3.69
23.38
224
Red



1-62
2-42






Example 166
Compound
Compound
3.50
22.40
258
Red



1-63
2-4






Example 167
Compound
Compound
3.49
22.31
244
Red



1-63
2-10






Example 168
Compound
Compound
3.42
21.27
254
Red



1-63
2-38






Example 169
Compound
Compound
3.37
21.78
250
Red



1-63
2-28






Example 170
Compound
Compound
3.37
21.75
256
Red



1-63
2-35






Example 171
Compound
Compound
3.47
21.94
257
Red



1-64
2-5






Example 172
Compound
Compound
3.49
21.33
266
Red



1-64
2-11






Example 173
Compound
Compound
3.42
21.30
254
Red



1-64
2-39






Example 174
Compound
Compound
3.38
21.45
255
Red



1-64
2-29






Example 175
Compound
Compound
3.50
22.02
264
Red



1-64
2-44






Example 176
Compound
Compound
3.50
23.27
258
Red



1-65
2-6






Example 177
Compound
Compound
3.49
23.61
244
Red



1-65
2-12






Example 178
Compound
Compound
3.42
23.12
254
Red



1-65
2-46






Example 179
Compound
Compound
3.37
23.36
250
Red



1-65
2-30






Example 180
Compound
Compound
3.37
23.34
256
Red



1-65
2-37






Example 181
Compound
Compound
3.69
22.13
204
Red



1-66
2-1






Example 182
Compound
Compound
3.57
23.25
213
Red



1-66
2-7






Example 183
Compound
Compound
3.68
22.99
221
Red



1-66
2-13






Example 184
Compound
Compound
3.63
22.33
180
Red



1-66
2-25






Example 185
Compound
Compound
3.60
22.90
209
Red



1-66
2-32






Example 186
Compound
Compound
3.71
22.84
190
Red



1-67
2-2






Example 187
Compound
Compound
3.59
22.47
182
Red



1-67
2-8






Example 188
Compound
Compound
3.61
22.45
185
Red



1-67
2-23






Example 189
Compound
Compound
3.62
22.24
217
Red



1-67
2-26






Example 190
Compound
Compound
3.70
23.04
216
Red



1-67
2-41






Example 191
Compound
Compound
3.59
22.28
210
Red



1-68
2-3






Example 192
Compound
Compound
3.72
23.37
203
Red



1-68
2-9






Example 193
Compound
Compound
3.68
22.83
205
Red



1-68
2-31






Example 194
Compound
Compound
3.64
23.33
207
Red



1-68
2-27






Example 195
Compound
Compound
3.63
22.62
205
Red



1-68
2-34






Example 196
Compound
Compound
3.59
23.39
225
Red



1-69
2-4






Example 197
Compound
Compound
3.59
22.97
195
Red



1-69
2-10






Example 198
Compound
Compound
3.71
22.77
221
Red



1-69
2-38






Example 199
Compound
Compound
3.68
22.37
212
Red



1-69
2-28






Example 200
Compound
Compound
3.57
22.16
227
Red



1-69
2-43






















TABLE 6








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Comparative
Compound B-
Compound
4.20
15.07
120
Red


Example 1
1
2-1






Comparative
Compound B-
Compound
4.34
14.53
142
Red


Example 2
1
2-7






Comparative
Compound B-
Compound
4.30
14.76
127
Red


Example 3
1
2-15






Comparative
Compound B-
Compound
4.24
14.72
145
Red


Example 4
1
2-25






Comparative
Compound B-
Compound
4.15
15.00
122
Red


Example 5
1
2-32






Comparative
Compound B-
Compound
4.17
14.96
128
Red


Example 6
2
2-2






Comparative
Compound B-
Compound
4.24
15.03
135
Red


Example 7
2
2-8






Comparative
Compound B-
Compound
4.26
14.21
141
Red


Example 8
2
2-16






Comparative
Compound B-
Compound
4.31
14.94
140
Red


Example 9
2
2-26






Comparative
Compound B-
Compound
4.13
14.50
123
Red


Example 10
2
2-41






Comparative
Compound B-
Compound
4.28
16.31
107
Red


Example 11
3
2-3






Comparative
Compound B-
Compound
4.30
15.71
102
Red


Example 12
3
2-9






Comparative
Compound B-
Compound
4.26
15.73
107
Red


Example 13
3
2-17






Comparative
Compound B-
Compound
4.30
15.77
123
Red


Example 14
3
2-27






Comparative
Compound B-
Compound
4.17
16.22
105
Red


Example 15
3
2-34






Comparative
Compound B-
Compound
4.19
16.05
121
Red


Example 16
4
2-4






Comparative
Compound B-
Compound
4.25
15.53
104
Red


Example 17
4
2-10






Comparative
Compound B-
Compound
4.17
16.47
104
Red


Example 18
4
2-18






Comparative
Compound B-
Compound
4.20
15.81
113
Red


Example 19
4
2-28






Comparative
Compound B-
Compound
4.20
16.02
119
Red


Example 20
4
2-43






Comparative
Compound B-
Compound
4.12
14.68
125
Red


Example 21
5
2-5






Comparative
Compound B-
Compound
4.26
15.01
137
Red


Example 22
5
2-11






Comparative
Compound B-
Compound
4.18
14.52
138
Red


Example 23
5
2-19






Comparative
Compound B-
Compound
4.29
14.71
140
Red


Example 24
5
2-29






Comparative
Compound B-
Compound
4.16
14.83
123
Red


Example 25
5
2-36






Comparative
Compound B-
Compound
4.18
14.75
141
Red


Example 26
6
2-6






Comparative
Compound B-
Compound
4.33
14.74
141
Red


Example 27
6
2-12






Comparative
Compound B-
Compound
4.15
14.35
123
Red


Example 28
6
2-20






Comparative
Compound B-
Compound
4.19
15.03
136
Red


Example 29
6
2-30






Comparative
Compound B-
Compound
4.12
14.56
139
Red


Example 30
6
2-45






Comparative
Compound B-
Compound
4.29
16.43
120
Red


Example 31
7
2-1






Comparative
Compound B-
Compound
4.25
15.96
114
Red


Example 32
7
2-7






Comparative
Compound B-
Compound
4.22
15.38
115
Red


Example 33
7
2-15






Comparative
Compound B-
Compound
4.23
16.65
114
Red


Example 34
7
2-25






Comparative
Compound B-
Compound
4.36
16.15
112
Red


Example 35
7
2-32






Comparative
Compound B-
Compound
4.30
15.74
105
Red


Example 36
8
2-2






Comparative
Compound B-
Compound
4.18
16.54
116
Red


Example 37
8
2-8






Comparative
Compound B-
Compound
4.27
16.69
113
Red


Example 38
8
2-16






Comparative
Compound B-
Compound
4.17
15.75
105
Red


Example 39
8
2-26






Comparative
Compound B-
Compound
4.21
16.41
120
Red


Example 40
8
2-41






















TABLE 7








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Comparative
Compound
Compound
4.28
14.50
145
Red


Example 41
B-9
2-3






Comparative
Compound
Compound
4.26
14.69
123
Red


Example 42
B-9
2-9






Comparative
Compound
Compound
4.32
15.08
131
Red


Example 43
B-9
2-17






Comparative
Compound
Compound
4.25
14.98
123
Red


Example 44
B-9
2-27






Comparative
Compound
Compound
4.28
14.45
126
Red


Example 45
B-9
2-34






Comparative
Compound
Compound
4.15
14.69
140
Red


Example 46
B-10
2-4






Comparative
Compound
Compound
4.28
14.33
148
Red


Example 47
B-10
2-10






Comparative
Compound
Compound
4.25
14.53
135
Red


Example 48
B-10
2-18






Comparative
Compound
Compound
4.11
14.66
125
Red


Example 49
B-10
2-28






Comparative
Compound
Compound
4.31
14.69
124
Red


Example 50
B-10
2-43






Comparative
Compound
Compound
4.32
15.34
113
Red


Example 51
B-11
2-5






Comparative
Compound
Compound
4.36
15.56
111
Red


Example 52
B-11
2-11






Comparative
Compound
Compound
4.23
15.76
110
Red


Example 53
B-11
2-19






Comparative
Compound
Compound
4.27
16.62
105
Red


Example 54
B-11
2-29






Comparative
Compound
Compound
4.32
16.13
104
Red


Example 55
B-11
2-36






Comparative
Compound
Compound
4.25
15.48
112
Red


Example 56
B-12
2-6






Comparative
Compound
Compound
4.23
16.34
120
Red


Example 57
B-12
2-12






Comparative
Compound
Compound
4.18
16.60
110
Red


Example 58
B-12
2-20






Comparative
Compound
Compound
4.30
16.45
119
Red


Example 59
B-12
2-30






Comparative
Compound
Compound
4.21
15.23
122
Red


Example 60
B-12
2-45






















TABLE 8








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color







Comparative
Compound 1-
Compound C-
4.09
18.97
133
Red


Example 61
2
1






Comparative
Compound 1-
Compound C-
4.03
19.05
140
Red


Example 62
11
1






Comparative
Compound 1-
Compound C-
4.08
18.52
136
Red


Example 63
15
1






Comparative
Compound 1-
Compound C-
4.03
18.78
133
Red


Example 64
28
1






Comparative
Compound 1-
Compound C-
4.02
18.77
143
Red


Example 65
33
1






Comparative
Compound 1-
Compound C-
4.07
18.71
132
Red


Example 66
40
1






Comparative
Compound 1-
Compound C-
4.11
18.75
136
Red


Example 67
43
1






Comparative
Compound 1-
Compound C-
4.02
19.08
130
Red


Example 68
55
1






Comparative
Compound 1-
Compound C-
3.98
19.14
147
Red


Example 69
3
2






Comparative
Compound 1-
Compound C-
3.99
19.43
149
Red


Example 70
7
2






Comparative
Compound 1-
Compound C-
3.98
19.25
144
Red


Example 71
17
2






Comparative
Compound 1-
Compound C-
3.98
19.33
149
Red


Example 72
24
2






Comparative
Compound 1-
Compound C-
3.99
19.45
148
Red


Example 73
37
2






Comparative
Compound 1-
Compound C-
4.00
19.60
143
Red


Example 74
47
2






Comparative
Compound 1-
Compound C-
3.98
19.26
145
Red


Example 75
48
2






Comparative
Compound 1-
Compound C-
3.96
19.55
153
Red


Example 76
58
2






Comparative
Compound 1-
Compound C-
4.01
18.96
135
Red


Example 77
9
3






Comparative
Compound 1-
Compound C-
4.03
18.93
137
Red


Example 78
16
3






Comparative
Compound 1-
Compound C-
4.14
18.60
141
Red


Example 79
22
3






Comparative
Compound 1-
Compound C-
4.12
18.50
137
Red


Example 80
38
3






Comparative
Compound 1-
Compound C-
4.05
18.69
133
Red


Example 81
41
3






Comparative
Compound 1-
Compound C-
4.06
18.91
134
Red


Example 82
45
3






Comparative
Compound 1-
Compound C-
4.09
18.78
135
Red


Example 83
53
3






Comparative
Compound 1-
Compound C-
4.03
18.97
140
Red


Example 84
62
3






Comparative
Compound 1-
Compound C-
3.97
19.58
156
Red


Example 85
2
4






Comparative
Compound 1-
Compound C-
3.96
19.91
155
Red


Example 86
14
4






Comparative
Compound 1-
Compound C-
3.92
19.95
155
Red


Example 87
20
4






Comparative
Compound 1-
Compound C-
3.89
19.54
166
Red


Example 88
27
4






Comparative
Compound 1-
Compound C-
3.93
19.71
157
Red


Example 89
31
4






Comparative
Compound 1-
Compound C-
3.95
19.90
169
Red


Example 90
52
4






Comparative
Compound 1-
Compound C-
3.95
19.73
156
Red


Example 91
56
4






Comparative
Compound 1-
Compound C-
3.89
19.95
165
Red


Example 92
60
4






Comparative
Compound 1-
Compound C-
4.23
18.39
132
Red


Example 93
2
5






Comparative
Compound 1-
Compound C-
4.14
18.01
133
Red


Example 94
11
5






Comparative
Compound 1-
Compound C-
4.23
18.38
133
Red


Example 95
15
5






Comparative
Compound 1-
Compound C-
4.23
18.02
133
Red


Example 96
28
5






Comparative
Compound 1-
Compound C-
4.19
18.46
130
Red


Example 97
33
5






Comparative
Compound 1-
Compound C-
4.16
18.16
133
Red


Example 98
40
5






Comparative
Compound 1-
Compound C-
4.22
18.13
130
Red


Example 99
55
5






Comparative
Compound 1-
Compound C-
4.15
18.58
132
Red


Example 100
64
5






















TABLE 9








Driving

Lifetime






voltage
Efficiency
T95
Luminescent


Category
First host
Second host
(V)
(cd/A)
(hr)
color





















Comparative
Compound 1-
Compound C-
4.19
18.51
130
Red


Example 101
3
6






Comparative
Compound 1-
Compound C-
4.18
18.24
133
Red


Example 102
7
6






Comparative
Compound 1-
Compound C-
4.15
18.36
133
Red


Example 103
17
6






Comparative
Compound 1-
Compound C-
4.20
18.55
133
Red


Example 104
24
6






Comparative
Compound 1-
Compound C-
4.17
18.06
131
Red


Example 105
37
6






Comparative
Compound 1-
Compound C-
4.20
18.17
133
Red


Example 106
47
6






Comparative
Compound 1-
Compound C-
4.11
18.32
132
Red


Example 107
48
6






Comparative
Compound 1-
Compound C-
4.22
18.05
130
Red


Example 108
58
6






Comparative
Compound 1-
Compound C-
3.97
19.11
148
Red


Example 109
9
7






Comparative
Compound 1-
Compound C-
3.97
19.16
152
Red


Example 110
16
7






Comparative
Compound 1-
Compound C-
4.00
19.55
147
Red


Example 111
22
7






Comparative
Compound 1-
Compound C-
3.96
19.10
143
Red


Example 112
38
7






Comparative
Compound 1-
Compound C-
4.02
19.25
148
Red


Example 113
41
7






Comparative
Compound 1-
Compound C-
3.97
19.56
152
Red


Example 114
45
7






Comparative
Compound 1-
Compound C-
3.97
19.38
143
Red


Example 115
53
7






Comparative
Compound 1-
Compound C-
3.97
19.37
140
Red


Example 116
60
7






Comparative
Compound 1-
Compound C-
4.40
14.14
64
Red


Example 117
2
8






Comparative
Compound 1-
Compound C-
4.47
14.27
80
Red


Example 118
14
8






Comparative
Compound 1-
Compound C-
4.34
14.96
64
Red


Example 119
20
8






Comparative
Compound 1-
Compound C-
4.32
13.19
78
Red


Example 120
27
8






Comparative
Compound 1-
Compound C-
4.42
14.56
66
Red


Example 121
31
8






Comparative
Compound 1-
Compound C-
4.41
14.94
61
Red


Example 122
52
8






Comparative
Compound 1-
Compound C-
4.37
14.48
60
Red


Example 123
56
8






Comparative
Compound 1-
Compound C-
4.49
14.96
60
Red


Example 124
65
8






Comparative
Compound 1-
Compound C-
4.20
15.26
99
Red


Example 125
2
9






Comparative
Compound 1-
Compound C-
4.25
15.03
93
Red


Example 126
11
9






Comparative
Compound 1-
Compound C-
4.23
14.21
88
Red


Example 127
15
9






Comparative
Compound 1-
Compound C-
4.39
14.15
97
Red


Example 128
28
9






Comparative
Compound 1-
Compound C-
4.35
14.42
95
Red


Example 129
33
9






Comparative
Compound 1-
Compound C-
4.37
14.87
97
Red


Example 130
40
9






Comparative
Compound 1-
Compound C-
4.29
14.65
91
Red


Example 131
43
9






Comparative
Compound 1-
Compound C-
4.33
14.56
86
Red


Example 132
68
9









When a current was applied to the organic light emitting devices manufactured in Examples 1 to 200 and Comparative Examples 1 to 132, the results shown in Table 1 Table 9 were obtained. A material widely used in the prior art was used as a component of the red organic light emitting device of Example 1, Compound EB-1 was used as the electron blocking layer, and Compound Dp-7 was used as the dopant of the red light emitting layer.


When any one of Comparative Example Compounds B-1 to B-12 and the compound of Chemical Formula 2 of the present disclosure were co-deposited together and used as a red light emitting layer as shown in Table 6 and Table 7, the result showed that generally, the driving voltage increased and the efficiency and lifetime decreased as compared with the combination of the present disclosure. Even when any one of Comparative Example Compounds C-1 to C-9 and the compound of Chemical Formula 1 of the present disclosure were co-deposited together and used as a red light emitting layer as shown in Table 8 and Table 9, the result showed that the driving voltage increased and the efficiency and lifetime decreased.


From the above, it can be seen that when the compound of Chemical Formula 1 as the first host and the compound of Chemical Formula 2 as the second host according to the present disclosure were used in combination, energy transfer to the red dopant in the red light emitting layer was well achieved, the electrons and holes were combined through a more stable balance in the light emitting layer to form excitons, and thus, the driving voltage is improved and the efficiency and lifetime are increased.


In conclusion, when the compound of Chemical Formula 1 and the compound of Chemical Formula 2 according to the present disclosure are combined, co-evaporated and used as a host for the red light emitting layer, it was confirmed that the driving voltage, luminous efficiency, and lifetime characteristics of the organic light emitting device could be improved.


DESCRIPTION OF SYMBOLS


















1: substrate
2: anode



3: light emitting layer
4: cathode



5: hole injection layer
6: hole transport layer



7: electron blocking layer
8: hole blocking layer



9: electron transport and injection layer









Claims
  • 1. An organic light emitting device, comprising: an anode;a cathode; anda light emitting layer interposed between the anode and the cathode,wherein the light emitting layer comprises a compound of the following Chemical Formula 1 and a compound of the following Chemical Formula 2:
  • 2. The organic light emitting device of claim 1, wherein: the compound of Chemical Formula 1 is a compound of Chemical Formula 1 Å:
  • 3. The organic light emitting device of claim 1, wherein: the compound of Chemical Formula 1 is a compound of any one of the following Chemical Formula 1-1 to Chemical Formula 1-3:
  • 4. The organic light emitting device of claim 1, wherein: Ar1 and Ar2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.
  • 5. The organic light emitting device of claim 1, wherein: L1 to L3 are each independently a single bond or any one selected from the group consisting of:
  • 6. The organic light emitting device of claim 1, wherein: R1 is hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthyl phenyl, phenyl naphthyl, fluoranthenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.
  • 7. The organic light emitting device of claim 1, wherein: a is 0 or 1.
  • 8. The organic light emitting device of claim 1, wherein: the compound of Chemical Formula 1 is any one compound selected from the group consisting of:
  • 9. The organic light emitting device of claim 1, wherein: the compound of Chemical Formula 2 is a compound of one of the following Chemical Formula 2-1 to Chemical Formula 2-6:
  • 10. The organic light emitting device of claim 1, wherein: L′1 is a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenyldiyl, or a substituted or unsubstituted naphthalenediyl.
  • 11. The organic light emitting device of claim 1, wherein: L′2 and L′3 are each independently a single bond, phenylene, phenylene substituted with one phenyl, biphenyldiyl, or naphthalenediyl.
  • 12. The organic light emitting device of claim 1, wherein: Ar′1 and Ar′2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, phenyl carbazole, dimethyl fluorenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.
  • 13. The organic light emitting device of claim 1, wherein: the compound of Chemical Formula 2 is any one compound selected from the group consisting of:
Priority Claims (2)
Number Date Country Kind
10-2021-0022063 Feb 2021 KR national
10-2022-0021610 Feb 2022 KR national
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a National Stage Application of International Application No. PCT/KR2022/002465 filed on Feb. 18, 2022, which claims priority to and the benefit of Korean Patent Application No. 10-2021-0022063 filed on Feb. 18, 2021 and Korean Patent Application No. 10-2022-0021610 filed on Feb. 18, 2022 in the Korean Intellectual Property Office, the contents of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/KR2022/002465 2/18/2022 WO