This application claims priority to and the benefit of Korean Patent Application No. 10-2015-0044396, filed on Mar. 30, 2015, in the Korean Intellectual Property Office, the entire content of which is incorporated herein by reference.
1. Field
One or more aspects of example embodiments of the present disclosure relate to an organic light-emitting device.
2. Description of the Related Art
Organic light-emitting devices (OLEDs) are self-emission devices that have wide viewing angles, high contrast ratios, and short response times. In addition, the OLEDs exhibit excellent luminance, driving voltage, and response speed characteristics, and can produce full-color images.
The organic light-emitting device may include a first electrode positioned on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially positioned on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. The holes and the electrons are then recombined in the emission layer to produce excitons. These excitons change from an excited state to a ground state to thereby generate light.
One or more aspects of example embodiments of the present disclosure are directed to an organic light-emitting device having a high efficiency and long lifespan.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
According to one or more example embodiments, an organic light-emitting device may include:
a first electrode;
a second electrode facing the first electrode; and
an organic layer between the first electrode and the second electrode, the organic layer including an emission layer,
wherein the organic layer may include a first compound and a second compound, and
the first compound may include at least one selected from compounds represented by Formula 1, and the second compound may include at least one selected from compounds represented by Formula 2:
wherein, in Formulae 1, 1-1, 1-2, and 2,
X1 may be selected from N-[(L1)a1-(Ar1)b1], O, and S,
X2 may be selected from N-[(L2)a2-(Ar2)b2], O, and S,
X11 may be selected from N-[(L11)a11-(Ar11)b11], O, and S,
X21 may be selected from N-[(L21)a21-(Ar21)b21], O, and S,
X22 may be selected from N-[(L22)a22-(Ar22)b22], O, S, C(R23)(R24), and Si(R25)(R26),
X31 may be N or C(R31), X32 may be N or C(R32), X33 may be N or C(R33), X34 may be N or C(R34), X35 may be N or C(R35), X36 may be N or C(R36), X37 may be N or
C(R37), and X38 may be N or C(R38);
L1 to L5, L11 to L14, and L21 to L25 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;
a1 to a5, a11 to a14, and a21 to a25 may be each independently an integer selected from 0 to 3;
Ar1 to Ar4, Ar11 to Ar13, and Ar21 to Ar23 may be each independently selected from a group represented by Formula 1-1, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3) and —B(Q4)(Q5);
b1 to b4, b11 to b13, and b21 to b23 may be each independently an integer selected from 1 to 4;
R1 to R6, R11 to R13, R21 to R26, and R31 to R38 may be each independently selected from a group represented by Formula 1-1, a group represented by Formula 1-2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q1)(Q2)(Q3),
c1, c3, c4, c11, and c13 may be each independently an integer selected from 0 to 4, c2, c5, and c12 may be each independently an integer selected from 0 to 2, and c6, c21, and c22 may be each independently an integer selected from 0 to 3,
n1 may be an integer selected from 0 to 3;
* is a binding site to a neighboring atom;
at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted a divalent non-aromatic condensed polycyclic group, substituted a divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C2-C60 alkenyl group, substituted C2-C60 alkynyl group, substituted C1-C60 alkoxy group, substituted C3-C10 cycloalkyl group, substituted C1-C10 heterocycloalkyl group, substituted C3-C10 cycloalkenyl group, substituted C1-C10 heterocycloalkenyl group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —B(Q14)(Q15), —N(Q16)(Q17), and —P(═O)(Q18)(Q19);
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —B(Q24)(Q25), —N(Q26)(Q27), and —P(═O)(Q28)(Q29); and
—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), —N(Q36)(Q37), and —P(═O)(Q38)(Q39);
wherein Q1 to Q5, Q11 to Q19, Q21 to Q29, and Q31 to Q39 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.
These and/or other aspects will become apparent and more readily appreciated from the following description of the example embodiments, taken in conjunction with the accompanying drawing, which is a schematic view of an organic light-emitting device according to one or more embodiments of the present disclosure.
Reference will now be made in more detail to example embodiments, examples of which are illustrated in the accompanying drawing, wherein like reference numerals refer to like elements throughout. In this regard, the present example embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the example embodiments are merely described below, by referring to the drawing, to explain aspects of the present description. Expressions such as “at least one of,” “one of,” “at least one selected from,” and “one selected from,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the present invention refers to “one or more embodiments of the present invention.” It will be further understood that the terms, such as “comprises,” “comprising,” “includes”, and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The drawing is a schematic cross-sectional view of an organic light-emitting device (OLED) according to an example embodiment of the present disclosure.
Referring to the drawing, a substrate may be positioned under a first electrode 110 or on a second electrode 190. The substrate may be a glass substrate or a transparent plastic substrate, each with excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and/or water resistance.
The first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode on the substrate. When the first electrode 110 is an anode, the material for forming the first electrode may be selected from materials with a high work function to facilitate hole injection. The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The material for forming the first electrode may be a transparent and highly conductive material, and non-limiting examples of the material may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). When the first electrode 110 is a semi-transmissive electrode or a reflective electrode, as a material for forming the first electrode, at least one selected from magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag) may be used.
The first electrode 110 may have a single-layer structure or a multi-layer structure including a plurality of layers. For example, the first electrode 110 may have a triple-layer structure of ITO/Ag/ITO, but embodiments of the present disclosure are not limited thereto.
An organic layer 150 including an emission layer may be positioned on the first electrode 110. The organic layer 150 may include a hole transport region positioned between the first electrode 110 and the emission layer and an electron transport region positioned between the emission layer and the second electrode 190.
The organic layer 150 may include a first compound and a second compound, where the first compound includes at least one selected from compounds represented by Formula 1, and the second compound includes at least one selected from compounds represented by Formula 2:
In Formulae 1, 1-1, and 1-2, X1 may be selected from N-[(L1)a1-(Ar1)b1], O, and S, X2 may be selected from N-[(L2)a2-(Ar2)b2], O, and S, and X11 may be selected from N-[(L11)a11-(Ar11)b11], O, and S.
For example, X1, X2, and X11 may be each independently selected from 0 and S. In some embodiments, X1, X2, and X11 may each be S.
In Formula 2, X21 may be selected from N-[(L21)a21-(Ar21)b21], O, and S, X22 may be selected from N-[(L22)a22-(Ar22)b22], O, S, C(R23)(R24) and Si(R25)(R26), X31 may be N or C(R31), X32 may be N or C(R32), X33 may be N or C(R33), X34 may be N or C(R34), X35 may be N or C(R35), X36 may be N or C(R36), X37 may be N or C(R37), and X38 may be N or C(R38).
In some embodiments, in Formula 2, X21 may be selected from N, O, and S, and X22 may be N-[(L22)a22-(Ar22)b22]. In some embodiments, X21 may be selected from O and S.
In some embodiments, X31 may be C(R31), X32 may be C(R32), X33 may be C(R33), X34 may be C(R34), X35 may be C(R35), X36 may be C(R36), X37 may be C(R37), and X38 may be C(R38). Descriptions of each of R31 to R38 are provided herein.
In Formulae 1, 1-1, 1-2, and 2, L1 to L5, L11 to L14, and L21 to L25 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.
In some embodiments, in the formulae above, L1 to L5, L11 to L14, and L21 to L25 may be each independently selected from:
a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, a ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group; and
a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, a ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.
In some embodiments, in the formulae above, L1 to L5, L11 to L14, and L21 to L25 may be each independently represented by one of Formulae 3-1 to 3-41:
In Formulae 3-1 to 3-41,
Y1 may be selected from O, S, C(Z3)(Z4), N(Z5), and Si(Z6)(Z7);
Z1 to Z7 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, and a naphthyl group; and
—Si(Q31)(Q32)(Q33);
where Q31 to Q33 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group;
d2 may be 1 or 2;
d3 may be an integer selected from 1 to 3;
d4 may be an integer selected from 1 to 4;
d5 may be an integer selected from 1 to 5;
d6 may be an integer selected from 1 to 6;
d8 may be an integer selected from 1 to 8; and
* and *′ each indicate a binding site to a neighboring atom.
In some embodiments, in the formulae above, L1 to L5, L11 to L14, and L21 to L25 may be each independently selected from groups represented by Formulae 4-1 to 4-39, but embodiments of the present disclosure are not limited thereto:
In Formulae 4-1 to 4-39, *and *′ each indicate a binding site to a neighboring atom.
In Formulae 1, 1-1, 1-2, and 2 above, a1 to a5, a11 to a14, and a21 to a25 may be each independently an integer selected from 0 to 3. a1 in Formula 1 denotes the number of L1, and, when a1 is 2 or greater, a plurality of L1(s) may be identical to or different from each other. When a1 is 0, -(L1)a1- may be a single bond. In some embodiments, a1 may be 0 or 1. a2 in Formula 1 denotes the number of L2, and, when a2 is 2 or greater, a plurality of L2(s) may be identical to or different from each other. When a2 is 0, -(L2)a2- may be a single bond. In some embodiments, a2 may be 0 or 1. a3 in Formula 1 denotes the number of L3, and, when a3 is 2 or greater, a plurality of L3(s) may be identical to or different from each other. When a3 is 0, -(L3)a3- may be a single bond. In some embodiments, a3 may be 0 or 1. a4 in Formula 1 denotes the number of L4, and, when a4 is 2 or greater, a plurality of L4(s) may be identical to or different from each other. When a4 is 0, -(L4)a4- may be a single bond. In some embodiments, a4 may be 0 or 1. a5 in Formula 1 denotes the number of L5, and, when a5 is 2 or greater, a plurality of L5(s) may be identical to or different from each other. When a5 is 0, -(L5)a5- may be a single bond. In some embodiments, a5 may be an integer selected from 0 to 2. a11 in Formula 1-1 denotes the number of L11, and, when a11 is 2 or greater, a plurality of L11(s) may be identical to or different from each other. When a11 is 0, -(L11)a11- may be a single bond. In some embodiments, a11 may be 0 or 1. a12 in Formula 1-2 denotes the number of L12, and, when a12 is 2 or greater, a plurality of L12(s) may be identical to or different from each other. When a12 is 0, -(L12)a12- may be a single bond. In some embodiments, a12 may be 0 or 1. a13 in Formula 1-2 denotes the number of L13, and, when a13 is 2 or greater, a plurality of L13(s) may be identical to or different from each other. When a13 is 0, -(L13)a13- may be a single bond. In some embodiments, a13 may be 0 or 1. a14 in Formula 1-2 denotes the number of L14, and, when a14 is 2 or greater, a plurality of L14(s) may be identical to or different from each other. When a14 is 0, -(L14)a14- may be a single bond. In some embodiments, a14 may be 0 or 1. a21 in Formula 2 denotes the number of L21, and, when a21 is 2 or greater, a plurality of L21(s) may be identical to or different from each other. When a21 is 0, -(L21)a21- may be a single bond. In some embodiments, a21 may be 0 or 1. a22 in Formula 2 denotes the number of L22, and, when a22 is 2 or greater, a plurality of L22(s) may be identical to or different from each other. When a22 is 0, -(L22)a22- may be a single bond. In some embodiments, a22 may be 0 or 1. a23 in Formula 2 denotes the number of L23, and, when a23 is 2 or greater, a plurality of L23(s) may be identical to or different from each other. When a23 is 0, -(L23)a23- may be a single bond. In some embodiments, a23 may be 0 or 1.
In some embodiments, in Formula 2, a21 and a22 may both be 0.
In the formulae above, Ar1 to Ar4, Ar11 to Ar13, and Ar21 to Ar23 may be each independently selected from a group represented by Formula 1-1, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3) and —B(Q4)(Q5), where Q1 to Q5 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group.
For example, in the formulae above, Ar1 to Ar4, Ar11 to Ar13, and Ar21 to Ar23 may be each independently selected from:
a group represented by Formula 1-1, a substituted or unsubstituted phenyl group, a substituted or unsubstituted pentalenyl group, a substituted or unsubstituted indenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted azulenyl group, a substituted or unsubstituted heptalenyl group, a substituted or unsubstituted indacenyl group, a substituted or unsubstituted acenaphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted spiro-fluorenyl group, a substituted or unsubstituted benzofluorenyl group, a substituted or unsubstituted dibenzofluorenyl group, a substituted or unsubstituted phenalenyl group, a substituted or unsubstituted phenanthrenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted fluoranthenyl group, a substituted or unsubstituted triphenylenyl group, a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted chrysenyl group, a substituted or unsubstituted naphthacenyl group, a substituted or unsubstituted picenyl group, a substituted or unsubstituted perylenyl group, a substituted or unsubstituted pentaphenyl group, a substituted or unsubstituted hexacenyl group, a substituted or unsubstituted pentacenyl group, a substituted or unsubstituted rubicenyl group, a substituted or unsubstituted coronenyl group, a substituted or unsubstituted ovalenyl group, a substituted or unsubstituted pyrrolyl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted furanyl group, a substituted or unsubstituted imidazolyl group, a substituted or unsubstituted pyrazolyl group, a substituted or unsubstituted thiazolyl group, a substituted or unsubstituted isothiazolyl group, a substituted or unsubstituted oxazolyl group, a substituted or unsubstituted isoxazolyl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyridazinyl group, a substituted or unsubstituted isoindolyl group, a substituted or unsubstituted indolyl group, a substituted or unsubstituted indazolyl group, a substituted or unsubstituted purinyl group, a substituted or unsubstituted quinolinyl group, a substituted or unsubstituted isoquinolinyl group, a substituted or unsubstituted benzoquinolinyl group, a substituted or unsubstituted phthalazinyl group, a substituted or unsubstituted naphthyridinyl group, a substituted or unsubstituted quinoxalinyl group, a substituted or unsubstituted quinazolinyl group, a substituted or unsubstituted cinnolinyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted phenanthridinyl group, a substituted or unsubstituted acridinyl group, a substituted or unsubstituted phenanthrolinyl group, a substituted or unsubstituted phenazinyl group, a substituted or unsubstituted benzoimidazolyl group, a substituted or unsubstituted benzofuranyl group, a substituted or unsubstituted benzothiophenyl group, a substituted or unsubstituted isobenzothiazolyl group, a substituted or unsubstituted benzoxazolyl group, a substituted or unsubstituted isobenzoxazolyl group, a substituted or unsubstituted triazolyl group, a substituted or unsubstituted tetrazolyl group, a substituted or unsubstituted oxadiazolyl group, a substituted or unsubstituted triazinyl group, a substituted or unsubstituted benzocarbazolyl group, a substituted or unsubstituted dibenzocarbazolyl group, a substituted or unsubstituted thiadiazolyl group, a substituted or unsubstituted imidazopyridinyl group, a substituted or unsubstituted imidazopyrimidinyl group, —Si(Q1)(Q2)(Q3), and —B(Q4)(Q5);
at least one substituent of the substituted phenyl group, substituted pentalenyl group, substituted indenyl group, substituted naphthyl group, substituted azulenyl group, substituted heptalenyl group, substituted indacenyl group, substituted acenaphthyl group, substituted fluorenyl group, substituted spiro-fluorenyl group, substituted benzofluorenyl group, substituted dibenzofluorenyl group, substituted phenalenyl group, substituted phenanthrenyl group, substituted anthracenyl group, substituted fluoranthenyl group, substituted triphenylenyl group, substituted pyrenyl group, substituted chrysenyl group, substituted naphthacenyl group, substituted picenyl group, substituted perylenyl group, substituted pentaphenyl group, substituted hexacenyl group, substituted pentacenyl group, substituted rubicenyl group, substituted coronenyl group, substituted ovalenyl group, substituted pyrrolyl group, substituted thiophenyl group, substituted furanyl group, substituted imidazolyl group, substituted pyrazolyl group, substituted thiazolyl group, substituted isothiazolyl group, substituted oxazolyl group, substituted isoxazolyl group, substituted pyridinyl group, substituted pyrazinyl group, substituted pyrimidinyl group, substituted pyridazinyl group, substituted isoindolyl group, substituted indolyl group, substituted indazolyl group, substituted purinyl group, substituted quinolinyl group, substituted isoquinolinyl group, substituted benzoquinolinyl group, substituted phthalazinyl group, substituted naphthyridinyl group, substituted quinoxalinyl group, substituted quinazolinyl group, substituted cinnolinyl group, substituted carbazolyl group, substituted phenanthridinyl group, substituted acridinyl group, substituted phenanthrolinyl group, substituted phenazinyl group, substituted benzoimidazolyl group, substituted benzofuranyl group, substituted benzothiophenyl group, substituted isobenzothiazolyl group, substituted benzoxazolyl group, substituted isobenzoxazolyl group, substituted triazolyl group, substituted tetrazolyl group, substituted oxadiazolyl group, substituted triazinyl group, substituted benzocarbazolyl group, substituted dibenzocarbazolyl group, substituted thiadiazolyl group, substituted imidazopyridinyl group, and substituted imidazopyrimidinyl group may be selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group;
a phenyl group, a naphthyl group, a pyridinyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C1 alkyl group, a C1-C1 alkoxy group, a phenyl group, a naphthyl group, and a pyridinyl group; and
—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), —N(Q36)(Q37), and —P(═O)(Q38)(Q39);
where Q1 to Q5 and Q31 to Q39 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group.
In some embodiments, in the formulae above, Ar1 to Ar4, Ar11 to Ar13, and Ar21 to Ar23 may be each independently selected from a group represented by Formula 1-1, groups represented by Formulae 5-1 to 5-80, —Si(Q1)(Q2)(Q3), and —B(Q4)(Q5) (where Q1 to Q5 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group), but embodiments of the present disclosure are not limited thereto:
In Formulae 5-1 to 5-80,
Y11 may be selected from O, S, C(Z13)(Z14), N(Z15), and Si(Z16)(Z17);
Z11 to Z17 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group;
a phenyl group, a naphthyl group, a pyridinyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, and a pyridinyl group; and
—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), —N(Q36)(Q37), and —P(═O)(Q38)(Q39);
where Q31 to Q39 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group;
e2 may be 1 or 2;
e3 may be an integer selected from 1 to 3;
e4 may be an integer selected from 1 to 4;
e5 may be an integer selected from 1 to 5;
e6 may be an integer selected from 1 to 6;
e7 may be an integer selected from 1 to 7;
e8 may be an integer selected from 1 to 8;
e9 may be an integer selected from 1 to 9; and
* indicates a binding site to a neighboring atom.
In some embodiments, in the formulae above, Ar1 to Ar4, Ar11 to Ar13, and Ar21 to Ar23 may be each independently selected from a group represented by Formula 1-1 and groups represented by Formulae 6-1 to 6-173:
In Formulae 6-1 to 6-173, * indicates a binding site to a neighboring atom, and “D” may refer to deuterium.
In some embodiments, in the formulae above, Ar3 may be selected from a group represented by Formula 1-1 and groups represented by Formulae 6-118 to 6-159, and Ar1, Ar2, Ar4, and Ar11 to Ar13 may be each independently selected from groups represented by Formulae 6-118 to 6-159.
In some embodiments, in the formulae above, Ar21 to Ar23 may be each independently selected from groups represented by Formulae 6-1 to 6-173.
In the formulae above, b1 to b4, b11 to b13, and b21 to b23 may be each independently an integer selected from 1 to 4. b1 indicates the number of Ar1, and when b1 is 2 or greater, a plurality of Ar1(s) may be identical to or different from each other. In some embodiments, b1 may be 1 or 2. In some embodiments, b1 in Formula 1 may be 1. b2 indicates the number of Ar2, and when b2 is 2 or greater, a plurality of Ar2(s) may be identical to or different from each other. In some embodiments, b2 may be 1 or 2. In some embodiments, b2 in Formula 1 may be 1. b3 indicates the number of Ar3, and when b3 is 2 or greater, a plurality of Ar3(s) may be identical to or different from each other. In some embodiments, b3 may be 1 or 2. In some embodiments, b3 in Formula 1 may be 1. b4 indicates the number of Ar4, and when b4 is 2 or greater, a plurality of Ar4(s) may be identical to or different from each other. In some embodiments, b4 may be 1 or 2. In some embodiments, b4 in Formula 1 may be 1. b11 indicates the number of Ar11 in Formula 1-1, and, when b11 is 2 or greater, a plurality of Ar11(s) may be identical to or different from each other. In some embodiments, b11 may be 1 or 2. In some embodiments, b11 in Formula 1-1 may be 1. b12 in Formula 1-2 indicates the number of Ar12, and, when b12 is 2 or greater, a plurality of Ar12(s) may be identical to or different from each other. In some embodiments, b12 may be 1 or 2. In some embodiments, b12 in Formula 1-1 may be 1. b13 indicates the number of Ar13 in Formula 1-2, and, when b13 is 2 or greater, a plurality of Ar13(s) may be identical to or different from each other. In some embodiments, b13 may be 1 or 2. In some embodiments, b13 in Formula 1-2 may be 1. b21 indicates the number of Ar21 in Formula 2, and, when b21 is 2 or greater, a plurality of Ar21(s) may be identical to or different from each other. In some embodiments, b21 may be 1 or 2. In some embodiments, b21 in Formula 2 may be 1. b22 in Formula 2 indicates the number of Ar22, and, when b22 is 2 or greater, a plurality of Ar22(s) may be identical to or different from each other. In some embodiments, b22 may be 1 or 2. In some embodiments, b22 in Formula 2 may be 1. b23 indicates the number of Ar23 in Formula 2, and, when b23 is 2 or greater, a plurality of Ar23(s) may be identical to or different from each other. In some embodiments, b23 may be 1 or 2. In some embodiments, b23 in Formula 2 may be 1.
In the formulae above, R1 to R6, R11 to R13, R21 to R26 and R31 to R38 may be each independently selected from a group represented by Formula 1-1, a group represented by Formula 1-2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q1)(Q2)(Q3), where Q1 to Q3 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group.
In some embodiments, in the formulae above, R1 to R6, R11 to R13, and R21 to R26 may be each independently selected from:
a group represented by Formula 1-1, a group represented by Formula 1-2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group and a pyrimidinyl group;
a phenoxy group, a phenylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;
a phenoxy group, a phenylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group and —Si(Q31)(Q32)(Q33); and
—Si(Q1)(Q2)(Q3);
where Q1 to Q3 and Q31 to Q33 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, and a carbazolyl group.
In some embodiments, R1 to R6, R11 to R13, and R21 to R26 may be each independently selected from a group represented by Formula 1-1, a group represented by Formula 1-2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, —Si(Q1)(Q2)(Q3), a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, and groups represented by Formulae 7-1 to 7-15, where Q1 to Q3 are each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group:
In Formulae 7-1 to 7-15,
Y21 may be selected from O, S, C(Z23)(Z24), N(Z25), and Si(Z26)(Z27);
Z21 to Z27 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
f2 may be an integer selected from 1 and 2, f3 may be an integer selected from 1 to 3, f4 may be an integer selected from 1 to 4, f6 may be an integer selected from 1 to 6, f7 may be an integer selected from 1 to 7, and * indicates a binding site to a neighboring atom.
In some embodiments, in the Formula above, R1 to R6, R11 to R13, and R21 to R26 may be each independently selected from a group represented by Formula 1-1, a group represented by Formula 1-2, hydrogen, deuterium, —F, —Cl, —Br, —I, a methyl group, an ethyl group, a propyl group, an iso-propyl group, a butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, an iso-propoxy group, a butoxy group, an iso-butoxy group, a sec-butoxy group, a tert-butoxy group, and groups represented by Formulae 8-1 to 8-21:
In Formulae 8-1 to 8-21, * indicates a binding site to a neighboring atom, and “D” may refer to deuterium.
In some embodiments, R1, R2, R4 to R6, R11 to R13, and R21 to R26 may be each independently hydrogen,
R3 may be selected from a phenyl group, a naphthyl group, and a fluorenyl group, each substituted with at least one selected from a group represented by Formula 1-2, hydrogen, a phenyl group, a naphthyl group, a fluorenyl group and deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group, but embodiments of the present disclosure are not limited thereto.
For example, R1, R2, R4 to R6, R11 to R13, and R21 to R26 may each be hydrogen, and
R3 may be selected from a group represented by Formula 1-2 and groups represented by Formula 8-1 to 8-21, but embodiments of the present disclosure are not limited thereto.
In the formulae above, c1, c3, c4, c11, and c13 may be each independently an integer selected from 0 to 4, c2, c5, and c12 may be each independently an integer selected from 0 to 2, and c6, c21, and c22 may be each independently an integer selected from 0 to 3. c1 indicates the number of R1, and when c1 is 2 or greater, a plurality of R1(s) may be identical to or different from each other. For example, c1 may be 0 or 1. c2 indicates the number of R2, and when c2 is 2 or greater, a plurality of R2(s) may be identical to or different from each other. For example, c2 may be 0 or 1. c3 indicates the number of R3, and when c3 is 2 or greater, a plurality of R3(s) may be identical to or different from each other. For example, c3 may be 0 or 1. c4 indicates the number of R4, and when c4 is 2 or greater, a plurality of R4(s) may be identical to or different from each other. For example, c4 may be 0 or 1. c5 indicates the number of R5, and when c5 is 2 or greater, a plurality of R5(s) may be identical to or different from each other. For example, c5 may be 0 or 1. c6 indicates the number of R6, and when c6 is 2 or greater, a plurality of R6(s) may be identical to or different from each other. For example, c6 may be 0 or 1. c11 indicates the number of R11, and when c11 is 2 or greater, a plurality of R11(s) may be identical to or different from each other. For example, c11 may be 0 or 1. c12 indicates the number of R12, and when c12 is 2 or greater, a plurality of R12(s) may be identical to or different from each other. For example, c12 may be 0 or 1. c13 indicates the number of R13, and when c13 is 2 or greater, a plurality of R13(s) may be identical to or different from each other. For example, c13 may be 0 or 1. c21 indicates the number of R21, and when c21 is 2 or greater, a plurality of R21(s) may be identical to or different from each other. For example, c21 may be 0 or 1. c22 indicates the number of R22, and when c22 is 2 or greater, a plurality of R22(s) may be identical to or different from each other. For example, c22 may be 0 or 1.
In some embodiments, the first compound may be represented by any one of Formulae 1A to 1L, and the second compound may be represented by any one of Formulae 2A to 2P:
In Formulae 1A to 1L and Formulae 2A to 2P,
X1, X2, X11, X21, X22, L1 to L5, L11 to L14, L21 to L25, Ar1 to Ar5, Ar11, Ar12, Ar21 to Ar23, R1 to R6, R11 to R13, R21, R22, R31 to R38, a1 to a5, a11 to a14, a21 to a25, b1 to b5, b11, b12, b21 to b23, c1 to c5, c11, and c12 are the same as defined in the present specification.
In some embodiment, the first compound is represented by one selected from Formulae 1A-1, 1A-2, 1J-1, 1J-2, and 1L-1, and the second compound is represented by one selected from Formulae 2A-1 to 2P-1:
In the formulae above, X1, X2, X11, and X21 may be each independently O or S,
X22 may be N(Ar22);
L3 and L5 may be each independently selected from groups represented by Formulae 4-1 to 4-42,
Ar3, Ar4, Ar12, Ar13, Ar22, and Ar23 may be each independently selected from groups represented by Formulae 6-1 to 6-173,
R3 may be selected from groups represented by Formulae 8-1 to 8-21.
In some embodiments, in the formulae above, Ar3 may be selected from a group represented by Formula 1-1 and groups represented by Formulae 6-118 to 6-159, and Ar4, Ar12, Ar13, Ar22, and Ar23 may be each independently selected from groups represented by Formulae 6-118 to 6-159.
For example, the first compound may be one of Compounds 1 to 130, and the second compound may be one of Compounds C1 to C389:
In some embodiments, the first compound has a core as shown in Formula 1′, and thus a high efficiency of an organic light-emitting device may be achieved.
The second compound has a triazole-based core, an oxadiazole-based core, or a thiadiazole-core and thus may have excellent electron transport ability and thermal stability. Also, the second compound has a structure in which carbazole moieties are attached to the core (as illustrated in Formula 2′) and thus the second compound may have a large band gap and a triplet energy level suitable for phosphorescent light emission, and bipolar characteristics of the compound itself may increase bonding strength between holes and electrons, and thus a long lifespan of an organic light-emitting device may be achieved.
Therefore, when the emission layer of an organic light-emitting device includes the first compound and the second compound, due to synergistic effect of the first compound and the second compound, electrical or electronic stress that may occur on the emission layer during operation of the organic light-emitting device may be reduced, electron-hole balance may improve, and thus high efficiency and long lifespan of the organic light-emitting device may be simultaneously (e.g., concurrently) achieved.
Also, when the emission layer includes the first compound and the second compound, since the first compound includes a hetero atom (O or S) in its molecule structure, hole injecting ability may be excellent. Also, since the second compound includes carbazole moieties attached to the core, hole injecting ability may be excellent. According to embodiments of the present disclosure, when the organic light-emitting device includes the emission layer including the first compound and the second compound, the organic light-emitting device may have excellent hole transporting ability and improved electron-hole balance, and thus high efficiency of the organic light-emitting device may be achieved. Also, due to the improved hole transporting ability, an emission zone may move from the side of the hole transport layer to the side of the emission layer (e.g., toward an interface of the emission layer and the electron transport region), and thus long lifespan of the organic-light emitting device may be achieved.
The organic layer 150 may include both the first compound and the second compound. In some embodiments, the first compound may be included in the organic layer 150, and the second compound may be included in the electron transport region, which is positioned between the emission layer and the second electrode 190. In some embodiments, both the first compound and second compound may be included in the emission layer of the organic layer 150, and the second compound may be further included in the electron transport region, which is positioned between the emission layer and the second electrode 190. Here, the second compound included in the emission layer and the second compound included in the electron transport region may be identical to or different from each other.
When both the first compound and second compound are included in the emission layer, a region where holes and electrons combine with each other may be shifted toward an interface of the emission layer and the electron transport region, thereby improving the lifespan of the organic light-emitting device.
For example, the emission layer in the organic layer 150 may include a host and a dopant.
An amount of the dopant in the emission layer may be, for example, in a range of about 0.01 part to about 15 parts by weight based on 100 parts by weight of the host, but embodiments of the present disclosure are not limited thereto.
A thickness of the emission layer may be in a range of about 100 Å to about 1000 Å, or, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.
The emission layer may include a host and a dopant. The host may include the first compound and the second compound.
The dopant may include at least one selected from a fluorescent dopant and a phosphorescent dopant.
In some embodiments, the phosphorescent dopant may include an organometallic compound including at least one selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), thulium (Tm), rhodium (Rh), and copper (Cu).
In some embodiments, the phosphorescent dopant may include an organometallic complex represented by Formula 401:
In Formula 401, M may be selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm);
X401 to X404 may be each independently a nitrogen (N) or a carbon (C);
ring A401 and ring A402 may be each independently selected from a substituted or unsubstituted benzene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted indene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted thiophene, a substituted or unsubstituted furan, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted thiazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted oxazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzoquinoline, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, a substituted or unsubstituted carbazole, a substituted or unsubstituted benzoimidazole, a substituted or unsubstituted benzofuran, a substituted or unsubstituted benzothiophene, a substituted or unsubstituted isobenzothiophene, a substituted or unsubstituted benzoxazole, a substituted or unsubstituted isobenzoxazole, a substituted or unsubstituted triazole, a substituted or unsubstituted oxadiazole, a substituted or unsubstituted triazine, a substituted or unsubstituted dibenzofuran, and a substituted or unsubstituted dibenzothiophene;
at least one substituent of the substituted benzene, substituted naphthalene, substituted fluorene, substituted spiro-fluorene, substituted indene, substituted pyrrole, substituted thiophene, substituted furan, substituted imidazole, substituted pyrazole, substituted thiazole, substituted isothiazole, substituted oxazole, substituted isoxazole, substituted pyridine, substituted pyrazine, substituted pyrimidine, substituted pyridazine, substituted quinoline, substituted isoquinoline, substituted benzoquinoline, substituted quinoxaline, substituted quinazoline, substituted carbazole, substituted benzoimidazole, substituted benzofuran, substituted benzothiophene, substituted isobenzothiophene, substituted benzoxazole, substituted isobenzoxazole, substituted triazole, substituted oxadiazole, substituted triazine, substituted dibenzofuran, and substituted dibenzothiophene may be selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q401)(Q402), —Si(Q403)(Q404)(Q405), and —B(Q406)(Q407);
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q411)(Q412), —Si(Q413)(Q414)(Q415), and —B(Q416)(Q417); and
—N(Q421)(Q422), —Si(Q423)(Q424)(Q425), and —B(Q426)(Q427);
L401 may be an organic ligand;
xc1 may be 1, 2, or 3; and
xc2 may be 0, 1, 2, or 3.
Q401 to Q407, Q411 to Q417, and Q421 to Q427 may each independently be defined as Q1 described herein.
L401 may be any suitable monovalent, divalent, or trivalent organic ligand. For example, L401 may be selected from a halogen ligand (for example, Cl and/or F), a diketone ligand (for example, acetylacetonate, 1,3-diphenyl-1,3-propanedionate, 2,2,6,6-tetramethyl-3,5-heptanedionate, and/or hexafluoroacetonate), a carboxylic acid ligand (for example, picolinate, dimethyl-3-pyrazolecarboxylate, and/or benzoate), a carbon monooxide ligand, an isonitrile ligand, a cyano ligand, and a phosphorous ligand (for example, phosphine, and/or phosphite), but embodiments of the present disclosure are not limited thereto.
When A401 in Formula 401 has a plurality of substituents, the plurality of substituents of A401 may bind to each other to form a saturated or unsaturated ring.
When A402 in Formula 401 has a plurality of substituents, the plurality of substituents of A402 may bind to each other to form a saturated or unsaturated ring.
When xc1 in Formula 401 is 2 or greater, a plurality of ligands
in Formula 401 may be identical or different from each other. In Formula 401, when xc1 is 2 or greater, A401 and/or A402 of one ligand may be respectively connected (e.g., coupled) to A401 and/or A402 of one other adjacent ligand either directly (e.g., via a bond such as a single bond) or via a linking group (for example, a C1-C5 alkylene group, —N(R′)— (where R′ is a C1-C10 alkyl group or a C6-C20 aryl group), and/or —C(═O)—).
The phosphorescent dopant may include at least one selected from Compounds PD1 to PD74 below, but embodiments of the present disclosure are not limited thereto. In Compounds PD1 to PD74, “Me” may refer to a methyl group, “Ph” may refer to a phenyl group, and “But” may refer to a tert-butyl group.
In some embodiments, the phosphorescent dopant may include PtOEP below:
The fluorescent dopant may include at least one selected from DPVBi, DPAVBi, TBPe, DCM, DCJTB, Coumarin 6, and C545T.
In some embodiments, the fluorescent dopant may include a compound represented by Formula 501:
In Formula 501,
Ar501 may be selected from a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and
a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, naphthacene, a picene, a perylene, a pentaphene and an indenoanthracene, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q501)(Q502)(Q503), where Q501 to Q503 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C2-C60 heteroaryl group;
L501 to L503 may each independently be defined as L201 described herein;
R501 and R502 may be each independently selected from:
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group and a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;
xd1 to xd3 may be each independently selected from 0, 1, 2, and 3; and
xd4 may be selected from 1, 2, 3, and 4.
The fluorescent dopant may be represented by at least one selected from Compounds FD1 to FD9 below:
A weight ratio of the first compound and the second compound may be in a range of about 10:90 to about 90:10. For example, a weight ratio of the first compound and the second compound may be in a range of about 20:70 to about 75:25. When the weight ratio of the first compound to the second compound is within any of these ranges, a hole-electron transport balance in the emission layer may be effective.
The hole transport region may include at least one selected from a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, and an electron blocking layer (EBL), and the electron transport region may include at least one selected from a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL), but embodiments of the present disclosure are not limited thereto.
The hole transport region may have a single-layered structure formed of a single material, a single-layered structure formed of a plurality of different materials, or a multi-layered structure having a plurality of layers formed of a plurality of different materials.
For example, the hole transport region may have a single-layered structure formed of a plurality of different materials, or a structure of hole injection layer/hole transport layer, a structure of hole injection layer/hole transport layer/buffer layer, a structure of hole injection layer/buffer layer, a structure of hole transport layer/buffer layer, a structure of hole injection layer/hole transport layer/electron blocking layer, or a structure of hole transport layer/electron blocking layer, wherein the layers of each structure are sequentially stacked from the first electrode 110 in this stated order, but embodiments of the present disclosure are not limited thereto.
When the hole transport region includes a hole injection layer, the hole injection layer may be formed on the first electrode 110 by using one or more suitable methods, such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) method, ink-jet printing, laser-printing, and/or laser-induced thermal imaging (LITI).
When the hole injection layer is formed by vacuum deposition, for example, the vacuum deposition may be performed at a deposition temperature in a range of about 100° C. to about 500° C., at a vacuum degree in a range of about 10−8 torr to about 10−3 torr, and at a deposition rate in a range of about 0.01 Å/sec to about 100 Å/sec in consideration of a compound for forming the hole injection layer to be deposited, and the structure of the hole injection layer to be formed.
When the hole injection layer is formed by spin coating, the spin coating may be performed at a coating rate in a range of about 2000 rpm to about 5000 rpm, and at a temperature in a range of about 80° C. to 200° C. in consideration of a compound for forming the hole injection layer to be deposited, and the structure of the hole injection layer to be formed.
When the hole transport region includes a hole transport layer, the hole transport layer may be formed on the first electrode 110 or the hole injection layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, LB method, ink-jet printing, laser-printing, and/or LITI. When the hole transport layer is formed by vacuum-deposition and/or spin coating, conditions for vacuum-deposition and coating may be similar to the above-described vacuum-deposition and coating conditions for forming the hole injection layer.
The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, a spiro-TPD, a spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonicacid (Pani/CSA), (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201 below, and a compound represented by Formula 202 below:
In Formulae 201 and 202,
L201 to L205 may be each independently defined as L1 described herein;
xa1 to xa4 may be each independently selected from 0, 1, 2, and 3; and
xa5 may be selected from 1, 2, 3, 4, and 5;
R201 to R204 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.
In some embodiments, in Formulae 201 and 202,
L201 to L205 may be each independently selected from:
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorene group, a dibenzofluorene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group and a triazinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
xa1 to xa4 may be each independently selected from 0, 1, and 2;
xa5 may be 1, 2, or 3;
R201 to R204 may be each independently selected from:
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group and a triazinyl group.
The compound represented by Formula 201 may be represented by Formula 201A:
In some embodiments, the compound represented by Formula 201 may be represented by Formula 201A-1, but embodiments of the present disclosure are not limited thereto:
In some embodiments, the compound represented by Formula 202 may be represented by Formula 202A, but embodiments of the present disclosure are not limited thereto:
In Formulae 201A, 201A-1, and 202A, L201 to L203, xa1 to xa3, xa5, and R202 to R204 may be understood by referring to their respective descriptions provided herein, R211 and R212 may each independently be defined as R203 described herein, and R213 to R216 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.
In some embodiments, in Formulae 201A-1 and 202A,
L201 to L203 may be each independently selected from:
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from deuterium, —F, —CI, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
xa1 to xa3 may be each independently selected from 0 and 1;
R203, R204, R211, and R212 may be each independently selected from:
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
R213 and R214 may be each independently selected from:
a C1-C20 alkyl group and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
R215 and R216 may be each independently selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, and a triazinyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and
xa5 may be 1 or 2.
In Formulae 201A and 201A-1, R213 and R214 may link to each other (e.g., may be coupled to each other) so as to form a saturated ring or an unsaturated ring.
The compound represented by Formula 201 and the compound represented by Formula 202 may each independently include Compounds HT1 to HT20, but embodiments of the present disclosure are not limited thereto:
A thickness of the hole transport region may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å, a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within any of these ranges, excellent hole transport characteristics may be obtained without a substantial increase in driving voltage.
The hole transport region may further include, in addition to the materials described above, a charge-generating material to improve conductive properties. The charge-generating material may be homogeneously or non-homogeneously dispersed throughout the hole transport region.
The charge-generating material may be, for example, a p-dopant. The p-dopant may be one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments of the present disclosure are not limited thereto. Non-limiting examples of the p-dopant include quinone derivatives, such as tetracyanoquinonedimethane (TCNQ) and/or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ); metal oxides, such as tungsten oxide and/or molybdenum oxide, and Compound HT-D1 illustrated below, but embodiments of the present disclosure are not limited thereto.
The hole transport region may further include, in addition to the hole injection layer and the hole transport layer, at least one selected from a buffer layer and an electron blocking layer. Since the buffer layer may compensate for an optical resonance distance according to a wavelength of light emitted from the emission layer, light-emission efficiency of the organic light-emitting device may be improved. As a material included in the buffer layer, materials that are included in the hole transport region may be used. The electron blocking layer may prevent or reduce the injection of electrons from the electron transport region.
In some embodiments, mCP may be used as a material for the electron blocking layer, but embodiments of the present disclosure are not limited thererton.
The electron transport region may include at least one selected from a hole blocking layer, an electron transport layer (ETL), and an electron injection layer, but embodiments of the present disclosure are not limited thereto.
In some embodiments, the electron transport region may have a structure of electron transport layer/electron injection layer or a structure of hole blocking layer/electron transport layer/electron injection layer, wherein the layers of each structure are sequentially stacked from the emission layer in the stated order, but embodiments of the present disclosure are not limited thereto.
The electron transport region may include a hole blocking layer. The hole blocking layer may be formed, when the emission layer includes a phosphorescent dopant, to prevent or reduce the diffusion of excitons or holes into an electron transport layer.
When the electron transport region includes a hole blocking layer, the hole blocking layer may be formed on the emission layer by using one or more suitable methods, such as vacuum-deposition, spin coating, casting, LB method, ink-jet printing, laser-printing, and/or LITI. When the hole blocking layer is formed by vacuum-deposition and/or spin coating, deposition and coating conditions for the hole blocking layer may be similar to the deposition and coating conditions for the hole injection layer.
The hole blocking layer may include, for example, at least one selected from BCP and Bphen, but embodiments of the present disclosure are not limited thereto:
A thickness of the hole blocking layer may be in a range of about 20 Å to about 1000 Å, for example, about 30 Å to about 300 Å. When the thickness of the hole blocking layer is within any of these ranges, excellent hole blocking characteristics may be obtained without a substantial increase in driving voltage.
The electron transport region may include an electron transport layer. The electron transport layer may be formed on the emission layer or the hole blocking layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, LB method, ink-jet printing, laser-printing, and/or LITI. When the electron transport layer is formed by using vacuum deposition and/or spin coating, vacuum deposition and coating conditions for the electron transport layer may be similar to the vacuum deposition and coating conditions for the hole injection layer.
The electron transport layer may include at least one selected from BCP, Bphen, Alq3, BAlq, TAZ, and NTAZ.
In some embodiments, the electron transport layer may include at least one compound selected from a compound represented by Formula 601 and a compound represented by Formula 602:
Ar601-[(L601)xe1-E601]xe2. Formula 601
In Formula 601,
Ar601 may be selected from:
a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene;
a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, naphthacene, a picene, a perylene, a pentaphene and an indenoanthracene, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q301)(Q302)(Q303), where Q301 to Q303 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group;
L601 may be defined as L201 described herein;
E601 may be selected from:
a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and
a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;
xe1 may be selected from 0, 1, 2, and 3; and
xe2 may be selected from 1, 2, 3, and 4.
In Formula 602,
X611 may be N or C-(L611)xe611-R611, X612 may be N or C-(L612)xe612-R612, X613 may be N or C-(L613)xe613-R613, and at least one selected from X611 to X613 may be N;
L611 to L616 may each independently be defined as L201 described herein;
R611 to R616 may be each independently selected from:
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and
a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;
xe611 to xe616 may be each independently selected from 0, 1, 2, and 3.
The compound represented by Formula 601 and the compound represented by Formula 602 may each independently be selected from Compounds ET1 to ET15 illustrated below:
A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within any of these ranges, excellent electron transport characteristics may be obtained without a substantial increase in driving voltage.
The electron transport layer may further include a metal-containing material, in addition to the materials described above.
The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) and/or ET-D2.
The electron transport region may include an electron injection layer that can facilitate electron injection from the second electrode 190.
The electron injection layer may be formed on the electron transport layer by using one or more suitable methods, such as vacuum-deposition, spin coating, casting, LB method, ink-jet printing, laser-printing, and/or LITI. When the electron injection layer is formed by vacuum-deposition and/or spin coating, vacuum-deposition and coating conditions for the electron injection layer may be similar to the vacuum-deposition and coating conditions for the hole injection layer.
The electron injection layer may include at least one selected from LiF, NaCl, CsF, Li2O, BaO, and LiQ.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within any of these ranges, excellent electron injection characteristics may be obtained without a substantial increase in driving voltage.
The second electrode 190 may be positioned on the organic layer 150. The second electrode 190 may be a cathode that is an electron injection electrode, and in this regard, a material for forming the second electrode 190 may be a material having a low work function, such as a metal, an alloy, an electrically conductive compound, or a mixture thereof. Non-limiting examples of the material for forming the second electrode 190 include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). In some embodiments, the material for forming the second electrode 190 may be ITO or IZO. The second electrode 190 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode.
Hereinbefore, the organic light-emitting device has been described with reference to the drawing, but embodiments of the present disclosure are not limited thereto.
A C1-C60 alkyl group used herein may refer to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and non-limiting examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C1-C60 alkylene group used herein may refer to a divalent group having the same structure as the C1-C60 alkyl group.
A C1-C60 alkoxy group used herein may refer to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and non-limiting examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.
A C2-C60 alkenyl group used herein may refer to a hydrocarbon group having at least one carbon double bond at one or more positions along the hydrocarbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples thereof include an ethenyl group, a propenyl group, and a butenyl group. A C2-C60 alkenylene group used herein may refer to a divalent group having the same structure as a C2-C60 alkenyl group.
A C2-C60 alkynyl group used herein may refer to a hydrocarbon group having at least one carbon triple bond at one or more positions along the hydrocarbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples thereof include an ethynyl group and a propynyl group. A C2-C60 alkynylene group used herein may refer to a divalent group having the same structure as a C2-C60 alkynyl group.
A C3-C10 cycloalkyl group used herein may refer to a monovalent monocyclic saturated hydrocarbon group including 3 to 10 carbon atoms, and non-limiting examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C3-C10 cycloalkylene group used herein may refer to a divalent group having the same structure as a C3-C10 cycloalkyl group.
A C1-C10 heterocycloalkyl group used herein may refer to a monovalent monocyclic group including at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and non-limiting examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. A C1-C10 heterocycloalkylene group used herein may refer to a divalent group having the same structure as a C1-C10 heterocycloalkyl group.
A C3-C10 cycloalkenyl group used herein may refer to a monovalent monocyclic group including 3 to 10 carbon atoms and at least one double bond in the ring thereof and does not have aromaticity, and non-limiting examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C3-C10 cycloalkenylene group used herein may refer to a divalent group having the same structure as a C3-C10 cycloalkenyl group.
A C1-C10 heterocycloalkenyl group used herein may refer to a monovalent monocyclic group including at least one hetero atom selected from N, O, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Non-limiting examples of the C1-C10 heterocycloalkenyl group include a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. A C1-C10 heterocycloalkenylene group used herein may refer to a divalent group having the same structure as a C1-C10 heterocycloalkenyl group.
A C6-C60 aryl group used herein may refer to a monovalent group including a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein may refer to a divalent group including a carbocyclic aromatic system having 6 to 60 carbon atoms. Non-limiting examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and/or the C6-C60 arylene group include a plurality of rings, the plurality of rings may be fused to each other.
A C1-C60 heteroaryl group used herein may refer to a monovalent group having a carbocyclic aromatic system having at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms. A C1-C60 heteroarylene group used herein may refer to a divalent group having a carbocyclic aromatic system having at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms. Non-limiting examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and/or the C1-C60 heteroarylene group include a plurality of rings, the plurality of rings may be fused to each other.
A C6-C60 aryloxy group used herein may refer to a monovalent group represented by —OA102 (wherein A102 is the C6-C60 aryl group), and a C6-C60 arylthio group used herein may refer to a monovalent group represented by —SA103 (wherein A103 is the C6-C60 aryl group).
A monovalent non-aromatic condensed polycyclic group used herein may refer to a monovalent group that has 2 or more rings condensed (e.g., fused) to each other, and has only carbon atoms (for example, the number of carbon atoms may be in a range of 8 to 60) as ring forming atoms, wherein the molecular structure as a whole is non-aromatic. A non-limiting example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. A divalent non-aromatic condensed polycyclic group used herein may refer to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.
A monovalent non-aromatic condensed heteropolycyclic group used herein may refer to a monovalent group that has 2 or more rings condensed (e.g., fused) to each other, has at least one hetero atom selected from N, O P, and S, other than carbon atoms (for example, the number of carbon atoms may be in a range of 1 to 60), as ring-forming atoms, wherein the molecular structure as a whole is non-aromatic. Non-limiting example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group used herein may refer to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.
As used herein, at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C2-C60 alkenyl group, substituted C2-C60 alkynyl group, substituted C1-C60 alkoxy group, substituted C3-C10 cycloalkyl group, substituted C1-C10 heterocycloalkyl group, substituted C3-C10 cycloalkenyl group, substituted C1-C10 heterocycloalkenyl group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —B(Q14)(Q15), —N(Q16)(Q17), and —P(═O)(Q18)(Q19);
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —B(Q24)(Q25), —N(Q26)(Q27), and —P(═O)(Q28)(Q29); and
—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), —N(Q36)(Q37), and —P(═O)(Q38)(Q39);
where Q11 to Q19, Q21 to Q29, and Q31 to Q39 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.
In some embodiments, at least one substitutent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C2-C60 alkenyl group, substituted C2-C60 alkynyl group, substituted C1-C60 alkoxy group, substituted C3-C10 cycloalkyl group, substituted C1-C10 heterocycloalkyl group, substituted C3-C10 cycloalkenyl group, substituted C1-C10 heterocycloalkenyl group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q11)(Q12)(Q13), —B(Q14)(Q15), —N(Q16)(Q17), and —P(═O)(Q18)(Q19);
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, C1-C60 alkyl group, C2-C60 alkenyl group, C2-C60 alkynyl group, C1-C60 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q21)(Q22)(Q23), —B(Q24)(Q25), —N(Q26)(Q27), and —P(═O)(Q28)(Q29); and
—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), —N(Q36)(Q37), and —P(═O)(Q38)(Q39);
where Q11 to Q19, Q21 to Q29, and Q31 to Q39 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, C1-C60 alkyl group, C2-C60 alkenyl group, C2-C60 alkynyl group, C1-C60 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, but embodiments of the present disclosure are not limited thereto.
Hereinafter, an organic light-emitting device according to one or more embodiments of the present disclosure will be described in more detail with reference to Synthesis Examples and Examples. However, these examples are provided for illustrative purposes only, and should not be interpreted as limiting the scope of the present disclosure.
An ITO glass substrate (a product of Corning Co., Ltd) with an ITO layer having a thickness of 15 Ω/cm2 (500 Å) thereon was cut to a size of 50 mm×50 mm×0.5 mm, and then, sonicated by using isopropyl alcohol and pure water each for 10 minutes, and cleaned by the exposure to ultraviolet rays for 10 minutes, and then to ozone, and the ITO glass substrate was mounted on a vacuum deposition apparatus.
4,4′,4″-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2T-NATA) was deposited on the ITO anode to form a hole injection layer having a thickness of 600 Å, N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB) was deposited on the hole injection layer to form a hole transport layer having a thickness of 200 Å, and thus a hole transport region was prepared.
Compound 10 (as a first host), Compound C4 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 75:15:10 on the hole transport region to form an emission layer having a thickness of 400 Å.
Alq3 was vacuum-deposited on the emission layer to form an electron transport layer having a thickness of about 300 Å. Then, LiF was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of about 10 Å, thereby forming an electron transport region.
Aluminum was vacuum-deposited on the electron transport region to form a cathode having a thickness of about 2000 Å, thereby completing the manufacture of an organic light-emitting device.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 10 (as a first host), Compound C4 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 65:25:10, instead of the weight ratio of about 75:15:10, to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound C71 was used as a second host instead of Compound C4, and Compound 10 (as a first host), Compound C71 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 65:25:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound C71 was used as a second host instead of Compound C4, and Compound 10 (as a first host), Compound C71 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 60:30:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 105 was used as a first host instead of Compound 10, and Compound 105 (as a first host), Compound C4 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 30:60:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 105 was used as a first host instead of Compound 10, and Compound 105 (as a first host), Compound C4 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 20:70:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 105 was used as a first host instead of Compound 10, Compound C71 was used as a second host instead of Compound C4, and Compound 105 (as a first host), Compound C71 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 30:60:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 105 was used as a first host instead of Compound 10, Compound C71 was used as a second host instead of Compound C4, and Compound 105 (as a first host), Compound C71 (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 20:70:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound C4 as a second host was not used, and Compound 10 (as a first host) and PD1 (as a dopant) were co-deposited at a weight ratio of about 90:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 105 was used as a first host instead of Compound 10, Compound C4 as a second host was not used, and Compound 105 (as a first host) and PD1 (as a dopant) were co-deposited at a weight ratio of about 90:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 10 as a first host was not used, and Compound C4 (as a second host) and PD1 (as a dopant) were co-deposited at a weight ratio of about 90:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 10 as a first host was not used, Compound C71 as a second host was used instead of Compound C4, and Compound C4 (as a second host) and PD1 (as a dopant) were co-deposited at a weight ratio of about 90:10 to form an emission layer.
An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound A was used as a first host instead of Compound 10, Compound B was used as a second host instead of Compound C4, and Compound A (as a first host), Compound B (as a second host), and PD1 (as a dopant) were co-deposited at a weight ratio of about 65:25:10 to form an emission layer.
The efficiency and lifespan (T95) of each of the organic light-emitting devices manufactured in Examples 1 to 8 and Comparative Examples 1 to 5 were measured by using Keithley SMU 236 and a luminance meter PR650 (Photo Research, Inc.), and the results thereof are shown in Table 1. Here, the lifespan (T95) indicates a period of time required for the luminance of the organic light-emitting device to reach 95% of the initial luminance.
Compound 105
Compound C4
Compound C71
From the results shown in Table 1, it can be seen that the efficiency and lifespan (T95) of the organic light-emitting devices prepared in Examples 1 to 8 were better than the efficiency and T95 of the organic light-emitting devices prepared in Comparative Examples 1 to 5.
As described above, according to the one or more of the above example embodiments, the organic light-emitting device may have a high efficiency and long lifespan.
It will be understood that the terms, such as “comprises,” “comprising,” “includes”, and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
In addition, as used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.
As used herein, the terms “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art.
Also, any numerical range recited herein is intended to include all subranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently described in this specification such that amending to expressly recite any such subranges would comply with the requirements of 35 U.S.C. §112(a) and 35 U.S.C. §132(a).
It should be further understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other example embodiments.
While one or more example embodiments have been described with reference to the drawing, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0044396 | Mar 2015 | KR | national |