The present disclosure relates to an organic light emitting device.
In general, an organic light emitting phenomenon refers to a phenomenon where electric energy is converted into light energy by using an organic material. The organic light emitting device using the organic light emitting phenomenon has characteristics such as a wide viewing angle, an excellent contrast, a fast response time, an excellent luminance, driving voltage and response speed, and thus many studies have proceeded.
The organic light emitting device generally has a structure which comprises an anode, a cathode, and an organic material layer interposed between the anode and the cathode. The organic material layer frequently has a multilayered structure that comprises different materials in order to enhance efficiency and stability of the organic light emitting device, and for example, the organic material layer can be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, if a voltage is applied between two electrodes, the holes are injected from an anode into the organic material layer and the electrons are injected from the cathode into the organic material layer, and when the injected holes and electrons meet each other, an exciton is formed, and light is emitted when the exciton falls to a ground state again.
There is a continuing need for the development of new materials for the organic materials used in the organic light emitting devices as described above.
The present disclosure relates to an organic light emitting device.
In the present disclosure, provided is an organic light emitting device including:
each R8 is independently hydrogen, deuterium, a substituted or unsubstituted C1-20 alkyl, a substituted or unsubstituted C6-60 aryl, or a substituted or unsubstituted C2-60 heteroaryl containing at least one heteroatom selected from the group consisting of N, O and S, or two adjacent R8s combine to form a benzene ring.
The above-described organic light emitting device controls the compound included in the light emitting layer and the electron transport layer, thereby improving efficiency, low driving voltage, and/or lifespan of the organic light emitting device.
Hereinafter, embodiments of the present disclosure will be described in more detail to facilitate understanding of the invention.
As used herein, the notation , or means a bond linked to another substituent group.
As used herein, the term “substituted or unsubstituted” means being unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, a halogen group, a nitrile group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, an alkoxy group, an aryloxy group, an alkylthioxy group, an arylthioxy group, an alkylsulfoxy group, an arylsulfoxy group, a silyl group, a boron group, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an aralkenyl group, an alkylaryl group, an alkylamine group, an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, and a heterocyclic group containing at least one of N, O and S atoms, or being unsubstituted or substituted with a substituent in which two or more substituents of the above-exemplified substituents are connected. For example, “a substituent in which two or more substituents are connected” can be a biphenyl group. Namely, a biphenyl group can be an aryl group, or it can also be interpreted as a substituent in which two phenyl groups are connected.
In the present disclosure, the carbon number of a carbonyl group is not particularly limited, but is preferably 1 to 40. Specifically, the carbonyl group can be a compound having the following structural formulae, but is not limited thereto:
In the present disclosure, an ester group can have a structure in which oxygen of the ester group is substituted by a straight-chain, branched-chain, or cyclic alkyl group having 1 to 25 carbon atoms, or an aryl group having 6 to 25 carbon atoms. Specifically, the ester group can be a compound having the following structural formulae, but is not limited thereto:
In the present disclosure, the carbon number of an imide group is not particularly limited, but is preferably 1 to 25. Specifically, the imide group can be a compound having the following structural formulae, but is not limited thereto:
In the present disclosure, a silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group and the like, but is not limited thereto.
In the present disclosure, a boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like, but is not limited thereto.
In the present disclosure, examples of a halogen group include fluorine, chlorine, bromine, or iodine.
In the present disclosure, the alkyl group can be straight-chain, or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.
In the present disclosure, the alkenyl group can be straight-chain or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 2 to 40. According to one embodiment, the carbon number of the alkenyl group is 2 to 20. According to another embodiment, the carbon number of the alkenyl group is 2 to 10. According to another embodiment, the carbon number of the alkenyl group is 2 to 6. Specific examples thereof include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1-butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-(naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, a stilbenyl group, a styrenyl group, and the like, but are not limited thereto.
In the present disclosure, a cycloalkyl group is not particularly limited, but the carbon number thereof is preferably 3 to 60. According to one embodiment, the carbon number of the cycloalkyl group is 3 to 30. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
In the present disclosure, an aryl group is not particularly limited, but the carbon number thereof is preferably 6 to 60, and it can be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the carbon number of the aryl group is 6 to 30. According to one embodiment, the carbon number of the aryl group is 6 to 20. The monocyclic aryl group includes a phenyl group, a biphenyl group, a terphenyl group and the like, but is not limited thereto. The polycyclic aryl group includes a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group or the like, but is not limited thereto.
In the present disclosure, a fluorenyl group can be substituted, and two substituents can be bonded to each other to form a spiro structure. In the case where the fluorenyl group is substituted,
and the like can be formed. However, the structure is not limited thereto.
In the present disclosure, a heterocyclic group is a heterocyclic group containing at least one heteroatom of O, N, Si and S as a heterogeneous element, and the carbon number thereof is not particularly limited, but is preferably 2 to 60. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazol group, an oxadiazol group, a triazol group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group, a pyridazine group, a pyrazinyl group, a quinolinyl group, a quinazoline group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, a pyridopyrazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, an indole group, a carbazole group, a benzoxazole group, a benzoimidazole group, a benzothiazol group, a benzocarbazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthroline group, an isoxazolyl group, a thiadiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but are not limited thereto.
In the present disclosure, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the aforementioned examples of the aryl group. In the present disclosure, the alkyl group in the aralkyl group, the alkylaryl group and the alkylamine group is the same as the aforementioned examples of the alkyl group. In the present disclosure, the heteroaryl in the heteroarylamine can apply the aforementioned description of the heterocyclic group. In the present disclosure, the alkenyl group in the aralkenyl group is the same as the aforementioned examples of the alkenyl group. In the present disclosure, the aforementioned description of the aryl group can be applied except that the arylene is a divalent group. In the present disclosure, the aforementioned description of the heterocyclic group can be applied except that the heteroarylene is a divalent group. In the present disclosure, the aforementioned description of the aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group but formed by combining two substituent groups. In the present disclosure, the aforementioned description of the heterocyclic group can be applied, except that the heterocycle is not a monovalent group but formed by combining two substituent groups.
In the present disclosure, provided is an organic light emitting device including an anode; a hole transport layer; a light emitting layer; an electron transport layer, an electron injection layer, or an electron transport and injection layer; and a cathode, wherein the light emitting layer includes a compound of Chemical Formula 1, and the electron transport layer, the electron injection layer, or the electron transport and injection layer includes at least one of the compound of Chemical Formula 2 and the compound of Chemical Formula 3.
The organic light emitting device according to the present disclosure controls the compound included in the light emitting layer and the compound included in the electron transport layer, the electron injection layer, or the electron transport and injection layer, thereby improving efficiency, low driving voltage, and/or lifespan of the organic light emitting device.
Hereinafter, the present invention will be described in detail for each configuration.
As the anode material, generally, a material having a large work function is preferably used so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chrome, copper, zinc, and gold, or an alloy thereof; metal oxides such as zinc oxides, indium oxides, indium tin oxides (ITO), and indium zinc oxides (IZO); a combination of metals and oxides, such as ZnO:Al or SnO2:Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, and the like, but are not limited thereto.
As the cathode material, generally, a material having a small work function is preferably used so that electrons can be easily injected into the organic material layer. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or an alloy thereof; a multilayered structure material such as LiF/Al or LiO2/Al, and the like, but are not limited thereto.
Hole Injection Layer
The organic light emitting device according to the present disclosure can include a hole injection layer between the anode and the hole transport layer, if necessary.
The hole injection layer is a layer for injecting holes from the electrode, and the hole injection material is preferably a compound which has a capability of transporting the holes, thus has a hole injecting effect in the anode and an excellent hole-injecting effect to the light emitting layer or the light emitting material, prevents excitons produced in the light emitting layer from moving to an electron injection layer or the electron injection material, and is excellent in the ability to form a thin film.
It is preferable that a HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the anode material and a HOMO of a peripheral organic material layer. Specific examples of the hole injection material include metal porphyrine, oligothiophene, an arylamine-based organic material, a hexanitrilehexaazatriphenylene-based organic material, a quinacridone-based organic material, a perylene-based organic material, anthraquinone, polyaniline and polythiophene-based conductive polymer, and the like, but are not limited thereto.
Hole Transport Layer
In addition, the hole transport layer is a layer that receives holes from an anode or a hole injection layer formed on the anode and transports the holes to the light emitting layer. The hole transport material is suitably a material having large mobility to the holes, which can receive holes from the anode or the hole injection layer and transfer the holes to the light emitting layer. Specific examples thereof include an arylamine-based organic material, a conductive polymer, a block copolymer in which a conjugate portion and a non-conjugate portion are present together, and the like, but are not limited thereto.
Electron Blocking Layer
The organic light emitting device according to the present disclosure can include an electron blocking layer between a hole transport layer and a light emitting layer, if necessary. The electron blocking layer is a layer which is formed on the hole transport layer, is preferably provided in contact with the light emitting layer, and thus serves to control hole mobility, to prevent excessive movement of electrons, and to increase the probability of hole-electron bonding, thereby improving the efficiency of the organic light emitting device. The electron blocking layer includes an electron blocking material, and an arylamine-based organic material can be used as the electron blocking material, but is not limited thereto.
Light Emitting Layer
The light emitting material included in the light emitting layer is suitably a material capable of emitting light in a visible ray region by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, to combine them, and having good quantum efficiency to fluorescence or phosphorescence. The light emitting layer can include a host material and a dopant material, and the compound of Chemical Formula 1 can be included as a host in the present disclosure.
Preferably, L1 is a direct bond, phenylene, biphenylene, or naphthylene; and the phenylene, biphenylene, or naphthylene is each independently unsubstituted or substituted with deuterium.
Preferably, Ar1 is phenyl, biphenylyl, naphthyl, or phenanthrenyl; and the phenyl, biphenylyl, naphthyl, or phenanthrenyl is each independently unsubstituted or substituted with deuterium.
Preferably, R1 to R3 are each independently hydrogen, deuterium, phenyl, or naphthyl, or two adjacent substituents thereof are combined to form a benzene ring; and the phenyl, naphthyl, or benzene ring is each independently unsubstituted or substituted with deuterium.
Preferably, each R1 is independently hydrogen or deuterium; each R2 or R3 is independently hydrogen, deuterium, phenyl, or naphthyl, or two adjacent substituents thereof are combined to form a benzene ring; and the phenyl, naphthyl, or benzene ring is each independently unsubstituted or substituted with deuterium.
Preferably, the compound of Chemical Formula 1 contains at least one deuterium.
Representative examples of the compound of Chemical Formula 1 are as follows:
In addition, the present disclosure provides a method for preparing a compound of Chemical Formula 1, as shown in Reaction Scheme 1 below.
In the Reaction Scheme 1, Z, L1, Ar1, R1 to R3, n, m, and o are as defined above, and NBS is N-bromosuccinimide.
The above reaction uses a Suzuki coupling reaction, and can be more specifically described in Examples described below.
Hole Blocking Layer
The organic light emitting device according to the present disclosure includes a hole blocking layer between the light emitting layer and the electron transport layer, if necessary. Preferably, the hole blocking layer is in contact with the light emitting layer.
The hole blocking layer serves to improve the efficiency of an organic light emitting device by suppressing holes injected from the anode from being transferred to the cathode without recombination in the light emitting layer. Specific examples of the hole blocking material include an oxadiazole derivative, a triazole derivative, a phenanthroline derivative, BCP, an aluminum complex, and the like, but are not limited thereto.
Electron Transport Layer, Electron Injection Layer, or Electron Transport and Injection Layer
The organic light emitting device according to the present disclosure can include an electron transport layer, an electron injection layer, or an electron transport and injection layer between the light emitting layer and the cathode.
The electron transport layer is a layer which receives electrons from a cathode or an electron injection layer formed on the cathode and transports the electrons to a light emitting layer, and can suppress the transfer of holes in the light emitting layer. An electron transport material is suitably a material which can receive electrons well from a cathode and transport the electrons to a light emitting layer, and at least one of the compound of Chemical Formula 2 and the compound of Chemical Formula 3 can be included in the present disclosure.
The electron injection layer is a layer which injects electrons from an electrode, and the electron injection material is preferably a compound which can transport electrons, has an effect of injecting electrons from a cathode and an excellent effect of injecting electrons into a light emitting layer or a light emitting material, prevents excitons produced from the light emitting layer from moving to a hole injection layer, and is also excellent in the ability to form a thin film. In the present disclosure, at least one of the compound of Chemical Formula 2 and the compound of Chemical Formula 3 can be included
The electron transport and injection layer is a layer capable of simultaneously performing electron transport and electron injection, and can include at least one of the compound of Chemical Formula 2 and the compound of Chemical Formula 3.
Preferably, the Chemical Formula 2 is the following Chemical Formula 2-1; and the Chemical Formula 3 is the following Chemical Formula 3-1:
in the Chemical Formula 2-1 or 3-1, L2, L3, Ar2 and Ar3 are as defined above.
Preferably, L2 and L3 are each independently a direct bond, phenylene, or biphenyldiyl.
Preferably, Ar2 and Ar3 are each independently any one selected from the group consisting of:
wherein in the above group, R8 is as defined above.
Preferably, each R8 is independently hydrogen, deuterium, methyl, tert-butyl, phenyl, biphenylyl, terphenylyl, naphthyl, pyridinyl, furanyl, or thiophenyl, or two adjacent R8s are combined to form a benzene ring; and the phenyl, biphenylyl, terphenylyl, naphthyl, pyridinyl, furanyl, or thiophenyl is each independently unsubstituted or substituted with deuterium, methyl, or tert-butyl.
Preferably, Ar2 and Ar3 are each independently any one selected from the group consisting of:
Representative examples of the compound of Chemical Formula 2 and the compound of Chemical Formula 3 are as follows:
In addition, the present disclosure provides a method for preparing a compound of Chemical Formula 2 or a compound of Chemical Formula 3, as shown in Reaction Schemes 2 to 5 below.
In the Reaction Schemes 2 to 5, each L is independently L2 or L3; each Ar is independently Ar2 or Ar3; each R is independently any one of R4 to R7; and each p is independently any one of p1 to p4. In addition, L2, L3, Ar2, Ar3, R4 to R7, and p1 to p4 are as defined above, and X is halogen, preferably bromo, or chloro.
In addition, the electron transport layer can further include a metal complex compound. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h]quinolinato)-beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, and the like, but are not limited thereto.
In addition, the electron injection layer can further include a metal complex compound. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h]quinolinato)-beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, and the like, but are not limited thereto.
Organic Light Emitting Device
A structure of the organic light emitting device according to the present disclosure is illustrated in
In addition,
The organic light emitting device according to the present disclosure can be manufactured by sequentially laminating the above-described components. In this case, the organic light emitting device can be manufactured by depositing a metal, metal oxides having conductivity, or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as a sputtering method or an e-beam evaporation method to form an anode, forming the above-mentioned respective layers thereon, and then depositing a material that can be used as the cathode thereon. In addition to such a method, the organic light emitting device can be manufactured by sequentially depositing the above-described components from a cathode material to an anode material in the reverse order on a substrate (WO 2003/012890). Further, the light emitting layer can be formed using the host and the dopant by a solution coating method as well as a vacuum deposition method. Herein, the solution coating method means a spin coating, a dip coating, a doctor blading, an inkjet printing, a screen printing, a spray method, a roll coating, or the like, but is not limited thereto.
The organic light emitting device according to the present disclosure can be a front side emission type, a backside emission type, or a double-sided emission type according to the used material.
Hereinafter, preferred examples are presented to help the understanding of the present invention. However, these examples are presented for illustrative purposes only, and are not intended to limit the scope of the present disclosure.
B1-A (20 g, 60 mmol) and B1-B (12.7 g, 60 mmol) were added to tetrahydrofuran (400 ml) under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (24.9 g, 180.1 mmol) was dissolved in water (25 ml), and then added thereto. Thereafter, it was stirred sufficiently, followed by adding tetrakistriphenyl-phosphinopalladium (2.1 g, 1.8 mmol). After 1 hour of reaction, cooling was performed to room temperature. Then, the organic layer was separated from the water layer, and then the organic layer was distilled. Then, this was dissolved again in chloroform (20 times, 505 mL), and washed twice with water. Thereafter, the organic layer was separated, treated with anhydrous magnesium sulfate, stirred, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized with chloroform and ethyl acetate to prepare Compound B1 in the form of solid (12.6 g, 50%).
MS: [M+H]+=421
Compound B2-A was prepared in the same manner as in Preparation Example 1-1, except that each starting material was used as in the above reaction scheme (MS: [M+H]+=471).
Structural Formula B2-A (40.9 g, 86.9 mmol) and AlCl3 (0.5 g) were added to C6D6 (400 ml) and stirred for 2 hours. After completion of the reaction, D2O (60 ml) was added, and stirred for 30 minutes, followed by adding trimethylamine (6 ml) dropwise. The reaction solution was transferred to a separatory funnel, and extracted with water and toluene. The extract was dried with anhydrous magnesium sulfate (MgSO4) and recrystallized with ethyl acetate to obtain Structural Formula B2 (21.4 g, 50%).
MS: [M+H]+=493
Compound B3 was prepared in the same manner as in Preparation Example 1-2, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=521
Compound B4 was prepared in the same manner as in Preparation Example 1-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=479
Compound B5 was prepared in the same manner as in Preparation Example 1-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=434
E1-A (20 g, 64.1 mmol) and E1-B (55.8 g, 128.2 mmol) were added to tetrahydrofuran (400 ml) under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (26.6 g, 192.3 mmol) was dissolved in water (27 ml), and then added thereto. Thereafter, it was stirred sufficiently, followed by adding tetrakistriphenyl-phosphinopalladium (2.2 g, 1.9 mmol). After 1 hour of reaction, cooling was performed to room temperature. Then, the organic layer was separated from the water layer, and then the organic layer was distilled. Then, this was dissolved again in chloroform (20 times, 986 mL), and washed twice with water. Thereafter, the organic layer was separated, treated with anhydrous magnesium sulfate, stirred, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized with chloroform and ethyl acetate to prepare Compound E1 in the form of white solid (32.5 g, 66%).
MS: [M+H]+=769
Compound E2 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=767
Compound E3 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=715
Compound E4 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=615
Compound E5 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=619
Compound E6 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=715
Compound E7 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=919
E8-A (20 g, 47.6 mmol) and E8-B (28 g, 47.6 mmol) were added to 1,4-dioxane (400 ml) under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, tripotassium phosphate (30.3 g, 142.9 mmol) was dissolved in water (30 ml), and then added thereto. Thereafter, it was stirred sufficiently, followed by adding dibenzylideneacetonepalladium (0.8 g, 1.4 mmol) and tricyclohexylphosphine (0.8 g, 2.9 mmol). After 5 hours of reaction, cooling was performed to room temperature, and the resulting solid was filtered. The resulting solid was dissolved again in chloroform (30 times, 1207 mL), and washed twice with water. Thereafter, the organic layer was separated, treated with anhydrous magnesium sulfate, stirred, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized with chloroform and ethyl acetate to prepare Compound E8 in the form of white solid (6 g, 15%).
MS: [M+H]+=845
Compound E9 was prepared in the same manner as in Preparation Example 2-8, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=769
Compound E10 was prepared in the same manner as in Preparation Example 2-8, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=843
Compound E11 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=769
Compound E12 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=715
Compound E13 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=795
Compound E14 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=869
Compound E15 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=919
Compound E16 was prepared in the same manner as in Preparation Example 2-8, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=768
Compound E17 was prepared in the same manner as in Preparation Example 2-8, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=845
Compound E18 was prepared in the same manner as in Preparation Example 2-8, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=775
Compound E19 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=921
Compound E20 was prepared in the same manner as in Preparation Example 2-1, except that each starting material was used as in the above reaction scheme.
MS: [M+H]+=919
A glass substrate on which ITO (Indium Tin Oxide) was coated as a thin film to a thickness of 1,000 Å was put into distilled water in which a detergent was dissolved, and ultrasonically cleaned. At this time, a product manufactured by Fischer Co. was used as the detergent, and distilled water filtered twice using a filter manufactured by Millipore Co. was used as the distilled water. After the ITO was cleaned for 30 minutes, ultrasonic cleaning was repeated twice using distilled water for 10 minutes. After the cleaning with distilled water was completed, the substrate was ultrasonically cleaned with solvents of isopropyl alcohol, acetone, and methanol, dried, and then transferred to a plasma cleaner. Then, the substrate was cleaned for 5 minutes using oxygen plasma and then transferred to a vacuum depositor.
On the prepared ITO transparent electrode, the following Compound HI-A was thermally vacuum-deposited to a thickness of 600 Å to form a hole injection layer. On the hole injection layer, hexaazatriphenylene (HAT, 50 Å) with the following formula and the following Compound HT-A (600 Å) were sequentially vacuum-deposited to form a hole transport layer.
Then, the following Compounds B1 and BD were vacuum-deposited on the hole transport layer at a weight ratio of 25:1 to a thickness of 200 Å to form a light emitting layer.
The Compound E1 and the following Compound LiQ (Lithium quinolate) were vacuum-deposited on the light emitting layer at a weight ratio of 1:1 to a thickness of 350 Å to form an electron injection and transport layer. On the electron injection and transport layer, lithium fluoride (LiF) and aluminum were sequentially deposited to a thickness of 10 Å and 1,000 Å, respectively to form a cathode.
In the above process, the deposition rate of the organic material was maintained at 0.4 to 0.9 Å/sec, the deposition rate of lithium fluoride of the cathode was maintained at 0.3 Å/sec, and the deposition rate of aluminum was maintained at 2 Å/sec. In addition, the degree of vacuum during the deposition was maintained at 1×10−7 to 5×10−8 torr, thereby manufacturing an organic light emitting device.
An organic light emitting device was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 1 was used instead of Compound B1 or Compound E1.
An organic light emitting device was manufactured in the same manner
as in Experimental Example 1, except that the compound shown in Table 1 was used instead of Compound B1 or Compound E1. At this time, Compounds BH-1 to BH-4, and ET-1 to ET-19 listed in Table 1 are as follows.
For the organic light emitting devices, the driving voltage and luminous efficiency were measured at a current density of 10 mA/cm2. In addition, T90, which is the time taken until the initial luminance decreases to 90% at a current density of 20 mA/cm2, was measured. The results are shown in Table 1 below.
As shown in Table 1, the compound of Chemical Formula 1 of the present disclosure can be used in an organic material layer corresponding to the light emitting layer of an organic light emitting device.
As shown in Table 1, the compound of Chemical Formula 2 or 3 of the present disclosure can be used in an organic material layer capable of simultaneously performing electron injection and electron transport of an organic light emitting device.
When comparing Experimental Examples 1 to 100 and Comparative Experimental Examples 96 to 175 of Table 1, it was confirmed that the organic light emitting device including the heterocyclic compound of Chemical Formula 1 of the present disclosure had significantly superior efficiency and lifespan than the organic light emitting device including a compound in which only an aryl group is substituted in the light emitting layer.
When comparing Experimental Examples 1 to 100 and Comparative Experimental Examples, 1 to 11, 20 to 30, 39 to 49, 58 to 68, 77 to 87, 176 to 186, 195 to 205, 214 to 224, and 233 to 243 of Table 1, it was confirmed that the organic light emitting device including the heterocyclic compound of Chemical Formula 2 or 3 of the present disclosure had significantly superior efficiency and lifespan than the organic light emitting device including a compound in which a phenyl group less than quaterphenyl is substituted between Ar2 and Ar3.
When comparing Experimental Examples 1 to 100 and Comparative Experimental Examples 12 to 17, 31 to 36, 50 to 55, 69 to 74, 88 to 93, 187 to 192, 206 to 211, 225 to 230, and 244 to 249 of Table 1, it was confirmed that the organic light emitting device including the heterocyclic compound of Chemical Formula 2 or 3 of the present disclosure had significantly superior efficiency and lifespan than the organic light emitting device including a compound in which quaterphenyl is substituted at a different substitution position from the present disclosure.
When comparing Experimental Examples 1 to 100 and Comparative Experimental Examples 18, 37, 56, 75, 94, 193, 212, 231, 250 of Table 1, it was confirmed that the organic light emitting device including the heterocyclic compound of Chemical Formula 2 or 3 of the present disclosure had significantly superior efficiency and lifespan than the organic light emitting device including a compound in which naphthalene is substituted between Ar2 and Ar3.
When comparing Experimental Examples 1 to 100 and Comparative Experimental Examples 19, 38, 57, 76, 95, 194, 213, 232, 251 of Table 1, it was confirmed that the organic light emitting device including the heterocyclic compound of Chemical Formula 2 or 3 of the present disclosure had significantly superior efficiency and lifespan than the organic light emitting device including a compound in which heteroaryl is additionally substituted to quaterphenylene.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0030418 | Mar 2021 | KR | national |
This application is a National Stage Application of International Application No. PCT/KR2022/002859 filed on Feb. 28, 2022, which claims priority to and the benefit of Korean Patent Application No. 10-2021-0030418 filed on Mar. 8, 2021 in the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2022/002859 | 2/28/2022 | WO |