ORGANIC LIGHT EMITTING DEVICE

Information

  • Patent Application
  • 20230086039
  • Publication Number
    20230086039
  • Date Filed
    March 11, 2021
    4 years ago
  • Date Published
    March 23, 2023
    2 years ago
Abstract
Provided is an organic light emitting device comprising a light emitting layer comprising a compound of Chemical Formula 1 and a compound of Chemical Formula 2:
Description
FIELD OF THE INVENTION

The present disclosure relates to relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.


BACKGROUND

In general, an organic light emitting phenomenon refers to a phenomenon where electric energy is converted into light energy by using an organic material. The organic light emitting device using the organic light emitting phenomenon has characteristics such as a wide viewing angle, an excellent contrast, a fast response time, an excellent luminance, driving voltage and response speed, and thus many studies have proceeded.


The organic light emitting device generally has a structure which comprises an anode, a cathode, and an organic material layer disposed between the anode and the cathode. The organic material layer frequently has a multilayered structure that comprises different materials in order to enhance efficiency and stability of the organic light emitting device, and for example, the organic material layer can be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like. In the structure of the organic light emitting device, if a voltage is applied between two electrodes, the holes are injected from an anode into the organic material layer and the electrons are injected from the cathode into the organic material layer, and when the injected holes and electrons meet each other, an exciton is formed, and light is emitted when the exciton falls to a ground state again.


In the organic light emitting devices as described above, there is a continuing need for the development of an organic light emitting device having improved driving voltage, efficiency and lifetime.


PRIOR ART LITERATURE
Patent Literature



  • (Patent Literature 1) Korean Unexamined Patent Publication No. 10-2000-0051826



SUMMARY OF THE INVENTION
Technical Problem

The present disclosure relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.


Technical Solution

The following organic light emitting device is provided herein:


An organic light emitting device including: an anode, a cathode, and a light emitting layer disposed between the anode and the cathode,


wherein the light emitting layer includes a compound of the following Chemical Formula 1 and a compound of the following Chemical Formula 2:




embedded image


wherein in Chemical Formula 1:


Ar1 and Ar2 are each independently a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing one or more selected from the group consisting of N, O and S;


L1 to L3 are each independently a single bond or a substituted or unsubstituted C6-60 arylene;


R1 is hydrogen, deuterium, a substituted or unsubstituted C6-60 aryl, or a substituted or unsubstituted C2-60 heteroaryl containing one or more selected from the group consisting of N, O and S;


a is an integer of 0 to 7;




embedded image


wherein in Chemical Formula 2:


Ar3 is hydrogen, a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing one or more selected from the group consisting of N, O and S;


Ar4 and Ar5 are each independently a substituted or unsubstituted C6-60 aryl or a substituted or unsubstituted C2-60 heteroaryl containing one or more selected from the group consisting of N, O and S;


L4 to L6 are each independently a single bond, a substituted or unsubstituted C6-60 arylene, or a substituted or unsubstituted C2-60 heteroarylene containing one or more selected from the group consisting of N, O and S; and


L7 is a substituted or unsubstituted C6-60 arylene.


Advantageous Effects

The above-mentioned organic light emitting device can improve the efficiency, achieve low driving voltage and/or improve lifetime characteristics by containing the compound of Chemical Formula 1 and the compound of Chemical Formula 2 in the light emitting layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.



FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer 9, and a cathode 4.





DETAILED DESCRIPTION

Hereinafter, embodiments of the present disclosure will be described in more detail to facilitate understanding of the invention.


As used herein, the notation custom-character or custom-character means a bond linked to another substituent group.


As used herein, the term “substituted or unsubstituted” means being unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, a halogen group, a nitrile group, a nitro group, a hydroxy group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, an alkoxy group, an aryloxy group, an alkylthioxy group, an arylthioxy group, an alkylsulfoxy group, an arylsulfoxy group, a silyl group, a boron group, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an aralkenyl group, an alkylaryl group, an alkylamine group, an aralkylamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, or a heteroaryl containing at least one of N, O and S atoms, or being unsubstituted or substituted with a substituent to which two or more substituents of the above-exemplified substituents are connected. For example, “a substituent in which two or more substituents are connected” can be a biphenyl group. Namely, a biphenyl group can be an aryl group, or it can also be interpreted as a substituent in which two phenyl groups are connected.


In the present disclosure, the carbon number of a carbonyl group is not particularly limited, but is preferably 1 to 40. Specifically, the carbonyl group can be a compound having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, an ester group can have a structure in which oxygen of the ester group can be substituted by a straight-chain, branched-chain, or cyclic alkyl group having 1 to 25 carbon atoms, or an aryl group having 6 to 25 carbon atoms. Specifically, the ester group can be a compound having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, the carbon number of an imide group is not particularly limited, but is preferably 1 to 25. Specifically, the imide group can be a compound having the following structural formulas, but is not limited thereto:




embedded image


In the present disclosure, a silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group and the like, but is not limited thereto.


In the present disclosure, a boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group, but is not limited thereto.


In the present disclosure, examples of a halogen group include fluorine, chlorine, bromine, or iodine.


In the present disclosure, the alkyl group can be straight-chain or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.


In the present disclosure, the alkenyl group can be straight-chain or branched-chain, and the carbon number thereof is not particularly limited, but is preferably 2 to 40. According to one embodiment, the carbon number of the alkenyl group is 2 to 20. According to another embodiment, the carbon number of the alkenyl group is 2 to 10. According to still another embodiment, the carbon number of the alkenyl group is 2 to 6. Specific examples thereof include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1-butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-(naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, a stilbenyl group, a styrenyl group, and the like, but are not limited thereto.


In the present disclosure, a cycloalkyl group is not particularly limited, but the carbon number thereof is preferably 3 to 60. According to one embodiment, the carbon number of the cycloalkyl group is 3 to 30. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to still another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.


In the present disclosure, an aryl group is not particularly limited, but the carbon number thereof is preferably 6 to 60, and it can be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the carbon number of the aryl group is 6 to 30. According to one embodiment, the carbon number of the aryl group is 6 to 20. The aryl group can be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group includes a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, or the like, but is not limited thereto.


In the present disclosure, the fluorenyl group can be substituted, and two substituents can be linked with each other to form a spiro structure. In the case where the fluorenyl group is substituted,




embedded image


and the like can be formed. However, the structure is not limited thereto.


In the present disclosure, a heterocyclic group is a heterocyclic group containing one or more of O, N, Si and S as a heteroatom, and the carbon number thereof is not particularly limited, but is preferably 2 to 60. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazol group, an oxadiazol group, a triazol group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group, a pyridazine group, a pyrazinyl group, a quinolinyl group, a quinazoline group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, a pyridopyrazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, an indole group, a carbazole group, a benzoxazole group, a benzoimidazole group, a benzothiazol group, a benzocarbazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthroline group, an isoxazolyl group, a thiadiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but are not limited thereto.


In the present disclosure, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned examples of the aryl group. In the present disclosure, the alkyl group in the aralkyl group, the alkylaryl group and the alkylamine group is the same as the aforementioned examples of the alkyl group. In the present disclosure, the heteroaryl in the heteroarylamine can be applied to the aforementioned description of the heterocyclic group. In the present disclosure, the alkenyl group in the aralkenyl group is the same as the aforementioned examples of the alkenyl group. In the present disclosure, the aforementioned description of the aryl group can be applied except that the arylene is a divalent group. In the present disclosure, the aforementioned description of the heteroaryl group can be applied except that the heteroarylene is a divalent group. In the present disclosure, the aforementioned description of the aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group but formed by combining two substituent groups. In the present disclosure, the aforementioned description of the heterocyclic group can be applied, except that the heterocyclic group is not a monovalent group but formed by combining two substituent groups.


Hereinafter, the present disclosure will be described in detail for each configuration.


Anode and Cathode

The anode and cathode used in the present disclosure mean electrodes used in an organic light emitting device.


As the anode material, generally, a material having a large work function is preferably used so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chrome, copper, zinc, and gold, or an alloy thereof; metal oxides such as zinc oxides, indium oxides, indium tin oxides (ITO), and indium zinc oxides (IZO); a combination of metals and oxides, such as ZnO:Al or SNO2:Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, and the like, but are not limited thereto.


As the cathode material, generally, a material having a small work function is preferably used so that electrons can be easily injected into the organic material layer. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or an alloy thereof; a multilayered structure material such as LiF/Al or LiO2/Al, and the like, but are not limited thereto.


Hole Injection Layer

The organic light emitting device according to the present disclosure can further include a hole injection layer on the anode, if necessary.


The hole injection layer is a layer injecting holes from an electrode, and the hole injection material is preferably a compound which has an ability of transporting the holes, a hole injection effect in the anode and an excellent hole injection effect to the light emitting layer or the light emitting material, prevents movement of an exciton generated in the light emitting layer to the electron injection layer or the electron injection material, and has an excellent thin film forming ability. It is preferable that a HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the anode material and a HOMO of a peripheral organic material layer.


Specific examples of the hole injection material include metal porphyrine, oligothiophene, an arylamine-based organic material, a hexanitrilehexaaza-triphenylene-based organic material, a quinacridone-based organic material, a perylene-based organic material, anthraquinone, polyaniline and polythiophene-based conductive polymer, and the like, but are not limited thereto.


Hole Transport Layer

The organic light emitting device according to the present disclosure can include a hole transport layer on the anode (or on a hole injection layer when the hole injection layer is present), if necessary.


The hole transport layer is a layer that receives holes from an anode or a hole injection layer and transports the holes to the light emitting layer. The hole transport material is suitably a material having large mobility to the holes, which can receive holes from the anode or the hole injection layer and transfer the holes to the light emitting layer.


Specific examples of the hole transport material include an arylamine-based organic material, a conductive polymer, a block copolymer in which a conjugate portion and a non-conjugate portion are present together, and the like, but are not limited thereto.


Electron Blocking Layer

The electron blocking layer is a layer provided between the hole transport layer and the light emitting layer in order to prevent the electrons injected in the cathode from being transferred to the hole transport layer without being recombined in the light emitting layer, which can also be referred to as an electron inhibition layer or an electron stopping layer. The electron blocking layer is preferably a material having a smaller electron affinity than the electron transport layer.


Light Emitting Layer

The light emitting layer used in the present disclosure means a layer that can emit light in the visible light region by combining holes and electrons transported from the anode and the cathode. Generally, the light emitting layer includes a host material and a dopant material, and in the present disclosure, the compound of Chemical Formula 1 and the compound of Chemical Formula 2 are included as a host.


Preferably, the compound of Chemical Formula 1 can be of any one of the following Chemical Formulas 1-1 to 1-3:




embedded image


wherein in Chemical Formulas 1-1 to 1-3:


Ar1 and Ar2, L1 to L3 and R1 are as defined in Chemical Formula 1.


Preferably, Ar1 and Ar2 can be each independently a substituted or unsubstituted C6-20 aryl or a substituted or unsubstituted C2-20 heteroaryl containing one or more selected from the group consisting of N, O and S,


more preferably, Ar1 and Ar2 can be each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl, and


most preferably, Ar1 and Ar2 can be each independently any one selected from the group consisting of the following:




embedded image


embedded image


Preferably, L1 to L3 can be each independently a single bond or a substituted or unsubstituted C6-20 arylene,


more preferably, L1 to L3 can be each independently a single bond, phenylene, biphenylylene or naphthylene, and


most preferably, L1 to L3 can be each independently a single bond or any one selected from the group consisting of the following:




embedded image


Preferably, each R1 can be independently hydrogen, deuterium, a substituted or unsubstituted C6-20 aryl, or a substituted or unsubstituted C2-20 heteroaryl containing one or more selected from the group consisting of N, O and S, and


more preferably, each R1 can be independently hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthyl phenyl, phenyl naphthyl, fluoranthenyl, dihydroindenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.


Preferably, a can be 0 or 1. More preferably, a can be 1.


Preferably, at least one of Ar1, Ar2 and R1 can be naphthyl, phenyl naphthyl, naphthyl phenyl, phenanthrenyl, fluoranthenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.


More preferably, at least one of Ar1, Ar2 and R1 can be naphthyl, phenyl naphthyl, naphthyl phenyl, fluoranthenyl, dibenzofuranyl, benzonaphthofuranyl, or benzonaphthothiophenyl.


Representative examples of the compound of Chemical Formula 1 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The compound of Chemical Formula 1 can be prepared, for example, according to the preparation method as shown in the following Reaction Scheme 1, an d the other remaining compounds can be prepared in a similar manner.




embedded image


wherein in Reaction Scheme 1, Ar1, Ar2, L1 to L3, R1 and a are as defined in Chemical Formula 1, and X1 is halogen, preferably X1 is chloro or bromo.


The Reaction Scheme 1 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactive group for the Suzuki coupling reaction can be modified as known in the art. The above preparation method can be further embodied in the Preparation Examples described hereinafter.


Preferably, Ar3 can be hydrogen, a substituted or unsubstituted C6-20 aryl, or a substituted or unsubstituted C2-20 heteroaryl containing one or more selected from the group consisting of N, O and S, and


more preferably, Ar3 can be hydrogen or phenyl.


Preferably, Ar4 and Ar5 can be each independently a substituted or unsubstituted C6-20 aryl or a substituted or unsubstituted C2-20 heteroaryl containing one or more selected from the group consisting of N, O and S,


more preferably, Ar4 and Ar5 can be each independently phenyl, phenyl substituted with 5 deuteriums, biphenylyl, biphenylyl substituted with 4 deuteriums, biphenylyl substituted with 9 deuteriums, terphenylyl, terphenylyl substituted with 4 deuteriums, quaterphenylyl, naphthyl, phenanthrenyl, triphenylenyl, dimethylfluorenyl, diphenylfluorenyl, carbazolyl, phenylcarbazolyl, dibenzofuranyl, dibenzothiophenyl, or phenyl dibenzofuranyl, and


most preferably, Ar4 and Ar5 can be each independently any one selected from the group consisting of the following:




embedded image


embedded image


embedded image


embedded image


Preferably L4 to L6 can be each independently a single bond, a substituted or unsubstituted C6-20 arylene, or a substituted or unsubstituted C2-20 heteroarylene containing one or more selected from the group consisting of N, O and S,


more preferably, L4 to L6 can be each independently a single bond, phenylene, phenylene substituted with 4 deuteriums, biphenylylene, naphthylene, phenyl naphthylene, carbazolylene, phenyl carbazolylene, phenyl carbazolylene substituted with 4 deuteriums, dibenzofuranylene, phenyl dibenzofuranylene, phenyl dibenzofuranylene substituted with 4 deuteriums, or dimethylfluorenylene, and


most preferably, L4 to L6 can be each independently a single bond or any one selected from the group consisting of the following:




embedded image


Preferably, L4 is a single bond, and L5 and L6 can be each independently a single bond, a substituted or unsubstituted C6-20 arylene, or a substituted or unsubstituted C2-20 heteroarylene containing at least one selected from the group consisting of N, O and S,


more preferably, L4 is a single bond, and L and L6 can be each independently a single bond, phenylene, phenylene substituted with 4 deuteriums, biphenylylene, naphthylene, phenyl naphthylene, carbazolylene, phenyl carbazolylene, phenyl carbazolylene substituted with 4 deuteriums, dibenzofuranylene, phenyl dibenzofuranylene, phenyl dibenzofuranylene substituted with 4 deuteriums, or dimethylfluorenylene, and


most preferably, L4 is a single bond, and L5 and L6 can be each independently a single bond or any one selected from the group consisting of the following:




embedded image


Preferably, L7 can be a substituted or unsubstituted C6-20 arylene,


more preferably, L7 can be a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenylylene, or a substituted or unsubstituted naphthylene, and


most preferably, L7 can be phenylene, phenylene substituted with 4 deuteriums, biphenylylene, or naphthylene.


Preferably, the compound of Chemical Formula 2 can be of the following Chemical Formula 2-1:




embedded image


wherein in Chemical Formula 2-1:


Ar3 to Ar5 and L4 to L6 are as defined in Chemical Formula 2;


R2 is hydrogen, deuterium, or a substituted or unsubstituted C6-60 aryl; and


b is an integer of 0 to 4.


Preferably, R2 can be hydrogen, deuterium, or a substituted or unsubstituted C6-20 aryl, and


more preferably, R2 can be hydrogen or deuterium.


Representative examples of the compound of Chemical Formula 2 are as follows:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The compound of Chemical Formula 2 can be prepared, for example, according to the preparation method as shown in the following Reaction Scheme 2, an d the other remaining compounds can be prepared in a similar manner.




embedded image


wherein in Reaction Scheme 2, Ar3 to Ar5 and L4 to L7 are as defined in Chemical Formula 2, and X2 is halogen, preferably X2 is chloro or bromo.


The Reaction Scheme 2 is an amine substitution reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactive group for the amine substitution reaction can be modified as known in the art. The above preparation method can be further embodied in the Preparation Examples described hereinafter.


Preferably, the weight ratio of the compound of Chemical Formula 1 and the compound of Chemical Formula 2 in the light emitting layer is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70:30 or 40:60 to 60:40.


Meanwhile, the light emitting layer can further include a dopant in addition to the host. The dopant material is not particularly limited as long as it is a material used for the organic light emitting device. As an example, an aromatic amine derivative, a styrylamine compound, a boron complex, a fluoranthene compound, a metal complex, and the like can be mentioned. Specific examples of the aromatic amine derivatives include substituted or unsubstituted fused aromatic ring derivatives having an arylamino group, examples thereof include pyrene, anthracene, chrysene, and periflanthene having the arylamino group, and the like. The styrylamine compound is a compound where at least one arylvinyl group is substituted in substituted or unsubstituted arylamine, in which one or two or more substituent groups selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted. Specific examples thereof include styrylamine, styryldiamine, styryltriamine, styryltetramine, and the like, but are not limited thereto. Further, examples of the metal complex include an iridium complex, a platinum complex, and the like, but are not limited thereto.


Hole Blocking Layer

The hole blocking layer is a layer provided between the electron transport layer and the light emitting layer in order to prevent the holes injected in the anode from being transferred to the electron transport layer without being recombined in the light emitting layer, which can also be referred to as a hole inhibition layer or a hole stopping layer. The hole blocking layer is preferably a material having the large ionization energy.


Electron Transport Layer

The organic light emitting device according to the present disclosure can include an electron transport layer on the light emitting layer, if necessary.


The electron transport layer is a layer that receives the electrons from the electron injection layer formed on the cathode and cathode and transports the electrons to the light emitting layer, and that suppress the transfer of holes from the light emitting layer, and an electron transport material is suitably a material which can receive electrons well from a cathode and transfer the electrons to a light emitting layer, and has a large mobility for electrons.


Specific examples of the electron transport material include: an Al complex of 8-hydroxyquinoline, a complex including Alq3, an organic radical compound, a hydroxyflavone-metal complex, and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material, as used according to a conventional technique. In particular, appropriate examples of the cathode material are a typical material which has a low work function, followed by an aluminum layer or a silver layer. Specific examples thereof include cesium, barium, calcium, ytterbium, and samarium, in each case followed by an aluminum layer or a silver layer.


Electron Injection Layer

The organic light emitting device according to the present disclosure can further include an electron injection layer on the light emitting layer (or on an electron transport layer when the electron transport layer is present), if necessary.


The electron injection layer is a layer which injects electrons from an electrode, and is preferably a compound which has a capability of transporting electrons, has an effect of injecting electrons from a cathode and an excellent effect of injecting electrons into a light emitting layer or a light emitting material, prevents excitons produced from the light emitting layer from moving to a hole injection layer, and is also excellent in the ability to form a thin film.


Specific examples of the materials that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and the like, and derivatives thereof, a metal complex compound, a nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.


Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)-gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, and the like, but are not limited thereto.


Meanwhile, in the present disclosure, the “electron injection and transport layer” is a layer that performs both the roles of the electron injection layer and the electron transport layer, and the material that serves as each layer can be used alone or in combination, but is not limited thereto.


Organic Light Emitting Device

The structure of the organic light emitting device according to the present disclosure is illustrated in FIG. 1. FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer 9, and a cathode 4.


The organic light emitting device according to the present disclosure can be manufactured by sequentially stacking the above-described structures. In this case, the organic light emitting device can be manufactured by depositing a metal, metal oxides having conductivity, or an alloy thereof on the substrate by using a PVD (physical vapor deposition) method such as a sputtering method or an e-beam evaporation method to form the anode, forming the respective layers described above thereon, and then depositing a material that can be used as the cathode thereon. In addition to such a method, the organic light emitting device can be manufactured by sequentially depositing from the cathode material to the anode material on a substrate in the reverse order of the above-mentioned configuration (WO 2003/012890). Further, the light emitting layer can be formed by subjecting hosts and dopants to a vacuum deposition method and a solution coating method. Herein, the solution coating method means a spin coating, a dip coating, a doctor blading, an inkjet printing, a screen printing, a spray method, a roll coating, or the like, but is not limited thereto.


On the other hand, the organic light emitting device according to the present disclosure can be a front side emission type, a back side emission type, or a double side emission type according to the used material.


Hereinafter, preferred examples of the present disclosure are presented to aid in the understanding of the invention. However, these examples are presented for illustrative purposes only, and the scope of the present disclosure is not limited thereto.


PREPARATION EXAMPLE
Preparation Example 1-1: Preparation of Compound 1-1



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz27 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.8 g, 121.7 mmol) was dissolved in 50 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.9 g of Compound sub1-A-1. (Yield: 71%, MS: [M+H]+=484)




embedded image


Compound sub1-A-1 (15 g, 31 mmol) and Compound sub1 (6.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.3 g of Compound 1-1. (Yield: 66%, MS: [M+H]+=602)


Preparation Example 1-2: Preparation of Compound 1-2



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 19.5 g of Compound sub1-A-2. (Yield: 74%, MS: [M+H]+=434)




embedded image


Compound sub1-A-2 (15 g, 34.6 mmol) and Compound sub2 (9.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.3 g of Compound 1-2. (Yield: 66%, MS: [M+H]+=626)


Preparation Example 1-3: Preparation of Compound 1-3



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.3 g, 0.6 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 23.2 g of Compound sub1-A-3. (Yield: 79%, MS: [M+H]+=484)




embedded image


Compound sub1-A-3 (15 g, 31 mmol) and Compound sub3 (7.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.9 g of Compound 1-3. (Yield: 66%, MS: [M+H]+=632)


Preparation Example 1-4: Preparation of Compound 1-4



embedded image


Compound 1-A (15 g, 60.9 mmol) and Compound Trz4 (27 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.3 g, 0.6 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26 g of Compound sub1-A-4. (Yield: 70%, MS: [M+H]+=610)




embedded image


Compound sub1-A-4 (15 g, 24.6 mmol) and Compound sub4 (5.6 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then potassium carbonate (6.8 g, 49.2 mmol) was dissolved in 20 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 1-4. (Yield: 60%, MS: [M+H]+=758)


Preparation Example 1-5: Preparation of Compound 1-5



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz5 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.2 g of Compound sub1-B-1. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-B-1 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium (0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.9 g of Compound 1-5. (Yield: 80%, MS: [M+H]+=602)


Preparation Example 1-6: Preparation of Compound 1-6



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 18.2 g of Compound sub1-B-2. (Yield: 62%, MS: [M+H]+=484)




embedded image


Compound sub1-B-2 (15 g, 31 mmol) and Compound sub6 (7.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.3 g of Compound 1-6. (Yield: 76%, MS: [M+H]+=650)


Preparation Example 1-7: Preparation of Compound 1-7



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.8 g of Compound sub1-B-3. (Yield: 79%, MS: [M+H]+=434)




embedded image


Compound sub1-B-3 (15 g, 34.6 mmol) and Compound sub7 (8.6 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.4 g of Compound 1-7. (Yield: 74%, MS: [M+H]+=602)


Preparation Example 1-8: Preparation of Compound 1-8



embedded image


Compound sub1-B-2 (15 g, 31 mmol) and Compound sub8 (8.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.5 g of Compound 1-8. (Yield: 75%, MS: [M+H]+=666)


Preparation Example 1-9: Preparation of Compound 1-9



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz6 (22.4 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 23.7 g of Compound sub1-B-4. (Yield: 73%, MS: [M+H]+=534)




embedded image


Compound sub1-B-4 (15 g, 28.1 mmol) and Compound sub9 (6 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.8 g, 56.2 mmol) was dissolved in 23 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.6 g of Compound 1-9. (Yield: 62%, MS: [M+H]+=666)


Preparation Example 1-10: Preparation of Compound 1-10



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz7 (28.6 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 28.6 g of Compound sub1-B-5. (Yield: 74%, MS: [M+H]+=636)




embedded image


Compound sub1-B-5 (15 g, 23.6 mmol) and Compound sub5 (2.9 g, 23.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (6.5 g, 47.2 mmol) was dissolved in 20 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.4 g of Compound 1-10. (Yield: 65%, MS: [M+H]+=678)


Preparation Example 1-11: Preparation of Compound 1-11



embedded image


Compound 1-B (15 g, 60.9 mmol) and Compound Trz8 (21.8 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.1 g of Compound sub1-B-6. (Yield: 63%, MS: [M+H]+=524)




embedded image


Compound sub1-B-6 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.9 g, 57.3 mmol) was dissolved in 24 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.4 g of Compound 1-11. (Yield: 65%, MS: [M+H]+=616)


Preparation Example 1-12: Preparation of Compound 1-12



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 17.6 g of Compound sub1-C-1. (Yield: 60%, MS: [M+H]+=484)




embedded image


Compound sub1-C-1 (15 g, 31 mmol) and Compound sub10 (5.3 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.8 g of Compound 1-12. (Yield: 72%, MS: [M+H]+=576)


Preparation Example 1-13: Preparation of Compound 1-13



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz9 (24 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 23.5 g of Compound sub1-C-2. (Yield: 69%, MS: [M+H]+=560)




embedded image


Compound sub1-C-2 (15 g, 26.8 mmol) and Compound sub10 (4.6 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14 g of Compound 1-13. (Yield: 80%, MS: [M+H]+=652)


Preparation Example 1-14: Preparation of Compound 1-14



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.5 g of Compound sub1-C-3. (Yield: 66%, MS: [M+H]+=510)




embedded image


Compound sub1-C-3 (15 g, 29.4 mmol) and Compound sub11 (7.3 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.1 g, 58.8 mmol) was dissolved in 24 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.3 g of Compound 1-14. (Yield: 77%, MS: [M+H]+=678)


Preparation Example 1-15: Preparation of Compound 1-15



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 18.7 g of Compound sub1-C-4. (Yield: 71%, MS: [M+H]+=434)




embedded image


Compound sub1-C-4 (15 g, 37.1 mmol) and Compound sub12 (9.7 g, 37.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.3 g, 74.3 mmol) was dissolved in 31 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.6 g of Compound 1-15. (Yield: 64%, MS: [M+H]+=616)


Preparation Example 1-16: Preparation of Compound 1-16



embedded image


Compound sub1-C-2 (15 g, 26.8 mmol) and Compound sub13 (7.4 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.2 g of Compound 1-16. (Yield: 80%, MS: [M+H]+=758)


Preparation Example 1-17: Preparation of Compound 1-17



embedded image


Compound sub1-C-4 (15 g, 34.6 mmol) and Compound sub14 (7.7 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.1 mmol) was dissolved in 29 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.3 g of Compound 1-17. (Yield: 62%, MS: [M+H]+=576)


Preparation Example 1-18: Preparation of Compound 1-18



embedded image


Compound sub1-C-1 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (8.6 g, 62 mmol) was dissolved in 26 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12 g of Compound 1-18. (Yield: 63%, MS: [M+H]+=616)


Preparation Example 1-19: Preparation of Compound 1-19



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz11 (22.4 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 22.4 g of Compound sub1-C-5. (Yield: 69%, MS: [M+H]+=534)




embedded image


Compound sub1-C-5 (15 g, 28.1 mmol) and Compound sub15 (6 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (7.8 g, 56.2 mmol) was dissolved in 23 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.3 g of Compound 1-19. (Yield: 71%, MS: [M+H]+=666)


Preparation Example 1-20: Preparation of Compound 1-20



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz12 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 21 g of Compound sub1-C-6. (Yield: 66%, MS: [M+H]+=524)




embedded image


Compound sub1-C-6 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.3 g of Compound 1-20. (Yield: 70%, MS: [M+H]+=616)


Preparation Example 1-21: Preparation of Compound 1-21



embedded image


Compound 1-C (15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.2 g of Compound sub1-C-7. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-C-7 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.5 g of Compound 1-21. (Yield: 65%, MS: [M+H]+=602)


Preparation Example 1-22: Preparation of Compound 1-22



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz14 (19.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 23.9 g of Compound sub1-D-1. (Yield: 67%, MS: [M+H]+=586)




embedded image


Compound sub1-D-1 (15 g, 25.6 mmol) and Compound sub5 (3.1 g, 25.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.6 g, 76.8 mmol) was dissolved in 32 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.3 g of Compound 1-22. (Yield: 64%, MS: [M+H]+=628)


Preparation Example 1-23: Preparation of Compound 1-23



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20 g of Compound sub1-D-2. (Yield: 76%, MS: [M+H]+=434)




embedded image


Compound sub1-D-2 (15 g, 34.6 mmol) and Compound sub16 (9.1 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14 g of Compound 1-23. (Yield: 66%, MS: [M+H]+=616)


Preparation Example 1-24: Preparation of Compound 1-24



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.8 g of Compound sub1-D-3. (Yield: 67%, MS: [M+H]+=510)




embedded image


Compound sub1-D-3 (15 g, 29.4 mmol) and Compound sub17 (7.7 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.4 g of Compound 1-24. (Yield: 61%, MS: [M+H]+=692)


Preparation Example 1-25: Preparation of Compound 1-25



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz15 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 21.3 g of Compound sub1-D-4. (Yield: 67%, MS: [M+H]+=524)




embedded image


Compound sub1-D-4 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.7 g of Compound 1-25. (Yield: 61%, MS: [M+H]+=616)


Preparation Example 1-26: Preparation of Compound 1-26



embedded image


Compound sub1-D-3 (15 g, 29.4 mmol) and Compound sub18 (6.2 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.3 g of Compound 1-26. (Yield: 76%, MS: [M+H]+=642)


Preparation Example 1-27: Preparation of Compound 1-27



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz16 (27 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 27.1 g of Compound sub1-D-5. (Yield: 73%, MS: [M+H]+=610)




embedded image


Compound sub1-D-5 (15 g, 24.6 mmol) and Compound sub9 (5.2 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.8 g of Compound 1-27. (Yield: 70%, MS: [M+H]+=742)


Preparation Example 1-28: Preparation of Compound 1-28



embedded image


Compound 1-D (15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 20.8 g of Compound sub1-D-6. (Yield: 61%, MS: [M+H]+=560)




embedded image


Compound sub1-D-6 (15 g, 26.8 mmol) and Compound sub10 (4.6 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.2 g of Compound 1-28. (Yield: 70%, MS: [M+H]+=652)


Preparation Example 1-29: Preparation of Compound 1-29



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz12 (16.3 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 17.1 g of Compound sub1-E-1. (Yield: 65%, MS: [M+H]+=434)




embedded image


Compound sub1-E-1 (15 g, 34.6 mmol) and Compound sub2 (9.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.5 g of Compound 1-29. (Yield: 67%, MS: [M+H]+=626)


Preparation Example 1-30: Preparation of Compound 1-30



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz9 (24 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.9 g of Compound sub1-E-2. (Yield: 79%, MS: [M+H]+=560)




embedded image


Compound sub1-E-2 (15 g, 26.8 mmol) and Compound sub19 (7 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.9 g of Compound 1-30. (Yield: 80%, MS: [M+H]+=742)


Preparation Example 1-31: Preparation of Compound 1-31



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz17 (22.4 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 25.3 g of Compound sub1-E-3. (Yield: 78%, MS: [M+H]+=534)




embedded image


Compound sub1-E-3 (15 g, 28.1 mmol) and Compound sub20 (7.8 g, 28.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.8 g of Compound 1-31. (Yield: 72%, MS: [M+H]+=732)


Preparation Example 1-32: Preparation of Compound 1-32



embedded image


Compound sub1-E-1 (15 g, 34.6 mmol) and Compound sub21 (7.7 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.9 g of Compound 1-32. (Yield: 65%, MS: [M+H]+=576)


Preparation Example 1-33: Preparation of Compound 1-33



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz15 (21.8 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 25.5 g of Compound sub1-E-4. (Yield: 80%, MS: [M+H]+=524)




embedded image


Compound sub1-E-4 (15 g, 28.6 mmol) and Compound sub10 (4.9 g, 28.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.9 g, 85.9 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.6 g of Compound 1-33. (Yield: 60%, MS: [M+H]+=616)


Preparation Example 1-34: Preparation of Compound 1-34



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 17.6 g of Compound sub1-E-5. (Yield: 60%, MS: [M+H]+=484)




embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.4 g of Compound 1-34. (Yield: 60%, MS: [M+H]+=616)


Preparation Example 1-35: Preparation of Compound 1-35



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 21.7 g of Compound sub1-E-6. (Yield: 70%, MS: [M+H]+=510)




embedded image


Compound sub1-E-6 (15 g, 29.4 mmol) and Compound sub22 (7.7 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.6 g of Compound 1-35. (Yield: 72%, MS: [M+H]+=692)


Preparation Example 1-36: Preparation of Compound 1-36



embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub23 (8.1 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.4 g of Compound 1-36. (Yield: 60%, MS: [M+H]+=666)


Preparation Example 1-37: Preparation of Compound 1-37



embedded image


Compound sub1-E-5 (15 g, 31 mmol) and Compound sub10 (5.3 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.1 g of Compound 1-37. (Yield: 79%, MS: [M+H]+=576)


Preparation Example 1-38: Preparation of Compound 1-38



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz18 (27 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 24.1 g of Compound sub1-E-7. (Yield: 65%, MS: [M+H]+=610)




embedded image


Compound sub1-E-7 (15 g, 24.6 mmol) and Compound sub5 (3 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.1 g of Compound 1-38. (Yield: 63%, MS: [M+H]+=652)


Preparation Example 1-39: Preparation of Compound 1-39



embedded image


Compound 1-E (15 g, 60.9 mmol) and Compound Trz13 (24 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.2 g of Compound sub1-E-8. (Yield: 77%, MS: [M+H]+=560)




embedded image


Compound sub1-E-8 (15 g, 26.8 mmol) and Compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.9 g of Compound 1-39. (Yield: 68%, MS: [M+H]+=602)


Preparation Example 1-40: Preparation of Compound 1-40



embedded image


Compound 1-F (15 g, 60.9 mmol) and Compound Trz2 (16.3 g, 60.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 19.2 g of Compound sub1-F-1. (Yield: 73%, MS: [M+H]+=434)




embedded image


Compound sub1-F-1 (15 g, 34.6 mmol) and Compound sub6 (8.5 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.7 g of Compound 1-40. (Yield: 71%, MS: [M+H]+=600)


Preparation Example 1-41: Preparation of Compound 1-41



embedded image


Compound 1-F (15 g, 60.9 mmol) and Compound Trz10 (20.9 g, 60.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 21.1 g of Compound sub1-F-2. (Yield: 68%, MS: [M+H]+=510)




embedded image


Compound sub1-F-2 (15 g, 29.4 mmol) and Compound sub1 (5.8 g, 29.4 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.2 g of Compound 1-41. (Yield: 77%, MS: [M+H]+=628)


Preparation Example 1-42: Preparation of Compound 1-42



embedded image


Compound Trz7 (15 g, 31.9 mmol) and Compound sub9 (6.8 g, 31.9 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (13.2 g, 95.8 mmol) was dissolved in 40 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.2 g of Compound 1-42. (Yield: 79%, MS: [M+H]+=602)


Preparation Example 1-43: Preparation of Compound 1-43



embedded image


Compound Trz16 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15 g of Compound 1-43. (Yield: 77%, MS: [M+H]+=576)


Preparation Example 1-44: Preparation of Compound 1-44



embedded image


Compound Trz4 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.2 g of Compound 1-44. (Yield: 73%, MS: [M+H]+=576)


Preparation Example 1-45: Preparation of Compound 1-45



embedded image


Compound Trz1 (15 g, 35.7 mmol) and Compound sub9 (7.6 g, 35.7 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in 44 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.2 g of Compound 1-45. (Yield: 62%, MS: [M+H]+=552)


Preparation Example 1-46: Preparation of Compound 1-46



embedded image


Compound Trz19 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.6 g of Compound 1-46. (Yield: 70%, MS: [M+H]+=576)


Preparation Example 1-47: Preparation of Compound 1-47



embedded image


Compound Trz20 (15 g, 35.9 mmol) and Compound sub9 (7.6 g, 35.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 45 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15 g of Compound 1-47. (Yield: 76%, MS: [M+H]+=550)


Preparation Example 1-48: Preparation of Compound 1-48



embedded image


Compound Trz3 (15 g, 47.2 mmol) and Compound sub24 (9.7 g, 47.2 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (19.6 g, 141.6 mmol) was dissolved in 59 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13 g of Compound sub1-G-1. (Yield: 62%, MS: [M+H]+=444)




embedded image


Compound sub1-G-1 (15 g, 33.8 mmol) and Compound sub9 (7.2 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.2 g of Compound 1-48. (Yield: 78%, MS: [M+H]+=576)


Preparation Example 1-49: Preparation of Compound 1-49



embedded image


Compound Trz15 (15 g, 41.9 mmol) and Compound sub25 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound sub1-G-2. (Yield: 62%, MS: [M+H]+=484)




embedded image


Compound sub1-G-2 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.7 g of Compound 1-49. (Yield: 72%, MS: [M+H]+=616)


Preparation Example 1-50: Preparation of Compound 1-50



embedded image


Compound Trz21 (15 g, 36.8 mmol) and Compound sub26 (5.8 g, 36.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.8 g of Compound sub1-G-3. (Yield: 72%, MS: [M+H]+=484)




embedded image


Compound sub1-G-3 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.2 g of Compound 1-50. (Yield: 69%, MS: [M+H]+=616)


Preparation Example 1-51: Preparation of Compound 1-51



embedded image


Compound Trz16 (15 g, 36.8 mmol) and Compound sub27 (5.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.3 g of Compound sub1-G-4. (Yield: 76%, MS: [M+H]+=520)




embedded image


Compound sub1-G-4 (15 g, 28.8 mmol) and Compound sub9 (6.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.3 g of Compound 1-51. (Yield: 71%, MS: [M+H]+=652)


Preparation Example 1-52: Preparation of Compound 1-52



embedded image


Compound Trz22 (15 g, 36.8 mmol) and Compound sub28 (5.8 g, 36.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.2 g, 110.3 mmol) was dissolved in 46 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.8 g of Compound sub1-G-5. (Yield: 72%, MS: [M+H]+=484)




embedded image


Compound sub1-G-5 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13 g of Compound 1-52. (Yield: 68%, MS: [M+H]+=616)


Preparation Example 1-53: Preparation of Compound 1-53



embedded image


Compound Trz23 (15 g, 34.6 mmol) and Compound sub27 (5.4 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.3 g of Compound sub1-G-6. (Yield: 64%, MS: [M+H]+=510)




embedded image


Compound sub1-G-6 (15 g, 31 mmol) and Compound sub9 (6.6 g, 31 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13 g of Compound 1-53. (Yield: 68%, MS: [M+H]+=616)


Preparation Example 1-54: Preparation of Compound 1-54



embedded image


Compound sub-G-1 (15 g, 33.8 mmol) and Compound 1-E (8.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.4 g of Compound sub1-E-9. (Yield: 70%, MS: [M+H]+=610)




embedded image


Compound sub1-E-9 (15 g, 24.6 mmol) and Compound sub10 (3 g, 24.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in 31 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.2 g of Compound 1-54. (Yield: 76%, MS: [M+H]+=652)


Preparation Example 1-55: Preparation of Compound 1-55



embedded image


Compound Trz2 (15 g, 56 mmol) and Compound sub24 (11.6 g, 56 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (23.2 g, 168.1 mmol) was dissolved in 70 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.6 g of Compound sub1-G-7. (Yield: 71%, MS: [M+H]+=394)




embedded image


Compound sub1-G-7 (15 g, 38.1 mmol) and Compound 1-B (9.4 g, 38.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.8 g of Compound sub1-B-7. (Yield: 65%, MS: [M+H]+=560)




embedded image


Compound sub1-B-7 (15 g, 26.8 mmol) and Compound sub10 (3.3 g, 26.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.9 g of Compound 1-55. (Yield: 80%, MS: [M+H]+=602)


Preparation Example 1-56: Preparation of Compound 1-56



embedded image


Compound Trz24 (15 g, 38.1 mmol) and Compound sub25 (9.4 g, 38.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in 47 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.8 g of Compound sub1-G-8. (Yield: 65%, MS: [M+H]+=560)




embedded image


Compound sub1-G-8 (15 g, 30 mmol) and Compound sub9 (6.4 g, 30 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.4 g of Compound 1-56. (Yield: 71%, MS: [M+H]+=632)


Preparation Example 1-57: Preparation of Compound 1-57



embedded image


Compound Trz25 (15 g, 41.9 mmol) and Compound sub24 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.4 g of Compound sub1-G-9. (Yield: 61%, MS: [M+H]+=484)




embedded image


Compound sub1-G-9 (15 g, 31 mmol) and Compound 1-F (7.6 g, 31 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.5 g of Compound sub1-F-3. (Yield: 62%, MS: [M+H]+=650)




embedded image


Compound sub1-F-3 (15 g, 23.1 mmol) and Compound sub10 (2.8 g, 23.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.2 mmol) was dissolved in 29 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.8 g of Compound 1-57. (Yield: 80%, MS: [M+H]+=692)


Preparation Example 1-58: Preparation of Compound 1-58



embedded image


Compound Trz26 (15 g, 33.8 mmol) and Compound sub26 (5.3 g, 33.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14 g, 101.4 mmol) was dissolved in 42 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.5 g of Compound sub1-G-10. (Yield: 60%, MS: [M+H]+=520)




embedded image


Compound sub1-G-10 (15 g, 28.8 mmol) and Compound 1-D (7.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15 g of Compound sub1-D-7. (Yield: 76%, MS: [M+H]+=686)




embedded image


Compound sub1-D-7 (15 g, 21.9 mmol) and Compound sub10 (2.7 g, 21.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.1 g, 65.6 mmol) was dissolved in 27 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 12-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.9 g of Compound 1-58. (Yield: 62%, MS: [M+H]+=728)


Preparation Example 1-59: Preparation of Compound 1-59



embedded image


Compound Trz15 (15 g, 41.9 mmol) and Compound sub24 (8.7 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.4 g of Compound sub1-G-11. (Yield: 61%, MS: [M+H]+=484)




embedded image


Compound sub1-G-11 (15 g, 28.8 mmol) and Compound 1-F (7.1 g, 28.8 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15 g of Compound sub1-F-4. (Yield: 76%, MS: [M+H]+=686)




embedded image


Compound sub1-F-4 (15 g, 23.1 mmol) and Compound sub10 (2.8 g, 23.1 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (9.6 g, 69.2 mmol) was dissolved in 29 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.1 g of Compound 1-59. (Yield: 76%, MS: [M+H]+=692)


Preparation Example 1-60: Preparation of Compound 1-60



embedded image


Compound Trz12 (15 g, 41.9 mmol) and Compound sub28 (6.6 g, 41.9 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in 52 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.1 g of Compound sub1-G-12. (Yield: 61%, MS: [M+H]+=434)




embedded image


Compound sub1-G-12 (15 g, 34.6 mmol) and Compound 1-D (8.5 g, 34.6 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.6 g of Compound sub1-D-8. (Yield: 79%, MS: [M+H]+=500)




embedded image


Compound sub1-D-8 (15 g, 25 mmol) and Compound sub10 (4.3 g, 25 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (10.4 g, 75 mmol) was dissolved in 31 ml of water, added thereto, and the mixture was sufficiently stirred and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.3 g of Compound 1-60. (Yield: 77%, MS: [M+H]+=692)


Preparation Example 2-1: Preparation of Compound 2-1



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-B (10 g, 64.2 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound sub2-A-1. (Yield: 75%, MS: [M+H]+=289)




embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-1 (12.9 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.7 g of Compound 2-1. (Yield: 59%, MS: [M+H]+=624)


Preparation Example 2-2: Preparation of Compound 2-2



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-2 (11.1 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.1 g of Compound 2-2. (Yield: 51%, MS: [M+H]+=574)


Preparation Example 2-3: Preparation of Compound 2-3



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-3 (14.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.2 g of Compound 2-3. (Yield: 53%, MS: [M+H]+=664)


Preparation Example 2-4: Preparation of Compound 2-4



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-4 (13.9 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14 g of Compound 2-4. (Yield: 62%, MS: [M+H]+=654)


Preparation Example 2-5: Preparation of Compound 2-5



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-5 (13.8 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 2-5. (Yield: 50%, MS: [M+H]+=650)


Preparation Example 2-6: Preparation of Compound 2-6



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-6 (14.8 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.2 g of Compound 2-6. (Yield: 52%, MS: [M+H]+=680)


Preparation Example 2-7: Preparation of Compound 2-7



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-7 (12.2 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 1 g of Compound 2-7. (Yield: 50%, MS: [M+H]+=61)


Preparation Example 2-8: Preparation of Compound 2-8



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-8 (13.9 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.3 g of Compound 2-8. (Yield: 59%, MS: [M+H]+=654)


Preparation Example 2-9: Preparation of Compound 2-9



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-9 (9.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 2-9. (Yield: 62%, MS: [M+H]+=522)


Preparation Example 2-10: Preparation of Compound 2-10



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-10 (14.5 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.4 g of Compound 2-10. (Yield: 62%, MS: [M+H]+=572)


Preparation Example 2-11: Preparation of Compound 2-11



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-11 (13.4 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.4 g of Compound 2-11. (Yield: 56%, MS: [M+H]+=638)


Preparation Example 2-12: Preparation of Compound 2-12



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-12 (12 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11 g of Compound 2-12. (Yield: 53%, MS: [M+H]+=598)


Preparation Example 2-13: Preparation of Compound 2-13



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-13 (14.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15.6 g of Compound 2-13. (Yield: 68%, MS: [M+H]+=664)


Preparation Example 2-14: Preparation of Compound 2-14



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-14 (13.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.2 g of Compound 2-14. (Yield: 60%, MS: [M+H]+=638)


Preparation Example 2-15: Preparation of Compound 2-15



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-15 (13.9 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12 g of Compound 2-15. (Yield: 53%, MS: [M+H]+=654)


Preparation Example 2-16: Preparation of Compound 2-16



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-16 (12.7 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.7 g of Compound 2-16. (Yield: 64%, MS: [M+H]+=618)


Preparation Example 2-17: Preparation of Compound 2-17



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-17 (12.1 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.5 g of Compound 2-17. (Yield: 55%, MS: [M+H]+=602)


Preparation Example 2-18: Preparation of Compound 2-18



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-18 (12.1 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.4 g of Compound 2-18. (Yield: 69%, MS: [M+H]+=602)


Preparation Example 2-19: Preparation of Compound 2-19



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-19 (13.2 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.4 g of Compound 2-19. (Yield: 52%, MS: [M+H]+=634)


Preparation Example 2-20: Preparation of Compound 2-20



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-20 (12.5 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.2 g of Compound 2-20. (Yield: 62%, MS: [M+H]+=614)


Preparation Example 2-21: Preparation of Compound 2-21



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-21 (14.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.2 g of Compound 2-21. (Yield: 62%, MS: [M+H]+=664)


Preparation Example 2-22: Preparation of Compound 2-22



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-22 (12 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 2-22. (Yield: 54%, MS: [M+H]+=598)


Preparation Example 2-23: Preparation of Compound 2-23



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-23 (11.1 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.9 g of Compound 2-23. (Yield: 60%, MS: [M+H]+=572)


Preparation Example 2-24: Preparation of Compound 2-24



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-24 (12.9 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.6 g of Compound 2-24. (Yield: 63%, MS: [M+H]+=624)


Preparation Example 2-25: Preparation of Compound 2-25



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-25 (13.3 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.3 g of Compound 2-25. (Yield: 65%, MS: [M+H]+=638)


Preparation Example 2-26: Preparation of Compound 2-26



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-26 (12.5 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.8 g of Compound 2-26. (Yield: 51%, MS: [M+H]+=614)


Preparation Example 2-27: Preparation of Compound 2-27



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-27 (14.6 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.1 g of Compound 2-27. (Yield: 69%, MS: [M+H]+=674)


Preparation Example 2-28: Preparation of Compound 2-28



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-28 (13.8 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 2-28. (Yield: 50%, MS: [M+H]+=650)


Preparation Example 2-29: Preparation of Compound 2-29



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-29 (16.4 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 17.1 g of Compound 2-29. (Yield: 68%, MS: [M+H]+=726)


Preparation Example 2-30: Preparation of Compound 2-30



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-30 (13.8 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.4 g of Compound 2-30. (Yield: 64%, MS: [M+H]+=650)


Preparation Example 2-31: Preparation of Compound 2-31



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-C (10 g, 64.2 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1.3 g, 1.2 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.6 g of Compound sub2-A-2. (Yield: 63%, MS: [M+H]+=289)




embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub2-31 (15.1 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.7 g of Compound 2-31. (Yield: 70%, MS: [M+H]+=688)


Preparation Example 2-32: Preparation of Compound 2-32



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub2-32 (17.7 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.6 g of Compound 2-32. (Yield: 63%, MS: [M+H]+=763)


Preparation Example 2-33: Preparation of Compound 2-33



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub2-33 (14.6 g, 34.6 mmol) and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound 2-33. (Yield: 54%, MS: [M+H]+=674)


Preparation Example 2-34: Preparation of Compound 2-34



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-D (14.9 g, 64.2 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1.3 g, 1.2 mmol) was added. After 10-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.8 g of Compound sub2-A-3. (Yield: 79%, MS: [M+H]+=365)




embedded image


Compound sub2-A-3 (10 g, 27.4 mmol), Compound sub2-34 (8.8 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.7 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound 2-34. (Yield: 63%, MS: [M+H]+=650)


Preparation Example 2-35: Preparation of Compound 2-35



embedded image


Compound sub2-A-3 (10 g, 27.4 mmol), Compound sub2-35 (8.1 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.7 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.7 g of Compound 2-35. (Yield: 51%, MS: [M+H]+=624)


Preparation Example 2-36: Preparation of Compound 2-36



embedded image


Compound sub2-A-3 (10 g, 27.4 mmol), Compound sub2-36 (9.6 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.1 g of Compound 2-36. (Yield: 65%, MS: [M+H]+=680)


Preparation Example 2-37: Preparation of Compound 2-37



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-E (14.9 g, 64.2 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1.3 g, 1.2 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.2 g of Compound sub2-A-4. (Yield: 67%, MS: [M+H]+=365)




embedded image


Compound sub2-A-4 (10 g, 27.4 mmol), Compound sub2-37 (10.9 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.9 g of Compound 2-37. (Yield: 70%, MS: [M+H]+=726)


Preparation Example 2-38: Preparation of Compound 2-38



embedded image


Compound sub2-A-4 (10 g, 27.4 mmol), Compound sub2-38 (10.2 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.7 g of Compound 2-38. (Yield: 56%, MS: [M+H]+=700)


Preparation Example 2-39: Preparation of Compound 2-39



embedded image


Compound sub2-A-4 (10 g, 27.4 mmol), Compound sub2-39 (10 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.8 g of Compound 2-39. (Yield: 62%, MS: [M+H]+=694)


Preparation Example 2-40: Preparation of Compound 2-40



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-F (14.9 g, 64.2 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1.3 g, 1.2 mmol) was added. After 8-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.4 g of Compound sub2-A-5. (Yield: 68%, MS: [M+H]+=365)




embedded image


Compound sub2-A-5 (10 g, 27.4 mmol), Compound sub2-40 (10.2 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.7 g of Compound 2-40. (Yield: 56%, MS: [M+H]+=700)


Preparation Example 2-41: Preparation of Compound 2-41



embedded image


Compound sub2-A-5 (10 g, 27.4 mmol), Compound sub2-41 (10.2 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.8 g of Compound 2-41. (Yield: 51%, MS: [M+H]+=700)


Preparation Example 2-42: Preparation of Compound 2-42



embedded image


Compound sub2-A-5 (10 g, 27.4 mmol), Compound sub2-42 (11.3 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.5 g of Compound 2-42. (Yield: 57%, MS: [M+H]+=740)


Preparation Example 2-43: Preparation of Compound 2-43



embedded image


Compound 2-A (15 g, 58.3 mmol) and Compound 2-G (14.9 g, 64.2 mmol) were added to 300 ml of THF under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 48 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1.3 g, 1.2 mmol) was added. After 9-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 14.7 g of Compound sub2-A-6. (Yield: 69%, MS: [M+H]+=365)




embedded image


Compound sub2-A-6 (10 g, 27.4 mmol), Compound sub2-43 (8.1 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.7 g of Compound 2-43. (Yield: 57%, MS: [M+H]+=624)


Preparation Example 2-44: Preparation of Compound 2-44



embedded image


Compound sub2-A-6 (10 g, 27.4 mmol), Compound sub2-44 (11.7 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12 g of Compound 2-44. (Yield: 58%, MS: [M+H]+=756)


Preparation Example 2-45: Preparation of Compound 2-45



embedded image


Compound sub45 (10 g, 70.3 mmol), Compound sub2-A-2 (42.6 g, 147.7 mmol) and sodium tert-butoxide (16.9 g, 175.8 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.7 g, 1.4 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 31 g of Compound 2-45. (Yield: 68%, MS: [M+H]+=648)


Preparation Example 2-46: Preparation of Compound 2-46



embedded image


Compound sub46 (10 g, 59.1 mmol), Compound sub2-A-2 (35.8 g, 124.1 mmol) and sodium tert-butoxide (14.2 g, 147.7 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.7 g of Compound 2-46. (Yield: 67%, MS: [M+H]+=674)


Preparation Example 2-47: Preparation of Compound 2-47



embedded image


Compound sub47 (10 g, 38.6 mmol), Compound sub2-A-2 (23.4 g, 81 mmol) and sodium tert-butoxide (9.3 g, 96.4 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.8 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 15 g of Compound 2-47. (Yield: 51%, MS: [M+H]+=764)


Preparation Example 2-48: Preparation of Compound 2-48



embedded image


Compound sub1-A-6 (10 g, 27.4 mmol), Compound sub48 (6 g, 27.4 mmol) and sodium tert-butoxide (2.9 g, 30.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9 g of Compound sub2-B-1. (Yield: 60%, MS: [M+H]+=548)




embedded image


Compound sub2-B-1 (10 g, 18.3 mmol), Compound sub2-A-1 (5.3 g, 18.3 mmol) and sodium tert-butoxide (2.3 g, 23.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 7.7 g of Compound 2-48. (Yield: 53%, MS: [M+H]+=800)


Preparation Example 2-49: Preparation of Compound 2-49



embedded image


Compound sub49 (10 g, 59.1 mmol), Compound sub2-A-1 (35.8 g, 124.1 mmol) and sodium tert-butoxide (14.2 g, 147.7 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 22.7 g of Compound 2-49. (Yield: 57%, MS: [M+H]+=674)


Preparation Example 2-50: Preparation of Compound 2-50



embedded image


Compound sub50 (10 g, 47.8 mmol), Compound sub2-A-1 (29 g, 100.3 mmol) and sodium tert-butoxide (11.5 g, 119.5 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 23.9 g of Compound 2-50. (Yield: 70%, MS: [M+H]+=714)


Preparation Example 2-51: Preparation of Compound 2-51



embedded image


Compound sub51 (10 g, 38.7 mmol), Compound sub2-A-1 (23.5 g, 81.3 mmol) and sodium tert-butoxide (9.3 g, 96.8 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.8 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 16.8 g of Compound 2-51. (Yield: 57%, MS: [M+H]+=763)


Preparation Example 2-52: Preparation of Compound 2-52



embedded image


Compound sub2-A-6 (10 g, 27.4 mmol), Compound sub46 (4.6 g, 27.4 mmol) and sodium tert-butoxide (2.9 g, 30.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.4 g of Compound sub2-B-2. (Yield: 69%, MS: [M+H]+=498)




embedded image


Compound sub2-B-2 (10 g, 20.1 mmol), Compound sub2-A-2 (5.8 g, 20.1 mmol) and sodium tert-butoxide (2.5 g, 26.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.3 g of Compound 2-52. (Yield: 55%, MS: [M+H]+=750)


Preparation Example 2-53: Preparation of Compound 2-53



embedded image


Compound sub2-A-6 (10 g, 27.4 mmol), Compound sub52 (2.6 g, 27.4 mmol) and sodium tert-butoxide (2.9 g, 30.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 5.9 g of Compound sub2-B-3. (Yield: 51%, MS: [M+H]+=422)




embedded image


Compound sub2-B-3 (10 g, 23.7 mmol), Compound sub2-A-1 (6.9 g, 23.7 mmol) and sodium tert-butoxide (3 g, 30.8 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.3 g of Compound 2-53. (Yield: 58%, MS: [M+H]+=674)


Preparation Example 2-54: Preparation of Compound 2-54



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub53 (8.5 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.5 g of Compound sub2-B-4. (Yield: 67%, MS: [M+H]+=498)




embedded image


Compound sub2-B-4 (10 g, 20.1 mmol), Compound sub2-A-1 (5.8 g, 20.1 mmol) and sodium tert-butoxide (2.5 g, 26.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 7.5 g of Compound 2-54. (Yield: 50%, MS: [M+H]+=750)


Preparation Example 2-55: Preparation of Compound 2-55



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub45 (5 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 9.3 g of Compound sub2-B-5. (Yield: 68%, MS: [M+H]+=396)




embedded image


Compound sub2-B-5 (10 g, 25.3 mmol), Compound sub2-A-1 (7.3 g, 25.3 mmol) and sodium tert-butoxide (3.2 g, 32.9 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10 g of Compound 2-55. (Yield: 61%, MS: [M+H]+=648)


Preparation Example 2-56: Preparation of Compound 2-56



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub54 (6.7 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.6 g of Compound sub2-B-6. (Yield: 56%, MS: [M+H]+=446)




embedded image


Compound sub2-B-6 (10 g, 22.4 mmol), Compound sub2-A-1 (6.5 g, 22.4 mmol) and sodium tert-butoxide (2.8 g, 29.2 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.8 g of Compound 2-56. (Yield: 56%, MS: [M+H]+=698)


Preparation Example 2-57: Preparation of Compound 2-57



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub55 (11.5 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.2 g of Compound sub2-B-7. (Yield: 65%, MS: [M+H]+=586)




embedded image


Compound sub2-B-7 (10 g, 17.1 mmol), Compound sub2-A-1 (4.9 g, 17.1 mmol) and sodium tert-butoxide (2.1 g, 22.2 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 7.7 g of Compound 2-57. (Yield: 54%, MS: [M+H]+=838)


Preparation Example 2-58: Preparation of Compound 2-58



embedded image


Compound sub2-A-2 (10 g, 34.6 mmol), Compound sub51 (8.9 g, 34.6 mmol) and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 10.8 g of Compound sub2-B-8. (Yield: 61%, MS: [M+H]+=511)




embedded image


Compound sub2-B-8 (10 g, 19.6 mmol), Compound sub2-A-1 (5.7 g, 19.6 mmol) and sodium tert-butoxide (2.4 g, 25.5 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 7.6 g of Compound 2-58. (Yield: 51%, MS: [M+H]+=763)


Preparation Example 2-59: Preparation of Compound 2-59



embedded image


Compound sub2-A-6 (10 g, 27.4 mmol), Compound sub56 (5.5 g, 27.4 mmol) and sodium tert-butoxide (2.9 g, 30.2 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 7.5 g of Compound sub2-B-9. (Yield: 52%, MS: [M+H]+=528)




embedded image


Compound sub2-B-9 (10 g, 19 mmol), Compound sub2-A-1 (5.5 g, 19 mmol) and sodium tert-butoxide (2.4 g, 24.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.7 g of Compound 2-59. (Yield: 59%, MS: [M+H]+=780)


Preparation Example 2-60: Preparation of Compound 2-60



embedded image


Compound 2-H (15 g, 45 mmol) and Compound 2-B (7.7 g, 49.5 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1 g, 0.9 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.3 g of Compound sub2-C-1. (Yield: 75%, MS: [M+H]+=365)




embedded image


Compound sub2-C-1 (10 g, 27.4 mmol), Compound sub2-57 (9.5 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.7 g of Compound 2-60. (Yield: 69%, MS: [M+H]+=674)


Preparation Example 2-61: Preparation of Compound 2-61



embedded image


Compound sub2-C-1 (10 g, 27.4 mmol), Compound sub2-32 (14 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound 2-61. (Yield: 55%, MS: [M+H]+=839)


Preparation Example 2-62: Preparation of Compound 2-62



embedded image


Compound sub2-C-1 (10 g, 27.4 mmol), Compound sub2-58 (10.3 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.5 g of Compound 2-62. (Yield: 65%, MS: [M+H]+=704)


Preparation Example 2-63: Preparation of Compound 2-63



embedded image


Compound 2-H (15 g, 45 mmol) and Compound 2-C (7.7 g, 49.5 mmol) were added to 300 ml of THE under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 ml of water, added thereto, and the mixture was sufficiently stirred and then tetrakis(triphenylphosphine)palladium(0) (1 g, 0.9 mmol) was added. After 11-hour reaction, the reaction mixture was cooled to room temperature, and the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, the mixture was stirred and filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.3 g of Compound sub2-C-2. (Yield: 75%, MS: [M+H]+=365)




embedded image


Compound sub2-C-2 (10 g, 27.4 mmol), Compound sub2-59 (10.3 g, 27.4 mmol) and sodium tert-butoxide (3.4 g, 35.6 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 13.5 g of Compound 2-63. (Yield: 70%, MS: [M+H]+=704)


Preparation Example 2-64: Preparation of Compound 2-64



embedded image


Compound sub52 (10 g, 107.4 mmol), Compound sub2-C-1 (82.3 g, 225.5 mmol) and sodium tert-butoxide (25.8 g, 268.4 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (1.1 g, 2.1 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 41 g of Compound 2-64. (Yield: 51%, MS: [M+H]+=750)


Preparation Example 2-65: Preparation of Compound 2-65



embedded image


Compound sub46 (10 g, 59.1 mmol), Compound sub2-C-1 (45.3 g, 124.1 mmol) and sodium tert-butoxide (14.2 g, 147.7 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 31.2 g of Compound 2-65. (Yield: 64%, MS: [M+H]+=826)


Preparation Example 2-66: Preparation of Compound 2-66



embedded image


Compound sub60 (10 g, 45.6 mmol), Compound sub2-C-1 (34.9 g, 95.8 mmol) and sodium tert-butoxide (11 g, 114 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 26.7 g of Compound 2-66. (Yield: 67%, MS: [M+H]+=876)


Preparation Example 2-67: Preparation of Compound 2-67



embedded image


Compound sub61 (10 g, 54.6 mmol), Compound sub2-C-1 (41.8 g, 114.6 mmol) and sodium tert-butoxide (13.1 g, 136.5 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.1 mmol) was added thereto. After 5 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 32.1 g of Compound 2-67. (Yield: 70%, MS: [M+H]+=840)


Preparation Example 2-68: Preparation of Compound 2-68



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-62 (15.6 g, 38.1 mmol) and potassium phosphate (22.1 g, 103.9 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added thereto. After 2 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound 2-68. (Yield: 55%, MS: [M+H]+=663)


Preparation Example 2-69: Preparation of Compound 2-69



embedded image


Compound sub2-A-1 (10 g, 34.6 mmol), Compound sub2-63 (16.2 g, 38.1 mmol) and potassium phosphate (22.1 g, 103.9 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added thereto. After 2 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 12.6 g of Compound 2-69. (Yield: 54%, MS: [M+H]+=677)


Preparation Example 2-70: Preparation of Compound 2-70



embedded image


Compound sub2-C-1 (10 g, 27.4 mmol), Compound sub2-64 (7.8 g, 30.1 mmol) and potassium phosphate (17.5 g, 82.2 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 11.2 g of Compound sub2-B-10. (Yield: 70%, MS: [M+H]+=587)




embedded image


Compound sub2-B-10 (10 g, 17 mmol), Compound sub2-A-1 (5.4 g, 18.7 mmol) and potassium phosphate (10.9 g, 51.1 mmol) were added to 200 ml of xylene under a nitrogen atmosphere, and the mixture was stirred and refluxed. Then, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, when the reaction was completed, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the compound was completely dissolved again in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to give 8.7 g of Compound 2-70. (Yield: 61%, MS: [M+H]+=839)


EXAMPLES AND COMPARATIVE EXAMPLES
Comparative Example 1

A glass substrate on which a thin film of ITO (indium tin oxide) was coated in a thickness of 1000 Å was put into distilled water containing a detergent dissolved therein and ultrasonically washed. In this case, the detergent used was a product commercially available from Fischer Co. and the distilled water was one which had been twice filtered by using a filter commercially available from Millipore Co. The ITO was washed for 30 minutes, and ultrasonic washing was then repeated twice for 10 minutes by using distilled water. After the washing with distilled water was completed, the substrate was ultrasonically washed with isopropyl alcohol, acetone, and methanol solvent, and dried, after which it was transported to a plasma cleaner. Then, the substrate was cleaned with oxygen plasma for 5 minutes, and then transferred to a vacuum evaporator.


On the ITO transparent electrode thus prepared, the following compound HI-1 was formed as a hole injection layer, but the following compound A-1 was p-doped in an amount of 1.5% by weight. The following compound HT-1 was vacuum deposited on the hole injection layer to form a hole transport layer with a film thickness of 800 Å. Then, the following compound EB-1 was vacuum deposited to a film thickness of 150 Å on the hole transport layer to form an electron blocking layer. Then, the following compound 1-2 and the following compound Dp-7 were vacuum deposited in a weight ratio of 98:2 on the EB-1 deposited film to form a red light emitting layer with a thickness of 400 Å. The following compound HB-1 was vacuum deposited to a thickness of 30 Å on the light emitting layer to form a hole blocking layer. Then, the following compound ET-1 and the following compound LiQ were vacuum deposited in a ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. Lithium fluoride (LiF) and aluminum were sequentially deposited to have a thickness of 12 Å and 1000 Å, respectively, on the electron injection and transport layer to form a cathode.




embedded image


embedded image


embedded image


In the above-mentioned processes, the deposition rates of the organic materials were maintained at 0.4 to 0.7 Å/sec, the deposition rates of lithium fluoride and the aluminum of the cathode were maintained at 0.3 Å/sec and 2 Å/sec, respectively, and the degree of vacuum during the deposition was maintained at 2*10−7 to 5*10−6 torr.


Examples 1 to 155

The organic light emitting devices were manufactured in the same manner as in Comparative Example 1, except that instead of Compound 1-2 as a host, the first host and the second host listed in Table 1 below were co-deposited at a weight ratio of 1:1 and used.


Comparative Examples 2 to 61

The organic light emitting devices were manufactured in the same manner as in Comparative Example 1, except that the host material shown in Table 2 was used instead of Compound 1-2 as a host, and the compound shown in Table 2 below was used instead of Compound EB-1 as the electron blocking layer material.


Comparative Examples 62 to 121

The organic light emitting devices were manufactured in the same manner as in Comparative Example 1, except that instead of Compound 1-2 as a host, the first host and the second host listed in Table 3 below were co-deposited at a weight ratio of 1:1 and used.


Compound B-1 to Compound B-12 in Table 3 are as follows:




embedded image


embedded image


embedded image


embedded image


Comparative Examples 122 to 227

The organic light emitting devices were manufactured in the same manner as in Comparative Example 1, except that instead of Compound 1-2 as a host, the first host and the second host listed in Table 4 below were co-deposited at a weight ratio of 1:1 and used.


Compound C-1 to Compound C-12 in Table 4 are as follows:




embedded image


embedded image


embedded image


embedded image


Experimental Example

The voltage, efficiency, and lifetime were measured (based on 15 mA/cm2) by applying a current to the organic light emitting devices manufactured in Examples 1 to 155 and Comparative Examples 1 to 227, and the results are shown in Tables 1 to 4 below. Lifetime T95 means the time required for the luminance to be reduced to 95% of the initial luminance (6,000 nit).















TABLE 1











Light





Driving
Efficiency
Lifetime
emitting


Category
First host
Second host
voltage (V)
(cd/A)
T95 (hr)
color





















Example 1
Compound 1-2
Compound 2-1
3.96
19.6
203
Red


Example 2
Compound 1-2
Compound 2-27
3.94
19.3
207
Red


Example 3
Compound 1-2
Compound 2-39
3.97
19.8
198
Red


Example 4
Compound 1-2
Compound 2-54
3.88
20.4
185
Red


Example 5
Compound 1-2
Compound 2-60
3.93
19.1
193
Red


Example 6
Compound 1-3
Compound 2-3
3.92
18.9
191
Red


Example 7
Compound 1-3
Compound 2-10
3.88
19.2
208
Red


Example 8
Compound 1-3
Compound 2-68
3.90
19.6
197
Red


Example 9
Compound 1-3
Compound 2-44
3.89
18.7
191
Red


Example 10
Compound 1-3
Compound 2-49
3.92
185
205
Red


Example 11
Compound 1-7
Compound 2-5
3.86
19.3
213
Red


Example 12
Compound 1-7
Compound 2-14
3.82
19.8
212
Red


Example 13
Compound 1-7
Compound 2-23
3.86
18.1
207
Red


Example 14
Compound 1-7
Compound 2-58
3.83
19.5
218
Red


Example 15
Compound 1-7
Compound 2-64
3.81
18.7
195
Red


Example 16
Compound 1-9
Compound 2-17
3.88
19.3
203
Red


Example 17
Compound 1-9
Compound 2-20
3.80
19.7
210
Red


Example 18
Compound 1-9
Compound 2-28
3.84
19.0
207
Red


Example 19
Compound 1-9
Compound 2-35
3.89
18.6
201
Red


Example 20
Compound 1-9
Compound 2-57
3.86
19.2
195
Red


Example 21
Compound 1-11
Compound 2-1
3.85
18.4
203
Red


Example 22
Compound 1-11
Compound 2-27
3.81
18.6
205
Red


Example 23
Compound 1-11
Compound 2-39
3.80
18.7
197
Red


Example 24
Compound 1-11
Compound 2-54
3.88
19.0
206
Red


Example 25
Compound 1-11
Compound 2-60
3.83
18.9
194
Red


Example 26
Compound 1-14
Compound 2-3
3.89
20.1
213
Red


Example 27
Compound 1-14
Compound 2-10
3.87
20.3
215
Red


Example 28
Compound 1-14
Compound 2-68
3.88
20.2
201
Red


Example 29
Compound 1-14
Compound 2-44
3.86
19.5
217
Red


Example 30
Compound 1-14
Compound 2-49
3.86
20.4
220
Red


Example 31
Compound 1-15
Compound 2-5
3.79
19.3
208
Red


Example 32
Compound 1-15
Compound 2-14
3.72
20.2
211
Red


Example 33
Compound 1-15
Compound 2-23
3.74
20.7
210
Red


Example 34
Compound 1-15
Compound 2-58
3.70
19.8
203
Red


Example 35
Compound 1-15
Compound 2-64
3.77
20.6
215
Red


Example 36
Compound 1-16
Compound 2-17
3.76
19.9
221
Red


Example 37
Compound 1-16
Compound 2-20
3.78
20.3
216
Red


Example 38
Compound 1-16
Compound 2-28
3.74
20.1
220
Red


Example 39
Compound 1-16
Compound 2-35
3.79
20.6
208
Red


Example 40
Compound 1-16
Compound 2-70
3.82
20.4
215
Red


Example 41
Compound 1-17
Compound 2-1
3.81
20.1
203
Red


Example 42
Compound 1-17
Compound 2-27
3.83
20.3
214
Red


Example 43
Compound 1-17
Compound 2-39
3.80
20.8
209
Red


Example 44
Compound 1-17
Compound 2-54
3.85
20.5
205
Red


Example 45
Compound 1-17
Compound 2-60
3.84
21.0
215
Red


Example 46
Compound 1-20
Compound 2-3
3.93
19.3
201
Red


Example 47
Compound 1-20
Compound 2-10
3.90
20.0
228
Red


Example 48
Compound 1-20
Compound 2-68
3.92
20.6
210
Red


Example 49
Compound 1-20
Compound 2-44
3.88
19.7
224
Red


Example 50
Compound 1-20
Compound 2-49
3.86
20.0
217
Red


Example 51
Compound 1-22
Compound 2-5
3.80
20.9
234
Red


Example 52
Compound 1-22
Compound 2-14
3.81
20.5
221
Red


Example 53
Compound 1-22
Compound 2-23
3.87
19.9
216
Red


Example 54
Compound 1-22
Compound 2-58
3.86
20.6
224
Red


Example 55
Compound 1-22
Compound 2-64
3.93
20.4
225
Red


Example 56
Compound 1-24
Compound 2-17
3.78
20.3
217
Red


Example 57
Compound 1-24
Compound 2-20
3.84
21.1
230
Red


Example 58
Compound 1-24
Compound 2-28
3.80
21.4
228
Red


Example 59
Compound 1-24
Compound 2-35
3.83
20.7
233
Red


Example 60
Compound 1-24
Compound 2-57
3.85
20.9
215
Red


Example 61
Compound 1-27
Compound 2-1
3.76
20.5
238
Red


Example 62
Compound 1-27
Compound 2-27
3.82
19.3
211
Red


Example 63
Compound 1-27
Compound 2-39
3.79
19.6
223
Red


Example 64
Compound 1-27
Compound 2-54
3.78
19.1
226
Red


Example 65
Compound 1-27
Compound 2-60
3.82
20.3
230
Red


Example 66
Compound 1-28
Compound 2-3
3.88
19.7
227
Red


Example 67
Compound 1-28
Compound 2-10
3.84
20.8
218
Red


Example 68
Compound 1-28
Compound 2-68
3.78
19.3
215
Red


Example 69
Compound 1-28
Compound 2-44
3.82
19.5
220
Red


Example 70
Compound 1-28
Compound 2-49
3.86
20.2
218
Red


Example 71
Compound 1-31
Compound 2-5
3.98
20.3
256
Red


Example 72
Compound 1-31
Compound 2-14
3.92
20.0
248
Red


Example 73
Compound 1-31
Compound 2-23
3.95
20.5
251
Red


Example 74
Compound 1-31
Compound 2-58
3.90
20.1
252
Red


Example 75
Compound 1-31
Compound 2-64
3.93
19.8
265
Red


Example 76
Compound 1-33
Compound 2-1
3.68
22.3
281
Red


Example 77
Compound 1-33
Compound 2-27
3.65
22.0
277
Red


Example 78
Compound 1-33
Compound 2-39
3.70
21.3
288
Red


Example 79
Compound 1-33
Compound 2-54
3.69
22.7
270
Red


Example 80
Compound 1-33
Compound 2-60
3.71
21.8
274
Red


Example 81
Compound 1-37
Compound 2-17
3.76
22.2
263
Red


Example 82
Compound 1-37
Compound 2-20
3.70
21.9
275
Red


Example 83
Compound 1-37
Compound 2-28
3.74
22.0
279
Red


Example 84
Compound 1-37
Compound 2-35
3.79
21.8
256
Red


Example 85
Compound 1-37
Compound 2-70
3.74
21.5
275
Red


Example 86
Compound 1-38
Compound 2-3
3.72
21.0
275
Red


Example 87
Compound 1-38
Compound 2-10
3.70
22.1
271
Red


Example 88
Compound 1-38
Compound 2-68
3.75
21.5
284
Red


Example 89
Compound 1-38
Compound 2-44
3.74
21.3
268
Red


Example 90
Compound 1-38
Compound 2-49
3.71
22.3
275
Red


Example 91
Compound 1-40
Compound 2-5
3.73
20.7
225
Red


Example 92
Compound 1-40
Compound 2-14
3.70
19.1
238
Red


Example 93
Compound 1-40
Compound 2-23
3.76
19.7
231
Red


Example 94
Compound 1-40
Compound 2-58
3.74
19.0
240
Red


Example 95
Compound 1-40
Compound 2-64
3.80
19.4
234
Red


Example 96
Compound 1-41
Compound 2-17
3.83
19.0
241
Red


Example 97
Compound 1-41
Compound 2-20
3.87
19.5
236
Red


Example 98
Compound 1-41
Compound 2-28
3.83
18.9
228
Red


Example 99
Compound 1-41
Compound 2-35
3.86
19.8
234
Red


Example 100
Compound 1-41
Compound 2-57
3.79
19.4
225
Red


Example 101
Compound 1-43
Compound 2-1
3.81
19.5
197
Red


Example 102
Compound 1-43
Compound 2-27
3.80
20.0
202
Red


Example 103
Compound 1-43
Compound 2-39
3.84
19.4
213
Red


Example 104
Compound 1-43
Compound 2-54
3.79
20.8
204
Red


Example 105
Compound 1-43
Compound 2-60
3.85
19.7
195
Red


Example 106
Compound 1-45
Compound 2-3
3.87
20.1
194
Red


Example 107
Compound 1-45
Compound 2-10
3.91
18.8
203
Red


Example 108
Compound 1-45
Compound 2-68
3.88
19.3
201
Red


Example 109
Compound 1-45
Compound 2-44
3.93
20.7
198
Red


Example 110
Compound 1-45
Compound 2-49
3.85
18.9
194
Red


Example 111
Compound 1-47
Compound 2-5
3.79
20.1
209
Red


Example 112
Compound 1-47
Compound 2-14
3.82
20.3
201
Red


Example 113
Compound 1-47
Compound 2-23
3.84
20.0
197
Red


Example 114
Compound 1-47
Compound 2-58
3.86
19.9
194
Red


Example 115
Compound 1-47
Compound 2-64
3.80
19.6
205
Red


Example 116
Compound 1-48
Compound 2-17
3.83
19.6
217
Red


Example 117
Compound 1-48
Compound 2-20
3.87
18.8
214
Red


Example 118
Compound 1-48
Compound 2-28
3.80
19.7
203
Red


Example 119
Compound 1-48
Compound 2-35
3.88
19.4
198
Red


Example 120
Compound 1-48
Compound 2-70
3.92
18.9
201
Red


Example 121
Compound 1-52
Compound 2-1
3.91
19.6
197
Red


Example 122
Compound 1-52
Compound 2-27
3.94
19.3
190
Red


Example 123
Compound 1-52
Compound 2-39
3.92
19.2
203
Red


Example 124
Compound 1-52
Compound 2-54
3.88
18.9
194
Red


Example 125
Compound 1-52
Compound 2-60
3.94
19.7
191
Red


Example 126
Compound 1-53
Compound 2-3
3.87
18.8
203
Red


Example 127
Compound 1-53
Compound 2-10
3.90
19.1
209
Red


Example 128
Compound 1-53
Compound 2-68
3.86
18.6
198
Red


Example 129
Compound 1-53
Compound 2-44
3.93
19.0
204
Red


Example 130
Compound 1-53
Compound 2-49
3.90
19.3
195
Red


Example 131
Compound 1-55
Compound 2-5
3.87
20.3
223
Red


Example 132
Compound 1-55
Compound 2-14
3.82
19.9
224
Red


Example 133
Compound 1-55
Compound 2-23
3.83
20.6
218
Red


Example 134
Compound 1-55
Compound 2-58
3.84
20.4
208
Red


Example 135
Compound 1-55
Compound 2-64
3.90
19.7
225
Red


Example 136
Compound 1-56
Compound 2-17
3.98
20.0
195
Red


Example 137
Compound 1-56
Compound 2-20
3.94
20.7
192
Red


Example 138
Compound 1-56
Compound 2-28
3.92
19.4
197
Red


Example 139
Compound 1-56
Compound 2-35
3.95
20.3
203
Red


Example 140
Compound 1-56
Compound 2-57
3.97
19.8
195
Red


Example 141
Compound 1-57
Compound 2-1
3.91
18.1
213
Red


Example 142
Compound 1-57
Compound 2-27
3.94
19.0
220
Red


Example 143
Compound 1-57
Compound 2-39
3.88
18.5
229
Red


Example 144
Compound 1-57
Compound 2-54
3.93
18.9
217
Red


Example 145
Compound 1-57
Compound 2-60
3.90
19.4
224
Red


Example 146
Compound 1-58
Compound 2-3
3.87
18.7
199
Red


Example 147
Compound 1-58
Compound 2-10
3.90
18.5
201
Red


Example 148
Compound 1-58
Compound 2-68
3.93
19.2
203
Red


Example 149
Compound 1-58
Compound 2-44
3.87
19.4
195
Red


Example 150
Compound 1-58
Compound 2-49
3.84
19.0
198
Red


Example 151
Compound 1-60
Compound 2-5
3.94
18.9
203
Red


Example 152
Compound 1-60
Compound 2-14
3.85
19.1
197
Red


Example 153
Compound 1-60
Compound 2-23
3.88
18.5
211
Red


Example 154
Compound 1-60
Compound 2-58
3.95
19.6
207
Red


Example 155
Compound 1-60
Compound 2-64
3.91
19.4
208
Red






















TABLE 2







Electron



Light




blocking
Driving
Efficiency
Lifetime
emitting


Category
Host
layer
voltage(V)
(cd/A)
T95(hr)
color





















Comparative
Compound 1-2
Compound EB-1
4.37
14.8
117
Red


Example 1


Comparative
Compound 1-2
Compound 2-1
4.39
14.0
101
Red


Example 2


Comparative
Compound 1-2
Compound 2-27
4.48
14.1
103
Red


Example 3


Comparative
Compound 1-2
Compound 2-39
4.49
14.8
98
Red


Example 4


Comparative
Compound 1-2
Compound 2-54
4.40
15.5
92
Red


Example 5


Comparative
Compound 1-2
Compound 2-60
4.43
15.1
111
Red


Example 6


Comparative
Compound 1-11
Compound 2-3
4.36
15.2
114
Red


Example 7


Comparative
Compound 1-11
Compound 2-10
4.39
15.0
103
Red


Example 8


Comparative
Compound 1-11
Compound 2-68
4.41
15.3
104
Red


Example 9


Comparative
Compound 1-11
Compound 2-44
4.42
14.4
107
Red


Example 10


Comparative
Compound 1-11
Compound 2-49
4.39
14.9
106
Red


Example 11


Comparative
Compound 1-15
Compound 2-5
4.40
15.2
138
Red


Example 12


Comparative
Compound 1-15
Compound 2-14
4.45
15.6
127
Red


Example 13


Comparative
Compound 1-15
Compound 2-23
4.43
15.0
121
Red


Example 14


Comparative
Compound 1-15
Compound 2-58
4.48
15.3
114
Red


Example 15


Comparative
Compound 1-15
Compound 2-64
4.45
15.7
121
Red


Example 16


Comparative
Compound 1-17
Compound 2-17
4.43
15.3
105
Red


Example 17


Comparative
Compound 1-17
Compound 2-20
4.44
15.4
103
Red


Example 18


Comparative
Compound 1-17
Compound 2-28
4.46
15.4
110
Red


Example 19


Comparative
Compound 1-17
Compound 2-35
4.41
14.8
107
Red


Example 20


Comparative
Compound 1-17
Compound 2-70
4.44
14.9
111
Red


Example 21


Comparative
Compound 1-27
Compound 2-1
4.38
15.0
108
Red


Example 22


Comparative
Compound 1-27
Compound 2-27
4.37
14.8
103
Red


Example 23


Comparative
Compound 1-27
Compound 2-39
4.36
14.1
100
Red


Example 24


Comparative
Compound 1-27
Compound 2-54
4.39
14.4
101
Red


Example 25


Comparative
Compound 1-27
Compound 2-60
4.38
14.7
111
Red


Example 26


Comparative
Compound 1-37
Compound 2-3
4.37
15.3
106
Red


Example 27


Comparative
Compound 1-37
Compound 2-10
4.39
15.4
108
Red


Example 28


Comparative
Compound 1-37
Compound 2-68
4.38
15.3
117
Red


Example 29


Comparative
Compound 1-37
Compound 2-44
4.37
15.0
104
Red


Example 30


Comparative
Compound 1-37
Compound 2-49
4.36
15.1
111
Red


Example 31


Comparative
Compound 1-41
Compound 2-5
4.42
14.6
109
Red


Example 32


Comparative
Compound 1-41
Compound 2-14
4.45
14.0
91
Red


Example 33


Comparative
Compound 1-41
Compound 2-23
4.36
14.2
95
Red


Example 34


Comparative
Compound 1-41
Compound 2-58
4.39
14.3
108
Red


Example 35


Comparative
Compound 1-41
Compound 2-64
4.35
14.0
94
Red


Example 36


Comparative
Compound 1-45
Compound 2-17
4.38
14.1
92
Red


Example 37


Comparative
Compound 1-45
Compound 2-20
4.39
14.5
98
Red


Example 38


Comparative
Compound 1-45
Compound 2-28
4.37
14.3
95
Red


Example 39


Comparative
Compound 1-45
Compound 2-35
4.36
14.7
91
Red


Example 40


Comparative
Compound 1-45
Compound 2-57
4.38
14.0
89
Red


Example 41


Comparative
Compound 1-53
Compound 2-1
4.38
15.1
97
Red


Example 42


Comparative
Compound 1-53
Compound 2-7
4.39
15.3
101
Red


Example 43


Comparative
Compound 1-53
Compound 2-39
4.42
15.0
96
Red


Example 44


Comparative
Compound 1-53
Compound 2-54
4.40
14.8
98
Red


Example 45


Comparative
Compound 1-53
Compound 2-60
4.34
14.9
94
Red


Example 46


Comparative
Compound 1-55
Compound 2-3
4.46
14.7
104
Red


Example 47


Comparative
Compound 1-55
Compound 2-10
4.38
15.0
107
Red


Example 48


Comparative
Compound 1-55
Compound 2-68
4.39
14.8
106
Red


Example 49


Comparative
Compound 1-55
Compound 2-44
4.47
15.3
104
Red


Example 50


Comparative
Compound 1-55
Compound 2-49
4.42
15.0
112
Red


Example 51


Comparative
Compound 1-57
Compound 2-5
4.41
14.1
101
Red


Example 52


Comparative
Compound 1-57
Compound 2-14
4.40
14.9
107
Red


Example 53


Comparative
Compound 1-57
Compound 2-23
4.43
14.6
108
Red


Example 54


Comparative
Compound 1-57
Compound 2-58
4.39
14.7
99
Red


Example 55


Comparative
Compound 1-57
Compound 2-64
4.45
15.0
101
Red


Example 56


Comparative
Compound 1-60
Compound 2-17
4.40
14.5
91
Red


Example 57


Comparative
Compound 1-60
Compound 2-20
4.41
15.0
99
Red


Example 58


Comparative
Compound 1-60
Compound 2-28
4.42
14.3
104
Red


Example 59


Comparative
Compound 1-60
Compound 2-35
4.44
15.1
96
Red


Example 60


Comparative
Compound 1-60
Compound 2-70
4.39
14.5
93
Red


Example 61






















TABLE 3











Light





Driving
Efficiency
Lifetime
emitting


Category
First host
Second host
voltage(V)
(cd/A)
T95(hr)
color





















Comparative
Compound B-1
Compound 2-1
4.31
13.1
91
Red


Example 62


Comparative
Compound B-1
Compound 2-27
4.36
13.8
103
Red


Example 63


Comparative
Compound B-1
Compound 2-39
4.34
13.6
97
Red


Example 64


Comparative
Compound B-1
Compound 2-54
4.39
14.0
102
Red


Example 65


Comparative
Compound B-1
Compound 2-60
4.36
13.9
95
Red


Example 66


Comparative
Compound B-2
Compound 2-3
4.33
13.3
84
Red


Example 67


Comparative
Compound B-2
Compound 2-10
4.40
13.8
93
Red


Example 68


Comparative
Compound B-2
Compound 2-68
4.38
13.6
95
Red


Example 69


Comparative
Compound B-2
Compound 2-44
4.31
13.9
87
Red


Example 70


Comparative
Compound B-2
Compound 2-49
4.36
14.1
95
Red


Example 71


Comparative
Compound B-3
Compound 2-5
4.40
13.2
108
Red


Example 72


Comparative
Compound B-3
Compound 2-14
4.43
14.0
97
Red


Example 73


Comparative
Compound B-3
Compound 2-23
4.41
13.4
101
Red


Example 74


Comparative
Compound B-3
Compound 2-58
4.39
14.3
104
Red


Example 75


Comparative
Compound B-3
Compound 2-64
4.42
14.2
101
Red


Example 76


Comparative
Compound B-4
Compound 2-17
4.35
13.8
90
Red


Example 77


Comparative
Compound B-4
Compound 2-20
4.38
14.2
97
Red


Example 78


Comparative
Compound B-4
Compound 2-28
4.36
13.6
91
Red


Example 79


Comparative
Compound B-4
Compound 2-35
4.40
14.1
92
Red


Example 80


Comparative
Compound B-4
Compound 2-57
4.42
13.7
89
Red


Example 81


Comparative
Compound B-5
Compound 2-1
4.27
15.0
128
Red


Example 82


Comparative
Compound B-5
Compound 2-27
4.29
14.8
127
Red


Example 83


Comparative
Compound B-5
Compound 2-39
4.30
15.3
124
Red


Example 84


Comparative
Compound B-5
Compound 2-54
4.27
14.9
121
Red


Example 85


Comparative
Compound B-5
Compound 2-60
4.29
14.7
128
Red


Example 86


Comparative
Compound B-6
Compound 2-3
4.30
15.3
114
Red


Example 87


Comparative
Compound B-6
Compound 2-10
4.28
15.0
124
Red


Example 88


Comparative
Compound B-6
Compound 2-68
4.26
15.5
117
Red


Example 89


Comparative
Compound B-6
Compound 2-44
4.31
15.8
124
Red


Example 90


Comparative
Compound B-6
Compound 2-49
4.27
14.6
111
Red


Example 91


Comparative
Compound B-7
Compound 2-5
4.29
15.6
129
Red


Example 92


Comparative
Compound B-7
Compound 2-14
4.31
14.7
131
Red


Example 93


Comparative
Compound B-7
Compound 2-23
4.27
15.0
125
Red


Example 94


Comparative
Compound B-7
Compound 2-58
4.24
14.9
117
Red


Example 95


Comparative
Compound B-7
Compound 2-64
4.28
14.6
124
Red


Example 96


Comparative
Compound B-8
Compound 2-17
4.21
14.0
112
Red


Example 97


Comparative
Compound B-8
Compound 2-20
4.29
15.3
116
Red


Example 98


Comparative
Compound B-8
Compound 2-28
4.25
14.1
120
Red


Example 99


Comparative
Compound B-8
Compound 2-35
4.23
15.2
109
Red


Example 100


Comparative
Compound B-8
Compound 2-57
4.20
15.0
124
Red


Example 101


Comparative
Compound B-9
Compound 2-1
4.11
15.5
143
Red


Example 102


Comparative
Compound B-9
Compound 2-27
4.10
15.7
139
Red


Example 103


Comparative
Compound B-9
Compound 2-39
4.13
15.8
137
Red


Example 104


Comparative
Compound B-9
Compound 2-54
4.15
14.9
130
Red


Example 105


Comparative
Compound B-9
Compound 2-60
4.09
15.1
141
Red


Example 106


Comparative
Compound B-10
Compound 2-3
4.13
15.6
137
Red


Example 107


Comparative
Compound B-10
Compound 2-10
4.15
16.1
126
Red


Example 108


Comparative
Compound B-10
Compound 2-68
4.17
16.0
134
Red


Example 109


Comparative
Compound B-10
Compound 2-44
4.10
15.7
126
Red


Example 110


Comparative
Compound B-10
Compound 2-49
4.14
15.4
129
Red


Example 111


Comparative
Compound B-11
Compound 2-5
4.10
15.8
142
Red


Example 112


Comparative
Compound B-11
Compound 2-14
4.09
16.3
137
Red


Example 113


Comparative
Compound B-11
Compound 2-23
4.17
15.9
130
Red


Example 114


Comparative
Compound B-11
Compound 2-58
4.16
16.4
124
Red


Example 115


Comparative
Compound B-11
Compound 2-64
4.18
16.1
132
Red


Example 116


Comparative
Compound B-12
Compound 2-17
4.09
16.0
147
Red


Example 117


Comparative
Compound B-12
Compound 2-20
4.12
16.5
129
Red


Example 118


Comparative
Compound B-12
Compound 2-28
4.08
16.3
144
Red


Example 119


Comparative
Compound B-12
Compound 2-35
4.17
15.7
136
Red


Example 120


Comparative
Compound B-12
Compound 2-70
4.13
15.4
141
Red


Example 121






















TABLE 4











Light





Driving
Efficiency
Lifetime
emitting


Category
First host
Second host
voltage(V)
(cd/A)
T95 (hr)
color





















Comparative
Compound 1-2
Compound C-1
4.21
15.0
131
Red


Example 122


Comparative
Compound 1-11
Compound C-1
4.26
14.8
123
Red


Example 123


Comparative
Compound 1-15
Compound C-1
4.17
15.3
117
Red


Example 124


Comparative
Compound 1-28
Compound C-1
4.25
14.9
128
Red


Example 125


Comparative
Compound 1-33
Compound C-1
4.16
14.7
105
Red


Example 126


Comparative
Compound 1-40
Compound C-1
4.23
15.3
122
Red


Example 127


Comparative
Compound 1-43
Compound C-1
4.30
15.8
111
Red


Example 128


Comparative
Compound 1-55
Compound C-1
4.28
14.6
130
Red


Example 129


Comparative
Compound 1-3
Compound C-2
4.20
14.0
114
Red


Example 130


Comparative
Compound 1-7
Compound C-2
4.16
14.8
105
Red


Example 131


Comparative
Compound 1-17
Compound C-2
4.30
15.3
109
Red


Example 132


Comparative
Compound 1-24
Compound C-2
4.13
14.9
102
Red


Example 133


Comparative
Compound 1-37
Compound C-2
4.21
15.7
123
Red


Example 134


Comparative
Compound 1-47
Compound C-2
4.19
16.0
127
Red


Example 135


Comparative
Compound 1-48
Compound C-2
4.22
15.4
120
Red


Example 136


Comparative
Compound 1-58
Compound C-2
4.31
15.1
114
Red


Example 137


Comparative
Compound 1-9
Compound C-3
4.18
14.3
135
Red


Example 138


Comparative
Compound 1-16
Compound C-3
4.26
15.1
134
Red


Example 139


Comparative
Compound 1-22
Compound C-3
4.20
14.7
129
Red


Example 140


Comparative
Compound 1-38
Compound C-3
4.12
14.0
135
Red


Example 141


Comparative
Compound 1-41
Compound C-3
4.17
14.9
124
Red


Example 142


Comparative
Compound 1-45
Compound C-3
4.24
15.1
132
Red


Example 143


Comparative
Compound 1-53
Compound C-3
4.22
14.8
127
Red


Example 144


Comparative
Compound 1-57
Compound C-3
4.22
15.6
121
Red


Example 145


Comparative
Compound 1-2
Compound C-4
4.19
17.0
141
Red


Example 146


Comparative
Compound 1-14
Compound C-4
4.20
16.8
135
Red


Example 147


Comparative
Compound 1-20
Compound C-4
4.21
15.7
149
Red


Example 148


Comparative
Compound 1-27
Compound C-4
4.16
17.9
136
Red


Example 149


Comparative
Compound 1-31
Compound C-4
4.11
16.3
148
Red


Example 150


Comparative
Compound 1-52
Compound C-4
4.17
17.3
152
Red


Example 151


Comparative
Compound 1-56
Compound C-4
4.19
16.8
134
Red


Example 152


Comparative
Compound 1-60
Compound C-4
4.15
17.6
141
Red


Example 153


Comparative
Compound 1-2
Compound C-5
4.37
13.0
81
Red


Example 154


Comparative
Compound 1-11
Compound C-5
4.34
13.9
92
Red


Example 155


Comparative
Compound 1-15
Compound C-5
4.38
13.1
89
Red


Example 156


Comparative
Compound 1-28
Compound C-5
4.41
12.8
93
Red


Example 157


Comparative
Compound 1-33
Compound C-5
4.39
13.3
95
Red


Example 158


Comparative
Compound 1-40
Compound C-5
4.31
13.8
87
Red


Example 159


Comparative
Compound 1-43
Compound C-5
4.33
13.2
84
Red


Example 160


Comparative
Compound 1-55
Compound C-5
4.34
13.0
80
Red


Example 161


Comparative
Compound 1-3
Compound C-6
4.31
14.1
86
Red


Example 162


Comparative
Compound 1-7
Compound C-6
4.30
14.4
80
Red


Example 163


Comparative
Compound 1-17
Compound C-6
4.35
15.1
93
Red


Example 164


Comparative
Compound 1-24
Compound C-6
4.33
14.7
92
Red


Example 165


Comparative
Compound 1-37
Compound C-6
4.31
14.6
95
Red


Example 166


Comparative
Compound 1-47
Compound C-6
4.29
15.3
97
Red


Example 167


Comparative
Compound 1-48
Compound C-6
4.32
14.8
92
Red


Example 168


Comparative
Compound 1-58
Compound C-6
4.30
15.3
86
Red


Example 169


Comparative
Compound 1-9
Compound C-7
4.29
16.6
129
Red


Example 170


Comparative
Compound 1-16
Compound C-7
4.23
16.1
131
Red


Example 171


Comparative
Compound 1-22
Compound C-7
4.27
16.5
134
Red


Example 172


Comparative
Compound 1-38
Compound C-7
4.28
15.8
140
Red


Example 173


Comparative
Compound 1-41
Compound C-7
4.20
15.9
137
Red


Example 174


Comparative
Compound 1-45
Compound C-7
4.29
16.3
143
Red


Example 175


Comparative
Compound 1-53
Compound C-7
4.30
16.8
129
Red


Example 176


Comparative
Compound 1-57
Compound C-7
4.27
16.2
143
Red


Example 177


Comparative
Compound 1-2
Compound C-8
4.15
17.2
132
Red


Example 178


Comparative
Compound 1-14
Compound C-8
4.13
17.3
124
Red


Example 179


Comparative
Compound 1-20
Compound C-8
4.21
16.9
126
Red


Example 180


Comparative
Compound 1-27
Compound C-8
4.18
16.2
119
Red


Example 181


Comparative
Compound 1-31
Compound C-8
4.12
16.1
137
Red


Example 182


Comparative
Compound 1-52
Compound C-8
4.17
16.7
124
Red


Example 183


Comparative
Compound 1-56
Compound C-8
4.20
17.2
130
Red


Example 184


Comparative
Compound 1-60
Compound C-8
4.19
17.5
142
Red


Example 185


Comparative
Compound 1-2
Compound C-9
4.21
15.3
102
Red


Example 186


Comparative
Compound 1-11
Compound C-9
4.16
15.6
107
Red


Example 187


Comparative
Compound 1-15
Compound C-9
4.24
15.1
105
Red


Example 188


Comparative
Compound 1-28
Compound C-9
4.27
16.0
94
Red


Example 189


Comparative
Compound 1-33
Compound C-9
4.19
15.3
103
Red


Example 190


Comparative
Compound 1-40
Compound C-9
4.22
15.8
98
Red


Example 201


Comparative
Compound 1-43
Compound C-9
4.26
14.7
91
Red


Example 202


Comparative
Compound 1-55
Compound C-9
4.27
14.9
97
Red


Example 203


Comparative
Compound 1-3
Compound C-10
4.20
16.9
106
Red


Example 204


Comparative
Compound 1-7
Compound C-10
4.21
15.4
100
Red


Example 205


Comparative
Compound 1-17
Compound C-10
4.19
16.8
109
Red


Example 206


Comparative
Compound 1-24
Compound C-10
4.22
15.0
98
Red


Example 207


Comparative
Compound 1-37
Compound C-10
4.17
16.2
112
Red


Example 208


Comparative
Compound 1-47
Compound C-10
4.26
16.7
101
Red


Example 209


Comparative
Compound 1-48
Compound C-10
4.28
16.0
94
Red


Example 210


Comparative
Compound 1-58
Compound C-10
4.26
15.4
110
Red


Example 211


Comparative
Compound 1-9
Compound C-11
4.31
17.2
116
Red


Example 212


Comparative
Compound 1-16
Compound C-11
4.30
16.6
121
Red


Example 213


Comparative
Compound 1-22
Compound C-11
4.35
17.1
108
Red


Example 214


Comparative
Compound 1-38
Compound C-11
4.35
16.4
129
Red


Example 215


Comparative
Compound 1-41
Compound C-11
4.34
17.8
120
Red


Example 216


Comparative
Compound 1-45
Compound C-11
4.31
17.8
113
Red


Example 217


Comparative
Compound 1-53
Compound C-11
4.32
16.5
114
Red


Example 218


Comparative
Compound 1-57
Compound C-11
4.39
16.9
109
Red


Example 219


Comparative
Compound 1-2
Compound C-12
4.18
16.7
103
Red


Example 220


Comparative
Compound 1-14
Compound C-12
4.21
17.0
92
Red


Example 221


Comparative
Compound 1-20
Compound C-12
4.23
17.4
99
Red


Example 222


Comparative
Compound 1-27
Compound C-12
4.20
16.8
108
Red


Example 223


Comparative
Compound 1-31
Compound C-12
4.27
17.2
96
Red


Example 224


Comparative
Compound 1-52
Compound C-12
4.26
17.3
91
Red


Example 225


Comparative
Compound 1-56
Compound C-12
4.24
17.5
105
Red


Example 226


Comparative
Compound 1-60
Compound C-12
4.19
16.1
112
Red


Example 227









When a current was applied to the organic light emitting devices manufactured according to Examples 1 to 155 and Comparative Examples 1 to 227, the results of Tables 1 to 4 above were obtained. In the organic light emitting device of Comparative Example 1, a material that has been widely used conventionally was used.


In Comparative Examples 2 to 61, the organic light emitting devices were manufactured by using the compound of Chemical Formula 2 of the present disclosure as the electron blocking layer, and using a single host as the light emitting layer in the same manner as in Comparative Example 1. When the compound of Chemical Formula 1 and the compound of Chemical Formula 2 were co-deposited and used as the light emitting layer as in Example of Table 1, it was confirmed that the driving voltage decreased and the efficiency and lifetime increased as compared with Comparative Example of Table 2.


Further, when Comparative Example compounds B-1 to B-12 and the compound of Chemical Formula 2 of the present disclosure were co-deposited and used as the light emitting layer as shown in Table 3, the result showed that the driving voltage generally increased and the efficiency and lifetime decreased as compared with a combination of the present disclosure. As shown in Table 4, even when Comparative Example compounds C-1 to C-12 and the compounds of Chemical Formula 1 of the present disclosure were co-deposited and used as the light emitting layer, the result showed that the driving voltage increased and the efficiency and lifetime decreased.


From these results, it can be seen that when the compound of Chemical Formula 1 as the first host and the compound of Chemical Formula 2 as the second host were used in combination, energy transfer to the red dopant in the light emitting layer was well performed, thereby improving the driving voltage and increasing the efficiency and lifetime. In addition, it can be inferred that the combination of the compounds of Examples can form a more stable balance within the light emitting layer than the combination of the compounds of Comparative Examples to form excitons by the combination of electrons and holes, thereby further improving the efficiency and lifetime of the manufactured organic light emitting devices.


That is, when the compound of Chemical Formula 1 and the compound of Chemical Formula 2 of the present disclosure were used in combination as a host of the light emitting layer, the driving voltage, luminous efficiency, and lifetime characteristics of the organic light emitting devices could be improved.












Description of Symbols


















1: substrate
2: anode



3: light emitting layer
4: cathode



5: hole injection layer
6: hole transport layer



7: electron blocking layer
8: hole blocking layer



9: electron injection and transport layer









Claims
  • 1. An organic light emitting device comprising: an anode;a cathode; anda light emitting layer disposed between the anode and the cathode,wherein the light emitting layer includes a compound of the following Chemical Formula 1 and a compound of the following Chemical Formula 2:
  • 2. The organic light emitting device according to claim 1, wherein the compound of Chemical Formula 1 is any one of the following Chemical Formulas 1-1 to 1-3:
  • 3. The organic light emitting device according to claim 1, wherein Ar1 and Ar2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.
  • 4. The organic light emitting device according to claim 1, wherein L1 to L3 are each independently a single bond or any one selected from the group consisting of the following.
  • 5. The organic light emitting device according to claim 1, wherein each R1 is each independently hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthyl phenyl, phenyl naphthyl, fluoranthenyl, dihydroindenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.
  • 6. The organic light emitting device according to claim 1, wherein at least one of Ar1, Ar2 and R1 is naphthyl, phenyl naphthyl, naphthyl phenyl, phenanthrenyl, fluoranthenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphtho-furanyl, or benzonaphthothiophenyl.
  • 7. The organic light emitting device according to claim 1, wherein a is 0 or 1.
  • 8. The organic light emitting device according to claim 1, wherein the compound of Chemical Formula 1 is any one selected from the group consisting of the following:
  • 9. The organic light emitting device according to claim 1, wherein Ar3 is hydrogen or phenyl.
  • 10. The organic light emitting device according to claim 1, wherein Ar4 and Ar5 are each independently phenyl, phenyl substituted with 5 deuteriums, biphenylyl, biphenylyl substituted with 4 deuteriums, biphenylyl substituted with 9 deuteriums, terphenylyl, terphenylyl substituted with 4 deuteriums, quaterphenylyl, naphthyl, phenanthrenyl, triphenylenyl, dimethylfluorenyl, diphenylfluorenyl, carbazolyl, phenylcarbazolyl, dibenzofuranyl, dibenzothiophenyl, or phenyl dibenzofuranyl.
  • 11. The organic light emitting device according to claim 1, wherein Ar4 and Ar5 are each independently any one selected from the group consisting of the following:
  • 12. The organic light emitting device according to claim 1, wherein L4 to L6 are each independently a single bond, phenylene, phenylene substituted with 4 deuteriums, biphenylylene, naphthylene, phenyl naphthylene, carbazolylene, phenyl carbazolylene, phenyl carbazolylene substituted with 4 deuteriums, dibenzofuranylene, phenyl dibenzofuranylene, phenyl dibenzofuranylene substituted with 4 deuteriums, or dimethylfluorenylene.
  • 13. The organic light emitting device according to claim 1, wherein L4 to L6 are each independently a single bond or any one selected from the group consisting of the following:
  • 14. The organic light emitting device according to claim 1, wherein L7 is a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenylylene, or a substituted or unsubstituted naphthylene.
  • 15. The organic light emitting device according to claim 1, wherein the compound of Chemical Formula 2 is the following Chemical Formula 2-1:
  • 16. The organic light emitting device according to claim 15, wherein R2 is hydrogen or deuterium.
  • 17. The organic light emitting device according to claim 1, wherein the compound of Chemical Formula 2 is selected from the group consisting of the following:
Priority Claims (2)
Number Date Country Kind
10-2020-0030232 Mar 2020 KR national
10-2021-0031954 Mar 2021 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage Application of International Application No. PCT/KR2021/003037 filed on Mar. 11, 2021, which claims priority to and the benefit of Korean Patent Application No. 10-2020-0030232 filed in the Korean Intellectual Property Office on Mar. 11, 2020, and Korean Patent Application No. 10-2021-0031954 filed in the Korean Intellectual Property Office on Mar. 11, 2021, the entire contents of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/KR2021/003037 3/11/2021 WO