ORGANIC LIGHT-EMITTING DEVICE

Information

  • Patent Application
  • 20160028014
  • Publication Number
    20160028014
  • Date Filed
    July 22, 2015
    9 years ago
  • Date Published
    January 28, 2016
    8 years ago
Abstract
An organic light-emitting device includes: a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; and a hole transport region between the first electrode and the emission layer, wherein the hole transport region includes an auxiliary layer, and the auxiliary layer includes an amine-based compound represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of Korean Patent Application No. 10-2014-0092665, filed on Jul. 22, 2014, and Korean Patent Application No. 10-2015-0025913, filed on Feb. 24, 2015, in the Korean Intellectual Property Office, the entire content of each of which is incorporated herein by reference.


BACKGROUND

1. Field


One or more aspects of embodiments of the present invention relate to an organic light-emitting device.


2. Description of the Related Art


Organic light-emitting devices are self-emitting devices that have wide viewing angles, high contrast ratios, short response times, and excellent luminance, driving voltage, and response speed characteristics, and can produce full-color images.


An organic light-emitting device may include a first electrode positioned on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially formed on the first electrode. Holes injected from the first electrode are transported to the emission layer through the hole transport region, and electrons injected from the second electrode are transported to the emission layer through the electron transport region. Carriers (e.g., holes and electrons), are then recombined in the emission layer to generate excitons. When the excitons drop from an excited state to a ground state, light is emitted.


SUMMARY

One or more aspects of embodiments of the present invention are directed to an organic light-emitting device.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.


According to one or more embodiments of the present invention, an organic light-emitting device includes a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; and a hole transport region between the first electrode and the emission layer, wherein the hole transport region includes an auxiliary layer including an amine-based compound represented by Formula 1:




embedded image


wherein, in Formula 1,


A11 is selected from a C3-C10 cycloalkane, a C1-C10 heterocycloalkane, a C3-C10 cycloalkene, a C1-C10 heterocycloalkene, a C6-C60 arene, a C1-C60 heteroarene, a non-aromatic condensed polycyclic hydrocarbon group, and a non-aromatic condensed heteropolycyclic hydrocarbon group;


L11 to L16 are each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;


a11 to a16 are each independently selected from 0, 1, 2, and 3;


R11 to R14 are each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group;


n11 and n12 are each independently selected from 0, 1, and 2, where the sum of n11 and n12 is selected from 1, 2, 3, and 4;


R15 to R17 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid (herein, also referred to as a carboxylic acid group or a carboxyl group) or a salt thereof, a sulfonic acid (herein, also referred to as a sulfonic acid group) or a salt thereof, a phosphoric acid (herein, also referred to as a phosphoric acid group) or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), and —Si(Q3)(Q4)(Q5);


b15 to b17 are each independently selected from 1, 2, 3, and 4;


at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C1-C60 alkoxy group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q12), and —Si(Q13)(Q14)(Q15);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), and —Si(Q23)(Q24)(Q25); and


—N(Q31)(Q32) and —Si(Q33)(Q34)(Q35);


where Q1 to Q5, Q11 to Q15, Q21 to Q25, and Q31 to Q35 are each independently selected from:


a C1-C60 alkyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group; and


a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with a C6-C60 aryl group.





BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic cross-sectional view of a structure of an organic light-emitting device according to one or more embodiments of the present inventive concept;



FIG. 2 is a schematic cross-sectional view of a structure of an organic light-emitting device according to one or more embodiments of the present inventive concept;



FIG. 3 is a schematic cross-sectional view of a structure of a full-color organic light-emitting device according to one or more embodiments of the present inventive concept; and



FIG. 4 shows a graph of log J verses current efficiency according to one or more embodiments of the present inventive concept.





DETAILED DESCRIPTION

Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of” or “at least one selected from”, when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the present invention refers to “one or more embodiments of the present invention.”


Like reference numerals in the drawings denote like elements, and duplicative descriptions will not be provided.


As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


It will be further understood that the terms “comprises” and/or “comprising” used herein specify the presence of stated features or components, but do not preclude the presence or addition of one or more other features or components. In addition, as used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.


It will be understood that when a layer, region, or component is referred to as being “formed on” another layer, region, or component, it can be directly or indirectly formed on the other layer, region, or component. That is, for example, intervening layers, regions, or components may be present.


Sizes of components in the drawings may be exaggerated for convenience of explanation. In other words, since sizes and thicknesses of components in the drawings are arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.


As used herein, the expression “(organic layer) includes at least one selected from the first materials” may herein indicate that the “(organic layer) may include one first material of Formula 1 or at least two different first materials of Formula 1”.


As used herein, the term “organic layer” refers to a single layer and/or a plurality of layers between the first electrode and the second electrode in an organic light-emitting device. A material included in the “organic layer” is not limited to an organic material.



FIG. 1 is a schematic view of a structure of an organic light-emitting device according to one or more embodiments of the present inventive concept.


Referring to FIG. 1, a substrate may be positioned under a first electrode 110 or on a second electrode 190. The substrate may be a glass substrate or transparent plastic substrate, each with excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and/or water resistance.


For example, the first electrode 110 may be formed by depositing or sputtering a first electrode material on the substrate. When the first electrode 110 is an anode, the first electrode material may be selected from materials with a high work function so as to facilitate hole injection. The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The first electrode material may be a transparent and highly conductive material, and non-limiting examples of such material may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). When the first electrode 110 is a semi-transmissive electrode or a reflective electrode, the first electrode material may be at least one selected from magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag).


The first electrode 110 may have a single-layer structure or a multi-layer structure including two or more layers. For example, the first electrode 110 may have a triple-layer structure of ITO/Ag/ITO, but embodiments of the present invention are not limited thereto.


The organic layer 150 is positioned on the first electrode 110. The organic layer 150 includes an emission layer 160.


The organic layer 150 may include a hole transport region 130 between the first electrode 110 and the emission layer 160. The organic layer 150 may further include an electron transport region 180 between the emission layer 160 and the second electrode 190.


The hole transport region 130 may include an auxiliary layer 140 and may further include at least one selected from a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL), but embodiments of the present invention are not limited thereto. The electron transport region 180 may include at least one selected from a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL), but embodiments of the present invention are not limited thereto.


The hole transport region 130 may have a single-layer structure formed of a single material, a single-layer structure formed of a plurality of different materials, or a multi-layer structure having a plurality of layers formed of a plurality of different materials.


For example, the hole transport region 130 may have a single-layer structure formed of a plurality of different materials, or a structure of hole injection layer/hole transport layer/auxiliary layer, a structure of hole injection layer/auxiliary layer, or a structure of hole transport layer/auxiliary layer, wherein the layers of each structure are sequentially stacked from the first electrode 110 in this stated order, but embodiments of the present invention are not limited thereto.


When the hole transport region 130 includes a hole injection layer, the hole injection layer may be formed on the first electrode 110 by using (utilizing) one or more suitable methods, such as vacuum deposition, spin coating, casting, a Langmuir-Blodgett (LB) method, ink-jet printing, laser-printing, and/or laser-induced thermal imaging (LITI).


When the hole injection layer is formed by vacuum deposition, the vacuum deposition may be performed at a deposition temperature in a range of about 100° C. to about 500° C., at a vacuum degree in a range of about 10−8 torr to about 10−3 torr, and at a deposition rate in a range of about 0.01 Å/sec to about 100 Å/sec, depending on the compound for forming the hole injection layer and the structure of the desired hole injection layer.


When a hole injection layer is formed by spin coating, the spin coating may be performed at a coating rate in a range of about 2000 rpm to about 5000 rpm and at a temperature in a range of about 80° C. to about 200° C., depending on the compound for forming the hole injection layer and the structure of the desired hole injection layer.


When the hole transport region 130 includes a hole transport layer, the hole transport layer may be formed on the first electrode 110 or on the hole injection layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, a LB method, ink-jet printing, laser-printing, and/or LITI. When the hole transport layer is formed by vacuum deposition and/or by spin coating, the deposition conditions and the coating conditions may be similar to the deposition conditions and the coating conditions for forming the hole injection layer.


The hole transport region 130 may include, for example, at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, a methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecyla benzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (Pani/CSA), (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), and a first hole transporting compound represented by any one of Formulae 201 and 202:




embedded image


embedded image


embedded image


In Formulae 201 and 202,


L201 to L205 may be each independently the same as defined in connection with L11 in the present specification;


xa1 to xa4 may each independently be selected from 0, 1, 2, and 3;


xa5 may be selected from 1, 2, 3, 4, and 5; and


R201 to R204 may be each independently defined the same as the definition provided in connection with R11 in the present specification.


For example, in Formulae 201 and 202,


L201 to L205 may be each independently selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and


a phenylene group, a naphthalenylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xa1 to xa4 may be each independently 0, 1, or 2;


xa5 may be 1, 2, or 3;


R201 to R204 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, but embodiments of the present invention are not limited thereto.


The first hole transporting compound represented by Formula 201 may be represented by Formula 201A:




embedded image


For example, the first hole transporting compound represented by Formula 201 may be represented by Formula 201A-1, but embodiments of the present invention are not limited thereto:




embedded image


The first hole transporting compound represented by Formula 202 may be represented by Formula 202A, but embodiments of the present invention are not limited thereto:




embedded image


In Formulae 201A, 201A-1, and 202A, L201 to L203, xa1 to xa3, xa5 and R202 to R204 are the same as defined in the present specification, R211 and R212 are each independently defined the same as the definition provided in connection with R203, and R213 to R216 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


For example, in Formulae 201A, 201A-1, and 202A,


L201 to L203 may be each independently selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xa1 to xa3 may be each independently 0 or 1;


R203, R211, and R212 may be each independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


R213 and R214 may be each independently selected from:


a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


R215 and R216 may be each independently selected from:


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, and a phosphoric acid or a salt thereof;


a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


xa5 may be 1 or 2.


In Formulae 201A and 201A-1, R213 and R214 may be fused to each other (e.g., R213 and R214 may be combined) to form a saturated or unsaturated ring.


The first hole transporting compound represented by Formula 201 and the first hole transporting compound represented by Formula 202 may each independently include Compounds HT1 to HT20 below, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region 130 may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region 130 includes a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2000 Å, for example, about 100 Å to about 1500 Å. When thicknesses of the hole transport region 130, the hole injection layer, and the hole transport layer are within any of these ranges, satisfactory hole transporting properties may be obtained without a substantial increase in driving voltage.


The hole transport region 130 may further include a charge-generating material to improve conductive properties, in addition to the materials mentioned above. The charge-generating material may be homogeneously or non-homogeneously dispersed throughout the hole transport region 130.


The charge-generating material may be, for example, a p-dopant. The p-dopant may be one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments of the present invention are not limited thereto. Non-limiting examples of the p-dopant include quinone derivatives such as tetracyanoquinonedimethane (TCNQ) and/or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ); metal oxides such as a tungsten oxide and/or a molybdenum oxide; and Compound HT-D1 illustrated below, but embodiments of the present invention are not limited thereto:




embedded image


The auxiliary layer 140 may include an amine-based compound represented by Formula 1.




embedded image


In Formula 1, A11 may be selected from a C3-C10 cycloalkane, a C1-C10 heterocycloalkane, a C3-C10 cycloalkene, a C1-C10 heterocycloalkene, a C6-C60 arene, a C1-C60 heteroarene, a non-aromatic condensed polycyclic hydrocarbon group, and a non-aromatic condensed heteropolycyclic hydrocarbon group.


For example, in Formula 1, A11 may be represented by any one of Formulae 9-1 to 9-5, but embodiments of the present invention are not limited thereto:




embedded image


In Formulae 9-1 to 9-5,


* indicates a carbon atom (—C—) in Formula 1;


R91 and R92 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —N(Q1)(Q2);


where Q1 and Q2 are each independently selected from:


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group; and


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group, each substituted with a C6-C60 aryl group; and


b91 and b92 are each independently selected from 1, 2, 3, and 4;


b93 is selected from 1, 2, 3, 4, 5, and 6.


In some embodiments, in Formulae 9-1 to 9-5,


R91 and R92 are each independently selected from:


hydrogen, a methyl group, an ethyl group, an n-propyl group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and —N(Q1)(Q2); and


a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with —N(Q31)(Q32);


where, here, Q1, Q2, Q31, and Q32 are each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a phenyl group and a naphthyl group;


b91 and b92 are each independently selected from 1, 2, 3, and 4; and


b93 is selected from 1, 2, 3, 4, 5, and 6, but embodiments of the present invention are not limited thereto.


In Formula 1, L11 to L16 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


For example, in Formula 1, L11 to L16 may be each independently selected from:


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, and an imidazopyridinyl group, but embodiments of the present invention are not limited thereto.


For example, in Formula 1, L11 to L16 may be each independently selected from:


a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a furanylene group, a thiophenylene group, a carbazolylene group, a dibenzofuranylene group, and a dibenzothiophenylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a furanylene group, a thiophenylene group, a carbazolylene group, a dibenzofuranylene group, and a dibenzothiophenylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, but embodiments of the present invention are not limited thereto.


For example, in Formula 1, L11 to L16 may be each independently represented by one of Formulae 3-1 to 3-18, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


In Formulae 3-1 to 3-18,


Y31 is selected from C(R33)(R34), N(R33), O, and S;


R31 to R34 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a31 is selected from 1, 2, 3, and 4;


a32 is selected from 1, 2, 3, 4, 5, and 6;


a33 is selected from 1, 2, 3, 4, 5, 6, 7, and 8;


a34 is selected from 1, 2, 3, 4, and 5;


a35 is selected from 1, 2, and 3;


a36 is selected from 1 and 2; and


* and *′ are each independently a binding site to a neighboring atom.


For example, in Formula 1, L11 to L16 may be each independently represented by one of Formulae 4-1 to 4-42, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 4-1 to 4-42,


* and *′ are each independently a binding site to a neighboring atom.


In Formula 1, a11 denotes the number of L11, and a11 may be selected from 0, 1, 2, and 3. When a11 is 0, (L11)a11 is a single bond, when a11 is 2 or greater, a plurality of L11 may be identical to or different from each other. For example, in Formula 1, a11 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, a12 denotes the number of L12, and a12 may be selected from 0, 1, 2, and 3. When a12 is 0, (L12)a12 is a single bond, when a12 is 2 or greater, a plurality of L12 may be identical to or different from each other. For example, in Formula 1, a12 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, a13 denotes the number of L13, and a13 may be selected from 0, 1, 2, and 3. When a13 is 0, (L13)a13 is a single bond, when a13 is 2 or greater, a plurality of L13 may be identical to or different from each other. For example, in Formula 1, a13 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, a14 denotes the number of L14, and a14 may be selected from 0, 1, 2, and 3. When a14 is 0, (L14)a14 is a single bond, when a14 is 2 or greater, a plurality of L14 may be identical to or different from each other. For example, in Formula 1, a14 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, a15 denotes the number of L15, and a15 may be selected from 0, 1, 2, and 3. When a15 is 0, (L15)a15 is a single bond, when a15 is 2 or greater, a plurality of L15 may be identical to or different from each other. For example, in Formula 1, a15 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, a16 denotes the number of L16, and a16 may be selected from 0, 1, 2, and 3. When a16 is 0, (L16)a16 is a single bond, when a16 is 2 or greater, a plurality of L16 may be identical to or different from each other. For example, in Formula 1, a16 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, R11 to R14 may be each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


For example, in Formula 1, R11 to R14 may be each independently selected from:


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, but embodiments of the present invention are not limited thereto.


For example, in Formula 1, R11 to R14 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, but embodiments of the present invention are not limited thereto.


For example, in Formula 1, R11 to R14 may be each independently selected from Formulae 5-1 to 5-18, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


In Formulae 5-1 to 5-18,


Y51 is selected from C(R55)(R56), N(R55), O, and S;


R51 to R56 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a51 is selected from 1, 2, 3, 4, and 5;


a52 is selected from 1, 2, 3, 4, 5, 6, and 7;


a53 is selected from 1, 2, 3, 4, 5, and 6;


a54 is selected from 1, 2, and 3;


a55 is selected from 1, 2, 3, and 4;


a56 is selected from 1 and 2; and


* is a binding site to a neighboring atom.


For example, in Formula 1, R11 to R14 may be each independently selected from Formulae 6-1 to 6-59, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 6-1 to 6-59,


t-Bu is a tert-butyl group;


Ph is a phenyl group; and


* is a binding site to a neighboring atom.


In Formula 1, n11 denotes the number of moieties represented by




embedded image


(where, * is a binding site to a neighboring atom), and n11 may be selected from 0, 1, and 2. When n11 is 2, a plurality of moieties represented by




embedded image


may be identical to or different from each other. For example, in Formula 1, n11 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, n12 denotes the number of moieties represented by




embedded image


(where, * is a binding site to a neighboring atom), and n12 may be selected from 0, 1, and 2. When n12 is 2, a plurality of moieties represented by




embedded image


may be identical to or different from each other. For example, in Formula 1, n12 may be selected from 0 and 1, but embodiments of the present invention are not limited thereto.


In Formula 1, the sum of n11 and n12 may be selected from 1, 2, 3, and 4. For example, in Formula 1, the sum of n11 and n12 may be selected from 1 and 2, but embodiments of the present invention are not limited thereto.


In Formula 1, R15 to R17 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), and —Si(Q3)(Q4)(Q5);


where Q1 to Q5 may be each independently selected from a C1-C60 alkyl group, a C6-C60 aryl group, C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group; and


a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with a C6-C60 aryl group.


For example, in Formula 1, R15 to R17 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —N(Q1)(Q2);


where Q1 and Q2 may be each independently selected from:


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group; and


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group, each substituted with a C6-C60 aryl group, but embodiments of the present invention are not limited thereto.


For example, in Formula 1, R15 to R17 may be each independently selected from:


hydrogen, a methyl group, an ethyl group, an n-propyl group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and —N(Q1)(Q2); and


a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with —N(Q31)(Q32);


where Q1, Q2, Q31, and Q32 are each independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a phenyl group and a naphthyl group, but embodiments of the present invention are not limited thereto.


In Formula 1, b15 denotes the number of R15, and b15 may be selected from 1, 2, 3, and 4. When b15 is 2 or greater, a plurality of R15 may be identical to or different from each other.


In Formula 1, b16 denotes the number of R16, and b16 may be selected from 1, 2, 3, and 4. When b16 is 2 or greater, a plurality of R16 may be identical to or different from each other.


In Formula 1, b17 denotes the number of R17, and b17 may be selected from 1, 2, 3, 4, 5, 6, 7, and 8. When b17 is 2 or greater, a plurality of R17 may be identical to or different from each other.


For example, the amine-based compound represented by Formula 1 may be represented by any one of Formulae 1-1 to 1-5, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


In Formulae 1-1 to 1-5,


L11 to L16 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;


a11 to a16 may be each independently selected from 0, 1, 2, and 3;


R11 to R14 may be each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group;


n11 and n12 may be each independently selected from 0, 1, and 2, and the sum of n11 and n12 may be selected from 1, 2, 3 and 4;


R15, R16, R91 and R92 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —N(Q1)(Q2);


where Q1 and Q2 may be each independently selected from:


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group; and


a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group, each substituted with a C6-C60 aryl group;


b15 to b16 may be each independently selected from 1, 2, 3, and 4;


b91 and b92 may be each independently selected from 1, 2, 3, and 4;


b93 is selected from 1, 2, 3, 4, 5, and 6.


For example, the amine-based compound represented by Formula 1 may be one selected from Compounds 1 to 48, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an organic light-emitting device, when the amount of holes injected into the emission layer is smaller than the amount of the injected electrons, excitons generated in the emission layer may collide with excess electrons. In this regard, exciton-polaron quenching may occur in the emission layer, and the efficiency of the organic light-emitting device may decrease as the excitons dissociate in the emission layer.


In addition, difference between the amount of injected holes and the amount of injected electrons may increase at higher current, and a roll-off phenomenon (in which efficiency significantly decreases at higher current) may occur.


The amine-based compound represented by Formula 1 increases a charge balance in the emission layer by facilitating injection of holes into the emission layer in the hole transport region 130. Thus, when an organic light-emitting device includes the amine-based compound represented by Formula 1, the efficiency of the organic light-emitting device may increase, and a roll-off phenomenon may decrease.


Also, the amine-based compound represented by Formula 1 has high thermal stability, and thus the organic light-emitting device may have a small efficiency change with respect to a change in temperature.


A thickness of the auxiliary layer may be in a range of about 10 Å to about 800 Å, for example about 50 Å to about 500 Å. When a thickness of the auxiliary layer is within any of these ranges, satisfactory hole transporting properties of the auxiliary layer may be obtained without a substantial increase in driving voltage.


An emission layer may be formed on the first electrode 110 or the hole transport region 130 by using one or more suitable methods, such as vacuum deposition, spin coating, casting, a LB method, ink-jet printing, laser-printing, and/or laser-induced thermal imaging. When the emission layer is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the emission layer may be similar to the deposition and coating conditions for the hole injection layer.


When the organic light-emitting device 10 is a full-color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and a blue emission layer. Alternatively, the emission layer may emit white light by having a multi-layer structure, in which a red emission layer, a green emission layer, and a blue emission layer are stacked on each other, or a single-layer structure including a red-light emitting material, a green-light emitting material, and a blue-light emitting material to emit white light. The emission layer may be a white emission layer and may further include a color converting layer or a color filter to convert white light to light of desired color.


The emission layer may include a host and a dopant.


The host may include at least one selected from TPBi, TBADN, ADN, CBP, CDBP, and TCP:




embedded image


embedded image


In some embodiments, the host may include a compound represented by Formula 301:





Ar301-[(L301)xb1-R301]xb2.  Formula 301


In Formula 301,


Ar301 is selected from:


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene;


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q301)(Q302)(Q303) (where Q301 to Q303 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group);


L301 is defined the same as the definition provided in connection with L201;


R301 is selected from:


a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xb1 is selected from 0, 1, 2, and 3;


xb2 is selected from 1, 2, 3, and 4.


For example, in Formula 301,


L301 may be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and a chrysenylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and a chrysenylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group;


R301 may be selected from:


a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group, but embodiments of the present invention are not limited thereto.


The compound represented by Formula 301 may include at least one of Compounds H1 to H42, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Alternatively, the host may include at least one of Compounds H43 to H49, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


The dopant may include at least one of a fluorescent dopant and a phosphorescent dopant.


The phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


In Formula 401,


M is selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm);


X401 to X404 are each independently nitrogen (—N—) or carbon (—C—);


rings A401 and A402 are each independently selected from a substituted or unsubstituted benzene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted indene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted thiophene, a substituted or unsubstituted furan, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted thiazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted oxazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzoquinoline, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, a substituted or unsubstituted carbazole, a substituted or unsubstituted benzimidazole, a substituted or unsubstituted benzofuran, a substituted or unsubstituted benzothiophene, a substituted or unsubstituted isobenzothiophene, a substituted or unsubstituted benzoxazole, a substituted or unsubstituted isobenzoxazole, a substituted or unsubstituted triazole, a substituted or unsubstituted oxadiazole, a substituted or unsubstituted triazine, a substituted or unsubstituted dibenzofuran and a substituted or unsubstituted dibenzothiophene;


at least one substituent of the substituted benzene, substituted naphthalene, substituted fluorene, substituted spiro-fluorene, substituted indene, substituted pyrrole, substituted thiophene, substituted furan, substituted imidazole, substituted pyrazole, substituted thiazole, substituted isothiazole, substituted oxazole, substituted isoxazole, substituted pyridine, substituted pyrazine, substituted pyrimidine, substituted pyridazine, substituted quinoline, substituted isoquinoline, substituted benzoquinoline, substituted quinoxaline, substituted quinazoline, substituted carbazole, substituted benzimidazole, substituted benzofuran, substituted benzothiophene, substituted isobenzothiophene, substituted benzoxazole, substituted isobenzoxazole, substituted triazole, substituted oxadiazole, substituted triazine, substituted dibenzofuran, and substituted dibenzothiophene is selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q401)(Q402), —Si(Q403)(Q404)(Q405), and —B(Q406)(Q407);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10heterocycloalkyl, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q411)(Q412), —Si(Q413)(Q414)(Q415), and —B(Q416)(Q417); and


—N(Q421)(Q422), —Si(Q423)(Q424)(Q425), and —B(Q426)(Q427);


L401 is an organic ligand;


xc1 is 1, 2, or 3;


xc2 is 0, 1, 2, or 3; and


Q401 to Q407, Q411 to Q417, and Q421 to Q427 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group.


In Formula 401, L401 may be a monovalent, divalent, or trivalent organic ligand. For example, L401 may be selected from a halogen ligand (for example, Cl and/or F), a diketone ligand (for example, acetylacetonate, 1,3-diphenyl-1,3-propanedionate, 2,2,6,6-tetramethyl-3,5-heptanedionate, and/or hexafluoroacetonate), a carboxylic acid ligand (for example, picolinate, dimethyl-3-pyrazolecarboxylate, and/or benzoate), a carbon monoxide ligand, an isonitrile ligand, a cyano ligand, and a phosphorus ligand (for example, phosphine and/or phosphite), but embodiments of the present invention are not limited thereto.


In Formula 401, when A401 has two or more substituents, the two or more substituents of A401 may be linked to each other to form a saturated or unsaturated ring.


In Formula 401, when A402 has two or more substituents, the two or more substituents of A402 may be linked to each other to form a saturated or unsaturated ring.


In Formula 401, when xc1 is 2 or greater, a plurality of ligands




embedded image


in Formula 401 may be identical to or different from each other. In Formula 401, when xc1 is 2 or greater, A401 and/or A402 may be respectively linked to A401 and/or A402 of a different neighboring ligand either directly (e.g., via a single bond) or via a linking group (e.g., a C1-C5 alkylene group, a C2-C5 alkenylene group, —N(R′)— (where, R′ is the C1-C10 alkyl group or the C6-C20 aryl group), or —C(═O)—) therebetween.


The phosphorescent dopant may include at least one of Compounds PD1 to PD74, but embodiments of the present invention are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the phosphorescent dopant may include PtOEP:




embedded image


In the emission layer, the amount of the dopant may be within a range of about 0.01 to about 15 parts by weight based on 100 parts by weight of the host, but embodiments of the present invention are not limited thereto.


A thickness of the emission layer may be in a range of about 100 Å to about 1000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within any of these ranges, the emission layer may have excellent light-emitting properties without a substantial increase in driving voltage.


The emission layer may be a green emission layer.


The electron transport region 180 may be positioned on the emission layer.


The electron transport region 180 may include at least one selected from a hole blocking layer, an electron transport layer (ETL), and an electron injection layer, but embodiments of the present invention are not limited thereto.


For example, the electron transport region 180 may have a structure of electron transport layer/electron injection layer or a structure of hole blocking layer/electron transport layer/electron injection layer, wherein the layers of each structure are sequentially stacked on the emission layer in the stated order, but embodiments of the present invention are not limited thereto.


The electron transport region 180 may include a hole blocking layer. When a phosphorescent dopant is included in the emission layer, the hole blocking layer may be included to prevent or substantially block the diffusion of triplet excitons or holes into an electron transport layer.


When the electron transport region 180 includes a hole blocking layer, the hole blocking layer may be formed on the emission layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, a Langmuir-Blodgett (LB) method, ink-jet printing, laser-printing, and/or laser-induced thermal imaging (LITI). When the hole blocking layer is formed by vacuum deposition and/or by spin coating, the deposition conditions and the coating conditions may be similar to the deposition conditions and the coating conditions for forming the hole injection layer.


For example, the hole blocking layer may include at least one selected from BCP and Bphen, but embodiments of the present invention are not limited thereto.




embedded image


A thickness of the hole blocking layer may be in a range of about 20 Å to about 1000 Å, for example, about 30 Å to about 300 Å. When the thickness of the hole blocking layer is within any of these ranges, excellent hole blocking characteristics of the hole blocking layer may be obtained without a substantial increase in driving voltage.


The electron transport region 180 may include an electron transport layer. The electron transport layer may be formed on the emission layer or hole blocking layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, a LB method, ink-jet printing, laser-printing, and/or laser-induced thermal imaging. When the electron transport layer is formed by vacuum deposition and/or spin coating, vacuum deposition and coating conditions for the electron transport layer may be similar to the vacuum deposition and coating conditions for the hole injection layer.


The electron transport layer may include at least one selected from BCP and BPhen (illustrated above), and Alq3, Balq, TAZ, and NTAZ (illustrated below):




embedded image


In some embodiments, the electron transport layer may include a compound represented by Formula 601:





Ar601-[(L601)xe1-E601]xe2.  Formula 601


In Formula 601,


Ar601 is defined the same as the definition provided in connection with Ar301;


L601 is defined the same as the definition provided in connection with L201; and


E601 is selected from:


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group; and


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group;


xe1 is selected from 0, 1, 2, and 3; and


xe2 is selected from 1, 2, 3, and 4.


In some embodiments, the electron transport layer may include a compound represented by Formula 602:




embedded image


In Formula 602,


X611 is N or C-(L611)xe611-R611, X612 is N or C-(L612)xe612-R612, X613 is N or C-(L613)xe613-R613, and at least one of X611 to X613 is N;


each of L611 to L616 is defined the same as the definition provided in connection with L201;


R611 to R616 are each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


xe611 to xe616 are each independently selected from 0, 1, 2, and 3.


A compound represented by Formula 601 and a compound represented by Formula 602 may each independently include at least one of Compounds ET1 to ET15:




embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport layer may be in a range of about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within any of these ranges, excellent electron transporting characteristics of the electron transport layer may be obtained without a substantial increase in driving voltage.


In some embodiments, the electron transport layer may further include a metal-containing material, in addition to the materials described above.


The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) and/or ET-D2:




embedded image


The electron transport region 180 may include an electron injection layer that facilitates electron injection from the second electrode 190.


The electron injection layer may be formed on the electron transport layer by using one or more suitable methods, such as vacuum deposition, spin coating, casting, a LB method, ink-jet printing, laser-printing, and/or LITI. When the electron injection layer is formed by vacuum deposition and/or spin coating, vacuum deposition and coating conditions for the electron injection layer may be similar to the vacuum deposition and coating conditions for the hole injection layer.


The electron injection layer may include at least one selected from LiF, NaCl, CsF, Li2O, BaO, and LiQ.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within any of these ranges, excellent electron injecting characteristics of the electron injection layer may be obtained without a substantial increase in driving voltage.


The second electrode 190 may be positioned on the organic layer 150. The second electrode 190 may be a cathode that is an electron injection electrode, and, in this regard, a material for forming the second electrode 190 may be a material having a low work function, for example, a metal, an alloy, an electrically conductive compound, or a mixture thereof. Non-limiting examples of the material for forming the second electrode 190 may include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). In some embodiments, the material for forming the second electrode 190 may be ITO and/or IZO. The second electrode 190 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode.


In some embodiments, the auxiliary layer 140 may be located in the hole transport region 130. Materials included in the auxiliary layer 140 may be different from the materials included in the hole transport region 130.


The organic light-emitting device 10 according to one or more embodiments of the present invention has been described with reference to FIG. 1, but embodiments of the present invention are not limited thereto.



FIG. 2 schematically illustrates a cross-section of an organic light-emitting device 20 according to one or more embodiments of the present invention.


Referring to FIG. 2, an auxiliary layer 240 may be located adjacent to an emission layer 260. Materials included in the auxiliary layer 240 are different from the materials included in a hole transport layer.


Descriptions of a first electrode 210, a hole transport region 230, the auxiliary layer 240, an organic layer 250, an emission layer 260, an electron transport region 280, and a second electrode 290 may be understood by referring to the above descriptions thereof in connection with FIG. 1.


The organic light-emitting device 20 according to one or more embodiments of the present invention may be described with reference to FIG. 2, but embodiments of the present invention are not limited thereto.



FIG. 3 schematically illustrates a cross-section of a full-color organic light-emitting device 30 according to one or more embodiments of the present invention.


The organic light-emitting device 30 of FIG. 3 includes a first sub-pixel area, a second sub-pixel area, and a third sub-pixel area.


A first sub-pixel is formed in the first sub-pixel area, a second sub-pixel is formed in the second sub-pixel area, and a third sub-pixel is formed in the third sub-pixel area.


A plurality of first electrodes 321, 322, and 323 are located in the first sub-pixel area, the second sub-pixel area, and the third sub-pixel area, respectively. That is, the first electrode 321 is located in the first sub-pixel area, the first electrode 322 is located in the second sub-pixel area, and the first electrode 323 is located in the third sub-pixel area.


A hole transport region 340 is positioned on the first electrodes 321, 322, and 323. The hole transport region 340 may be formed as a common layer on all of the first electrodes 321, 322, and 323. The hole transport region 340 may include a first hole transport region formed in the first sub-pixel area; a second hole transport region formed in the second sub-pixel area; and a third hole transport region formed in the third sub-pixel area.


An emission layer including a first emission layer 361, a second emission layer 362, and a third emission layer 363 is formed on the hole transport region 340. The first emission layer 361 is formed in the first sub-pixel area and emits first-color light, the second emission layer 362 is formed in the second sub-pixel area and emits second-color light, and the third emission layer 363 is formed in the third sub-pixel area and emits third-color light.


The first-color light may be red light, the second-color light may be green light, and the third-color light may be blue light. The first-color light, second-color light, and third-color light may be combined together to produce white light.


The hole transport region 340 includes a hole transport layer and an auxiliary layer, and the auxiliary layer is positioned between the hole transport layer and each of the emission layers 361, 362, and 363. The auxiliary layer may be located adjacent to each of the emission layers 361, 362, and 363.


The auxiliary layer may include a first auxiliary layer, a second auxiliary layer, and a third auxiliary layer. The first auxiliary layer is formed in the first sub-pixel area, the second auxiliary layer is formed in the second sub-pixel area, and the third auxiliary layer is formed in the third sub-pixel area.


In some embodiments, the auxiliary layer may include the amine-based compound represented by Formula 1.


In some embodiments, the hole transport layer may include the first hole transporting compound represented by one of Formulae 201 and 202.


Materials included in the auxiliary layer are different from the materials included in the hole transport layer.


An electron transport region 370 is formed on each of the emission layers 361, 362, and 363. The electron transport region 370 may be formed as a common layer on all of the emission layers 361, 362, and 363. The electron transport region 370 may include an electron transport layer and an electron injection layer that are stacked on the emission layers 361, 362, and 363 in the stated order.


A second electrode 380 is formed as a common layer on the electron transport region 370.


As used herein, the term “common layer” refers to a layer that is not patterned according to each of the first sub-pixel area, the second sub-pixel area, and the third sub-pixel area, but instead is formed as a continuous layer throughout the first sub-pixel area, the second sub-pixel area, and the third sub-pixel area.


A pixel insulating layer 330 is formed on an edge portion of the plurality of first electrodes 321, 322, and 323. The pixel insulating layer 330 defines a pixel area and may include various suitable organic insulating materials (e.g., a silicon-based material), inorganic insulating materials, and/or organic/inorganic composite insulating materials.


Descriptions of the first electrodes 321, 322, and 323, hole transport region 340, emission layers 361,362, and 363, electron transport region 370, and second electrode 380 may be understood by referring to the descriptions thereof provided in connection with FIG. 1.


The organic light-emitting device 30 may be included in a flat display device including a thin film transistor. The thin film transistor may include a gate electrode, source and drain electrodes, a gate insulating layer, and an active layer, and one of the source and drain electrodes may be electrically connected to the first electrodes 321, 322, and 323 of the organic light-emitting device 30. The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, or an oxide semiconductor, but embodiments of the present invention are not limited thereto.


The full-color organic light-emitting device 30 according to one or more embodiments of the present invention has been described with reference to FIG. 3, but embodiments of the present invention are not limited thereto. For example, the third emission layer 363 may be extended to the first sub-pixel area and the second sub-pixel area and thus may be formed as a common layer. Also, the third auxiliary layer of the third sub-pixel area may be omitted. In some embodiments, only one of the first auxiliary layer and the second auxiliary layer may be included in the full-color organic light-emitting device 30.


A C1-C60 alkyl group used herein refers to a linear or branched aliphatic monovalent hydrocarbon group having 1 to 60 carbon atoms, and non-limiting examples of the C1-C60 alkyl group may include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C1-C60 alkylene group used herein refers to a divalent group having substantially the same structure as the C1-C60 alkyl group.


A C1-C60 alkoxy group used herein refers to a monovalent group represented by —OA101 (where A101 is the C1-C60 alkyl group), and non-limiting examples of the C1-C60 alkoxy group may include a methoxy group, an ethoxy group, and an isopropyloxy group.


A C2-C60 alkenyl group used herein refers to a hydrocarbon group including at least one carbon-carbon double bond at one or more positions along a carbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples of the C2-C60 alkenyl group may include an ethenyl group, a propenyl group, and a butenyl group. A C2-C60 alkenylene group used herein refers to a divalent group having substantially the same structure as the C2-C60 alkenyl group.


A C2-C60 alkynyl group used herein refers to a hydrocarbon group including at least one carbon-carbon triple bond at one or more positions along a carbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples of the C2-C60 alkynyl group may include an ethynyl group and a propynyl group. A C2-C60 alkynylene group used herein refers to a divalent group having substantially the same structure as the C2-C60 alkynyl group.


A C3-C10 cycloalkyl group used herein refers to a monovalent monocyclic saturated hydrocarbon group including 3 to 10 carbon atoms as ring-forming atoms, and non-limiting examples of the C3-C10 cycloalkyl group may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C3-C10 cycloalkylene group used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkyl group.


A C1-C10 heterocycloalkyl group used herein refers to a monovalent monocyclic group including at least one hetero atom selected from N, O, P, and S as a ring-forming atom, and 1 to 10 carbon atoms as the remaining ring-forming atoms, and non-limiting examples of the C1-C10 heterocycloalkyl group may include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. A C1-C10 heterocycloalkylene group used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkyl group.


A C3-C10 cycloalkenyl group used herein refers to a monovalent monocyclic group including 3 to 10 carbon atoms as ring-forming atoms and at least one double bond in the ring of the C3-C10 cycloalkenyl group, and does not have aromaticity (e.g., the ring including the at least one double bond is not aromatic). Non-limiting examples of the C3-C10 cycloalkenyl group may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C3-C10 cycloalkenylene group used herein refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.


A C1-C10 heterocycloalkenyl group used herein refers to a monovalent monocyclic group including at least one hetero atom selected from N, O, P, and S as a ring-forming atom, 1 to 10 carbon atoms as the remaining ring-forming atoms, and at least one double bond in its ring. Non-limiting examples of the C1-C10 heterocycloalkenyl group may include a 2,3-hydrofuranyl group and a 2,3-hydrothiophenyl group. A C1-C10 heterocycloalkenylene group used herein refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.


A C6-C60 aryl group used herein refers to a monovalent group including a carbocyclic aromatic system having 6 to 60 carbon atoms as ring-forming atoms, and a C6-C60 arylene group used herein refers to a divalent group including a carbocyclic aromatic system having 6 to 60 carbon atoms as ring-forming atoms. Non-limiting examples of the C6-C60 aryl group may include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and/or the C6-C60 arylene group include two or more rings, the respective rings may be fused to each other.


A C1-C60 heteroaryl group used herein refers to a monovalent group having a carbocyclic aromatic system including at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms as the remaining ring-forming atoms. A C1-C60 heteroarylene group used herein refers to a divalent group having a carbocyclic aromatic system including at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms as the remaining ring-forming atoms. Non-limiting examples of the C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and/or the C1-C60 heteroarylene group include two or more rings, the respective rings may be fused to each other.


A C6-C60 aryloxy group used herein refers to a monovalent group represented by —OA102 (where A102 is the C6-C60 aryl group), and a C6-C60 arylthio group used herein refers to a monovalent group represented by —SA103 (where A103 is the C6-C60 aryl group).


A monovalent non-aromatic condensed polycyclic group used herein refers to a monovalent group that has two or more rings condensed to each other (e.g., combined together), includes only carbon atoms as ring-forming atoms (for example, having 8 to 60 carbon atoms), and does not have overall aromaticity. Non-limiting example of the monovalent non-aromatic condensed polycyclic group may be a fluorenyl group. A divalent non-aromatic condensed polycyclic group used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group.


A monovalent non-aromatic condensed heteropolycyclic group used herein refers to a monovalent group that has two or more rings condensed to each other (e.g., combined together), has at least one hetero atom selected from N, O, P, and S as a ring forming atom, and carbon atoms as the remaining ring-forming atoms (for example, having 2 to 60 carbon atoms), and does not have overall aromaticity. Non-limiting example of the monovalent non-aromatic condensed heteropolycyclic group may be a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


As used herein, at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C1-C60 alkoxy group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q11)(Q12), and —Si(Q13)(Q14)(Q15);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), and —Si(Q23)(Q24)(Q25); and


—N(Q31)(Q32) and —Si(Q33)(Q34)(Q35);


where Q11 to Q15, Q21 to Q25, and Q31 to Q35 are each independently selected from a C1-C60 alkyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group; and


a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with a C6-C60 aryl group.


For example, at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C1-C60 alkoxy group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C30 alkyl group, a C2-C30 alkenyl group, a C2-C30 alkynyl group, and a C1-C30 alkoxy group;


a C1-C30 alkyl group, a C2-C30 alkenyl group, a C2-C30 alkynyl group, and a C1-C30 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, a C6-C30 arylthio group, a C1-C30 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q11)(Q12), and —Si(Q13)(Q14)(Q15);


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenylene group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyrimidinyl group, and an imidazopyridinyl group, each substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a phthalazinyl group, a quinoxalinyl group, a cinnolinyl group, and a quinazolinyl group;


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenylene group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyrimidinyl group, and an imidazopyridinyl group, each substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a phthalazinyl group, a quinoxalinyl group, a cinnolinyl group, and a quinazolinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C30 alkyl group, a C2-C30 alkenyl group, a C2-C30 alkynyl group, a C1-C30 alkoxy group, a C3-C10 cycloalkyl group, C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C30 aryl group, a C6-C30 aryloxy group, a C6-C30 arylthio group, a C1-C30 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), and —Si(Q23)(Q24)(Q25); and


—N(Q31)(Q32) and —Si(Q33)(Q34)(Q35);


where Q11 to Q15, Q21 to Q25, and Q31 to Q35 are each independently selected from a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenylene group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyrimidinyl group, and an imidazopyridinyl group, each substituted with at least one selected from hydrogen, a C1-C30 alkyl group, a C2-C30 alkenyl group, a C2-C30 alkynyl group, a C1-C30 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a phthalazinyl group, a quinoxalinyl group, a cinnolinyl group, and a quinazolinyl group, but embodiments of the present invention are not limited thereto.


“Ph” used herein refers to a phenyl group, “Me” refers to a methyl group, “Et” refers to an ethyl group, and “ter-Bu” or “But” refers to a tert-butyl group.


Hereinafter, an organic light-emitting device according to one or more embodiments of the present invention will be described in more detail with reference to Synthesis Examples and Examples. The term “B was used instead of A” used in describing Synthesis Examples indicates that a molar equivalent of A was identical to a molar equivalent of B.


Example 1

As an anode, a 15 Ω/cm2 (1200 Å) ITO glass substrate (available from Corning Co.) was cut to a size of 50 mm×50 mm×0.7 mm, washed with ultrasonic waves in isopropyl alcohol and pure water for 5 minutes each, and then cleaned with UV and ozone for 30 minutes. The obtained ITO glass substrate was then mounted on a vacuum depositor.


2-TNATA was vacuum deposited on the ITO anode of the ITO glass substrate to form a hole injection layer having a thickness of 500 Å, and then Compound HT1, as a hole transporting compound, was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 1000 Å. Next, Compound 2 was deposited on the hole transport layer to form an auxiliary layer having a thickness of 300 Å.


CBP as a host and PD1 as a phosphorescent dopant were co-deposited at a weight ratio of 90:10 to form an emission layer having a thickness of 400 Å. Then, Compound 201 was deposited at a thickness of 300 Å on the emission layer to form an electron transport layer, LiF, which is a halogenized alkali metal, was deposited at a thickness of 10 Å on the electron transport layer to form an electron injection layer, and Al was vacuum deposited at a thickness of 3000 Å (as a cathode) on the electron injection layer to form a LiF/Al electrode, thereby completing the manufacture of an organic light-emitting device.


Example 2

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 4 was used instead of Compound 2 in the formation of the auxiliary layer.


Example 3

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 6 was used instead of Compound 2 in the formation of the auxiliary layer.


Example 4

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 7 was used instead of Compound 2 in the formation of the auxiliary layer.


Example 5

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 15 was used instead of Compound 2 in the formation of the auxiliary layer.


Example 6

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 17 was used instead of Compound 2 in the formation of the auxiliary layer.


Example 7

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 25 was used instead of Compound 2 in the formation of the auxiliary layer.


Comparative Example 1

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that NPB was used instead of Compound 2 in the formation of the auxiliary layer.


Comparative Example 2

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound A was used instead of Compound 2 in the formation of the auxiliary layer.




embedded image


Comparative Example 3

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that NPB was used instead of HT1 in the formation of the hole transport layer.


Comparative Example 4

An organic light-emitting device was manufactured in the same (or substantially the same) manner as in Example 1, except that NPB was used instead of HT1 in the formation of the hole transport layer, and NPB was used instead of Compound 2 in the formation of the auxiliary layer.


Evaluation Example

Driving voltages, efficiencies, and lifespans (at a current density of 9000 nit) of the organic light-emitting devices prepared in Examples 1 to 7 and Comparative Examples 1 to 4 were evaluated by using PR650 Spectroscan Source Measurement Unit (available from Photo Research, Inc.). The results are shown in Table 1 and FIG. 4. The efficiencies and lifespans in Table 1 are all relative values with respect to efficiencies (unit Cd/A) and lifespans (unit: hour) of the organic light-emitting device prepared in Comparative Example 1.













TABLE 1







Driving voltage





(V)
Efficiency
Lifespan





















Example 1
5.1
1.25
1.4



Example 2
5.2
1.2
1.2



Example 3
5.0
1.29
1.25



Example 4
5.1
1.16
1.3



Example 5
5.0
1.3
1.3



Example 6
5.1
1.1
1.2



Example 7
5.1
1.1
1.2



Comparative
5.0
1.0
1



Example 1



Comparative
5.1
0.9
1.1



Example 2



Comparative
5.0
1.2
0.75



Example 3



Comparative
5.0
0.75
0.7



Example 4










Referring to Table 1, the organic light-emitting devices of Examples 1 to 7 mostly had improved efficiencies and lifespans as compared to those of the organic light-emitting devices of Comparative Examples 1 to 4. Referring to FIG. 4, the organic light-emitting device of Example 1 may have less roll-off (e.g., have less of an efficiency roll-off) occurrence than the organic light-emitting devices of Comparative Examples 1 and 2, at a required luminance.


As described above, an organic light-emitting device according to one or more embodiments of the present invention may exhibit high efficiency. In particular, the efficiency of the organic light-emitting device may be improved within a relatively small dynamic range.


It should be understood that the embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.


As used herein, the term “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art.


Also, any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently described in this specification such that amending to expressly recite any such subranges would comply with the requirements of 35 U.S.C. §112, first paragraph, and 35 U.S.C. §132(a).


While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and equivalents thereof.

Claims
  • 1. An organic light-emitting device comprising: a first electrode;a second electrode;an emission layer between the first electrode and the second electrode; anda hole transport region between the first electrode and the emission layer, wherein the hole transport region comprises an auxiliary layer, andwherein the auxiliary layer comprises an amine-based compound represented by Formula 1:
  • 2. The organic light-emitting device of claim 1, wherein A11 is represented by any one of Formulae 9-1 to 9-5:
  • 3. The organic light-emitting device of claim 1, wherein L11 to L16 are each independently selected from: a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group; anda phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, and an imidazopyridinyl group.
  • 4. The organic light-emitting device of claim 1, wherein L11 to L16 are each independently selected from: a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a furanylene group, a thiophenylene group, a carbazolylene group, a dibenzofuranylene group, and a dibenzothiophenylene group; anda phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a furanylene group, a thiophenylene group, a carbazolylene group, a dibenzofuranylene group, and a dibenzothiophenylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group.
  • 5. The organic light-emitting device of claim 1, wherein L11 to L16 are each independently represented by any one of Formulae 3-1 to 3-18:
  • 6. The organic light-emitting device of claim 1, wherein R11 to R14 are each independently selected from: a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; anda phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.
  • 7. The organic light-emitting device of claim 1, wherein R11 to R14 are each independently selected from: a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; anda phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group.
  • 8. The organic light-emitting device of claim 1, wherein R11 to R14 are each independently selected from Formulae 5-1 to 5-18:
  • 9. The organic light-emitting device of claim 1, wherein R15 to R17 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —N(Q1)(Q2); wherein Q1 and Q2 are each independently selected from a C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group; anda C6-C60 aryl group and a monovalent non-aromatic condensed polycyclic group, each substituted with a C6-C60 aryl group.
  • 10. The organic light-emitting device of claim 1, wherein R15 to R17 are each independently selected from: hydrogen, a methyl group, an ethyl group, an n-propyl group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and —N(Q1)(Q2); anda phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with —N(Q31)(Q32);wherein Q1, Q2, Q31, and Q32 are each independently selected from:a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; anda phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a phenyl group and a naphthyl group.
  • 11. The organic light-emitting device of claim 1, wherein the amine-based compound is represented by any one of Formulae 1-1 to 1-5:
  • 12. The organic light-emitting device of claim 1, wherein the amine-based compound is selected from Compounds 1 to 48:
  • 13. The organic light-emitting device of claim 1, wherein the emission layer and the auxiliary layer are adjacent to each other.
  • 14. The organic light-emitting device of claim 1, wherein the hole transport region further comprises a first hole transporting compound represented by any one of Formulae 201 and 202:
  • 15. The organic light-emitting device of claim 14, wherein the first hole transporting compound is selected from Compounds HT1 to HT20:
  • 16. The organic light-emitting device of claim 15, wherein the hole transport region comprises a hole transport layer, and the hole transport layer comprises the first hole transporting compound.
  • 17. An organic light-emitting device comprising: a substrate comprising a first sub-pixel area, a second sub-pixel area, and a third sub-pixel area;a plurality of first electrodes respectively disposed on the first sub-pixel area, the second sub-pixel area, and the third sub-pixel area;a second electrode facing the first electrodes;an emission layer between the first electrodes and the second electrode; anda hole transport region between the emission layer and the first electrodes,wherein the hole transport region comprises an auxiliary layer, andthe auxiliary layer comprises an amine-based compound represented by Formula 1:
  • 18. The organic light-emitting device of claim 17, wherein the emission layer and the auxiliary layer are adjacent to each other.
  • 19. The organic light-emitting device of claim 17, wherein the hole transport region further comprises a first hole transporting compound represented by any one of Formulae 201 and 202:
  • 20. The organic light-emitting device of claim 19, wherein the hole transport region comprises a hole transport layer, and the hole transport layer comprises the first hole transporting compound.
Priority Claims (2)
Number Date Country Kind
10-2014-0092665 Jul 2014 KR national
10-2015-0025913 Feb 2015 KR national