Organic light-emitting device

Information

  • Patent Grant
  • 12114563
  • Patent Number
    12,114,563
  • Date Filed
    Wednesday, May 19, 2021
    3 years ago
  • Date Issued
    Tuesday, October 8, 2024
    a month ago
Abstract
Disclosed are an organic light-emitting device and an electronic apparatus including the same. The organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer located between the first electrode and the second electrode and including an emission layer, wherein the emission layer includes a host compound, a first dopant compound, and a second dopant compound, and the second dopant compound is represented by Formula 1, A-(Ar1)n11  Formula 1 wherein, in Formula 1, A is a group represented by Formula 1-1,
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is based on and claims priority to Korean Patent Application No. 10-2020-0130411, filed on Oct. 8, 2020, in the Korean Intellectual Property Office, and all the benefits accruing therefrom under 35 U.S.C. § 119, the entire content of which is incorporated by reference herein.


BACKGROUND
1. Field

Provided is an organic light-emitting device.


2. Description of Related Art

Organic light-emitting devices (OLEDs) are self-emission devices that produce full-color images, and also have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of brightness, driving voltage, and response speed, compared to devices in the art.


In an example, an organic light-emitting device includes an anode, a cathode, and an organic layer between the anode and the cathode, wherein the organic layer includes an emission layer. A hole transport region may be located between the anode and the emission layer, and an electron transport region may be located between the emission layer and the cathode. Holes provided from the anode may move toward the emission layer through the hole transport region, and electrons provided from the cathode may move toward the emission layer through the electron transport region. The holes and the electrons recombine in the emission layer to produce excitons. These excitons transit from an excited state to a ground state to thereby generate light.


SUMMARY

Provided is an organic light-emitting device with low driving voltage, high efficiency, and long lifespan.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.


According to an aspect, provided is an organic light-emitting device including a first electrode, a second electrode facing the first electrode, and an organic layer located between the first electrode and the second electrode and including an emission layer, wherein the emission layer includes a host compound, a first dopant compound, and a second dopant compound, and the second dopant compound is represented by Formula 1 below.

A-(Ar1)n11  Formula 1

wherein, in Formula 1,

    • A is a group represented by Formula 1-1,




embedded image




    • Ar1 is a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,

    • n11 is an integer of 4 or more,

    • Ar1 in the number of n11 are identical to or different from each other,

    • M is B, Al, Si(Ra), Ge(Ra), P, P(═O), or P(═S),

    • CY1 to CY5 are each independently a C5-C30 carbocyclic group or a C1-C30 heterocyclic group,

    • Ra and R1 to R5 are each independently a binding site to Ar1 in Formula 1, hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted C1-C60 heteroalkyl aryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), or —P(═O)(Q8)(Q9),

    • a1 to a5 are each independently an integer from 1 to 10, two neighboring groups of R1 to R5 are optionally linked to each other to form a C5-C30 carbocyclic group unsubstituted or substituted with R10 or a C1-C30 heterocyclic group unsubstituted or substituted with R10, wherein R10 is the same as described in connection with R1, and

    • at least one substituent of the substituted C5-C30 carbocyclic group, the substituted C1-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C1-C60 alkylthio group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryl alkyl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted C1-C60 heteroalkyl aryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is

    • deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group,

    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group, each independently substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group,

    • a C6-C60 aryl group, a C6-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q14)(Q15), —B(Q16)(Q17), or —P(═O)(Q18)(Q19),

    • a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group,

    • a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C6-C60 alkyl aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each independently substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q24)(Q25)-B(Q26)(Q27), or —P(═O)(Q28)(Q29), or

    • —Si(Q31)(Q32)(Q33), —N(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39),

    • wherein Q1 to Q9, Q11 to Q19, Q21 to Q29, and Q31 to Q39 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C11 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted C1-C60 heteroalkyl aryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.





According to an aspect, provided is an electronic apparatus including the organic light-emitting device.





BRIEF DESCRIPTION OF THE DRAWING

The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawing, in which


FIGURE is a cross-sectional view schematically illustrating an organic light-emitting device according to an embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout the specification. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Throughout the disclosure, the expression “at least one of a, b, or c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.


It will be understood that when an element is referred to as being “on” another element, it can be directly in contact with the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.


It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


The term “or” means “and/or.” It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this general inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.


“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±20%, 10%, 5% of the stated value.


In any formula, * and *′ each indicate a binding site to a neighboring atom or a neighboring functional group.


According to an aspect, provided is an organic light-emitting device including: a first electrode; a second electrode facing the first electrode; and an organic layer located between the first electrode and the second electrode and including an emission layer, wherein the emission layer includes a host compound, a first dopant compound, and a second dopant compound, and the second dopant compound is represented by Formula 1 below.

A-(Ar1)n11  Formula 1

    • wherein, in Formula 1, A may be a group represented by Formula 1-1,




embedded image


In Formula 1, Ar1 may be a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group.


In an embodiment, Ar1 may be: a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group;

    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, —Si(Q31)(Q32)(Q33),
    • —N(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39); or —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), or —P(═O)(Q8)(Q9),
    • but embodiments of the present disclosure are not limited thereto.


In an embodiment, Ar1 may be:

    • a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group; or
    • a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group.


In an embodiment, Ar1 may be a group of Formulae 3-1 to 3-78, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein, in Formulae 3-1 to 3-78,

    • Y31 may be O, S, N(R31), C(R31)(R32), or Si(R31)(R32),

    • Y41 may be C(R41) or N,

    • Y42 may be C(R42) or N,

    • Y43 may be C(R43) or N,

    • Y44 may be C(R44) or N,

    • Y51 may be C(R51) or N,

    • Y52 may be C(R52) or N,

    • Y53 may be C(R53) or N,

    • Y54 may be C(R54) or N,

    • Z31 to Z34, R31, R32, R41 to R44, and R51 to R54 may each independently be

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group,

    • e2 may be an integer from 0 to 2,

    • e3 may be an integer from 0 to 3,

    • e4 may be an integer from 0 to 4,

    • e5 may be an integer from 0 to 5,

    • e6 may be an integer from 0 to 6,

    • e7 may be an integer from 0 to 7,

    • e9 may be an integer from 0 to 9,

    • indicates a binding site to a neighboring atom, and

    • substituents Z31 to Z34 may be present on each ring through which the bond with the corresponding substituent passes.





In Formula 1, n11 may be an integer of 4 or more, Ar1(s) in the number of n11 may be identical to or different from each other.


In an embodiment, Ar1(s) in the number of n11 may be identical to each other.


M in Formula 1-1 may be B, Al, Si(R1), Ge(R1), P, P(═O), or P(═S).


In an embodiment, M may be B, Al, Si(R1), P, or P(═O), but embodiments of the present disclosure are not limited thereto.


In an embodiment, M may be B.


In Formula 1-1, ring CY1 to ring CY5 may each independently be a C5-C30 carbocyclic group or a C1-C30 heterocyclic group.


In an embodiment, ring CY1 to ring CY5 may each independently be a first ring, a second ring, a condensed ring in which two or more groups selected from the first ring are condensed with each other, a condensed ring in which two or more groups selected from the second ring are condensed with each other, or a condensed ring in which at least one first ring and at least one second ring are condensed with each other, but embodiments of the present disclosure are not limited thereto.


The first ring may be a cyclopenta-1,3-diene group, an indene group, an azulene group, a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a tetracene group, a tetraphene group, a pyrene group, a chrysene group, a triphenylene group, or a fluorene group, and

    • the second ring may be a furan group, a thiophene group, a pyrrole group, a borole group, a silole group, a pyrrolidine group, an imidazole group, a thiazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, a pyridine group, a pyrimidine group, a pyridazine group, a triazine group, an indole group, an isoindole group, an indolizine group, a quinoline group, an isoquinoline group, a quinoxaline group, an isoquinoxaline group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzosilole group, or a dibenzoborole group.


In an embodiment, ring CY1 to ring CY5 may each independently be a phenyl group, a naphthalene group, an anthracene group, a fluorene group, a pyridine group, a pyrimidine group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, or a dibenzosilole group.


In Formula 1-1, Ra and R1 to R5 may each independently be a binding site to Ar1 in Formula 1, hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted C1-C60 heteroalkyl aryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), or —P(═O)(Q8)(Q9).


In an embodiment, Ra and R1 to R5 may each independently be:

    • a binding site to Ar1 in Formula 1;
    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, or a C1-C60 alkoxy group;
    • a C1-C60 alkyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39); or
    • —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), or —P(═O)(Q8)(Q9),
    • but embodiments of the present disclosure are not limited thereto.


In an embodiment, Ra may be: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group; a C1-C60 alkyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a phenyl group, or a biphenyl group.


In an embodiment, when at least one group of R1(s) in the number of a1 may be a binding site to Ar1 in Formula 1, the remaining R1 groups may each be hydrogen.


In an embodiment, when at least one group of R2(s) in the number of a2 may be a binding site to Ar1 in Formula 1, the remaining R2 groups may each be hydrogen.


In an embodiment, when at least one group of R3(s) in the number of a3 may be a binding site to Ar1 in Formula 1, the remaining R3 groups may each be hydrogen.


In an embodiment, when at least one group of R4(s) in the number of a4 may be a binding site to Ar1 in Formula 1, the remaining R4 groups may each be hydrogen.


In an embodiment, when at least one group of R5(s) in the number of a5 may be a binding site to Ar1 in Formula 1, the remaining R5 groups may each be hydrogen.


In Formula 1-1, a1 to a5 may each independently an integer from 1 to 10. Here, a1 may indicate the number of R1 groups, wherein, when a1 is an integer of 2 or more, two or more of R1(s) may be identical to or different from each other, a2 may indicate the number of R2 groups, wherein, when a2 is an integer of 2 or more, two or more of R2(s) may be identical to or different from each other, a3 may indicate the number of R3 groups, wherein, when a3 is an integer of 2 or more, two or more of R3(s) may be identical to or different from each other, a4 may indicate the number of R4 groups, wherein, when a4 is an integer of 2 or more, two or more of R4(s) may be identical to or different from each other, and a5 may indicate the number of R5 groups, wherein, when a5 is an integer of 2 or more, two or more of R5(s) may be identical to or different from each other.


In Formula 1-1, two neighboring groups of R1 to R5 may optionally linked to each other to thereby form a C5-C30 carbocyclic group unsubstituted or substituted with R10 a C1-C30 heterocyclic group unsubstituted or substituted with R10. In this regard, R10 is the same as described in connection with R1.


In an embodiment, Formula 1 may be represented by Formula 1-2:




embedded image


In Formula 1-2,

    • M is the same as described in the present specification,
    • each of Ar11 to Ar15 is the same as described in connection with Ar1 in the present specification,
    • b1 and b2 are each independently an integer from 0 to 4,
    • b3 may be an integer from 0 to 3,
    • b4 and b5 may each independently be an integer from 0 to 5, and
    • b1+b2+b3+b4+b5≥4.


In an embodiment, when b1 is 2 or more, two or more of Ar11(s) may be identical to or different from each other, when b2 is 2 or more, two or more of Ar12(s) may be identical to or different from each other, when b3 is 2 or more, two or more of Ar13(s) may be identical to or different from each other, when b4 is 2 or more, two or more of Ar14(s) may be identical to or different from each other, and when b5 is 2 or more, two or more of Ar15(s) may be identical to or different from each other.


In an embodiment, when b1 is 0, Ar11 does not exist, when b2 is 0, Ar12 does not exist, when b3 is 0, Ar13 does not exist, when b4 is 0, Ar14 does not exist, and when b5 is 0, Ar15 does not exist.


In an embodiment, in Formula 1-2, Ar11(s) in the number of b1, Ar12(s) in the number of b2, Ar13(s) in the number of b3, Ar14(s) in the number of b4, and Ar15(s) in the number of b5 may be identical to each other.


In an embodiment, in Formula 1-2,

    • (i) b1 may be 4; b2 may be 4; b4 may be 4; or b5 may be 4;
    • (ii) b1 may be 3 and b2 may be 1; b1 may be 3 and b3 may be 1; b1 may be 3 and b4 may be 1; or b1 may be 3 and b5 may be 1;
    • (iii) b1 may be 2, b2 may be 1, and b3 may be 1; b1 may be 2, b2 may be 1, and b4 may be 1; b1 may be 2, b2 may be 1, and b5 may be 1; b1 may be 2, b3 may be 1, and b4 may be 1; b1 may be 2, b3 may be 1, and b5 may be 1; b1 may be 2, b4 may be 1, and b5 may be 1; b1 may be 2 and b2 may be 2; b1 may be 2 and b3 may be 2; b1 may be 2 and b4 may be 2; or b1 may be 2 and b5 may be 2;
    • (iv) b1 may be 1, b2 may be 1, b3 may be 1, and b4 may be 1; b1 may be 1, b2 may be 1, b3 may be 1, and b5 may be 1; b1 may be 1, b3 may be 1, b4 may be 1, and b5 may be 1; b1 may be 1, b2 may be 2, and b3 may be 1; b1 may be 1, b2 may be 2, and b4 may be 1; b1 may be 1, b2 may be 2, and b5 may be 1; b1 may be 1, b2 may be 1, and b3 may be 2; b1 may be 1, b3 may be 2, and b4 may be 1; b1 may be 1, b3 may be 2, and b5 may be 1; b1 may be 1, b2 may be 1, and b4 may be 2; b1 may be 1, b3 may be 1, and b4 may be 2; b1 may be 1, b4 may be 2, and b5 may be 1; b1 may be 1, b2 may be 1, and b5 may be 2; b1 may be 1, b3 may be 1, and b5 may be 2; b1 may be 1, b4 may be 1, and b5 may be 2; b1 may be 1 and b2 may be 3; b1 may be 1 and b3 may be 3; b1 may be 1 and b4 may be 3; or b1 may be 1 and b5 may be 3;
    • (v) b2 may be 3 and b3 may be 1; b2 may be 3 and b4 may be 1; or b2 may be 3 and b5 may be 1;
    • (vi) b2 may be 2, b3 may be 1, and b4 may be 1; b2 may be 2, b3 may be 1, and b5 may be 1; b2 may be 2, b4 may be 1, and b5 may be 1; b2 may be 2 and b3 may be 2; b2 may be 2 and b4 may be 2; or b2 may be 2 and b5 may be 2;
    • (vii) b2 may be 1, b3 may be 1, b4 may be 1, and b5 may be 1; b2 may be 1, b3 may be 2, and b4 may be 1; b2 may be 1, b3 may be 2, and b5 may be 1; b2 may be 1, b3 may be 1, and b4 may be 2; b2 may be 1, b4 may be 2, and b5 may be 1; b2 may be 1, b5 may be 2, and b3 may be 1; b2 may be 1, b5 may be 2, and b4 may be 1; b2 may be 1 and b3 may be 3; b2 may be 1 and b4 may be 3; or b2 may be 1 and b5 may be 3;
    • (viii) b3 may be 3 and b4 may be 1; or b3 may be 3 and b5 may be 1;
    • (ix) b3 may be 2, b4 may be 1, and b5 may be 1; b3 may be 2 and b4 may be 2; or b3 may be 2 and b5 may be 2;
    • (x) b3 may be 1, b4 may be 2, and b5 may be 1; or b3 may be 1, b4 may be 1, and b5 may be 2;
    • (xi) b4 may be 3 and b5 may be 1;
    • (xii) b4 may be 2 and b5 may be 2; or
    • (xiii) b4 may be 1 and b5 may be 3, but embodiments of the present disclosure are not limited thereto.


In an embodiment, the second dopant compound may be Compounds 1 to 229:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



wherein in the formulae Ph is a phenyl group.


While not wishing to be bound by theory, it is understood that because the second dopant compound represented by Formula 1 includes four or more substituents (Ar1) which are substituted on a central condensed ring core (A), stability of a molecule is improved, and thus, an organic light-emitting device including the second dopant compound represented by Formula 1 has an improved lifespan characteristics


While not wishing to be bound by theory, it is understood that because the organic light-emitting device includes the emission layer including a host compound and a first dopant compound together with the second dopant compound represented by Formula 1, a decrease in efficiency according to triplet-triplet annihilation may be easily prevented, and because excitons are transferred to the light-emitting dopant without loss of excitons through a Forster resonance energy transfer (FRET) mechanism and a dexter energy transfer (DET) mechanism, efficiency may be improved.


A highest occupied molecular orbital (HOMO) energy level, a lowest unoccupied molecular orbital (LUMO) energy level, a S1 energy level, and a T1 energy level of the exemplary second dopant compound represented by Formula 1 are evaluated using Gaussian 09 program with molecular structure optimization by density functional theory (DFT) based on B3LYP, and results thereof are shown in Table 1 below.















TABLE 1








HOMO
LUMO
S1
T1



Compound No.
(eV)
(eV)
(eV)
(eV)






















Compound 1
−4.726
−1.179
3.020
2.546



Compound 224
−4.639
−1.107
3.007
2.555



Compound 95
−4.743
−1.125
3.074
2.638



Compound 229
−4.775
−1.323
2.936
2.517










Referring to Table 1, it is confirmed that the second dopant compound represented by Formula 1 has electric characteristics that are suitable for use as a light-emitting dopant for an electronic device, for example, an organic light-emitting device.


Synthesis method of the second dopant compound represented by Formula 1 may be recognized by those skilled in the art with reference to the following Synthesis Examples.


In an embodiment, the host may consist of one kind of host. When the host consists of one kind of host, the one kind of host may be a bipolar host, an electron transport host, or a hole transport host, which will be described later.


In an embodiment, the host compound included in the emission layer may include two different compounds.


In an embodiment, the host compound included in the emission layer may include a common host forming an exciplex.


In an embodiment, the host compound may include a hole transport host compound and an electron transport host compound, but embodiments of the present disclosure are not limited thereto. The electron transport host compound and a hole transport host may be understood by referring to the related description to be presented later.


In an embodiment, the host may include an electron transport host including at least one electron transport moiety and a hole transport host that does not include an electron transport moiety.


The electron transport moiety used herein may be a cyano group, a π-electron-deficient nitrogen-containing cyclic group, or a group represented by one of the following formulae:




embedded image


In the formulae, *, *′, and *″ are each binding sites to neighboring atoms.


In an embodiment, the electron transport host in the emission layer may include at least one of a cyano group and a π-electron-deficient nitrogen-containing cyclic group.


In an embodiment, the electron transport host in the emission layer may include at least one cyano group.


In an embodiment, the electron transport host in the emission layer may include at least one cyano group and at least one π-electron-deficient nitrogen-containing cyclic group.


In an embodiment, the host may include an electron transport host and a hole transport host, wherein the electron transport host may include at least one π-electron-deficient nitrogen-free cyclic group and at least one electron transport moiety, and the hole transport host may include at least one π-electron-deficient nitrogen-free cyclic group and may not include an electron transport moiety.


In the present specification, the term “π-electron-deficient nitrogen-containing cyclic group” refers to a cyclic group having at least one *—N═*′ moiety, and for example, may be: an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, a benzoisoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group; or a condensed cyclic group of two or more π-electron-deficient nitrogen-containing cyclic groups.


In an embodiment, the π-electron-deficient nitrogen-free cyclic group may be a phenyl group, a heptalene group, an indene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, an isoindole group, an indole group, a furan group, a thiophene group, a benzofuran group, a benzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, a dibenzosilole group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, and a triindolobenzene group; or a condensed cyclic of two or more π-electron-deficient nitrogen-free cyclic group, but embodiments of the present disclosure are not limited thereto.


In an embodiment, the electron transport host may be compounds represented by Formula E-1 below, and

    • the hole transport host may be compounds represented by Formula H-1, but embodiments of the present disclosure are not limited thereto:

      [Ar301]xb11-[(L301)xb1-R301]xb21  Formula E-1
    • wherein, in Formula E-1,
    • Ar301 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,
    • xb11 may be 1, 2, or 3,
    • L301 may each independently be a single bond, a group represented by the following formulae, a substituted or unsubstituted C5-C60 carbocyclic group, or a substituted or unsubstituted C1-C60 heterocyclic group, and *, *′, and * in the following formulae are each a binding site to a neighboring atom,




embedded image




    • xb1 may be an integer from 1 to 5,

    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), —S(═O)(Q301), —P(═O)(Q301)(Q302), or —P(═S)(Q301)(Q302),

    • xb21 may be an integer from 1 to 5,

    • Q301 to Q303 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and

    • at least one of Condition 1 to Condition 3 below is satisfied:


      Condition 1:

    • at least one of Ar301, L301, and R301 in Formula E-1 may each independently include a π-electron-deficient nitrogen-containing cyclic group;


      Condition 2:

    • L301 in Formula E-1 may be a group represented by one of the following formulae:







embedded image



Condition 3:

    • R301 in Formula E-1 may be a cyano group, —S(═O)2(Q301), —S(═O)(Q301), —P(═O)(Q301)(Q302), or —P(═S)(Q301)(Q302).




embedded image




    • wherein, in Formulae H-1, 11, and 12,

    • L401 may be:

    • a single bond; or

    • a phenyl group, a heptalene group, an indene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, an isoindole group, an indole group, a furan group, a thiophene group, a benzofuran group, a benzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, a dibenzosilole group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group or a triindolobenzene group, may each independently be unsubstituted or substituted with at least one deuterium, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triphenylenyl group, a biphenyl group, a terphenyl group, a tetraphenyl group, or —Si(Q401)(Q402)(Q403),

    • xd1 may be an integer from 1 to 10, wherein, when xd1 is 2 or more, two or more of L401(s) are identical to or different from each other,

    • Ar401 may be groups represented by Formulae 11 or 12,

    • Ar402 may be:

    • a group represented by Formula 11 or 12, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, or a triphenylenyl group; or

    • a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, or a triphenylenyl group, each independently substituted with at least one deuterium, a hydroxyl group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, or a triphenylenyl group,

    • CY401 and CY402 may each independently be a phenyl group, a naphthalene group, a fluorene group, a carbazole group, a benzocarbazole group, an indolocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzosilole group, a benzonaphthofuran group, a benzonaphthothiophene group, or a benzonaphthosilole group,

    • xd11 may be an integer from 1 to 10, wherein when xd11 is 2 or more, two or more of Ar402(s) may be identical to or different from each other,

    • A21 may be a single bond, O, S, N(R51), C(R51)(R52), or Si(R51)(R52),

    • A22 may be a single bond, O, S, N(R53), C(R53)(R54), or Si(R53)(R54),

    • at least one of A21 and A22 in Formula 12 may not be a single bond,

    • R51 to R54, R60, and R70 may each independently be:

    • hydrogen, deuterium, a hydroxyl group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group,

    • a C1-C20 alkylthio group, or a C1-C20 alkoxy group; a C1-C20 alkyl group, a C1-C20 alkylthio group, or a C1-C20 alkoxy group, each independently substituted with at least one deuterium, a hydroxyl group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group;

    • a π-electron-deficient nitrogen-free cyclic group (for example, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, or a triphenylenyl group);

    • a π-electron-deficient nitrogen-free cyclic group (for example, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, and a triphenylenyl group) that is substituted with at least one deuterium, a hydroxyl group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a biphenyl group; or

    • —Si(Q404)(Q405)(Q406),

    • e1 and e2 may each independently be an integer from 0 to 10,

    • Q401 to Q406 may each independently be hydrogen, deuterium, a hydroxyl group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a biphenyl group, a terphenyl group, or a triphenylenyl group, and

    • * indicates a binding site to a neighboring atom.





In an embodiment, at least one of A21 and A22 in Formula 12 is not a single bond.


In an embodiment, in Formula E-1, Ar301 and L301 may each independently be a phenyl group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, or an azacarbazole group, each independently unsubstituted or substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, a cyano-containing naphthyl group, a pyridinyl group, a phenylpyridinyl group, a diphenylpyridinyl group, a biphenylpyridinyl group, a di(biphenyl)pyridinyl group, a pyrazinyl group, a phenylpyrazinyl group, a diphenylpyrazinyl group, a biphenylpyrazinyl group, a di(biphenyl)pyrazinyl group, a pyridazinyl group, a phenylpyridazinyl group, a diphenylpyridazinyl group, a biphenylpyridazinyl group, a di(biphenyl)pyridazinyl group, a pyrimidinyl group, a phenylpyrimidinyl group, a diphenylpyrimidinyl group, a biphenylpyrimidinyl group, a di(biphenyl)pyrimidinyl group, a triazinyl group, a phenyltriazinyl group, a diphenyltriazinyl group, a biphenyltriazinyl group, a di(biphenyl)triazinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),

    • at least one of L301(s) in the number of xb1 may each independently be an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, or an azacarbazole group, each independently unsubstituted or substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, a cyano-containing naphthyl group, a pyridinyl group, a phenylpyridinyl group, a diphenylpyridinyl group, a biphenylpyridinyl group, a di(biphenyl)pyridinyl group, a pyrazinyl group, a phenylpyrazinyl group, a diphenylpyrazinyl group, a biphenylpyrazinyl group, a di(biphenyl)pyrazinyl group, a pyridazinyl group, a phenylpyridazinyl group, a diphenylpyridazinyl group, a biphenylpyridazinyl group, a di(biphenyl)pyridazinyl group, a pyrimidinyl group, a phenylpyrimidinyl group, a diphenylpyrimidinyl group, a biphenylpyrimidinyl group, a di(biphenyl)pyrimidinyl group, a triazinyl group, a phenyltriazinyl group, a diphenyltriazinyl group, a biphenyltriazinyl group, a di(biphenyl)triazinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),
    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a tetraphenyl group, a naphthyl group, a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, a cyano-containing tetraphenyl group, a cyano-containing naphthyl group, a pyridinyl group, a phenylpyridinyl group, a diphenylpyridinyl group, a biphenylpyridinyl group, a di(biphenyl)pyridinyl group, a pyrazinyl group, a phenylpyrazinyl group, a diphenylpyrazinyl group, a biphenylpyrazinyl group, a di(biphenyl)pyrazinyl group, a pyridazinyl group, a phenylpyridazinyl group, a diphenylpyridazinyl group, a biphenylpyridazinyl group, a di(biphenyl)pyridazinyl group, a pyrimidinyl group, a phenylpyrimidinyl group, a diphenylpyrimidinyl group, a biphenylpyrimidinyl group, a di(biphenyl)pyrimidinyl group, a triazinyl group, a phenyltriazinyl group, a diphenyltriazinyl group, a biphenyltriazinyl group, a di(biphenyl)triazinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q31 to Q33 may each independently be a C1-C10 alkyl group, a C1-C1 alkoxy group, a C1-C1 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, but embodiments of the present disclosure are not limited thereto.


In an embodiment,

    • Ar301 may be: a phenyl group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, or a dibenzothiophene group, each independently unsubstituted or substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a cyano group-containing phenyl group, a cyano group-containing biphenyl group, a cyano group-containing terphenyl group, a cyano group-containing naphthyl group, a pyridinyl group, a phenyl pyridinyl group, a diphenyl pyridinyl group, a biphenyl pyridinyl group, a di(biphenyl) pyridinyl group, a pyrazinyl group, a phenyl pyrazinyl group, a diphenyl pyrazinyl group, a biphenyl pyrazinyl group, a di(biphenyl) pyrazinyl group, a pyridazinyl group, a phenyl pyridazinyl group, a diphenyl pyridazinyl group, a biphenyl pyridazinyl group, a di(biphenyl) pyridazinyl group, a pyrimidinyl group, a phenyl pyrimidinyl group, a diphenyl pyrimidinyl group, a biphenyl pyrimidinyl group, a di(biphenyl) pyrimidinyl group, a triazinyl group, a phenyl triazinyl group, a diphenyl triazinyl group, a biphenyl triazinyl group, a di(biphenyl) triazinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32); or
    • groups represented by Formulae 5-1 to 5-3 or Formulae 6-1 to 6-33, and
    • L301 may be groups represented by Formulae 5-1 to 5-3 or Formulae 6-1 to 6-33:




embedded image


embedded image


embedded image


embedded image


In Formulae 5-1 to 5-3 and 6-1 to 6-33,

    • Z1 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, a cyano-containing naphthyl group, a pyridinyl group, a phenylpyridinyl group, a diphenylpyridinyl group, a biphenylpyridinyl group, a di(biphenyl)pyridinyl group, a pyrazinyl group, a phenylpyrazinyl group, a diphenylpyrazinyl group, a biphenylpyrazinyl group, a di(biphenyl)pyrazinyl group, a pyridazinyl group, a phenylpyridazinyl group, a diphenylpyridazinyl group, a biphenylpyridazinyl group, a di(biphenyl)pyridazinyl group, a pyrimidinyl group, a phenylpyrimidinyl group, a diphenylpyrimidinyl group, a biphenylpyrimidinyl group, a di(biphenyl)pyrimidinyl group, a triazinyl group, a phenyltriazinyl group, a diphenyltriazinyl group, a biphenyltriazinyl group, a di(biphenyl)triazinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),
    • d4 may be 0, 1, 2, 3, or 4,
    • d3 may be 0, 1, 2, or 3,
    • d2 may be 0, 1, or 2, and
    • * and *′ each indicate a binding site to a neighboring atom.


Q31 to Q33 are the same as described above.


In an embodiment, L301 may be groups represented by Formulae 5-2, 5-3, or 6-8 to 6-33.


In an embodiment, R301 may be a cyano group and groups represented by Formulae 7-1 to 7-18, or at least one of Ar402(s) in the number of xd11 may be groups represented by Formulae 7-1 to 7-18, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


In Formulae 7-1 to 7-18,

    • xb41 to xb44 may be each 0, 1, or 2, wherein xb41 in Formula 7-10 may not be 0, the sum of xb4l and xb42 in Formulae 7-11 to 7-13 may not be 0, the sum of xb41, xb42, and xb43 in Formulae 7-14 to 7-16 may not be 0, the sum of xb41, xb42, xb43, and xb44 in Formulae 7-17 and 7-18 may not be 0, and * indicates a binding site to a neighboring atom.


In an embodiment, at least one of the following conditions is satisfied:

    • xb41 in Formula 7-10 is not 0,
    • the sum of xb41 and xb42 in Formulae 7-11 to 7-13 is not 0, the sum of xb41, xb42, and xb43 in Formulae 7-14 to 7-16 is not 0, or
    • the sum of xb41, xb42, xb43, and xb44 in Formulae 7-17 and 7-18 is not 0.


Two or more of Ar301(s) in Formula E-1 may be identical to or different from each other, two or more of L301(s) in Formula E-1 may be identical to or different from each other, two or more of L401(s) in Formula H-1 may be identical to or different from each other, and two or more of Ar402(s) in Formula H-1 may be identical to or different from each other.


In an embodiment, the electron transport host may include i) at least one of a cyano group, a pyrimidine group, a pyrazine group, and a triazine group and ii) a triphenylene group, and the hole transport host may include a carbazole group.


In an embodiment, the electron transport host may include at least one cyano group.


The electron transport host may be, for example, a compound of Groups HE1 to HE7, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the hole transport host may be Compounds H-H1 to H-H104, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the bipolar host may be the following Group HEH1, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Compound 1 to 432,


Ph is a phenyl group.


When the host is a mixture of an electron transport host and a hole transport host, the weight ratio of the electron transport host to the hole transport host may be 1:9 to 9:1, for example, 2:8 to 8:2, for example, 4:6 to 6:4, for example, 5:5. When the weight ratio of the electron transport host to the hole transport host satisfies the above-described ranges, the hole-and-electron transport balance in the emission layer may be achieved.


In an embodiment, the host may include at least one of TPBi, TBADN, ADN (also referred to as “DNA”), CBP, CDBP, TCP, mCP, or Compounds H50 to H52:




embedded image


embedded image


In an embodiment, the host may further include a compound represented by Formula 301 below:




embedded image


In Formula 301, Ar111 and Ar112 may each independently be:

    • a phenylene group, a naphthylene group, a phenanthrenylene group, or a pyrenylene group; or
    • a phenylene group, a naphthylene group, a phenanthrenylene group, or a pyrenylene group, each independently substituted with at least one of a phenyl group, a naphthyl group, or an anthracenyl group.


Ar113 to Ar116 in Formula 301 may each independently be:

    • a C1-C10 alkyl group, a phenyl group, a naphthyl group, a phenanthrenyl group, or a pyrenyl group; or
    • a phenyl group, a naphthyl group, a phenanthrenyl group, or a pyrenyl group, each independently substituted with at least one of a phenyl group, a naphthyl group, or an anthracenyl group.


g, h, i, and j in Formula 301 may each independently be an integer from 0 to 4, for example, 0, 1, or 2.


In Formula 301, Ar113 to Ar116 may each independently be:

    • a C1-C10 alkyl group substituted with at least one of a phenyl group, a naphthyl group, or an anthracenyl group;
    • a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, or a fluorenyl group;
    • a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, or a fluorenyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, or a fluorenyl group; or




embedded image




    • but embodiments of the present disclosure are not limited thereto.





In an embodiment, the host may include a compound represented by Formula 302:




embedded image


Detailed descriptions of Ar122 to Ar125 in Formula 302 are the same as described in connection with Ar113 in Formula 301.


Ar126 and Ar127 in Formula 302 may each independently be a C1-C10 alkyl group (for example, a methyl group, an ethyl group, or a propyl group).


k and l in Formula 302 may each independently be an integer from 0 to 4. In an embodiment, k and l may be 0, 1, or 2.


When the organic light-emitting device is a full-color organic light-emitting device, emission layer may be patterned into a red emission layer, a green emission layer, and a blue emission layer. In an embodiment, the emission layer may have a structure in which the red emission layer, the green emission layer, and/or the blue emission layer are stacked, the emission layer may emit white light, and various modifications are possible.


When the emission layer includes a host and a light-emitting dopant, an amount of the light-emitting dopant may be from about 0.01 parts by weight to about 15 parts by weight based on about 100 parts by weight of the host, for example, about 0.01 parts by weight to about 12 parts by weight, about 0.01 parts by weight to about 10 parts by weight, about 0.01 parts by weight to about 8 parts by weight, about 0.01 parts by weight to about 6 parts by weight, about 0.01 parts by weight to about 4 parts by weight, or about 0.01 parts by weight to about 2 parts by weight based on 100 parts by weight of the host, but embodiments of the present disclosure are not limited thereto.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å, for example, about 100 Å to about 800 Å, about 200 Å to about 600 Å, or about 300 Å to about 400 Å. When the thickness of the emission layer is within these ranges, improved light-emission characteristics may be obtained without a substantial increase in driving voltage.


In the emission layer of the organic light-emitting device, the first dopant compound may include an organometallic compound including a transition metal.


The first dopant compound may include a polycyclic compound represented by Formula 1.


In an embodiment, the first dopant compound may include an organometallic compound including at least one a first-row transition metal of the Periodic Table of Elements, a second-row transition metal of the Periodic Table of Elements, or a third-row transition metal of the Periodic Table of Elements.


In an embodiment, the first dopant compound may include an organic ligand (L1) and at least one metal (M11) a first-row transition metal of the Periodic Table of Elements, a second-row transition metal of the Periodic Table of Elements, or a third-row transition metal of the Periodic Table of Elements, and L1 and M11 may form one cyclometallated ring, two cyclometallated rings, three cyclometallated rings, or four cyclometallated rings.


In an embodiment, the first dopant compound may include an organometallic compound represented by Formula 101 below:

M11(L1)n1(L2)n2  Formula 101


In Formula 101,

    • M11 may be a first-row transition metal of the Periodic Table of Elements, a second-row transition metal of the Periodic Table of Elements, or a third-row transition metal of the Periodic Table of Elements,
    • L1 may be a ligand represented by one of Formulae 10-1 to 10-4,
    • L2 may be a monodentate ligand or a bidentate ligand,
    • n1 may be 1, and
    • n2 may be 0, 1, or 2, and




embedded image




    • wherein, in Formulae 10-1 to 10-4,

    • A1 to A4 may each independently be a substituted or unsubstituted C5-C30 carbocyclic group, a substituted or unsubstituted C1-C30 heterocyclic group, or a non-cyclic group,

    • Y11 to Y14 may each independently be a chemical bond, O, S, N(R91), B(R91), P(R91), or C(R91)(R92),

    • T1 to T4 may each independently be a single bond, a double bond, *—N(R93)—*′, * B(R93)—*′, *—P(R93)—*′, *—C(R93)(R94)—*′, *—Si(R93)(R94)—*′, *—Ge(R93)(R94)—*′, *—S—*′, *—Se—*′, *—O—*′ *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(R93)═*′, *═C(R93)—*′, *—C(R93)═C(R94)—*′, *—C(═S)—*′, or *—C≡C—*′,

    • a substituent of the substituted C5-C30 carbocyclic group, a substituent of the substituted C1-C30 heterocyclic group, or R91 to R94 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2), wherein each of the substituent of the substituted C5-C30 carbocyclic group and the substituent of the substituted C1-C30 heterocyclic group is not hydrogen,

    • *1, *2, *3, and *4 each indicate a binding site to M11, and

    • Q1 to Q3 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one deuterium, —F, a cyano group, a C1-C60 alkyl group, or a C6-C60 aryl group, or a C6-C60 aryl group substituted with at least one deuterium, —F, a cyano group, a C1-C60 alkyl group, or a C6-C60 aryl group.





In an embodiment, the first dopant compound may be Groups I to VI, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image



Group V


A compound represented by the following Formula A:

(L101)n101-M101-(L102)m101  Formula A


In Formula A, L101, n101, M101, L102, and m101 are the same as described in Tables 2 to 4:














TABLE 2





Compound name
L101
n101
M101
L102
m101







BD001
LM1
3
Ir

0


BD002
LM2
3
Ir

0


BD003
LM3
3
Ir

0


BD004
LM4
3
Ir

0


BD005
LM5
3
Ir

0


BD006
LM6
3
Ir

0


BD007
LM7
3
Ir

0


BD008
LM8
3
Ir

0


BD009
LM9
3
Ir

0


BD010
LM10
3
Ir

0


BD011
LM11
3
Ir

0


BD012
LM12
3
Ir

0


BD013
LM13
3
Ir

0


BD014
LM14
3
Ir

0


BD015
LM15
3
Ir

0


BD016
LM16
3
Ir

0


BD017
LM17
3
Ir

0


BD018
LM18
3
Ir

0


BD019
LM19
3
Ir

0


BD020
LM20
3
Ir

0


BD021
LM21
3
Ir

0


BD022
LM22
3
Ir

0


BD023
LM23
3
Ir

0


BD024
LM24
3
Ir

0


BD025
LM25
3
Ir

0


BD026
LM26
3
Ir

0


BD027
LM27
3
Ir

0


BD028
LM28
3
Ir

0


BD029
LM29
3
Ir

0


BD030
LM30
3
Ir

0


BD031
LM31
3
Ir

0


BD032
LM32
3
Ir

0


BD033
LM33
3
Ir

0


BD034
LM34
3
Ir

0


BD035
LM35
3
Ir

0


BD038
LM36
3
Ir

0


BD037
LM37
3
Ir

0


BD038
LM38
3
Ir

0


BD039
LM39
3
Ir

0


BD040
LM40
3
Ir

0


BD041
LM41
3
Ir

0


BD042
LM42
3
Ir

0


BD043
LM43
3
Ir

0


BD044
LM44
3
Ir

0


BD045
LM45
3
Ir

0


BD046
LM46
3
Ir

0


BD047
LM47
3
Ir

0


BD048
LM48
3
Ir

0


BD049
LM49
3
Ir

0


BD050
LM50
3
Ir

0


BD051
LM51
3
Ir

0


BD052
LM52
3
Ir

0


BD053
LM53
3
Ir

0


BD054
LM54
3
Ir

0


BD055
LM55
3
Ir

0


BD056
LM56
3
Ir

0


BD057
LM57
3
Ir

0


BD058
LM58
3
Ir

0


BD059
LM59
3
Ir

0


BD060
LM60
3
Ir

0


BD061
LM61
3
Ir

0


BD062
LM62
3
Ir

0


BD063
LM63
3
Ir

0


BD064
LM64
3
Ir

0


BD065
LM65
3
Ir

0


BD066
LM66
3
Ir

0


BD067
LM67
3
Ir

0


BD068
LM68
3
Ir

0


BD069
LM69
3
Ir

0


BD070
LM70
3
Ir

0


BD071
LM71
3
Ir

0


BD072
LM72
3
Ir

0


BD073
LM73
3
Ir

0


BD074
LM74
3
Ir

0


BD075
LM75
3
Ir

0


BD076
LM76
3
Ir

0


BD077
LM77
3
Ir

0


BD078
LM78
3
Ir

0


BD079
LM79
3
Ir

0


BD080
LM80
3
Ir

0


BD081
LM81
3
Ir

0


BD082
LM82
3
Ir

0


BD083
LM83
3
Ir

0


BD084
LM84
3
Ir

0


BD085
LM85
3
Ir

0


BD086
LM86
3
Ir

0


BD087
LM87
3
Ir

0


BD088
LM88
3
Ir

0


BD089
LM89
3
Ir

0


BD090
LM90
3
Ir

0


BD091
LM91
3
Ir

0


BD092
LM92
3
Ir

0


BD093
LM93
3
Ir

0


BD094
LM94
3
Ir

0


BD095
LM95
3
Ir

0


BD096
LM96
3
Ir

0


BD097
LM97
3
Ir

0


BD098
LM98
3
Ir

0


BD099
LM99
3
Ir

0


BD100
LM100
3
Ir

0





















TABLE 3





Compound name
L101
n101
M101
L102
m101







BD101
LM101
3
Ir

0


BD102
LM102
3
Ir

0


BD103
LM103
3
Ir

0


BD104
LM104
3
Ir

0


BD105
LM105
3
Ir

0


BD106
LM106
3
Ir

0


BD107
LM107
3
Ir

0


BD108
LM108
3
Ir

0


BD109
LM109
3
Ir

0


BD110
LM110
3
Ir

0


BD111
LM111
3
Ir

0


BD112
LM112
3
Ir

0


BD113
LM113
3
Ir

0


BD114
LM114
3
Ir

0


BD115
LM115
3
Ir

0


BD116
LM116
3
Ir

0


BD117
LM117
3
Ir

0


BD118
LM118
3
Ir

0


BD119
LM119
3
Ir

0


BD120
LM120
3
Ir

0


BD121
LM121
3
Ir

0


BD122
LM122
3
Ir

0


BD123
LM123
3
Ir

0


BD124
LM124
3
Ir

0


BD125
LM125
3
Ir

0


BD126
LM126
3
Ir

0


BD127
LM127
3
Ir

0


BD128
LM128
3
Ir

0


BD129
LM129
3
Ir

0


BD130
LM130
3
Ir

0


BD131
LM131
3
Ir

0


BD132
LM132
3
Ir

0


BD133
LM133
3
Ir

0


BD134
LM134
3
Ir

0


BD135
LM135
3
Ir

0


BD136
LM136
3
Ir

0


BD137
LM137
3
Ir

0


BD138
LM138
3
Ir

0


BD139
LM139
3
Ir

0


BD140
LM140
3
Ir

0


BD141
LM141
3
Ir

0


BD142
LM142
3
Ir

0


BD143
LM143
3
Ir

0


BD144
LM144
3
Ir

0


BD145
LM145
3
Ir

0


BD146
LM146
3
Ir

0


BD147
LM147
3
Ir

0


BD148
LM148
3
Ir

0


BD149
LM149
3
Ir

0


BD150
LM150
3
Ir

0


BD151
LM151
3
Ir

0


BD152
LM152
3
Ir

0


BD153
LM153
3
Ir

0


BD154
LM154
3
Ir

0


BD155
LM155
3
Ir

0


BD156
LM156
3
Ir

0


BD157
LM157
3
Ir

0


BD158
LM158
3
Ir

0


BD159
LM159
3
Ir

0


BD160
LM160
3
Ir

0


BD161
LM161
3
Ir

0


BD162
LM162
3
Ir

0


BD163
LM163
3
Ir

0


BD164
LM164
3
Ir

0


BD165
LM165
3
Ir

0


BD166
LM166
3
Ir

0


BD167
LM167
3
Ir

0


BD168
LM168
3
Ir

0


BD169
LM169
3
Ir

0


BD170
LM170
3
Ir

0


BD171
LM171
3
Ir

0


BD172
LM172
3
Ir

0


BD173
LM173
3
Ir

0


BD174
LM174
3
Ir

0


BD175
LM175
3
Ir

0


BD176
LM176
3
Ir

0


BD177
LM177
3
Ir

0


BD178
LM178
3
Ir

0


BD179
LM179
3
Ir

0


BD180
LM180
3
Ir

0


BD181
LM181
3
Ir

0


BD182
LM182
3
Ir

0


BD183
LM183
3
Ir

0


BD184
LM184
3
Ir

0


BD185
LM185
3
Ir

0


BD186
LM186
3
Ir

0


BD187
LM187
3
Ir

0


BD188
LM188
3
Ir

0


BD189
LM189
3
Ir

0


BD190
LM190
3
Ir

0


BD191
LM191
3
Ir

0


BD192
LM192
3
Ir

0


BD193
LM193
3
Ir

0


BD194
LM194
3
Ir

0


BD195
LM195
3
Ir

0


BD196
LM196
3
Ir

0


BD197
LM197
3
Ir

0


BD198
LM198
3
Ir

0


BD199
LM199
3
Ir

0


BD200
LM200
3
Ir

0





















TABLE 4





Compound name
L101
n101
M101
L102
m101







BD201
LM201
3
Ir

0


BD202
LM202
3
Ir

0


BD203
LM203
3
Ir

0


BD204
LM204
3
Ir

0


BD205
LM205
3
Ir

0


BD206
LM206
3
Ir

0


BD207
LM207
3
Ir

0


BD208
LM208
3
Ir

0


BD209
LM209
3
Ir

0


BD210
LM210
3
Ir

0


BD211
LM211
3
Ir

0


BD212
LM212
3
Ir

0


BD213
LM213
3
Ir

0


BD214
LM214
3
Ir

0


BD215
LM215
3
Ir

0


BD216
LM216
3
Ir

0


BD217
LM217
3
Ir

0


BD218
LM218
3
Ir

0


BD219
LM219
3
Ir

0


BD220
LM220
3
Ir

0


BD221
LM221
3
Ir

0


BD222
LM222
3
Ir

0


BD223
LM223
3
Ir

0


BD224
LM224
3
Ir

0


BD225
LM225
3
Ir

0


BD226
LM226
3
Ir

0


BD227
LM227
3
Ir

0


BD228
LM228
3
Ir

0


BD229
LM229
3
Ir

0


BD230
LM230
3
Ir

0


BD231
LM231
3
Ir

0


BD232
LM232
3
Ir

0


BD233
LM233
3
Ir

0


BD234
LM234
3
Ir

0


BD235
LM235
3
Ir

0


BD236
LM236
3
Ir

0


BD237
LM237
3
Ir

0


BD238
LM238
3
Ir

0


BD239
LM239
3
Ir

0


BD240
LM240
3
Ir

0


BD241
LM241
3
Ir

0


BD242
LM242
3
Ir

0


BD243
LM243
3
Ir

0


BD244
LFM1
3
Ir

0


BD245
LFM2
3
Ir

0


BD246
LFM3
3
Ir

0


BD247
LFM4
3
Ir

0


BD248
LFM5
3
Ir

0


BD249
LFM6
3
Ir

0


BD250
LFM7
3
Ir

0


BD251
LFP1
3
Ir

0


BD252
LFP2
3
Ir

0


BD253
LFP3
3
Ir

0


BD254
LFP4
3
Ir

0


BD255
LFP5
3
Ir

0


BD256
LFP6
3
Ir

0


BD257
LFP7
3
Ir

0


BD258
LM47
2
Ir
AN1
1


BD259
LM47
2
Ir
AN2
1


BD260
LM47
2
Ir
AN3
1


BD261
LM47
2
Ir
AN4
1


BD262
LM47
2
Ir
AN5
1


BD263
LM11
2
Pt

0


BD264
LM13
2
Pt

0


BD265
LM15
2
Pt

0


BD266
LM45
2
Pt

0


BD267
LM47
2
Pt

0


BD268
LM49
2
Pt

0


BD269
LM98
2
Pt

0


BD270
LM100
2
Pt

0


BD271
LM102
2
Pt

0


BD272
LM132
2
Pt

0


BD273
LM134
2
Pt

0


BD274
LM136
2
Pt

0


BD275
LM151
2
Pt

0


BD276
LM153
2
Pt

0


BD277
LM158
2
Pt

0


BD278
LM180
2
Pt

0


BD279
LM182
2
Pt

0


BD280
LM187
2
Pt

0


BD281
LM201
2
Pt

0


BD282
LM206
2
Pt

0


BD283
LM211
2
Pt

0


BD284
LM233
2
Pt

0


BD285
LM235
2
Pt

0


BD286
LM240
2
Pt

0


BD287
LFM5
2
Pt

0


BD288
LFM6
2
Pt

0


BD289
LFM7
2
Pt

0


BD290
LFP5
2
Pt

0


BD291
LFP6
2
Pt

0


BD292
LFP7
2
Pt

0


BD293
LM47
1
Pt
AN1
1


BD294
LM47
1
Pt
AN2
1


BD295
LM47
1
Pt
AN3
1


BD296
LM47
1
Pt
AN4
1


BD297
LM47
1
Pt
AN5
1









In Tables 2 to 4, LM1 to LM243, LFM1 to LFM7 and LFP1 to LFP7 may be understood by referring to Formulae 11-1 to 11-3 and Tables 5 to 7:




embedded image









TABLE 5







Formula 11-1

















Ligand name
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20





LM1
X1
H
X3
H
X1
H
H
H
H
D


LM2
X1
H
X3
H
X1
H
H
H
D
H


LM3
X1
H
X3
H
X1
H
H
H
D
D


LM4
Y1
H
X3
H
Y1
H
H
H
D
D


LM5
Y2
H
X3
H
Y2
H
H
H
D
D


LM6
Y3
H
X3
H
Y3
H
H
H
D
D


LM7
Y3
D
X3
D
Y3
H
H
H
D
D


LM8
Y3
D
X3
D
Y3
D
H
H
D
D


LM9
Y3
D
X3
D
Y3
D
D
H
D
D


LM10
Y3
D
X3
D
Y3
D
D
D
D
D


LM11
Y3
D
Y11
D
Y3
D
D
D
D
D


LM12
Y3
D
Y11
D
Y3
H
X1
H
D
D


LM13
Y3
D
Y11
D
Y3
D
Y3
D
D
D


LM14
Y3
D
Y11
D
Y3
H
X4
H
D
D


LM15
Y3
D
Y11
D
Y3
D
Y12
D
D
D


LM16
X2
H
X3
H
X2
H
H
H
H
D


LM17
X2
H
X3
H
X2
H
H
H
D
H


LM18
X2
H
X3
H
X2
H
H
H
D
D


LM19
Y4
H
X3
H
Y4
H
H
H
D
D


LM20
Y5
H
X3
H
Y5
H
H
H
D
D


LM21
Y6
H
X3
H
Y6
H
H
H
D
D


LM22
Y7
H
X3
H
Y7
H
H
H
D
D


LM23
Y8
H
X3
H
Y8
H
H
H
D
D


LM24
Y9
H
X3
H
Y9
H
H
H
D
D


LM25
Y10
H
X3
H
Y10
H
H
H
D
D


LM26
Y10
D
X3
D
Y10
H
H
H
D
D


LM27
Y10
D
X3
D
Y10
D
H
H
D
D


LM28
Y10
D
X3
D
Y10
D
D
H
D
D


LM29
Y10
D
X3
D
Y10
D
D
D
D
D


LM30
Y10
D
Y11
D
Y10
D
D
D
D
D


LM31
Y10
D
Y11
D
Y10
H
X1
H
D
D


LM32
Y10
D
Y11
D
Y10
D
Y3
D
D
D


LM33
Y10
D
Y11
D
Y10
H
X4
H
D
D


LM34
Y10
D
Y11
D
Y10
D
Y12
D
D
D


LM35
X1
H
X4
H
X1
H
H
H
H
D


LM36
X1
H
X4
H
X1
H
H
H
D
H


LM37
X1
H
X4
H
X1
H
H
H
D
D


LM38
Y1
H
X4
H
Y1
H
H
H
D
D


LM39
Y2
H
X4
H
Y2
H
H
H
D
D


LM40
Y3
H
X4
H
Y3
H
H
H
D
D


LM41
Y3
D
X4
D
Y3
H
H
H
D
D


LM42
Y3
D
X4
D
Y3
D
H
H
D
D


LM43
Y3
D
X4
D
Y3
D
D
H
D
D


LM44
Y3
D
X4
D
Y3
D
D
D
D
D


LM45
Y3
D
Y12
D
Y3
D
D
D
D
D


LM46
Y3
D
Y12
D
Y3
H
X1
H
D
D


LM47
Y3
D
Y12
D
Y3
D
Y3
D
D
D


LM48
Y3
D
Y12
D
Y3
H
X4
H
D
D


LM49
Y3
D
Y12
D
Y3
D
Y12
D
D
D


LM50
X2
H
X4
H
X2
H
H
H
H
D


LM51
X2
H
X4
H
X2
H
H
H
D
H


LM52
X2
H
X4
H
X2
H
H
H
D
D


LM53
Y4
H
X4
H
Y4
H
H
H
D
D


LM54
Y5
H
X4
H
Y5
H
H
H
D
D


LM55
Y6
H
X4
H
Y6
H
H
H
D
D


LM56
Y7
H
X4
H
Y7
H
H
H
D
D


LM57
Y8
H
X4
H
Y8
H
H
H
D
D


LM58
Y9
H
X4
H
Y9
H
H
H
D
D


LM59
Y10
H
X4
H
Y10
H
H
H
D
D


LM60
Y10
D
X4
D
Y10
H
H
H
D
D


LM61
Y10
D
X4
D
Y10
D
H
H
D
D


LM62
Y10
D
X4
D
Y10
D
D
H
D
D


LM63
Y10
D
X4
D
Y10
D
D
D
D
D


LM64
Y10
D
Y12
D
Y10
D
D
D
D
D


LM65
Y10
D
Y12
D
Y10
H
X1
H
D
D


LM66
Y10
D
Y12
D
Y10
D
Y3
D
D
D


LM67
Y10
D
Y12
D
Y10
H
X4
H
D
D


LM68
Y10
D
Y12
D
Y10
D
Y12
D
D
D


LM69
X1
H
X5
H
X1
H
H
H
H
D


LM70
X1
H
X5
H
X1
H
H
H
D
H


LM71
X1
H
X5
H
X1
H
H
H
D
D


LM72
Y1
H
X5
H
Y1
H
H
H
D
D


LM73
Y2
H
X5
H
Y2
H
H
H
D
D


LM74
Y3
H
X5
H
Y3
H
H
H
D
D


LM75
Y3
D
X5
D
Y3
H
H
H
D
D


LM76
Y3
D
X5
D
Y3
D
H
H
D
D


LM77
Y3
D
X5
D
Y3
D
D
H
D
D


LM78
Y3
D
X5
D
Y3
D
D
D
D
D


LM79
Y3
D
Y13
D
Y3
D
D
D
D
D


LM80
Y3
D
Y13
D
Y3
H
X1
H
D
D


LM81
Y3
D
Y13
D
Y3
D
Y3
D
D
D


LM82
Y3
D
Y13
D
Y3
H
X4
H
D
D


LM83
Y3
D
Y13
D
Y3
D
Y12
D
D
D


LM84
X2
H
X5
H
X2
H
H
H
H
D


LM85
X2
H
X5
H
X2
H
H
H
D
H


LM86
X2
H
X5
H
X2
H
H
H
D
D


LM87
Y4
H
X5
H
Y4
H
H
H
D
D


LM88
Y5
H
X5
H
Y5
H
H
H
D
D


LM89
Y6
H
X5
H
Y6
H
H
H
D
D


LM90
Y7
H
X5
H
Y7
H
H
H
D
D


LM91
Y8
H
X5
H
Y8
H
H
H
D
D


LM92
Y9
H
X5
H
Y9
H
H
H
D
D


LM93
Y10
H
X5
H
Y10
H
H
H
D
D


LM94
Y10
D
X5
D
Y10
H
H
H
D
D


LM95
Y10
D
X5
D
Y10
D
H
H
D
D


LM96
Y10
D
X5
D
Y10
D
D
H
D
D


LM97
Y10
D
X5
D
Y10
D
D
D
D
D


LM98
Y10
D
Y13
D
Y10
D
D
D
D
D


LM99
Y10
D
Y13
D
Y10
H
X1
H
D
D


LM100
Y10
D
Y13
D
Y10
D
Y3
D
D
D


LM101
Y10
D
Y13
D
Y10
H
X4
H
D
D


LM102
Y10
D
Y13
D
Y10
D
Y12
D
D
D


LM103
X1
H
X6
H
X1
H
H
H
H
D


LM104
X1
H
X6
H
X1
H
H
H
D
H


LM105
X1
H
X6
H
X1
H
H
H
D
D


LM106
Y1
H
X6
H
Y1
H
H
H
D
D


LM107
Y2
H
X6
H
Y2
H
H
H
D
D


LM108
Y3
H
X6
H
Y3
H
H
H
D
D


LM109
Y3
D
X6
D
Y3
H
H
H
D
D


LM110
Y3
D
X6
D
Y3
D
H
H
D
D


LM111
Y3
D
X6
D
Y3
D
D
H
D
D


LM112
Y3
D
X6
D
Y3
D
D
D
D
D


LM113
Y3
D
Y14
D
Y3
D
D
D
D
D


LM114
Y3
D
Y14
D
Y3
H
X1
H
D
D


LM115
Y3
D
Y14
D
Y3
D
Y3
D
D
D


LM116
Y3
D
Y14
D
Y3
H
X4
H
D
D


LM117
Y3
D
Y14
D
Y3
D
Y12
D
D
D


LM118
X2
H
X6
H
X2
H
H
H
H
D


LM119
X2
H
X6
H
X2
H
H
H
D
H


LM120
X2
H
X6
H
X2
H
H
H
D
D


LM121
Y4
H
X6
H
Y4
H
H
H
D
D


LM122
Y5
H
X6
H
Y5
H
H
H
D
D


LM123
Y6
H
X6
H
Y6
H
H
H
D
D


LM124
Y7
H
X6
H
Y7
H
H
H
D
D


LM125
Y8
H
X6
H
Y8
H
H
H
D
D


LM126
Y9
H
X6
H
Y9
H
H
H
D
D


LM127
Y10
H
X6
H
Y10
H
H
H
D
D


LM128
Y10
D
X6
D
Y10
H
H
H
D
D


LM129
Y10
D
X6
D
Y10
D
H
H
D
D


LM130
Y10
D
X6
D
Y10
D
D
H
D
D


LM131
Y10
D
X6
D
Y10
D
D
D
D
D


LM132
Y10
D
Y14
D
Y10
D
D
D
D
D


LM133
Y10
D
Y14
D
Y10
H
X1
H
D
D


LM134
Y10
D
Y14
D
Y10
D
Y3
D
D
D


LM135
Y10
D
Y14
D
Y10
H
X4
H
D
D


LM136
Y10
D
Y14
D
Y10
D
Y12
D
D
D


LM137
X1
H
X7
H
X1
H
H
H
H
D


LM138
X1
H
X7
H
X1
H
H
H
D
H


LM139
X1
H
X7
H
X1
H
H
H
D
D


LM140
Y1
H
X7
H
Y1
H
H
H
D
D


LM141
Y2
H
X7
H
Y2
H
H
H
D
D


LM142
Y3
H
X7
H
Y3
H
H
H
D
D


LM143
Y3
D
X7
D
Y3
H
H
H
D
D


LM144
Y3
D
X7
D
Y3
D
H
H
D
D


LM145
Y3
D
X7
D
Y3
D
D
H
D
D


LM146
Y3
D
X7
D
Y3
D
D
D
D
D


LM147
Y3
D
X8
D
Y3
D
D
D
D
D


LM148
Y3
D
Y16
D
Y3
D
D
D
D
D


LM149
Y3
D
Y17
D
Y3
D
D
D
D
D


LM150
Y3
D
Y18
D
Y3
D
D
D
D
D


LM151
Y3
D
Y15
D
Y3
D
D
D
D
D


LM152
Y3
D
Y15
D
Y3
H
X1
H
D
D


LM153
Y3
D
Y15
D
Y3
D
Y3
D
D
D


LM154
Y3
D
Y16
D
Y3
D
Y3
D
D
D


LM155
Y3
D
Y17
D
Y3
D
Y3
D
D
D


LM156
Y3
D
Y18
D
Y3
D
Y3
D
D
D


LM157
Y3
D
Y15
D
Y3
H
X4
H
D
D


LM158
Y3
D
Y15
D
Y3
D
Y12
D
D
D


LM159
Y3
D
Y16
D
Y3
D
Y12
D
D
D


LM160
Y3
D
Y17
D
Y3
D
Y12
D
D
D


LM161
Y3
D
Y18
D
Y3
D
Y12
D
D
D


LM162
X2
H
X7
H
X2
H
H
H
H
D


LM163
X2
H
X7
H
X2
H
H
H
D
H


LM164
X2
H
X7
H
X2
H
H
H
D
D


LM165
Y4
H
X7
H
Y4
H
H
H
D
D


LM166
Y5
H
X7
H
Y5
H
H
H
D
D


LM167
Y6
H
X7
H
Y6
H
H
H
D
D


LM168
Y7
H
X7
H
Y7
H
H
H
D
D


LM169
Y8
H
X7
H
Y8
H
H
H
D
D


LM170
Y9
H
X7
H
Y9
H
H
H
D
D


LM171
Y10
H
X7
H
Y10
H
H
H
D
D


LM172
Y10
D
X7
D
Y10
H
H
H
D
D


LM173
Y10
D
X7
D
Y10
D
H
H
D
D


LM174
Y10
D
X7
D
Y10
D
D
H
D
D


LM175
Y10
D
X7
D
Y10
D
D
D
D
D


LM176
Y10
D
X8
D
Y10
D
D
D
D
D


LM177
Y10
D
Y16
D
Y10
D
D
D
D
D


LM178
Y10
D
Y17
D
Y10
D
D
D
D
D


LM179
Y10
D
Y18
D
Y10
D
D
D
D
D


LM180
Y10
D
Y15
D
Y10
D
D
D
D
D


LM181
Y10
D
Y15
D
Y10
H
X1
H
D
D


LM182
Y10
D
Y15
D
Y10
D
Y3
D
D
D


LM183
Y10
D
Y16
D
Y10
D
Y3
D
D
D


LM184
Y10
D
Y17
D
Y10
D
Y3
D
D
D


LM185
Y10
D
Y18
D
Y10
D
Y3
D
D
D


LM186
Y10
D
Y15
D
Y10
H
X4
H
D
D


LM187
Y10
D
Y15
D
Y10
D
Y12
D
D
D


LM188
Y10
D
Y16
D
Y10
D
Y12
D
D
D


LM189
Y10
D
Y17
D
Y10
D
Y12
D
D
D


LM190
Y10
D
Y18
D
Y10
D
Y12
D
D
D


LM191
X1
X7
H
H
X1
H
H
H
H
D


LM192
X1
X7
H
H
X1
H
H
H
D
H


LM193
X1
X7
H
H
X1
H
H
H
D
D


LM194
Y1
X7
H
H
Y1
H
H
H
D
D


LM195
Y2
X7
H
H
Y2
H
H
H
D
D


LM196
Y3
X7
H
H
Y3
H
H
H
D
D


LM197
Y3
X7
D
D
Y3
H
H
H
D
D


LM198
Y3
X7
D
D
Y3
D
H
H
D
D


LM199
Y3
X7
D
D
Y3
D
D
H
D
D


LM200
Y3
X7
D
D
Y3
D
D
D
D
D


LM201
Y3
Y15
D
D
Y3
D
D
D
D
D


LM202
Y3
Y16
D
D
Y3
D
D
D
D
D


LM203
Y3
Y17
D
D
Y3
D
D
D
D
D


LM204
Y3
Y18
D
D
Y3
D
D
D
D
D


LM205
Y3
Y15
D
D
Y3
H
X1
H
D
D


LM206
Y3
Y15
D
D
Y3
D
Y3
D
D
D


LM207
Y3
Y16
D
D
Y3
D
Y3
D
D
D


LM208
Y3
Y17
D
D
Y3
D
Y3
D
D
D


LM209
Y3
Y18
D
D
Y3
D
Y3
D
D
D


LM210
Y3
Y15
D
D
Y3
H
X4
H
D
D


LM211
Y3
Y15
D
D
Y3
D
Y12
D
D
D


LM212
Y3
Y16
D
D
Y3
D
Y12
D
D
D


LM213
Y3
Y17
D
D
Y3
D
Y12
D
D
D


LM214
Y3
Y18
D
D
Y3
D
Y12
D
D
D


LM215
X2
X7
H
H
X2
H
H
H
H
D


LM216
X2
X7
H
H
X2
H
H
H
D
H


LM217
X2
X7
H
H
X2
H
H
H
D
D


LM218
Y4
X7
H
H
Y4
H
H
H
D
D


LM219
Y5
X7
H
H
Y5
H
H
H
D
D


LM220
Y6
X7
H
H
Y6
H
H
H
D
D


LM221
Y7
X7
H
H
Y7
H
H
H
D
D


LM222
Y8
X7
H
H
Y8
H
H
H
D
D


LM223
Y9
X7
H
H
Y9
H
H
H
D
D


LM224
Y10
X7
H
H
Y10
H
H
H
D
D


LM225
Y10
X7
D
D
Y10
H
H
H
D
D


LM226
Y10
X7
D
D
Y10
D
H
H
D
D


LM227
Y10
X7
D
D
Y10
D
D
H
D
D


LM228
Y10
X7
D
D
Y10
D
D
D
D
D


LM229
Y10
X8
D
D
Y10
D
D
D
D
D


LM230
Y10
Y16
D
D
Y10
D
D
D
D
D


LM231
Y10
Y17
D
D
Y10
D
D
D
D
D


LM232
Y10
Y18
D
D
Y10
D
D
D
D
D


LM233
Y10
Y15
D
D
Y10
D
D
D
D
D


LM234
Y10
Y15
D
D
Y10
H
X1
H
D
D


LM235
Y10
Y15
D
D
Y10
D
Y3
D
D
D


LM236
Y10
Y16
D
D
Y10
D
Y3
D
D
D


LM237
Y10
Y17
D
D
Y10
D
Y3
D
D
D


LM238
Y10
Y18
D
D
Y10
D
Y3
D
D
D


LM239
Y10
Y15
D
D
Y10
H
X4
H
D
D


LM240
Y10
Y15
D
D
Y10
D
Y12
D
D
D


LM241
Y10
Y16
D
D
Y10
D
Y12
D
D
D


LM242
Y10
Y17
D
D
Y10
D
Y12
D
D
D


LM243
Y10
Y18
D
D
Y10
D
Y12
D
D
D
















TABLE 6







Formula 11-2




















Ligand name
R11
X11
R101
R102
R103
R104
R14
R15
R16
R17
R18
R19
R20





LFM1
Y10
N-Ph
D
D
D
D
D
Y10
D
D
D
D
D


LFM2
Y10
S
D
D
D
D
D
Y10
D
D
D
D
D


LFM3
Y10
O
D
D
D
D
D
Y10
D
D
D
D
D


LFM4
Y3
O
D
D
D
D
D
Y3
D
D
D
D
D


LFM5
Y10
O
D
D
D
D
D
Y10
D
D
D
D
D


LFM6
Y10
O
D
D
D
D
D
Y10
D
Y3
D
D
D


LFM7
Y10
O
D
D
D
D
D
Y10
D
Y12
D
D
D
















TABLE 7







Formula 11-3




















Ligand name
R11
X11
R101
R102
R103
R104
R14
R15
R16
R17
R18
R19
R20





LFP1
Y10
N-Ph
D
D
D
D
D
Y10
D
D
D
D
D


LFP2
Y10
S
D
D
D
D
D
Y10
D
D
D
D
D


LFP3
Y10
O
D
D
D
D
D
Y10
D
D
D
D
D


LFP4
Y3
O
D
D
D
D
D
Y3
D
D
D
D
D


LFP5
Y10
O
D
D
D
D
D
Y10
D
D
D
D
D


LFP6
Y10
O
D
D
D
D
D
Y10
D
Y3
D
D
D


LFP7
Y10
O
D
D
D
D
D
Y10
D
Y12
D
D
D









X1 to X10 and Y1 to Y18 in Tables 5 to 7 are the same as described below, and Ph in the tables refers to a phenyl group:




embedded image


embedded image


embedded image




embedded image


In an embodiment, the first dopant compound may be a thermally activated delayed fluorescence (TADF) emitter satisfying the following Condition 7:

ΔEST≤0.3 eV  Condition 7


In Condition 7,


ΔEST is a difference between a lowest excited singlet energy level of the first dopant compound and a lowest excited triplet energy level of the first dopant compound.


In an embodiment, the first dopant compound may include a thermally activated delayed fluorescence emitter represented by Formula 201 or 202:




embedded image


In Formulae 201 and 202,

    • A21 may be an acceptor group,
    • D21 may be a donor group,
    • m21 may be 1, 2, or 3, and n21 may be 1, 2, or 3,
    • the sum of n21 and m21 in Formula 201 may be 6 or less, and the sum of n21 and m21 in Formula 202 may be 5 or less,
    • R21 may be hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2), wherein a plurality of R21(s) may optionally be bonded to each other to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group, and
    • Q1 to Q3 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one of deuterium, —F, a cyano group, a C1-C60 alkyl group, or a C6-C60 aryl group, or a C6-C60 aryl group substituted with at least one deuterium, —F, a cyano group, a C1-C60 alkyl group, or a C6-C60 aryl group.


In an embodiment, in Formulae 201 and 202, A21 may be a substituted unsubstituted π-electron-deficient nitrogen-free cyclic group.


In an embodiment, the π-electron-deficient nitrogen-free cyclic group may be a phenyl group, a heptalene group, an indene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, an isoindole group, an indole group, a furan group, a thiophene group, a benzofuran group, a benzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, a dibenzosilole group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, or a triindolobenzene group; or a condensed cyclic of two or more π-electron-deficient nitrogen-free cyclic group, but embodiments of the present disclosure are not limited thereto.


In an embodiment, in Formulae 201 and 202, D21 may be: —F, a cyano group, or a π-electron-deficient nitrogen-containing cyclic group;

    • a C1-C60 alkyl group, a π-electron-deficient nitrogen-containing cyclic group, or a π-electron-deficient nitrogen-free cyclic group, each independently substituted with at least one —F or a cyano group; or
    • a π-electron-deficient nitrogen-containing cyclic group substituted with at least one deuterium, a C1-C60 alkyl group, a π-electron-deficient nitrogen-containing cyclic group, or a π-electron-deficient nitrogen-free cyclic group.


In an embodiment, the π-electron-deficient nitrogen-free cyclic group is the same as described above.


In an embodiment, the π-electron-deficient nitrogen-containing cyclic group may be a cyclic group having at least one *—N═*′ moiety, or for example, may be an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, a benzoisoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, an azacarbazole group, or a benzimidazolobenzimidazole group; or a condensed cyclic of two or more π-electron-deficient nitrogen-containing cyclic groups.


In an embodiment, the first dopant compound may be a compound of one of Groups VII to XI, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


In an embodiment, the first electrode may be an anode, which is a hole injection electrode, and the second electrode may be a cathode, which is an electron injection electrode, or the first electrode may be a cathode, which is an electron injection electrode, and the second electrode may be an anode, which is a hole injection electrode.


In an embodiment, in the organic light-emitting device, the first electrode may be an anode, the second electrode may be a cathode, the organic layer may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode, the hole transport region may include a hole injection layer, a hole transport layer, an electron blocking layer, a buffer layer, or any combination thereof, and the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.


The term “organic layer” used herein refers to a single layer and/or a plurality of layers between the first electrode and the second electrode of the organic light-emitting device. The “organic layer” may include, in addition to an organic compound, an organometallic complex including metal.


The term “sensitizer” used herein refers to a compound that is included in an organic layer (for example, an emission layer) and may deliver excitation energy to a light-emitting dopant compound.


OLED System


An organic light-emitting device according to an embodiment of the present disclosure may include an emission layer including a host compound, a first dopant compound, and a second dopant compound. An amount of the host in the emission layer may be greater than an amount of the dopant. In an embodiment, an amount of the host may be greater than a total amount of a first dopant and a second dopant.


An organic light-emitting device according to an embodiment of the present disclosure may include an emission layer including a host, a sensitizer, and a light-emitting dopant. In an embodiment, at least one of the first dopant compound and the second dopant compound may be a sensitizer, and the other may be a light-emitting dopant.


In an embodiment, the second dopant compound may include a compound having an energy relationship suitable for transferring excited singlet and/or excited triplet energy to the first dopant compound in a relationship with the first dopant compound.


In an embodiment, the sensitizer may include the second dopant, and the light-emitting dopant may be the organometallic compound.


Singlet excitons and triplet excitons of the second dopant compound may be respectively delivered to the excited singlet and excited triplet energy levels of the organometallic compound through a FRET mechanism and a DET mechanism, and triplet excitons of a phosphorescent dopant exhibit phosphorescent emission.


In an embodiment, the sensitizer may include the second dopant compound represented by Formula 1, and the light-emitting dopant may include a thermally activated delayed fluorescence (TADF) compound.


The singlet excitons and triplet excitons of the second dopant compound may be respectively delivered to the excited singlet and excited triplet energy levels of the first dopant compound through a FRET mechanism and a DET mechanism, and triplet excitons in the TADF compound may be converted to singlet excitons by reverse inter system crossing (RISC), and accumulated singlet excitons may be sequentially transitioned to a ground state, thereby exhibiting fluorescence.


In an embodiment, the sensitizer may include the second dopant compound represented by Formula 1, wherein the second dopant compound may be a TADF compound, and the light-emitting dopant may include the organometallic compound or a TADF compound.


In the TADF second dopant compound, triplet excitons are converted into singlet excitons by RISC, and at the same time, energy transfer to the light-emitting dopant by FRET and DET mechanisms may occur.


Since the sensitizer contains the second dopant compound represented by Formula 1, the triplet-triplet annihilation of the triplet excitons may be suppressed and the luminescence efficiency of the light-emitting dopant may be improved.


In an embodiment, the light-emitting dopant may include the second dopant compound represented by Formula 1, and the sensitizer may include the TADF compound or the organometallic compound. However, embodiments of the present disclosure are not limited thereto. Any suitable compound having an energy relationship in which excitons may be transferred to the second dopant compound may be included.


Excitons formed in the sensitizer are transferred to a light-emitting dopant compound through a DET mechanism or a FRET mechanism, and exciton energy transferred to the light-emitting dopant compound may emit light while being transitioned to a ground state.


In an embodiment, the excitons of the sensitizer may be formed by the FRET mechanism from the host compound, or may be formed by the delivery of excitons generated from the host by the DET mechanism.


In an embodiment, the sensitizer may be a TADF compound.


In addition, the sensitizer may satisfy Equation 1 below:

ΔEST≤0.3 eV  Equation 1


In an embodiment, ΔEST refers to an energy difference between the lowest excited singlet (S1) and the lowest excited triplet (T1).


The TADF compound may include singlet excitons and triplet excitons, and triplet excitons may be transferred to singlet excitons by RISC, and the singlet excitons accumulated in the excited singlet of the sensitizer may be energy-transitioned to the polycyclic compound by FRET and/or DET.


In an embodiment, the sensitizer may be the organometallic compound. In an embodiment, the sensitizer may be an organometallic compound including Pt as a central metal, but embodiments of the present disclosure are not limited thereto.


The organometallic compound may include singlet excitons and triplet excitons, and triplet excitons may be energy-transitioned to the excited triplet energy of the second dopant compound by the DET mechanism.


The organometallic compound may satisfy Equation 1 above, and when Equation 1 is satisfied, excitons may be delivered to the excited singlet and excited triplet energy levels of the second dopant compound by a mechanism similar to the TADF compound, that is, the FRET and/or DET mechanism.


In an embodiment, the excited singlet energy level and the excited triplet energy level of the sensitizer may be lower than the excited singlet energy and excited triplet energy of the host. Accordingly, excited singlet and triplet energy transfer from the host to the sensitizer may easily occur.


In an embodiment, the sensitizer and the light-emitting dopant may each independently include the second dopant compound represented by Formula 1.


In an embodiment, energy transfer between the sensitizer and the light-emitting dopant may be facilitated by FRET and DET mechanisms, and it is easy to manufacture a high-efficiency organic light-emitting device by suppressing triplet-triplet annihilation.


In general, it is known that since triplet excitons stay long in an excited state, they influence the decrease in the lifespan of organic light-emitting devices. While not wishing to be bound by theory, it is understood that due to the use of the second dopant compound, the time during which the sensitizer stays in the triplet excitons is reduced, and thus, the lifespan of an organic light-emitting device including the same may be improved.


In an embodiment, the second dopant compound may be a material capable of emitting fluorescent light. An emission layer emitting the fluorescent light may be clearly distinguished from an emission layer of the related art that emits phosphorescent light.


In an embodiment, the second dopant compound may emit TADF light.


The excited singlet and excited triplet energy levels of the second dopant compound may be lower than the excited singlet and excited triplet energy levels of the host compound described later. In an embodiment, singlet excitons and/or triplet excitons may be easily transitioned from the host compound to the second dopant compound.


The second dopant compound may receive singlet excitons and/or triplet excitons from the sensitizer.


In an embodiment, when the sensitizer is a TADF compound, the excited singlet energy level of the second dopant compound is lower than the excited singlet energy level of the sensitizer, and the second dopant compound may receive singlet excitons from the excited singlet of the sensitizer by the FRET and/or DET mechanism.


In an embodiment, when the sensitizer may be an organometallic compound, the excited triplet energy level of the second dopant compound may be lower than the excited triplet level of the sensitizer, and the second dopant compound may receive triplet excitons from the sensitizer by DET mechanism.


In an embodiment, when the sensitizer may be a TADF compound or an organometallic compound, the second dopant compound may further receive singlet excitons and/or triplet excitons from the host, and the triplet excitons received from the host may be transitioned to singlet energy of the second dopant compound by RISC.


While not wishing to be bound by theory, it is understood that due to this mechanism, triplet-triplet annihilation may be suppressed by reducing the time during which excitons stay in the excited triplet energy of the second dopant compound, and high-efficiency fluorescent light emission may be realized through the transition of multiple singlet excitons to the ground state.


An amount of the sensitizer in the emission layer may be from about 5 weight percentage (wt %) to less than about 50 wt %, for example, from about 5 wt % to about 40 wt %, from about 5 wt % to about 30 wt %, from about 5 wt % to about 20 wt %, from about 5 wt % to about 10 wt %, from about 10 wt % to about 50 wt %, from about 15 wt % to about 50 wt %, from about 20 wt % to about 50 wt %, from about 25 wt % to about 50 wt %, from about 30 wt % to about 50 wt %, from about 35 wt % to about 50 wt %, from about 40 wt % to about 50 wt %, or from about 45 wt % to about 50 wt %. Within these ranges, it is possible to achieve effective energy transfer in the emission layer, and accordingly, an organic light-emitting device having high efficiency and long lifespan may be obtained.


In an embodiment, the host, the first dopant compound, and the second dopant compound may satisfy the following Equation 2:

T1(H)/S1(H)≥T1(1D)/S1(1D)≥T1(2D)/S1(2D)  Equation 2


In Equation 2,

    • T1(H) may be the lowest excited triplet energy level of the host,
    • S1(H) may be the lowest excited singlet energy level of the host,
    • T1(2D) may be a lowest excited triplet energy level of the second dopant compound,
    • S1(2D) may be a lowest excited singlet energy level of the second dopant compound,
    • T1(1D) may be a lowest excited triplet energy level of the first dopant, and
    • S1(1D) may be a lowest excited singlet energy level of the first dopant.


While not wishing to be bound by theory, it is understood that when the host, the first dopant compound, and the second dopant compound further satisfy Equation 2 above, triplet excitons may be effectively transferred from the emission layer to the second dopant compound, and thus an organic light-emitting device having improved efficiency may be obtained.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 100 Å to about 600 Å, about 200 Å to about 600 Å, about 300 Å to about 500 Å, about 400 Å to about 800 Å, or about 500 Å to about 900 Å. When the thickness of the emission layer is within these ranges, improved light-emission characteristics may be obtained without a substantial increase in driving voltage.


Hereinafter, a configuration of an organic light-emitting device excluding an emission layer will be described with reference to FIGURE.


DESCRIPTION OF FIGURE

FIGURE is a schematic cross-sectional view of an organic light-emitting device 10 according to an embodiment. Hereinafter, a structure and a manufacturing method of an organic light-emitting device according to an embodiment of the present disclosure will be described with reference to FIGURE.


The organic light-emitting device 10 of FIGURE includes a first electrode 11, a second electrode 19 facing the first electrode 11, and an organic layer 10A between the first electrode 11 and the second electrode 19.


The organic layer 10A includes an emission layer 15, a hole transport region 12 is located between the first electrode 11 and the emission layer 15, and an electron transport region 17 is located between the emission layer 15 and the second electrode 19.


A substrate may be additionally located under the first electrode 11 or above the second electrode 19. For use as the substrate, any suitable substrate that is used in general organic light-emitting devices may be used, and the substrate may be a glass substrate or a transparent plastic substrate, each having suitable mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.


First Electrode 11


In an embodiment, the first electrode 11 may be formed by depositing or sputtering a material for forming the first electrode 11 on the substrate. The first electrode 11 may be an anode. The material for forming the first electrode 11 may be materials with a suitable work function to facilitate hole injection. The first electrode 11 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. For use as the material for forming the first electrode 11, Indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), or zinc oxide (ZnO) may be used. In an embodiment, metals such as magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag) may be used.


The first electrode 11 may have a single-layered structure or a multi-layered structure including two or more layers. In an embodiment, the first electrode 11 may have a three-layered structure of ITO/Ag/ITO, but embodiments of the present disclosure are not limited thereto.


The organic layer 10A may be located on the first electrode 11.


The organic layer 10A may include: the hole transport region 12; the emission layer 15; and the electron transport region 17.


Hole Transport Region 12


In the organic light-emitting device 10, the hole transport region 12 may be located between the first electrode 11 and the emission layer 15.


The hole transport region 12 may have a single-layered structure or a multi-layered structure.


In an embodiment, the hole transport region 12 may have a hole injection layer, a hole transport layer, a hole injection layer/hole transport layer structure, a hole injection layer/first hole transport layer/second hole transport layer structure, a hole transport layer/interlayer structure, a hole injection layer/hole transport layer/interlayer structure, a hole transport layer/electron blocking layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, but embodiments of the present disclosure are not limited thereto.


The hole transport region 12 may include any suitable compound that has hole transportation characteristics.


In an embodiment, the hole transport region 12 may include an amine-based compound.


In an embodiment, the hole transport region 12 may include at least one a compound represented by Formula 201 to a compound represented by Formula 205, but embodiments of the present disclosure are not limited thereto:




embedded image


In Formulae 201 to 205,


L201 to L209 may each independently be *—O—*′, *—S—*′, a substituted or unsubstituted C5-C60 carbocyclic group, or a substituted or unsubstituted C1-C60 heterocyclic group,


xa1 to xa9 may each independently an integer from 0 to 5, and


R201 to R206 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C6-C60 aryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted C1-C60 heteroalkyl aryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and two neighboring groups of R201 to R206 may optionally be linked to each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.


In an embodiment,

    • L201 to L209 may be a phenyl group, a heptalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, an isoindole group, an indole group, a furan group, a thiophene group, a benzofuran group, a benzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, a dibenzosilole group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, or a triindolobenzene group, each independently unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a phenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triphenylenyl group, a biphenyl group, a terphenyl group, a tetraphenyl group, —Si(Q11)(Q12)(Q13), or any combination thereof,
    • xa1 to xa9 may each independently be 0, 1, or 2,
    • R201 to R206 may each independently be a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, or benzothienocarbazolyl group, each independently unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), or any combination thereof, and
    • Q11 to Q13 and Q31 to Q33 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group.


In an embodiment, the hole transport region 12 may include a carbazole-containing amine-based compound.


In one or more embodiments, the hole transport region 12 may include a carbazole-containing amine-based compound and a carbazole-free amine-based compound.


The carbazole-containing amine-based compound may be, for example, compounds represented by Formula 201 including a carbazole group and further including at least one of a dibenzofuran group, a dibenzothiophene group, a fluorene group, a spiro-bifluorene group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, or a benzothienocarbazole group.


The carbazole-free amine-based compound may be, for example, compounds represented by Formula 201 that do not include a carbazole group and that include at least one of a dibenzofuran group, a dibenzothiophene group, a fluorene group, a spiro-bifluorene group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, or a benzothienocarbazole group.


In an embodiment, the hole transport region 12 may include at least one compounds represented by Formulae 201 or 202.


In an embodiment, the hole transport region 12 may include at least one compound represented by Formulae 201-1, 202-1, or 201-2, but embodiments of the present disclosure are not limited thereto:




embedded image


In Formulae 201-1, 202-1, and 201-2, L201 to L203, L205, xa1 to xa3, xa5, R201, and R202 are the same as described herein, and R211 to R213 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a dimethylfluorenyl group, a diphenyl fluorenyl group, a triphenylenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, or a pyridinyl group.


In an embodiment, the hole transport region 12 may include at least one Compounds HT1 to HT39, but embodiments of the present disclosure are not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the hole transport region 12 of the organic light-emitting device 10 may further include a p-dopant. When the hole transport region 12 further includes a p-dopant, the hole transport region 12 may have a structure including a matrix (for example, at least one of compounds represented by Formulae 201 to 205) and a p-dopant included in the matrix. The p-dopant may be uniformly or non-uniformly doped in the hole transport region 12.


In an embodiment, a LUMO energy level of the p-dopant may be −3.5 electronvolt (eV) or less.


The p-dopant may include at least one a quinone derivative, a metal oxide, or a cyano group-containing compound, but embodiments of the present disclosure are not limited thereto.


In an embodiment, the p-dopant may include at least one:

    • a quinone derivative, such as tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), or F6-TCNNQ;
    • a metal oxide, such as tungsten oxide or molybdenum oxide;
    • 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN);




embedded image




    • or

    • a compound represented by Formula 221 below,

    • but embodiments of the present disclosure are not limited thereto:







embedded image


In Formula 221,

    • R221 to R223 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, wherein at least one R221 to R223 may have at least one substituent a cyano group, —F, —Cl, —Br, —I, a C1-C20 alkyl group substituted with —F, a C1-C20 alkyl group substituted with —Cl, a C1-C20 alkyl group substituted with —Br, or a C1-C20 alkyl group substituted with —I.


The hole transport region 12 may have a thickness of about 100 Å to about 10,000 Å, for example, about 200 Å to about 1000 Å, about 400 Å to about 2,000 Å, about 500 Å to about 3000 Å, about 600 Å to about 4000 Å, about 700 Å to about 5000 Å, about 800 Å to about 6000 Å, about 900 Å to about 7000 Å, about 1000 Å to about 8000 Å, or about 2000 Å to about 9000 Å, and the emission layer 15 may have a thickness of about 100 Å to about 3,000 Å, for example, about 100 Å to about 500 Å, about 300 Å to about 1,000 Å, about 400 Å to about 1500 Å, about 500 Å to about 2000 Å, or about 600 Å to about 2500 Å. When the thickness of each of the hole transport region 12 and the emission layer 15 is within these ranges described above, satisfactory hole transportation characteristics and/or luminescence characteristics may be obtained without a substantial increase in driving voltage.


Emission Layer 15


The emission layer is the same as described in above.


In an embodiment, the emission layer may emit blue light, for example, blue light having a maximum emission wavelength of 450 or more (for example, 450 nanometers (nm) or more and 500 nm or less).


Electron Transport Region 17


Next, an electron transport region is located on the emission layer.


The electron transport region 17 may be located between the emission layer 15 and the second electrode 19 of the organic light-emitting device 10.


The electron transport region 17 may have a single-layered structure or a multi-layered structure.


In an embodiment, the electron transport region 17 may have an electron transport layer, an electron transport layer/electron injection layer structure, a buffer layer/electron transport layer structure, a hole blocking layer/electron transport layer structure, a buffer layer/electron transport layer/electron injection layer structure, or a hole blocking layer/electron transport layer/electron injection layer structure, but embodiments of the present disclosure are not limited thereto. The electron transport region 17 may further include an electron control layer.


The electron transport region 17 may include a known electron transport material.


The electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one π-electron-deficient nitrogen-containing C1-C60 cyclic group. The π-electron-deficient nitrogen-containing C1-C60 cyclic group is the same as described above.


In an embodiment, the electron transport region may include a compound represented by Formula 601 below.

[Ar601]xe11-[(L601)xe1-R601]xe21  Formula 601


In Formula 601,

    • Ar601 and L601 may each independently be a C5-C60 carbocyclic group unsubstituted or substituted with at least one R601a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R601a,
    • xe11 may be 1, 2, or 3,
    • xe1 may be an integer from 0 to 5,
    • R601a and R601 may each independently be a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C1 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C1 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
    • Q601 to Q603 may each independently be a C1-C1 alkyl group, a C1-C1 alkoxy group, a C1-C1 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and
    • xe21 may be an integer from 1 to 5.


In an embodiment, at least one of Ar601(s) in the number of xe11 and R601(s) in the number of xe21 may include the π-electron-deficient nitrogen-containing C1-C60 cyclic group.


In an embodiment, ring Ar601 and L601 in Formula 601 may each independently be a phenyl group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, a benzoisoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, or an azacarbazole group, each independently unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof, and

    • Q31 to Q33 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group.


When xe11 in Formula 601 is 2 or more, two or more of Ar601(s) may be linked via a single bond.


In an embodiment, Ar601 in Formula 601 may be an anthracene group.


In an embodiment, a compound represented by Formula 601 may be represented by Formula 601-1 below:




embedded image


In Formula 601-1,

    • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one X614 to X616 may be N,
    • L611 to L613 are each understood by referring to corresponding descriptions provided in connection with L601,
    • xe611 to xe613 are each understood by referring to corresponding descriptions provided in connection with xe1,
    • R611 to R613 are each understood by referring to corresponding descriptions provided in connection with R601, and
    • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group.


In an embodiment, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.


In an embodiment, R601 and R611 to R613 in Formulae 601 and 601-1 may each independently be a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or azacarbazolyl group, each independently unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, or any combination thereof; or

    • —S(═O)2(Q601) or —P(═O)(Q601)(Q602), and
    • Q601 and Q602 are the same as described above.


The electron transport region may include at least one Compounds ET1 to ET36 below, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the electron transport region may include at least one 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-dphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), or NTAZ.




embedded image


Thicknesses of the buffer layer, the hole blocking layer, and the electron control layer may each be in a range of about 20 Å to about 1,000 Å, for example, about 10 Å to about 100 Å, about 20 Å to about 200 Å, about 30 Å to about 300 Å, about 40 Å to about 400 Å, about 50 Å to about 500 Å, about 60 Å to about 600 Å, about 70 Å to about 700 Å, about 80 Å to about 800 Å, about 90 Å to about 900 Å, or about 100 Å to about 1000 Å. When the thicknesses of the buffer layer, the hole blocking layer, and the electron control layer are within these ranges, the electron blocking layer may have improved electron blocking characteristics or electron control characteristics without a substantial increase in driving voltage.


A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å, about 200 Å to about 600 Å, about 250 Å to about 700 Å, about 300 Å to about 800 Å, about 350 Å to about 900 Å, or about 400 Å to about 1000 Å. When the thickness of the electron transport layer is within the range described above, the electron transport layer may have suitable electron transportation characteristics without a substantial increase in driving voltage.


The electron transport region 17 (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include at least one alkali metal complex or alkaline earth-metal complex. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth-metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy diphenylthiadiazole, hydroxy phenylpyridine, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, or cyclopentadiene, but embodiments of the present disclosure are not limited thereto.


In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, the following Compound ET-D1 (Liq) or ET-D2.




embedded image


The electron transport region 17 may include an electron injection layer that facilitates the injection of electrons from the second electrode 19. The electron injection layer may be in direct contact with the second electrode 19.


The electron injection layer may have i) a single-layered structure including a single layer consisting of a single material, ii) a single-layered structure including a single layer consisting of a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may be Li, Na, K, Rb, or Cs. In an embodiment, the alkali metal may be Li, Na, or Cs. In an embodiment, the alkali metal may be Li or Cs, but embodiments of the present disclosure are not limited thereto.


The alkaline earth metal may be Mg, Ca, Sr, or Ba.


The rare earth metal may be Sc, Y, Ce, Tb, Yb, or Gd.


The alkali metal compound, the alkaline earth-metal compound, and the rare earth metal compound may be oxides or halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth-metal, or the rare earth metal.


The alkali metal compound may be alkali metal oxides, such as Li2O, Cs2O, or K2O, or alkali metal halides, such as LiF, NaF, CsF, KF, Lil, Nal, Csl, or KI. In an embodiment, the alkali metal compound may be LiF, Li2O, NaF, Lil, Nal, Csl, or KI, but embodiments of the present disclosure are not limited thereto.


The alkaline earth-metal compound may be alkaline earth-metal oxides, such as BaO, SrO, CaO, BaxSri-xO (wherein 0<x<1), or BaxCai-xO (wherein 0<x<1). In an embodiment, the alkaline earth-metal compound may be BaO, SrO, or CaO, but embodiments of the present disclosure are not limited thereto.


The rare earth metal compound may be YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, or TbF3. In an embodiment, the rare earth metal compound may be YbF3, ScF3, TbF3, YbI3, ScI3, or TbI3, but embodiments of the present disclosure are not limited thereto.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include an ion of alkali metal, alkaline earth-metal, and rare earth metal as described above, and a ligand coordinated with a metal ion of the alkali metal complex, the alkaline earth-metal complex, or the rare earth metal complex may be hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy diphenylthiadiazole, hydroxy phenylpyridine, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, or cyclopentadiene, but embodiments of the present disclosure are not limited thereto.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof, as described above. In an embodiment, the electron injection layer may further include an organic material. When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å, about 6 Å to about 80 Å, about 9 Å to about 70 Å, about 12 Å to about 60 Å, about 15 Å to about 50 Å, about 18 Å to about 40 Å, or about 20 Å to about 30 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.


Second Electrode 19


The second electrode 19 is located on the organic layer 10A having such a structure. The second electrode 19 may be a cathode which is an electron injection electrode, and in this regard, a material for forming the second electrode 19 may be a metal, an alloy, an electrically conductive compound, or a combination thereof, which have a relatively low work function.


The second electrode 19 may include at least one lithium (Li), silver (Ag), magnesium (Mg), aluminum (AI), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ITO, or IZO, but embodiments of the present disclosure are not limited thereto. The second electrode 19 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 19 may have a single-layered structure having a single layer or a multi-layered structure including two or more layers.


Hereinbefore, the organic light-emitting device has been described with reference to FIGURE, but embodiments of the present disclosure are not limited thereto.


According to an aspect of the invention, provided is an electronic apparatus including the organic light-emitting device.


According to an embodiment, the electronic apparatus may be applied in various fields such as a diagnostic kit, a biosensor, a biomarker, a display, and a lighting device.


EXPLANATION OF TERMS

The term “C1-C60 alkyl group” as used herein refers to a linear or branched saturated aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C1-C60 alkylthio group” used herein refers to a monovalent group represented by —SA105 (wherein A105 is the C1-C60 alkyl group), and examples thereof include a thiomethyl group, a thioethyl group, and a thioisopropyl group.


The term “C2-C60 alkenyl group” as used herein has a structure including at least one carbon-carbon double bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein has a structure including at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent saturated monocyclic group having at least one heteroatom N, O, P, Si, or S as a ring-forming atom and 1 to 10 carbon atoms, and examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent monocyclic group that has at least one heteroatom N, O, P, Si, or S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Examples of the C1-C10 heterocycloalkenyl group are a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be fused to each other.


The term “C6-C60 alkylaryl group” as used herein refers to a C6-C59 aryl group substituted with at least one C1-C54 alkyl or alkylene group, and the term “C6-C60 aryl alkyl group” as used herein indicates -A106A107 (wherein A106 is the C6-C59 aryl group and A107 is the C1-C54 alkyl or alkylene group).


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a cyclic aromatic system that has at least one heteroatom N, O, P, Si, or S as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a carbocyclic aromatic system that has at least one heteroatom N, O, P, or S as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be fused to each other.


The term “C6-C60 aryloxy group” as used herein refers to —OA102 (here, A102 is the C6-C60 aryl group), the C6-C60 arylthio group refers to —SA103 (here, A103 is the C6-C60 aryl group), and the C6-C60 aryl alkyl group refers to —(CH2)nA104 (here, A104 is a C6-C59 aryl group, and n is an integer from 1 to 10).


The term “C1-C60 heteroaryloxy group” as used herein refers to —OA108 (wherein A108 is the C1-C60 heteroaryl group), the term “C1-C60 heteroarylthio group” as used herein indicates —SA109 (wherein A109 is the C1-C60 heteroaryl group), and the term “C1-C60 heteroalkyl aryl group” as used herein refers to -A110A111 (A110 is a C1-C55 heteroalkylene or heteroalkyl group, and A111 is a C1-C59 heteroaryl group).


The term “C1-C60 heteroalkyl aryl group” as used herein refers to a C1-C60 heteroaryl group substituted with at least one C1-C59 alkyl or alkylene group.


The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed with each other, only carbon atoms as ring-forming atoms, and non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed polycyclic group include a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, a heteroatom N, O, P, Si, or S, other than carbon atoms, as a ring-forming atom, and non-aromaticity in its entire molecular structure. The monovalent non-aromatic condensed heteropolycyclic group includes a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C5-C30 carbocyclic group” as used herein refers to, as a ring-forming atom, a saturated or unsaturated cyclic group including aromatic group having 5 to 30 carbon atoms. The C5-C30 carbocyclic group may be a monocyclic group or a polycyclic group. For example, the C5-C30 carbocyclic group may be a cyclopentane group, a cyclohexane group, a cyclohexene group, a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, or like.


The term “C1-C30 heterocyclic group” as used herein refers to a saturated or unsaturated cyclic group having, as a ring-forming atom, at least one heteroatom N, O, P, Si, or S other than 1 to 30 carbon atoms. The C1-C30 heterocyclic group may be a monocyclic group or a polycyclic group.


For example, the π-electron-deficient nitrogen-containing C1-C60 cyclic group may be an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, a benzoisoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, an acridine group, or a pyridopyrazine group.


In an embodiment, the π-electron-rich C3-C60 cyclic group may be a phenyl group, a heptalene group, an indene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentaphene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, a furan group, a thiophene group, an isoindole group, an indole group, an indene group, a benzofuran group, a benzothiophene group, a benzosilole group, a naphthopyrrole group, a naphthofuran group, a naphthothiophene group, a naphthosilole group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a dibenzosilole group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a triindolobenzene group, a pyrrolophenanthrene group, a furanophenanthrene group, a thienophenanthrene group, a benzonaphthofuran group, a benzonaphthothiophene group, a (indolo)phenanthrene group, a (benzofurano)phenanthrene group, or a (benzothieno)phenanthrene group.


In an embodiment, the C5-C60 cyclic group may be a cyclopentane group, a cyclohexane group, a cyclohexene group, a phenyl or benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a 1,2,3,4-tetrahydronaphthalene group, a cyclopentadiene group, an indene group, a fluorene group, a 5,6,7,8-tetrahydroisoquinoline group, a 5,6,7,8-tetrahydroquinoline group, an adamantane group, a norbornane group, or a norbornene group.


For example, the C1-C60 heterocyclic group may be a thiophene group, a furan group, a pyrrole group, a cyclopentadiene group, a silole group, a borole group, a phosphole group, a selenophene group, a germole group, a benzothiophene group, a benzofuran group, an indole group, an indene group, a benzosilole group, a benzoborole group, a benzophosphole group, a benzoselenophene group, a benzogermole group, a dibenzothiophene group, a dibenzofuran group, a carbazole group, a dibenzosilole group, a dibenzoborole group, a dibenzophosphole group, a dibenzoselenophene group, a dibenzogermole group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azabenzothiophene group, an azabenzofuran group, an azaindole group, an azaindene group, an azabenzosilole group, an azabenzoborole group, an azabenzophosphole group, an azabenzoselenophene group, an azabenzogermole group, an azadibenzothiophene group, an azadibenzofuran group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzoborole group, an azadibenzophosphole group, an azadibenzoselenophene group, an azadibenzogermole group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, or a benzothiadiazole group.


In the present specification, each of the π-electron-deficient nitrogen-containing C1-C60 cyclic group, the π-electron-rich C3-C60 cyclic group, the C5-C60 cyclic group, and the C1-C60 heterocyclic group may be part of a condensed cyclic or may be a monovalent, a divalent, a trivalent, a tetravalent, a pentavalent, or a hexavalent group, depending on a formula structure.


At least one substituent of the substituted π-electron-deficient nitrogen-containing C1-C60 cyclic group, the substituted π-electron-rich C3-C60 cyclic group, the substituted C5-C30 carbocyclic group, the substituted C2-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C1-C60 alkylthio group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C6-C60 aryl alkyl group, the substituted C1-C60 heteroaryl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted C1-C60 heteroalkyl aryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is:


deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group, each independently substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C6-C60 aryl alkyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), —B(Q16)(Q17), or —P(═O)(Q18)(Q19);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C6-C60 aryl alkyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each independently substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C6-C60 aryl alkyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), —B(Q26)(Q27), or —P(═O)(Q28)(Q29); or


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39), and


Q1 to Q9, Q11 to Q19, Q21 to Q29, and Q31 to Q39 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C6-C60 aryl alkyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a C1-C60 heteroalkyl aryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group.


In an embodiment, Q1 to Q9, Q11 to Q19, Q21 to Q29, and Q31 to Q39 as used herein may each independently be:


—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2; or


an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, a phenyl group, a biphenyl group, or a naphthyl group, each independently unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, or any combination thereof.


The term “room temperature” used herein refers to a temperature of about 25° C.


The terms “a biphenyl group, a terphenyl group, and a tetraphenyl group” used herein respectively refer to monovalent groups in which two, three, or four phenyl groups which are linked together via a single bond.


The terms “a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, and a cyano-containing tetraphenyl group” used herein respectively refer to a phenyl group, a biphenyl group, a terphenyl group, and a tetraphenyl group, each of which is substituted with at least one cyano group. In “a cyano-containing phenyl group, a cyano-containing biphenyl group, a cyano-containing terphenyl group, and a cyano-containing tetraphenyl group”, a cyano group may be substituted to any position of the corresponding group, and the “cyano-containing phenyl group, the cyano-containing biphenyl group, the cyano-containing terphenyl group, and the cyano-containing tetraphenyl group” may further include substituents other than a cyano group. In an embodiment, a phenyl group substituted with a cyano group, and a phenyl group substituted with a cyano group and a methyl group may all belong to “a cyano-containing phenyl group.”


Hereinafter, a compound and an organic light-emitting device according to embodiments are described in detail with reference to Synthesis Examples and Examples. However, the organic light-emitting device is not limited thereto. The wording “‘B’ was used instead of ‘A’” used in describing Synthesis Examples means that an amount of ‘A’ used was identical to an amount of ‘B’ used, in terms of a molar equivalent.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 1



embedded image


1-Bromo-2,3-dichlorobenzene (4.0 gram (g)), bis(4-biphenylyl)amine (12.0 g), sodium tert-butoxide (4.3 g), Pd(dba)2 (Palladium(0) bis(dibenzylideneacetone), 0.81 g), and SPhos (2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl, 0.44 g) were dissolved in toluene (350 milliliter (mL)), and then heated at 100° C. for 15 hours using an oil bath. The reaction product was cooled to room temperature, and a target product was extracted using ethyl acetate, dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. A compound obtained therefrom was purified through silica gel column chromatography to thereby obtain 11.4 g (yield: 86%, purity: 98%) of Intermediate 1-a.


A tert-butyl benzene solution (70 mL) of Intermediate 1-a (5.1 g) obtained therefrom was cooled to −78° C. A tert-BuLi solution (9.9 mL, 1.5 M in pentane) was added thereto, the resulting reaction mixture was heated at 60° C., and then stirred for an hour. Subsequently, the reaction mixture was cooled at −78° C., and boron tribromide (1.4 mL) was added thereto and then stirred at 0° C. for two hours. Again, the reaction mixture was cooled at −78° C., and diisopropylethylamine (2.4 mL) was added thereto, and then heated at 110° C. for three hours. The reaction mixture was cooled to room temperature, diluted using dichloromethane, subjected to filtration using FLORISIL®, and then concentrated under reduced pressure. A compound obtained therefrom was recrystallized using a toluene/dichloromethane solvent to thereby obtain 2.2 g (yield: 44%, purity: 98%) of Compound 1. Also, a target molecular weight ([M+H]+ 725.3) was confirmed through ESI-MS measurement.


Synthesis Example 2



embedded image


1-Bromo-2,3-dichlorobenzene (1.4 g), bis(4′-(tert-butyl)-[1,1′-biphenyl]-4-yl)amine (5.7 g), sodium tert-butoxide (1.7 g), Pd(OAc)2 (27 mg), and SPhos (125 milligrams (mg)) were dissolved in o-xylene (50 mL), and then refluxed while heating for an hour using an oil bath. The reaction mixture was cooled to room temperature, and a target product was extracted using ethyl acetate, dried over magnesium sulfate, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 5.5 g (yield: 94%, purity: >99%) of Intermediate 224-a.


A tert-butyl benzene solution (12 mL) of Intermediate 224-a (0.5 g) obtained therefrom was cooled at −78° C. A tert-BuLi solution (0.72 mL, 1.5 M in pentane) was added thereto, the resulting reaction mixture was heated at 80° C., and then stirred for two hours. Subsequently, the reaction mixture was cooled to −78° C., and boron tribromide (0.11 mL) was added thereto and then stirred at 0° C. for an hour. Again, the reaction mixture was cooled at −78° C., and diisopropylethylamine (0.18 mL) was added thereto and then heated at 110° C. for three hours. The reaction mixture was diluted using dichloromethane, subjected to filtration using FLORISIL®, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 0.13 g (yield: 15%, purity: 95%) of Compound 224. Also, a target molecular weight ([M+H]+ 949.6) was confirmed through ESI-MS measurement.


Synthesis Example 3



embedded image


5-Bromo-m-terphenyl (10 g), aniline (4.2 mL), sodium tert-butoxide (4.7 g), Pd(dba)2 (1.48 g), and SPhos (0.81 mg) were dissolved in toluene (150 mL), and then heated at 100° C. for 15 hours using an oil bath. The reaction mixture was cooled at room temperature, and a target product was extracted using ethyl acetate, dried over magnesium sulfate, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 6.2 g (yield: 60%, purity: 97%) of Intermediate 95-b.


Intermediate 95-b (6.2 g) obtained therefrom, 1-bromo-2,3-dichlorobenzene (2.0 g), sodium tert-butoxide (2.5 g), Pd(dba)2 (0.44 mg), and SPhos (0.24 mg) were dissolved in toluene (100 mL), and then heated 100° C. for 15 hours using an oil bath. The reaction mixture was cooled to room temperature, and a target product was extracted using ethyl acetate, dried over magnesium sulfate, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 5.2 g (yield: 72%, purity: 97%) of Intermediate 95-a.


A tert-butyl benzene solution (12 mL) of Intermediate 95-a (0.5 g) obtained therefrom was cooled at −78° C. A tert-BuLi solution (0.98 mL, 1.5 M in pentane) was added thereto, heated at 80° C., and then stirred for two hours. Next, the reaction mixture was cooled to −78° C., and boron tribromide (0.16 mL) was added thereto and then stirred at 0° C. for an hour. Again, the reaction mixture was cooled to −78° C., and diisopropylethylamine (0.29 mL) was added thereto and then heated at 110° C. for three hours. The reaction mixture was cooled to room temperature, diluted using dichloromethane, subjected to filtration using FLORISIL®, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 0.15 g (yield: 31%, purity: 91%) of Compound 95. Also, a target molecular weight ([M+H]+ 725.3) was confirmed through ESI-MS measurement.


Synthesis Example 4



embedded image


1-Bromo-2,3-dichlorobenzene (2.0 g), bis(3-biphenylyl)amine (6.0 g), sodium tert-butoxide (2.2 g), Pd2(dba)3 (0.21 g), and SPhos (0.22 g) were dissolved in toluene (150 mL), and then heated at 100° C. for 15 hours using an oil bath. The reaction mixture was cooled to room temperature, and a target product was extracted using ethyl acetate, dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. A compound obtained therefrom was purified by silica gel column chromatography to thereby obtain 5.8 g (yield: 88%, purity: 98%) of Intermediate 229-a.


A tert-butyl benzene solution (12 mL) of Intermediate 229-a (1.0 g) obtained therefrom was cooled at −78° C. A tert-BuLi solution (0.28 mL, 1.5 M in pentane) was added thereto, heated at 60° C., and then stirred for an hour. Next, the reaction mixture was cooled to −78° C., and boron tribromide (0.28 mL) was added thereto and then stirred at 0° C. for two hours. Again, the reaction result was cooled to −78° C., and diisopropylethylamine (0.48 mL) was added thereto and then heated at 110° C. for three hours. The reaction mixture was cooled to room temperature, diluted using dichloromethane, subjected to filtration using FLORISIL®, and then concentrated under reduced pressure. A compound obtained therefrom was recrystallized using a toluene/dichloromethane solvent to thereby obtain 0.36 g (yield: 38%, purity: 92%) of Compound 229. Also, a target molecular weight ([M+H]+ 725.3) was confirmed through ESI-MS measurement.


Example 1

A glass substrate with an ITO electrode located thereon was cut to a size of 50 millimeters (mm)×50 mm×0.5 mm and then, sonicated in acetone isopropyl alcohol and pure water, each for 15 minutes, and then, washed by exposure of UV ozone thereto for 30 minutes.


Then, HAT-CN was deposited on the ITO electrode (anode) on the glass substrate to form a hole injection layer having a thickness of 100 angstrom (A), NPB was deposited on the hole injection layer to form a first hole transport layer having a thickness of 500 Å, TCTA was deposited on the first hole transport layer to form a second hole transport layer having a thickness of 50 Å, and mCP was deposited on the second hole transport layer to form an electron blocking layer having a thickness of 50 Å.


A first host (H1), a second host (H2), a sensitizer (S-1), and an emitter (Compound 1) were co-deposited on the electron blocking layer to form an emission layer having a thickness of 400 Å. At this time, the first host and the second host were mixed at a ratio of 60:40, and amounts of the sensitizer and the emitter were adjusted to be 10 wt % and 1.5 wt %, respectively, based on the total weight of the first host, the second host, the sensitizer, and the emitter.


2,8-bis(diphenylphosphine oxide) dibenzofuran (DBFPO) was deposited on the emission layer to form a hole blocking layer having a thickness of 100 Å, DBFPO and Liq were co-deposited thereon at a weight ratio of 5:5 to form an electron transport layer having a thickness of 300 Å, Liq was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was deposited on the electron injection layer to form a cathode having a thickness of 1000 Å, thereby completing the manufacture of an organic light-emitting device.




embedded image


embedded image


Example 2

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming an emission layer, 0.5 wt % of an emitter (Compound 1) was used.


Comparative Examples 1 to 7

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming an emission layer, corresponding compounds shown in Table 2 were used.












TABLE 2








Host














HT-HOST
ET-HOST
Sensitizer
Emitter





Comparative
H1
H2

Compound 1










Example 1
6:4

0.5 wt %











Example 1
H1
H2
S-1
Compound 1











6:4
10 wt %
1.5 wt %











Comparative
H1
H2
S-1
Compound A










Example 2
6:4
10 wt %
1.5 wt %











Comparative
H1
H2
S-1
Compound B










Example 3
6:4
10 wt %
1.5 wt %











Comparative
H1
H2
S-1
Compound C










Example 4
6:4
10 wt %
1.5 wt %











Example 2
H1
H2
S-1
Compound 1











6:4
10 wt %
0.5 wt %











Comparative
H1
H2
S-1
Compound A










Example 5
6:4
10 wt %
0.5 wt %











Comparative
H1
H2
S-1
Compound B










Example 6
6:4
10 wt %
0.5 wt %











Comparative
H1
H2
S-1
Compound C










Example 7
6:4
10 wt %
0.5 wt %







embedded image

H1





embedded image

H2





embedded image

S-1





embedded image

1





embedded image

A





embedded image

B





embedded image

C







Evaluation Example 1: Characteristic Evaluation of Organic Light-Emitting Device

For each of the organic light-emitting devices manufactured in Examples 1 and 2 and Comparative Examples 1 to 7, driving voltage, T95 lifespan, which is the time taken for initial luminance to decrease to 95%, and quantum efficiency were measured, and relative values with respect to Comparative Example 1 are shown in Table 3.













TABLE 3








Maximum




Driving
quantum
T95



voltage
efficiency
lifespan



(%)
(%)
(%)





















Comparative
100
100
100



Example 1



Example 1
88
127
3381



Comparative
97
106
223



Example 2



Comparative
97
121
308



Example 3



Comparative
91
133
903



Example 4



Example 2
88
125
3310



Comparative
95
107
403



Example 5



Comparative
93
123
577



Example 6



Comparative
90
124
1189



Example 7










As described in Tables 2 and 3, the organic light-emitting devices of Examples 1 and 2 each include an emission layer including two hosts, a sensitizer, and a dopant of Compound 1, thereby having low driving voltage, high efficiency, and long lifespan, compared to the organic light-emitting devices manufactured in Comparative Examples 1 (free of a sensitizer), 2 to 4, and 5 to 7.


An organic light-emitting device including a host, a first dopant, and a second dopant described herein has improved efficiency, low driving voltage, and improved lifespan.


It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present detailed description as defined by the following claims.

Claims
  • 1. An organic light-emitting device comprising: a first electrode;a second electrode facing the first electrode; andan organic layer located between the first electrode and the second electrode and including an emission layer,wherein the emission layer comprises a host compound, a first dopant compound, and a second dopant compound, andthe second dopant compound is represented by Formula 1: A-(Ar1)n11  Formula 1
  • 2. The organic light-emitting device of claim 1, wherein the first electrode is an anode, the second electrode is a cathode,the organic layer further comprises a hole transport region located between the first electrode and the emission layer and an electron transport region located between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an electron blocking layer, a buffer layer, or any combination thereof, andthe electron transport region comprises a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.
  • 3. The organic light-emitting device of claim 1, wherein the host compound comprises two different compounds.
  • 4. The organic light-emitting device of claim 1, wherein the host compound comprises a hole transport host compound and an electron transport host compound.
  • 5. The organic light-emitting device of claim 4, wherein the hole transport host compound is a compound represented by Formula H-1 below:
  • 6. The organic light-emitting device of claim 5, wherein the electron transport host compound comprises at least one of a cyano group or a x-electron-deficient nitrogen-containing cyclic group.
  • 7. The organic light-emitting device of claim 1, wherein an amount of the host compound is greater than a total amount of a first dopant and a second dopant.
  • 8. The organic light-emitting device of claim 1, wherein, in Formula 1-1, M is B.
  • 9. The organic light-emitting device of claim 1, wherein, in Formula 1-1, ring CY1 to ring CY5 are each independently a first ring, a second ring, a condensed ring in which two or more groups selected from the first ring are condensed with each other, a condensed ring in which two or more groups selected from the second ring are condensed with each other, or a condensed ring in which at least one first ring and at least one second ring are condensed with each other, the first ring is a cyclopenta-1,3-diene group, an indene group, an azulene group, a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a tetracene group, a tetraphene group, a pyrene group, a chrysene group, a triphenylene group, or a fluorene group, andthe second ring is a furan group, a thiophene group, a pyrrole group, a borole group, a silole group, a pyrrolidine group, an imidazole group, a thiazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, a pyridine group, a pyrimidine group, a pyridazine group, a triazine group, an indole group, an isoindole group, an indolizine group, a quinoline group, an isoquinoline group, a quinoxaline group, an isoquinoxaline group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzosilole group, or a dibenzoborole group.
  • 10. The organic light-emitting device of claim 1, wherein, in Formula 1, Ar1 in the number of n11 are identical to each other.
  • 11. The organic light-emitting device of claim 1, wherein, in Formula 1, Ar1 is: a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group; ora cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39).
  • 12. The organic light-emitting device of claim 1, wherein, Ar1 is a group of Formulae 3-1 to 3-78:
  • 13. The organic light-emitting device of claim 1, wherein Ra and R1 to R5 are each independently: a binding site to Ar1 in Formula 1;hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkylthio group, or a C1-C60 alkoxy group;a C1-C60 alkyl group a C1-C60 alkylthio group, or a C1-C60 alkoxy group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group, each independently substituted with at least one of deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group (CN), a nitro group, an amino group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q34)(Q35), —B(Q36)(Q37), or —P(═O)(Q38)(Q39); or—N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), or —P(═O)(Q8)(Q9).
  • 14. The organic light-emitting device of claim 1, wherein Formula 1 is represented by Formula 1-2:
  • 15. The organic light-emitting device of claim 14, wherein (i) b1 is 4; b2 is 4; b4 is 4; or b5 is 4;(ii) b1 is 3 and b2 is 1; b1 is 3 and b3 is 1; b1 is 3 and b4 is 1; or b1 is 3 and b5 is 1;(iii) b1 is 2, b2 is 1, and b3 is 1; b1 is 2, b2 is 1, and b4 is 1; b1 is 2, b2 is 1, and b5 is 1; b1 is 2, b3 is 1, and b4 is 1; b1 is 2, b3 is 1, and b5 is 1; b1 is 2, b4 is 1, and b5 is 1; b1 is 2 and b2 is 2; b1 is 2 and b3 is 2; b1 is 2 and b4 is 2; or b1 is 2 and b5 is 2;(iv) b1 is 1, b2 is 1, b3 is 1, and b4 is 1; b1 is 1, b2 is 1, b3 is 1, and b5 is 1; b1 is 1, b3 is 1, b4 is 1, and b5 is 1; b1 is 1, b2 is 2, and b3 is 1; b1 is 1, b2 is 2, and b4 is 1; b1 is 1, b2 is 2, and b5 is 1; b1 is 1, b2 is 1, and b3 is 2; b1 is 1, b3 is 2, and b4 is 1; b1 is 1, b3 is 2, and b5 is 1; b1 is 1, b2 is 1, and b4 is 2; b1 is 1, b3 is 1, and b4 is 2; b1 is 1, b4 is 2, and b5 is 1; b1 is 1, b2 is 1, and b5 is 2; b1 is 1, b3 is 1, and b5 is 2; b1 is 1, b4 is 1, and b5 is 2; b1 is 1 and b2 is 3; b1 is 1 and b3 is 3; b1 is 1 and b4 is 3; or b1 is 1 and b5 is 3;(v) b2 is 3 and b3 is 1; b2 is 3 and b4 is 1; or b2 is 3 and b5 is 1;(vi) b2 is 2, b3 is 1, and b4 is 1; b2 is 2, b3 is 1, and b5 is 1; b2 is 2, b4 is 1, and b5 is 1; b2 is 2 and b3 is 2; b2 is 2 and b4 is 2; or b2 is 2 and b5 is 2;(vii) b2 is 1, b3 is 1, b4 is 1, and b5 is 1; b2 is 1, b3 is 2, and b4 is 1; b2 is 1, b3 is 2, and b5 is 1; b2 is 1, b3 is 1, and b4 is 2; b2 is 1, b4 is 2, and b5 is 1; b2 is 1, b5 is 2, and b3 is 1; b2 is 1, b5 is 2, and b4 is 1; b2 is 1 and b3 is 3; b2 is 1 and b4 is 3; or b2 is 1 and b5 is 3;(viii) b3 is 3 and b4 is 1; or b3 is 3 and b5 is 1;(ix) b3 is 2, b4 is 1, and b5 is 1; b3 is 2 and b4 is 2; or b3 is 2 and b5 is 2;(x) b3 is 1, b4 is 2, and b5 is 1; or b3 is 1, b4 is 1, and b5 is 2;(xi) b4 is 3 and b5 is 1;(xii) b4 is 2 and b5 is 2; or(xiii) b4 is 1 and b5 is 3.
  • 16. The organic light-emitting device of claim 1, wherein the emission layer emits blue light having a maximum emission wavelength of about 450 nanometers to about 500 nanometers.
  • 17. The organic light-emitting device of claim 1, wherein the second dopant compound is Compounds 1 to 229 below:
  • 18. An electronic apparatus comprising the organic light-emitting device according to claim 1.
Priority Claims (1)
Number Date Country Kind
10-2020-0130411 Oct 2020 KR national
US Referenced Citations (11)
Number Name Date Kind
20200028084 Song Jan 2020 A1
20200058874 Kim et al. Feb 2020 A1
20200144503 Hayano May 2020 A1
20210053998 Kim et al. Feb 2021 A1
20210202876 Kim Jul 2021 A1
20220102636 Dück Mar 2022 A1
20220285621 Thirion Sep 2022 A1
20220289769 Dück Sep 2022 A1
20230084208 Kim et al. Mar 2023 A1
20230159568 Zink May 2023 A1
20230345748 Kim Oct 2023 A1
Foreign Referenced Citations (5)
Number Date Country
1020200011383 Feb 2020 KR
1020200019272 Feb 2020 KR
1020200020538 Feb 2020 KR
1020200047400 May 2020 KR
1020200052513 May 2020 KR
Non-Patent Literature Citations (2)
Entry
English Abstract of KR 10-2020-0011383.
English Abstract of KR 10-2020-0047400.
Related Publications (1)
Number Date Country
20230069900 A1 Mar 2023 US