Organic light-emitting device

Information

  • Patent Grant
  • 11696496
  • Patent Number
    11,696,496
  • Date Filed
    Thursday, June 9, 2016
    8 years ago
  • Date Issued
    Tuesday, July 4, 2023
    a year ago
Abstract
An organic light-emitting device including a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein: the emission layer includes a first compound, at least one of the hole transport region and the electron transport region includes a second compound, the first compound is represented by Formula 1A or 1B, and the second compound is represented by Formula 2A or 2B:
Description
CROSS-REFERENCE TO RELATED APPLICATION

Korean Patent Application No. 10-2015-0184084, filed on Dec. 22, 2015, in the Korean Intellectual Property Office, and entitled: “Organic Light-Emitting Device,” is incorporated by reference herein in its entirety.


BACKGROUND

1. Field


Embodiments relate to an organic light-emitting device.


2. Description of the Related Art


Organic light-emitting devices are self-emission devices that have wide viewing angles, high contrast ratios, short response times, and excellent brightness, driving voltage, and response speed characteristics, compared to devices in the art.


The organic light-emitting device may include a first electrode disposed on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially disposed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state, thereby generating light.


SUMMARY

Embodiments are directed to an organic light-emitting device.


One or more embodiments include an organic light-emitting device having a low driving voltage and high efficiency.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.


According to one or more embodiments, an organic light-emitting device includes:


a first electrode;


a second electrode facing the first electrode;


an emission layer between the first electrode and the second electrode;


a hole transport region between the first electrode and the emission layer; and


an electron transport region between the emission layer and the second electrode,


wherein the emission layer includes a first compound,


at least one selected from the hole transport region and the electron transport region includes a second compound,


the first compound is represented by Formula 1A or 1B, and


the second compound is represented by Formula 2A or 2B:




embedded image


In Formulae 1A, 1B, 2A, and 2B,


rings A1 to A3 may each independently be selected from a C5-C60 carbocyclic group and a C1-C60 heterocyclic group,


rings A1 to A3 may each be condensed with a spiro-ring in Formulae 1A and 1B,


rings A21, A22, and A23 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with at least one *-[(L22)a22-(R22)b22],


T11 and T12 may each independently be carbon or nitrogen, two or more selected from three T11(s) in Formula 2A may be identical to or different from each other, T13 may be N or C(R27), T14 may be N or C(R28), two or more selected from three T12(s) in Formula 2A may be identical to or different from each other, two T11(s) in Formula 2B may be identical to or different from each other, two T12(s) in Formula 2B may be identical to or different from each other, T11 and T12 may be connected to each other via a single bond or a double bond, three T11(s) and three T12(s) in Formula 2A may be not all nitrogen and two T11(s), two T12(S), T13, and T14 in Formula 2B may be not all nitrogen,


rings A21, A22, and A23 may each be condensed (e.g., fused) with a central 7-membered ring in Formulae 2A and 2B, such that they each share a T11 and a T12 with the central 7-membered ring,


X1 may be a silicon (Si) atom or a carbon (C) atom,


Y1 may be selected from a single bond, N[(L11)a11-(R11)b11], C(R11)(R13), Si(R11)(R13), O, S, and Se,


Y2 may be selected from a single bond, N[(L12)a12-(R12)b12], C(R12)(R14), Si(R12)(R14), O, S, and Se,


E1 and E2 may each independently be a nitrogen (N) atom, or may each independently be a carbon (C) atom substituted with *-(L4)a4-(R4)b4,


X21 may be selected from O, S, Se, C(R23)(R24), Si(R23)(R24), and N[(L21)a21-(R21)b21],


L1 to L4, L11, L12, L21, and L22 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


a1 to a4, a11, a12, a21, and a22 may each independently be an integer selected from 0 to 5,


R1 to R4, R11 to R14, R21 to R24, R27, and R28 may each independently be selected from hydrogen, deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2),


R11 and R13 may be optionally connected to each other to form a saturated or unsaturated ring,


R12 and R14 may be optionally connected to each other to form a saturated or unsaturated ring,


b1 to b4, b11, b12, b21, and b22 may each independently be an integer selected from 1 to 3,


c1 and c2 may each independently be an integer selected from 0 to 8, and c3 and c4 may each independently be an integer selected from 0 to 4, and


at least one substituent selected from the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22); and


—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


wherein Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl group substituted with a C1-C60 alkyl group, a C6-C60 aryl group substituted with a C6-C60 aryl group, a terphenyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryl group substituted with a C1-C60 alkyl group, a C1-C60 heteroaryl group substituted with a C6-C60 aryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.





BRIEF DESCRIPTION OF THE DRAWINGS

Features will be apparent to those of skill in the art by describing in detail exemplary embodiments with reference to the attached drawings in which:



FIGS. 1 to 5 illustrate schematic views of organic light-emitting devices according to various embodiments.





DETAILED DESCRIPTION

Example embodiments will now be described more fully hereinafter with reference to the accompanying drawings; however, they may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey exemplary implementations to those skilled in the art.


In the drawing figures, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when a layer or element is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.


An organic light-emitting device according to an embodiment may include a first electrode, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode, wherein the emission layer may include a first compound and at least one selected from the hole transport region and the electron transport region may include a second compound.


The first compound may be represented by Formula 1A or 1B, and the second compound may be represented by Formula 2A or 2B:




embedded image


In Formulae 1A and 1B,


rings A1 to A3 may each independently be selected from a C5-C60 carbocyclic group and a C1-C60 heterocyclic group, and


rings A1 to A3 may each be condensed with a spiro-ring in Formulae 1A and 1B.


For example, rings A1 to A3 in Formulae 1A and 1B may each independently be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indene group, an indenopyridine group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an imidazole group, a quinoline group, an isoquinoline group, a quinazoline group, a phenanthroline group, a phenanthridine group, a furan group, a thiophene group, an indole group, an indolocarbazole group, a benzofuran group, a benzofurocarbazole group, a benzofuropyrimidine group, a benzothiophene group, a benzoxazole group, a benzothiazole group, a benzoimidazole group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a pyridoindole group, a dipyridofuran group, a dipyridothiophene group, a pyrimidobenzofuran group, a dipyridopyrrole group, and a pyrimidobenzothiophene group.


In various embodiments, ring A1 in Formulae 1A and 1B may be selected from a benzene group, a naphthalene group, a pyridine group, a dibenzofuran group, and a pyrimidine group, and


rings A2 and A3 may each independently be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indene group, an indenopyridine group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an imidazole group, a quinoline group, an isoquinoline group, a quinazoline group, a phenanthroline group, a phenanthridine group, a furan group, a thiophene group, an indole group, an indolocarbazole group, a benzofuran group, a benzofurocarbazole group, a benzofuropyrimidine group, a benzothiophene group, a benzoxazole group, a benzothiazole group, a benzoimidazole group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a pyridoindole group, a dipyridofuran group, a dipyridothiophene group, a pyrimidobenzofuran group, a dipyridopyrrole group, and a pyrimidobenzothiophene group.


Rings A21, A22, and A23 in Formulae 2A and 2B may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with at least one *-[(L22)a22-(R22)b22]. L22, a22, R22, and b22 are the same as described below.


T11 and T12 in Formulae 2A and 2B may each independently be carbon or nitrogen, two or more selected from three T11(s) in Formula 2A may be identical to or different from each other, T13 may be N or C(R27), T14 may be N or C(R28), two or more selected from three T12(s) in Formula 2A may be identical to or different from each other, two T11(s) in Formula 2B may be identical to or different from each other, two T12(S) in Formula 2B may be identical to or different from each other, T11 and T12 may be connected to each other via a single bond or a double bond, three T11(s) and three T12(s) in Formula 2A may be not all nitrogen and two T11(s), two T12(s), T13, and T14 in Formula 2B may be not all nitrogen, and rings A21, A22, and A23 may each be condensed (e.g., fused) with a central 7-membered ring in Formulae 2A and 2B, such that they each share a T11 and a T12 with the central 7-membered ring.


*-[(L22)a22-(R22)b22] substituted in ring A21, *-[(L22)a22-(R22)b22] substituted in ring A22, and *-[(L22)a22-(R22)b22] substituted in ring A23 may be identical to or different from one another.


In addition, when the number of *-[(L22)a22-(R22)b22](s) substituted in ring A21 is two or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other, when the number of *-[(L22)a22-(R22)b22](s) substituted in ring A22 is two or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other, and when the number of *-[(L22)a22-(R22)b22] (s) substituted in ring A23 is two or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other.


In various embodiments, rings A21, A22, and A23 in Formulae 2A and 2B may each independently be selected from a benzene group, a naphthalene group, an anthracene group, an indene group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, a pyrrole group, a pyrazole group, an imidazole group, an oxazole group, a thiazole group, a cyclopentadiene group, a silole group, a selenophene group, a furan group, a thiophene group, an indole group, a benzoimidazole group, a benzoxazole group, a benzothiazole group, an indene group, a benzosilole group, a benzoselenophene group, a benzofuran group, a benzothiophene group, a carbazole group, a fluorene group, a dibenzosilole group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene group, a pyrrolopyridine group, a cyclopentapyridine group, a silolopyridine group, a selenophenopyridine group, a furopyridine group, a thienopyridine group, a pyrrolopyrimidine group, a cyclopentapyrimidine group, a silolopyrimidine group, a selenophenopyrimidine group, a furopyrimidine group, a thienopyrimidine group, a pyrrolopyrazine group, a cyclopentapyrazine group, a silolopyrazine group, a selenophenopyrazine group, a furopyrazine group, a thienopyrazine group, a naphthopyrrole group, a cyclopentanaphthalene group, a naphthosilole group, a naphthoselenothiophene group, a naphthofuran group, a naphthothiophene group, a pyrroloquinoline group, a cyclopentaquinoline group, a siloloquinoline group, a selenophenoquinoline group, a furoquinoline group, a thienoquinoline group, a pyrroloisoquinoline group, a cyclopentaisoquinoline group, a siloloisoquinoline group, a selenophenoisoquinoline group, a furoisoquinoline group, a thienoisoquinoline group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene group, an indenoquinoline group, an indenoisoquinoline group, an indenoquinoxaline group, a phenanthroline group, and a naphthoindole group, each substituted with at least one *-[(L22)a22-(R22)b22].


In various embodiments, in the second compound represented by Formulae 2A and 2B, a case where rings A21, A22, and A23 are all a benzene group substituted with at least one *-[(L22)a22-(R22)b22] may be excluded.


In various embodiments, rings A21, A22, and A23 in Formulae 2A and 2B may each independently be selected from groups represented by Formulae 2-1 to 2-36, each substituted with at least one *-[(L22)a22-(R22)b22]:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 2-1 to 2-36,


T11 and T12 are the same as described above,


X22 and X23 may each independently be selected from O, S, Se, a moiety including C, a moiety including N, and a moiety including Si, and


T21 to T28 may each independently be selected from N and a moiety including C.


When both X22 and X23 are included in rings A21 to A23, X22 and X23 may be identical to or different from each other.


For example, in Formulae 2-1 to 2-36, X22 and X23 may each independently be O, S, Se, C(R25)(R26), N-[(L22)a22-(R22)b22], or Si(R25)(R26), and T21 to T28 may each independently be N or C-[(L22)a22-(R22)b22]. R25 and R26 may each independently be selected from groups represented by *-[(L22)a22-(R22)b22)] as described herein.


For example, in Formulae 2-1 to 2-36, X22 and X23 may each independently be O, S, Se, C(R25)(R26), N-[(L22)a22-(R22)b22], or Si(R25)(R26), and T21 to T28 may each independently be N or C-[(L22)a22-(R22)b22]. R25 and R26 may each independently be selected from groups represented by *-[(L22)a22-(R22)b22)] as described herein.


In various embodiments, rings A21, A22, and A23 in Formulae 2A and 2B may each independently be selected from groups represented by Formulae 2-101 to 2-229:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 2-101 to 2-229,


T11 and T12 are the same as described above,


X22 and X23 are the same as described above, and


R31 to R38 may each independently be selected from substituents represented by *-[(L22)a22-(R22)b22] as described herein.


In R31 to R38, when the number of *-[(L22)a22-(R22)b22](S) is two or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other.


For example, in Formulae 2A to 2B, a case where rings A21, A22, and A23 are all represented by Formula 2-104 may be excluded.


In various embodiments, the second compound may be represented by one selected from Formulae 2-201A to 2-269A, and rings A21, A22, and A23 in Formulae 2-201A to 2-269A may each be selected from Formulae shown in Table 1.












TABLE 1






Formula





No. of ring
Formula No. of ring
Formula No. of ring


Formula No.
A21
A22
A23







2-201A
2-2
2-4
2-4


2-202A
2-4
2-4
2-1


2-203A
2-4
2-4
2-2


2-204A
2-4
2-4
2-3


2-205A
2-4
2-1
2-4


2-206A
2-4
2-2
2-4


2-207A
2-4
2-4
2-10


2-208A
2-11
2-4
2-4


2-209A
2-4
2-4
2-11


2-210A
2-4
2-10
2-4


2-211A
2-4
2-4
2-8


2-212A
2-4
2-9
2-4


2-213A
2-4
2-4
2-14


2-214A
2-17
2-4
2-4


2-215A
2-4
2-4
2-15


2-216A
2-13
2-4
2-4


2-217A
2-4
2-4
2-16


2-218A
2-4
2-4
2-13


2-219A
2-16
2-4
2-4


2-220A
2-4
2-4
2-12


2-221A
2-4
2-4
2-17


2-222A
2-4
2-16
2-4


2-223A
2-4
2-15
2-4


2-224A
2-4
2-14
2-4


2-225A
2-4
2-17
2-4


2-226A
2-19
2-4
2-4


2-227A
2-22
2-4
2-4


2-228A
2-18
2-4
2-4


2-229A
2-23
2-4
2-4


2-230A
2-21
2-4
2-4


2-231A
2-20
2-4
2-4


2-232A
2-4
2-23
2-4


2-233A
2-4
2-18
2-4


2-234A
2-4
2-21
2-4


2-235A
2-4
2-19
2-4


2-236A
2-5
2-2
2-4


2-237A
2-5
2-1
2-4


2-238A
2-2
2-2
2-4


2-239A
2-4
2-23
2-1


2-240A
2-6
2-10
2-4


2-241A
2-4
2-4
2-29


2-242A
2-7
2-4
2-10


2-243A
2-11
2-4
2-10


2-244A
2-4
2-10
2-6


2-245A
2-11
2-11
2-4


2-246A
2-11
2-11
2-5


2-247A
2-11
2-11
2-10


2-248A
2-7
2-9
2-4


2-249A
2-4
2-4
2-25


2-250A
2-11
2-15
2-4


2-251A
2-18
2-28
2-4


2-252A
2-23
2-10
2-4


2-253A
2-4
2-27
2-4


2-254A
2-6
2-18
2-4


2-255A
2-4
2-23
2-5


2-256A
2-23
2-4
2-14


2-257A
2-17
2-4
2-14


2-258A
2-14
2-4
2-12


2-259A
2-17
2-4
2-12


2-260A
2-14
2-16
2-2


2-261A
2-17
2-5
2-14


2-262A
2-17
2-13
2-17


2-263A
2-17
2-14
2-12


2-264A
2-17
2-12
2-12


2-265A
2-5
2-1
2-18


2-266A
2-4
2-29
2-4


2-267A
2-4
2-31
2-4


2-268A
2-4
2-33
2-4


2-269A
2-4
2-35
2-4









In various embodiments, the second compound may be represented by one selected from Formulae 2-201B to 2-215B, and rings A21 and A23 in Formulae 2-201B to 2-215B may each be selected from Formulae shown in Table 2.












TABLE 2






Formula





No. of ring
Formula No. of ring
Formula No. of ring


Formula No.
A21
A22
A23







2-201B
2-4

2-19


2-202B
2-4

2-22


2-203B
2-4

2-18


2-204B
2-4

2-23


2-205B
2-4

2-21


2-206B
2-4

2-20


2-207B
2-5

2-23


2-208B
2-7

2-23


2-209B
2-4

2-26


2-210B
2-7

2-22


2-211B
2-13

2-16


2-212B
2-5

2-19


2-213B
2-7

2-20


2-214B
2-19

2-18


2-215B
2-18

2-18









In various embodiments, the second compound may be represented by one selected from Formulae 2-301A to 2-421A, and rings A21, A22, and A23 in Formulae 2-301A to 2-419A and 2-421A to 2-431A may each be selected from Formulae shown in Table 3.












TABLE 3






Formula





No. of ring
Formula No. of ring
Formula No. of ring


Formula No.
A21
A22
A23







2-301A
2-104
2-147
2-104


2-302A
2-102
2-104
2-104


2-303A
2-104
2-104
2-101


2-304A
2-104
2-104
2-102


2-305A
2-104
2-104
2-103


2-306A
2-104
2-101
2-104


2-307A
2-104
2-102
2-104


2-308A
2-104
2-104
2-147


2-309A
2-157
2-104
2-104


2-310A
2-104
2-104
2-157


2-311A
2-104
2-147
2-107


2-312A
2-104
2-149
2-104


2-313A
2-104
2-156
2-104


2-314A
2-107
2-147
2-106


2-315A
2-104
2-151
2-104


2-316A
2-104
2-147
2-106


2-317A
2-104
2-148
2-104


2-318A
2-104
2-150
2-104


2-319A
2-106
2-147
2-104


2-320A
2-104
2-106
2-147


2-321A
2-157
2-107
2-104


2-322A
2-106
2-104
2-147


2-323A
2-104
2-107
2-147


2-324A
2-107
2-104
2-147


2-325A
2-104
2-104
2-160


2-326A
2-104
2-111
2-157


2-327A
2-108
2-104
2-158


2-328A
2-111
2-104
2-157


2-329A
2-107
2-147
2-104


2-330A
2-104
2-104
2-135


2-331A
2-104
2-141
2-104


2-332A
2-104
2-142
2-104


2-333A
2-107
2-104
2-135


2-334A
2-104
2-111
2-135


2-335A
2-104
2-143
2-104


2-336A
2-106
2-142
2-104


2-337A
2-107
2-142
2-106


2-338A
2-104
2-104
2-169


2-339A
2-184
2-104
2-104


2-340A
2-104
2-104
2-182


2-341A
2-168
2-104
2-104


2-342A
2-104
2-104
2-183


2-343A
2-104
2-104
2-168


2-344A
2-183
2-104
2-104


2-345A
2-104
2-104
2-167


2-346A
2-104
2-104
2-184


2-347A
2-104
2-183
2-104


2-348A
2-104
2-182
2-104


2-349A
2-104
2-169
2-104


2-350A
2-104
2-184
2-104


2-351A
2-107
2-104
2-179


2-352A
2-111
2-104
2-169


2-353A
2-104
2-111
2-182


2-354A
2-106
2-104
2-185


2-355A
2-171
2-104
2-104


2-356A
2-104
2-104
2-115


2-357A
2-104
2-104
2-178


2-358A
2-104
2-106
2-167


2-359A
2-108
2-105
2-167


2-360A
2-105
2-104
2-167


2-361A
2-112
2-104
2-184


2-362A
2-104
2-192
2-104


2-363A
2-107
2-182
2-106


2-364A
2-104
2-169
2-105


2-365A
2-105
2-184
2-104


2-366A
2-105
2-169
2-105


2-367A
2-198
2-104
2-104


2-368A
2-201
2-104
2-104


2-369A
2-197
2-104
2-104


2-370A
2-202
2-104
2-104


2-371A
2-200
2-104
2-104


2-372A
2-199
2-104
2-104


2-373A
2-104
2-202
2-104


2-374A
2-104
2-197
2-104


2-375A
2-104
2-200
2-104


2-376A
2-104
2-198
2-104


2-377A
2-209
2-104
2-104


2-378A
2-207
2-104
2-104


2-379A
2-200
2-106
2-104


2-380A
2-104
2-208
2-104


2-381A
2-105
2-198
2-108


2-382A
2-202
2-102
2-104


2-383A
2-202
2-101
2-106


2-384A
2-102
2-102
2-107


2-385A
2-104
2-202
2-101


2-386A
2-123
2-147
2-104


2-387A
2-104
2-104
2-218


2-388A
2-116
2-104
2-147


2-389A
2-157
2-104
2-147


2-390A
2-107
2-147
2-115


2-391A
2-157
2-157
2-104


2-392A
2-157
2-157
2-114


2-393A
2-157
2-157
2-147


2-394A
2-116
2-147
2-104


2-395A
2-104
2-104
2-210


2-396A
2-157
2-182
2-104


2-397A
2-197
2-213
2-104


2-398A
2-202
2-167
2-104


2-399A
2-104
2-216
2-104


2-400A
2-124
2-197
2-104


2-401A
2-104
2-202
2-114


2-402A
2-168
2-104
2-169


2-403A
2-184
2-104
2-169


2-404A
2-169
2-104
2-167


2-405A
2-184
2-106
2-167


2-406A
2-169
2-183
2-102


2-407A
2-184
2-114
2-169


2-408A
2-184
2-168
2-184


2-409A
2-184
2-104
2-167


2-410A
2-184
2-167
2-167


2-411A
2-114
2-101
2-197


2-412A
2-104
2-149
2-104


2-413A
2-106
2-104
2-147


2-414A
2-104
2-104
2-168


2-415A
2-200
2-106
2-104


2-416A
2-104
2-104
2-183


2-417A
2-104
2-104
2-101


2-418A
2-105
2-169
2-105


2-419A
2-104
2-147
2-107


2-421A
2-104
2-218
2-104


2-422A
2-104
2-226
2-104


2-423A
2-104
2-222
2-104


2-424A
2-104
2-228
2-104


2-425A
2-104
2-151
2-104


2-426A
2-106
2-147
2-107


2-427A
2-104
2-147
2-106


2-428A
2-107
2-150
2-104


2-429A
2-104
2-143
2-104


2-430A
2-107
2-142
2-106


2-431A
2-104
2-142
2-104









In various embodiments, the second compound may be represented by one selected from Formulae 2-301B to 2-320B, and rings A21 and A23 in Formulae 2-301B to 2-320B may each be selected from Formulae shown in Table 4.












TABLE 4






Formula





No. of ring
Formula No. of ring
Formula No. of ring


Formula No.
A21
A22
A23







2-301B
2-104

2-198


2-302B
2-104

2-201


2-303B
2-104

2-197


2-304B
2-104

2-202


2-305B
2-104

2-200


2-306B
2-104

2-199


2-307B
2-104

2-203


2-308B
2-104

2-204


2-309B
2-106

2-205


2-310B
2-104

2-206


2-311B
2-112

2-199


2-312B
2-114

2-202


2-313B
2-116

2-202


2-314B
2-104

2-214


2-315B
2-130

2-201


2-316B
2-168

2-183


2-317B
2-114

2-198


2-318B
2-116

2-199


2-319B
2-198

2-197


2-320B
2-197

2-197









X1 in Formulae 1A and 1B may be silicon (Si) or carbon (C).


For example, X1 in Formulae 1A and 1B may be C.


In Formulae 1A and 1B,


Y1 may be selected from a single bond, N[(L11)a11-(R11)b11], C(R11)(R13), Si(R11)(R13), O, S, and Se, and


Y2 may be selected from a single bond, N[(L12)a12-(R12)b12], C(R12)(R14), Si(R12)(R14), O, S, and Se.


For example, in Formulae 1A and 1B,


Y1 and Y2 may be a single bond,


Y1 may be a single bond, and Y2 may be selected from N[(L12)a12-(R12)b12], C(R12)(R14), Si(R12)(R14), O, S, and Se, or


Y1 may be selected from N[(L11)a11-(R11)b11], C(R11)(R13), Si(R11)(R13), O, S, and Se, and Y2 may be a single bond.


In various embodiments, in Formulae 1A and 1B,


Y1 and Y2 may be a single bond,


Y1 may be a single bond, and Y2 may be selected from N[(L12)a12-(R12)b12], C(R12)(R14), O, and S, or


Y1 may be selected from N[(L11)a11-(R11)b11], C(R11)(R13), O, and S, and Y2 may be a single bond.


For example, in Formula 1B,


Y1 may be selected from a single bond, N[(L11)a11-(R11)b11], C(R11)(R15), O, and S.


E1 and E2 in Formulae 1A and 1B may each independently be a nitrogen (N) atom, or may each independently be a carbon (C) atom substituted with *-(L4)a4-(R4)b4.


When E1 and E2 in Formulae 1A and 1B are a carbon (C) atom substituted with *-(L4)a4-(R4)b4, two *-(L4)a4-(R4)b4(s) may be identical to or different from each other.


X21 in Formulae 2A and 2B may be selected from O, S, Se, C(R23)(R24), Si(R23)(R24), and N-[(L21)a21-(R21)b21].


In various embodiments, X21 in Formulae 2A and 2B may be N[(L21)a21-(R21)b21].


In various embodiments, X21 in Formulae 2A and 2B may be O, S, Se, C(R23)(R24), or Si(R23)(R24), and


at least one selected from rings A21, A22, and A23 in Formula 2A and at least one selected from rings A21 and A23 in Formula 2B may each independently be selected from groups represented by Formulae 2-1 to 2-3, 2-10 to 2-27, and 2-33 to 2-36, and X22 or X23 in Formulae 2-1 to 2-3, 2-10 to 2-27, and 2-33 to 2-36 may be N-[(L22)a22-(R22)b22].


In various embodiments, X21 in Formulae 2A and 2B may be O, S, Se, C(R23)(R24), or Si(R23)(R24),


at least one selected from rings A21, A22, and A23 in Formula 2A and at least one selected from rings A21 and A23 in Formula 2B may each independently be selected from groups represented by Formulae 2-101 to 2-103, 2-147 to 2-211, 2-214 to 2-219, and 2-226 to 2-229, and X22 or X23 in Formulae 2-101 to 2-103, 2-147 to 2-211, 2-214 to 2-219, and 2-226 to 2-229 may be N-[(L22)a22-(R22)b22].


In Formulae 2A and 2B, X21 may be O, S, Se, C(R23)(R24), Si(R23)(R24), or N-[(L21)a21-(R21)b21], and X22 and X23 may each independently be O, S, Se, C(R25)(R26), Si(R25)(R26), or N-[(L22)a22-(R22)b22]. L21, L22, a21, a22, R21 to R26, b21, and b22 are the same as described below.


L1 to L4, L11, L12, L21, and L22 in Formulae 1A, 1B, 2A, and 2B may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


For example, in Formulae 1A, 1B, 2A, and 2B,


L1 to L4, L11, L12, L21, and L22 may each independently be selected from


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


wherein Q31 to Q33 may each independently be selected from


a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group, each substituted with at least one selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, and a phenyl group.


In various embodiments, L1 to L4, L11, L12, L21, and L22 in Formulae 1A, 1B, 2A, and 2B may each independently be selected from groups represented by Formulae 3-1 to 3-100:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 3-1 to 3-100,


Y1 may be O, S, C(Z3)(Z4), N(Z5), or Si(Z6)(Z7),


Z1 to Z7 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


Q31 to Q33 may each independently be selected from


a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group, each substituted with at least one selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, and a phenyl group,


d2 may be an integer selected from 0 to 2,


d3 may be an integer selected from 0 to 3,


d4 may be an integer selected from 0 to 4,


d5 may be an integer selected from 0 to 5,


d6 may be an integer selected from 0 to 6,


d8 may be an integer selected from 0 to 8, and


* and *′ indicate a binding site to a neighboring atom.


In Formulae 1A, 1B, 2A, and 2B, a1 to a4, a11, a12, a21, and a22 indicate the number of L1(s), the number of L2(s), the number of L3(s), the number of L4(s), the number of L11(s), the number of L12(s), the number of L21(s), and the number of L22(s), respectively. In Formulae 1A, 1B, 2A, and 2B, a1 to a4, a11, a12, a21, and a22 may each independently be an integer selected from 0 to 5. When a1 is two or more, two or more L1(s) may be identical to or different from each other, when a2 is two or more, two or more L2(s) may be identical to or different from each other, when a3 is two or more, two or more L3(s) may be identical to or different from each other, when a4 is two or more, two or more L4(s) may be identical to or different from each other, when a11 is two or more, two or more L1 (s) may be identical to or different from each other, when a12 is two or more, two or more L12(s) may be identical to or different from each other, when a21 is two or more, two or more L21(s) may be identical to or different from each other, and when a22 is two or more, two or more L22(s) may be identical to or different from each other.


When a1 is zero, *-(L1)a1-*′ may be a single bond, when a2 is zero, *-(L2)a2-*′ may be a single bond, when a3 is zero, *-(L3)a3-*′ may be a single bond, when a4 is zero, *-(L4)a4-*′ may be a single bond, when a11 is zero, *-(L1)a11-*′ may be a single bond, when a12 is zero, *-(L12)a12-*′ may be a single bond, when a21 is zero, *-(L21)a21-*′ may be a single bond, and when a22 is a zero, *-(L22)a22-*′ may be a single bond.


In various embodiments, a1 to a4, a11, a12, a21, and a22 in Formulae 1A, 1B, 2A, and 2B may each independently be an integer selected from 0 to 3.


In Formulae 1A, 1B, 2A, and 2B,


R1 to R4, R11 to R14, R21 to R24, R27, and R28 may each independently be selected from hydrogen, deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q), and —P(═O)(Q1)(Q2).


In an implementation, R11 and R13 may be separate or may be connected to each other to form a saturated or unsaturated ring.


In an implementation, R12 and R14 may be separate or may be connected to each other to form a saturated or unsaturated ring.


For example, in Formulae 1A, 1B, 2A, and 2B,


R1 to R4, R11 to R14, R21 to R24, R27, and R28 may each independently be selected from


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, and an azadibenzosilolyl group; and


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, and an azadibenzosilolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from


a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group, each substituted with at least one selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, and a phenyl group.


In various embodiments,


in Formulae 1A, 1B, 2A, and 2B,


R1 to R4, R11 to R14, R21 to R24, R27, and R28 may each independently be selected from


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


groups represented by Formulae 5-1 to 5-45 and Formulae 6-1 to 6-124; and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q1):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 5-1 to 5-45 and 6-1 to 6-124,


Y31 and Y32 may each independently be O, S, C(Z33)(Z34), N(Z35), or Si(Z36)(Z37),


Y41 may be N or C(Z41), Y42 may be N or C(Z42), Y43 may be N or C(Z43), Y44 may be N or C(Z44), Y51 may be N or C(Z51), Y52 may be N or C(Z52), Y53 may be N or C(Z53), Y54 may be N or C(Z54), at least one selected from Y41 to Y43 and Y51 to Y54 in Formulae 5-118 to 5-121 may be N, and at least one selected from Y41 to Y44 and Ys51 to Y54 in Formula 5-122 may be N,


Z31 to Z37, Z41 to Z44, and Z51 to Z54 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, and —Si(Q31)(Q32)(Q33),


wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from


a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group, each substituted with at least one selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, and a phenyl group,


e3 may be an integer selected from 0 to 3,


e2 may be an integer selected from 0 to 2,


e4 may be an integer selected from 0 to 4,


e5 may be an integer selected from 0 to 5,


e6 may be an integer selected from 0 to 6,


e7 may be an integer selected from 0 to 7,


e9 may be an integer selected from 0 to 9, and


* indicates a binding site to a neighboring atom.


In various embodiments,


in Formulae 1A to 1E, 2A, and 2B,


R1 to R4, R22 to R24, R27, and R28 may each independently be selected from


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


groups represented by Formulae 9-1 to 9-100 and 10-1 to 10-121; and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2), and


R11 to R14 and R21 may each independently be selected from groups represented by Formulae 9-1 to 9-100 and 10-1 to 10-121; and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 9-1 to 9-100 and 10-1 to 10-121, Ph refers to a phenyl group, and * indicates a binding site to a neighboring atom.


In Formulae 1A, 1B, 2A, and 2B, b to b4, b11, b12, b21, and b22 indicate the number of R1(s), the number of R2(s), the number of R3(s), the number of R4(s), the number of R11(s), the number of R12(s), the number of R21(s), and the number of R22(s), respectively. b1 to b4, b11, b12, b21, and b22 may each independently be an integer selected from 1 to 3.


When b1 is two or more, two or more R1 (s) may be identical to or different from each other, when b2 is two or more, two or more R2(s) may be identical to or different from each other, when b3 is two or more, two or more R3(s) may be identical to or different from each other, when b4 is two or more, two or more R4(s) may be identical to or different from each other, when b11 is two or more, two or more R11(s) may be identical to or different from each other, when b12 is two or more, two or more R12(s) may be identical to or different from each other, when b21 is two or more, two or more R21(s) may be identical to or different from each other, and when b22 is two or more, two or more R22(s) may be identical to or different from each other.


In Formulae 1A, 1B, 2A, and 2B, c1 to c4 indicate the number of *-[(L1)a1-(R1)b1](s), the number of *-[(L2)a2-(R2)b2](s), the number of *-[(L3)a3-(R3)b3](s), and the number of *-[(L4)a4-(R4)b4](s), respectively. c1 and c2 may each independently be an integer selected from 0 to 8, and c3 and c4 may each independently be an integer selected from 0 to 4.


When c1 is two or more, two or more *-[(L1)a1-(R1)b1](s) may be identical to or different from each other, when c2 is two or more, two or more *-[(L2)a2-(R2)b2](S) may be identical to or different from each other, when c3 is two or more, two or more *-[(L3)a3-(R3)b3](s) may be identical to or different from each other, and when c4 is two or more, two or more *-[(L4)a4-(R4)b4](s) may be identical to or different from each other.


For example, in Formulae 1A, 1B, 2A, and 2B,


the sum of c1 to c4 may be 1, 2, or 3.


In various embodiments, the first compound may be represented by one selected from Formulae 1-1 to 1-3:




embedded image


In Formulae 1-1 to 1-3,


rings A1 to A3, X1, Y1, E1, E2, L1 to L4, a1 to a4, R1 to R4, b1 to b4, c1, c2, and c4 are the same as described above,


c2 may be an integer selected from 0 to 6,


Y1 may be selected from N[(L11)a11-(R11)b11], C(R11)(R13), Si(R11)(R13), O, S, and Se, and


L11, a11, R11, R13, and b11 are the same as described above.


For example, in Formulae 1-1 to 1-3,


ring A1 may be selected from a benzene group, a naphthalene group, a pyridine group, a dibenzofuran group, and a pyrimidine group,


rings A2 and A3 may each independently be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indene group, an indenopyridine group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an imidazole group, a quinoline group, an isoquinoline group, a quinazoline group, a phenanthroline group, a phenanthridine group, a furan group, a thiophene group, an indole group, an indolocarbazole group, a benzofuran group, a benzofurocarbazole group, a benzofuropyrimidine group, a benzothiophene group, a benzoxazole group, a benzothiazole group, a benzoimidazole group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a pyridoindole group, a dipyridofuran group, a dipyridothiophene group, a pyrimidobenzofuran group, a dipyridopyrrole group, and a pyrimidobenzothiophene group, and


R1 to R4 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32).


In various embodiments, the first compound may be selected from Compounds 1-1 to 1-160:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In various embodiments, the second compound may be selected from Compounds 2-1a to 2-172a and 2-1 to 2-262:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Any combinations of rings A1 to A3, X1, E1, E2, Y1, Y2, L1 to L4, a1 to a4, R1 to R4, b1 to b4, and c1 to c4 in Formulae 1A and 1B may be applicable within the scope described herein.


Any combinations of ring A21, ring A22, ring A23, X21, and T11 to T14 in Formulae 2A and 2B may be applicable within the scope described herein.


Any combinations of *-[(L22)a22-(R22)b22], C(R23)(R24), Si(R23)(R24), and N-[(L21)a21-(R21)b21] may be applicable within the scope of L21, L22, a21, a22, R21 to R24, b21, and b22 described herein.


The emission layer of the organic light-emitting device according to an embodiment may include the first compound and at least one selected from the hole transport region and the electron transport region may include the second compound, and adjustment of a balance of electrons and/or holes injected or transported into the emission layer may be facilitated, thereby reducing the possibility of and/or preventing a leakage current from occurring. Accordingly, the organic light-emitting device according to an embodiment may have low driving voltage and high efficiency characteristics.


In various embodiment, triplet energy of the second compound may be about 2.2 eV or more. For example, the triplet energy of the second compound may be about 2.3 eV or more, or may be about 2.4 eV or more.


When the triplet energy of the second compound is within these ranges, the emission efficiency of a fluorescent organic light-emitting device may be be improved due to triplet-triplet fusion (TTF). In a phosphorescent organic light-emitting device, it is possible to prevent a reduction in efficiency of an organic light-emitting device by blocking transition of triplet excitons formed in an emission layer.


For example, the emission layer may include a first host and a second host, and the first host may include the first compound.


In various embodiments, the hole transport region may include an emission auxiliary layer, the emission auxiliary layer may directly contact the emission layer, and the second compound may be included in the emission auxiliary layer.


In various embodiments, the electron transport region may include a buffer layer, the buffer layer may directly contact the emission layer, and the second compound may be included in the buffer layer.


When both the hole transport region and the electron transport region in the organic light-emitting device include the second compound described above, the second compound included in the hole transport region and the second compound included in the electron transport region may be identical to or different from each other.


The emission layer may include a dopant, and the dopant may be an organometallic complex.


[Description of FIG. 1]



FIG. 1 illustrates a schematic view of an organic light-emitting device 10 according to an embodiment. The organic light-emitting device 10 may include a first electrode 110, an organic layer 150, and a second electrode 190.


Hereinafter, the structure of the organic light-emitting device 10 according to an embodiment and a method of manufacturing the organic light-emitting device 10 will be described in connection with FIG. 1.


[First electrode 110]


In FIG. 1, a substrate may be additionally disposed under the first electrode 110 or above the second electrode 190. The substrate may be a glass substrate or a plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water-resistance.


The first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, the material for forming the first electrode 110 may be selected from materials with a high work function to facilitate hole injection.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissible electrode, a material for forming the first electrode 110 may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), and any combinations thereof. When the first electrode 110 is a semi-transmissive electrode or a reflective electrode, as a material for forming the first electrode 110, magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof may be used.


The first electrode 110 may have a single-layered structure, or a multi-layered structure including two or more layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


[Organic layer 150]


The organic layer 150 is disposed on the first electrode 110. The organic layer 150 may include an emission layer.


The organic layer 150 may include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 190.


[Hole Transport Region in Organic Layer 150]


The hole transport region may have, e.g., i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The hole transport region may include at least one layer selected from a hole injection layer, a hole transport layer, an emission auxiliary layer, and an electron blocking layer.


For example, the hole transport region may have a single-layered structure including a single layer including a plurality of different materials, or a multi-layered structure having a structure of hole injection layer/hole transport layer, hole injection layer/hole transport layer/emission auxiliary layer, hole injection layer/emission auxiliary layer, hole transport layer/emission auxiliary layer or hole injection layer/hole transport layer/electron blocking layer, wherein, in each of these structures, constituting layers are sequentially stacked from the first electrode 110 in this stated order.


The hole transport region may include the second compound as described above.


In various embodiments, the hole transport region may include an emission auxiliary layer. The emission auxiliary layer may directly contact the emission layer.


In various embodiments, the hole transport region may include a hole injection layer and a hole transport layer, which are stacked in this stated order on the first electrode 110, a hole injection layer and an emission auxiliary layer, which are stacked in this stated order on the first electrode 110, or a hole injection layer, a hole transport layer, and an emission auxiliary layer, which are stacked in this stated order on the first electrode 110.


When the hole transport region includes an emission auxiliary layer, the emission auxiliary layer may include the second compound.


The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, spiro-TPD, spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), PEDOT/PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)), polyaniline/camphor sulfonic acid (Pani/CSA), polyaniline/poly(4-styrenesulfonate) (Pani/PSS), a compound represented by Formula 201, and a compound represented by Formula 202:




embedded image


embedded image


embedded image


In Formulae 201 and 202,


L201 to L204 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


L205 may be selected from *—O—*′, *—S—*′, *—N(Q201)-*′, a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xa1 to xa4 may each independently be an integer selected from 0 to 3,


xa5 may be an integer selected from 1 to 10, and


R201 to R204 and Q201 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


For example, in Formula 202, R201 and R202 may be optionally connected to each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group, and R203 and R204 may be optionally connected to each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.


In various embodiments, in Formulae 201 and 202,


L201 to L205 may each independently be selected from


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), and —N(Q31)(Q32),


wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In various embodiments, xa1 to xa4 may each independently be 0, 1, or 2.


In various embodiments, xa5 may be 1, 2, 3, or 4.


In various embodiments, R201 to R204 and Q201 may each independently be selected from


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), and —N(Q31)(Q32),


wherein Q31 to Q33 are the same as described above.


In various embodiments, at least one selected from R201 to R203 in Formula 201 may each independently be selected from


a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.


In various embodiments, in Formula 202, i) R201 and R202 may be connected to each other via a single bond, and/or ii) R203 and R204 may be connected to each other via a single bond.


In various embodiments, at least one selected from R201 to R204 in Formula 202 may be selected from


a carbazolyl group; and


a carbazolyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.


The compound represented by Formula 201 may be represented by Formula 201A:




embedded image


For example, the compound represented by Formula 201 may be represented by Formula 201A(1):




embedded image


In various embodiments, the compound represented by Formula 201 may be represented by Formula 201A-1:




embedded image


In various embodiments, the compound represented by Formula 202 may be represented by Formula 202A:




embedded image


In various embodiments, the compound represented by Formula 202 may be represented by Formula 202A-1:




embedded image


In Formulae 201A, 201A(1), 201A-1, 202A, and 202A-1,


L201 to L203, xa1 to xa3, xa5, and R202 to R204 are the same as described above,


R211 and R212 are the same as described above in connection with R203, and


R213 to R217 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.


In an implementation, the hole transport region may include at least one compound selected from Compounds HT1 to HT39.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one selected from a hole injection layer and a hole transport layer, the thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and the thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may help increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block the flow of electrons from an electron transport region. The emission auxiliary layer and the electron blocking layer may include those materials as described above.


[p-dopant]


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.


The charge-generation material may be, e.g., a p-dopant.


A doping concentration of the p-dopant may be in a range of about 0.1 wt % to about 20 wt %, for example, about 0.5 wt % to about 10 wt %.


In various embodiments, a lowest unoccupied molecular orbital (LUMO) of the p-dopant may be about −3.5 eV or less.


The p-dopant may include at least one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound.


For example, the p-dopant may include at least one selected from


a quinone derivative, such as tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ);


a metal oxide, such as a tungsten oxide or a molybdenum oxide;


1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN); and


a compound represented by Formula 221 below.




embedded image


In Formula 221,


R221 to R223 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, provided that at least one selected from R221 to R223 has at least one substituent selected from a cyano group, —F, —Cl, —Br, —I, a C1-C20 alkyl group substituted with —F, a C1-C20 alkyl group substituted with —Cl, a C1-C20 alkyl group substituted with —Br, and a C1-C20 alkyl group substituted with —I.


[Emission Layer in Organic Layer 150]


When the organic light-emitting device 10 is a full color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub-pixel. In various embodiments, the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In various embodiments, the emission layer may include two or more materials selected from a red-light emission material, a green-light emission material, and a blue-light emission material, in which the two or more materials are mixed with each other in a single layer to emit white light.


In various embodiments, the emission layer of the organic light-emitting device 10 may be a first-color-light emission layer,


the organic light-emitting device 10 may further include i) at least one second-color-light emission layer or ii) at least one second-color-light emission layer and at least one third-color-light emission layer, between the first electrode 110 and the second electrode 190,


a maximum emission wavelength of the first-color-light emission layer, a maximum emission wavelength of the second-color-light emission layer, and a maximum emission wavelength of the third-color-light emission layer are identical to or different from each other, and


the organic light-emitting device 10 may emit mixed light including first-color-light and second-color-light, or mixed light including first-color-light, second-color-light, and third-color-light.


For example, the maximum emission wavelength of the first-color-light emission layer is different from a maximum emission wavelength of the second-color-light emission layer, and the mixed light including first-color-light and second-color-light may be white light.


In various embodiments, the maximum emission wavelength of the first-color-light emission layer, the maximum emission wavelength of the second-color-light emission layer, and the maximum emission wavelength of the third-color-light emission layer may be different from one another, and the mixed light including first-color-light, second-color-light, and third-color-light may be white light.


The emission layer may include a host and a dopant. The dopant may include at least one selected from a phosphorescent dopant and a fluorescent dopant.


An amount of the dopant in the emission layer may be, in general, in a range of about 0.01 to about 15 parts by weight based on 100 parts by weight of the host.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


[Host in Emission Layer]


The emission layer may include the first compound according to an embodiment as a host. For example, the first compound is the same as described above.


In an implementation, the emission layer may include a first host and a second host, and the first host may include the first compound.


In an implementation, the second host may be selected from compounds described above as an example of the first compound.


In an implementation, the second host may be selected from 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), and 1,3,5-tri(carbazol-9-yl)benzene (TCP).


A weight ratio of the first host to the second host in the emission layer may be, for example, about 90:10 to about 10:90, for example, about 80:20 to about 20:80, or for example, about 50:50.


[Phosphorescent Dopant Included in Emission Layer in Organic Layer 150]


The phosphorescent dopant may include an organometallic complex represented by Formula 401 below, in which L401 may be selected from ligands represented by Formula 402.




embedded image


wherein, in Formulae 401 and 402,


M may be selected from iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), and thulium (Tm),


xc1 may be 1, 2, or 3, wherein when xc1 is two or more, two or more L401(s) may be identical to or different from each other,


L402 may be an organic ligand, and xc2 may be an integer selected from 0 to 4, wherein when xc2 is two or more, two or more L402(s) may be identical to or different from each other,


X401 to X404 may each independently be nitrogen or carbon,


X401 and X403 may be connected to each other via a single bond or a double bond, and X402 and X404 may be connected to each other via a single bond or a double bond,


A401 and A402 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,


X405 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)═C(Q412)-*′, *—C(Q411)=*′, or *═C(Q411)=*′ wherein Q411 and Q412 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group,


X406 may be a single bond, O, or S,


R401 and R402 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, —CD3, —CF3, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), and —P(═O)(Q401)(Q402), wherein Q401 to Q403 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C20 aryl group, and a C1-C20 heteroaryl group,


xc11 and xc12 may each independently be an integer selected from 0 to 10, and


* and *′ in Formula 402 indicate a binding site to M in Formula 401.


In various embodiments, A401 and A402 in Formula 402 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, an indene group, a pyrrole group, a thiophene group, a furan group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a quinoxaline group, a quinazoline group, a carbazole group, a benzoimidazole group, a benzofuran group, a benzothiophene group, an isobenzothiophene group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a dibenzofuran group, and a dibenzothiophene group.


In various embodiments, in Formula 402, i) X401 may be nitrogen, X402 may be carbon, or ii) both X401 and X402 may be nitrogen.


In various embodiments, R401 and R402 in Formula 402 may each independently be selected from


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a phenyl group, a naphthyl group, a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, and a norbornenyl group;


a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;


a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


—Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), and —P(═O)(Q401)(Q402),


wherein Q401 to Q403 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, and a naphthyl group.


In various embodiments, when xc1 in Formula 401 is two or more, two A401(s) selected from two or more L401(s) may be optionally connected to each other via a linking group X407, or two A402(s) may be optionally connected to each other via a linking group X408 (see Compounds PD1 to PD4 and PD7 below). X407 and X408 may each independently be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q413)-*′, *—C(Q413)(Q414)-*′, or *—C(Q413)═C(Q414)-*′ (wherein Q413 and Q414 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group).


L402 in Formula 401 may be a suitable monovalent, divalent, or trivalent organic ligand. For example, L402 may be selected from a halogen, a diketone (for example, an acetylacetonate), a carboxylic acid (for example, a picolinate), —C(═O), an isonitrile, —CN, and phosphorus (for example, a phosphine or a phosphite).


In various embodiments, the phosphorescent dopant may be selected from, for example, Compounds PD1 to PD25.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Fluorescent Dopant in Emission Layer]


The fluorescent dopant may include an arylamine compound or a styrylamine compound.


In various embodiments, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,


Ar501 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


L501 to L503 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xd1 to xd3 may each independently be an integer selected from 0 to 3,


R501 and R502 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and


xd4 may be an integer selected from 1 to 6.


In various embodiments, Ar501 in Formula 501 may be selected from


a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group; and


a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In various embodiments, L501 to L503 in Formula 501 may each independently be selected from


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.


In various embodiments, R501 and R502 in Formula 501 may each independently be selected from


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, and —Si(Q31)(Q32)(Q33),


wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In various embodiments, xd4 in Formula 501 may be two.


For example, the fluorescent dopant may be selected from Compounds FD1 to FD22:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In various embodiments, the fluorescent dopant may be selected from compounds illustrated below.




embedded image


embedded image


[Electron Transport Region in Organic Layer 150]


The electron transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The electron transport region may include at least one selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer.


For example, the electron transport region may have a structure of electron transport layer/electron injection layer, a structure of hole blocking layer/electron transport layer/electron injection layer, a structure of electron control layer/electron transport layer/electron injection layer, or a structure of buffer layer/electron transport layer/electron injection layer, wherein, in each of these structures, constituting layers are sequentially stacked in this stated order from an emission layer.


The electron transport region may include the second compound according to an embodiment as described above.


In various embodiments, the electron transport region may include a buffer layer, and the buffer layer may directly contact the emission layer, and the buffer layer may include the second compound according to an embodiment as described above.


In various embodiments, the electron transport region may include a buffer layer, an electron transport layer, and an electron injection layer, which are stacked in this stated order on the emission layer, and the buffer layer may include the second compound as described above.


The electron transport region (e.g., a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one nt electron-depleted nitrogen-containing ring.


The “π electron-depleted nitrogen-containing ring” indicates a C1-C60 heterocyclic group having at least one *—N═*′ moiety as a ring-forming moiety.


For example, the “π electron-depleted nitrogen-containing ring” may be i) a 5-membered to 7-membered hetero monocyclic group having at least one *—N═*′ moiety, ii) a heteropoly cyclic group in which two or more 5-membered to 7-membered hetero monocyclic groups each having at least one *—N═*′ moiety are condensed with each other, or iii) a heteropoly cyclic group in which at least one selected from 5-membered to 7-membered hetero monocyclic groups, each having at least one *—N═*′ moiety, is condensed with at least one C5-C60 carbocyclic group.


Examples of the it electron-depleted nitrogen-containing ring are an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isoxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, an indazole, a purine, a quinoline, an isoquinoline, a benzoquinoline, a phthalazine, a naphthyridine, a quinoxaline, a quinazoline, a cinnoline, a phenanthridine, an acridine, a phenanthroline, a phenazine, a benzoimidazole, an isobenzothiazole, a benzoxazole, an isobenzoxazole, a triazole, a tetrazole, an oxadiazole, a triazine, thiadiazol, an imidazopyridine, an imidazopyrimidine, and an azacarbazole.


For example, the electron transport region may include a compound represented by Formula 601:

[Ar601]xe11-[(L601)xe1-R601]xe21.  <Formula 601>


In Formula 601,


Ar601 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xe11 may be 1, 2, or 3,


L601 may be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xe1 may be an integer selected from 0 to 5,


R601 may be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), and —P(═O)(Q601)(Q602),


Q601 to Q603 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and


xe21 may be an integer selected from 1 to 5.


In various embodiments, at least one selected from Ar601(s) in the number of xe11 and/or at least one selected from R601(s) in the number of xe21 may include the π electron-depleted nitrogen-containing ring.


In various embodiments, ring Ar601 in Formula 601 may be selected from


a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzoimidazole group, an iso-benzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazol group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group; and


a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzoimidazole group, an iso-benzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazol group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


When xe11 in Formula 601 is two or more, two or more Ar601(s) may be linked to each other via a single bond.


In various embodiments, Ar601 in Formula 601 may be an anthracene group.


In various embodiments, a compound represented by Formula 601 may be represented by Formula 601-1:




embedded image


In Formula 601-1,


X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one selected from X614 to X616 may be N,


L611 to L613 may each independently be substantially the same as described in connection with L601,


xe611 to xe613 may each independently be substantially the same as described in connection with xe1,


R611 to R613 may each independently be substantially the same as described in connection with R601,


R614 to R616 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In various embodiments, L601 and L611 to L613 in Formulae 601 and 601-1 may each independently be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group.


In various embodiments, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.


In various embodiments, R601 and R611 to R613 in Formulae 601 and 601-1 may each independently be selected from


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group;


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and


—S(═O)2(Q601) and —P(═O)(Q601)(Q602),


wherein Q601 and Q602 are substantially the same as described above.


The electron transport region may include at least one compound selected from Compounds ET1 to ET36.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In various embodiments, the electron transport region may include at least one selected from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-dphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), and NTAZ.




embedded image


The thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thicknesses of the buffer layer, the hole blocking layer, and the electron control layer are within these ranges, the electron blocking layer may have excellent electron blocking characteristics or electron control characteristics without a substantial increase in driving voltage.


A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within the range described above, the electron transport layer may have satisfactory electron transport characteristics without a substantial increase in driving voltage.


The electron transport region (e.g., the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include at least one selected from an alkaline metal complex and an alkaline earth-metal complex. The alkaline metal complex may include a metal ion selected from an Li ion, a Na ion, a K ion, a Rb ion, and a Cs ion, and the alkaline earth-metal complex may include a metal ion selected from a Be ion, a Mg ion, a Ca ion, a Sr ion, and a Ba ion. A ligand coordinated with the metal ion of the alkaline metal complex or the alkaline earth-metal complex may be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenylan oxazole, a hydroxy phenylthiazole, a hydroxy diphenylan oxadiazole, a hydroxy diphenylthiadiazol, a hydroxy phenylpyridine, a hydroxy phenylbenzoimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene.


For example, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2.




embedded image


The electron transport region may include an electron injection layer that facilitates injection of electrons from the second electrode 190. The electron injection layer may directly contact the second electrode 190.


The electron injection layer may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The electron injection layer may include an alkaline metal, an alkaline earth metal, a rare-earth metal, an alkaline metal compound, an alkaline earth-metal compound, a rare-earth metal compound, an alkaline metal complex, an alkaline earth-metal complex, a rare-earth metal complex, or any combinations thereof.


In various embodiments, the electron injection layer may include Li, Na, K, Rb, Cs, Mg, Ca, Er, Tm, Yb, or any combination thereof.


The alkaline metal may be selected from Li, Na, K, Rb, and Cs. In various embodiments, the alkaline metal may be Li, Na, or Cs. In various embodiments, the alkaline metal may be Li or Cs.


The alkaline earth metal may be selected from Mg, Ca, Sr, and Ba.


The rare-earth metal may be selected from Sc, Y, Ce, Yb, Gd, and Tb.


The alkaline metal compound, the alkaline earth-metal compound, and the rare-earth metal compound may be selected from oxides and halides (for example, fluorides, chlorides, bromides, or iodines) of the alkaline metal, the alkaline earth-metal and the rare-earth metal.


The alkaline metal compound may be selected from alkaline metal oxides, such as Li2O, Cs2O, or K2O, and alkaline metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, RbI, or KI. In various embodiments, the alkaline metal compound may be selected from LiF, Li2O, NaF, LiI, NaI, CsI, and KI.


The alkaline earth-metal compound may be selected from alkaline earth-metal compounds, such as BaO, SrO, CaO, BaxSr1-xO (0<x<1), or BaxCa1-xO (0<x<1). In various embodiments, the alkaline earth-metal compound may be selected from BaO, SrO, and CaO.


The rare-earth metal compound may be selected from YbF3, ScF3, ScO3, Y2O3, Ce2O3, GdF3, and TbF3. In various embodiments, the rare-earth metal compound may be selected from YbF3, ScF3, TbF3, YbI3, ScI3, and TbI3.


The alkaline metal complex, the alkaline earth-metal complex, and the rare-earth metal complex may include an ion of alkaline metal, an alkaline earth-metal, and a rare-earth metal as described above, and a ligand coordinated with a metal ion of the alkaline metal complex, the alkaline earth-metal complex, and the rare-earth metal complex may each independently be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenylan oxazole, a hydroxy phenylthiazole, a hydroxy diphenylan oxadiazole, a hydroxy diphenylthiadiazol, a hydroxy a phenylpyridine, a hydroxy phenylbenzoimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene.


The electron injection layer may consist of an alkaline metal, an alkaline earth metal, a rare-earth-metal, an alkaline metal compound, an alkaline earth-metal compound, a rare-earth metal compound, an alkaline metal complex, an alkaline earth-metal complex, a rare-earth metal complex, or any combinations thereof, as described above. In various embodiments, the electron injection layer may further include an organic material. When the electron injection layer further includes an organic material, alkaline metal, alkaline earth metal, rare-earth-metal, alkaline metal compound, an alkaline earth-metal compound, a rare-earth metal compound, an alkaline metal complex, an alkaline earth-metal complex, a rare-earth metal complex, or any combinations thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.


At least one layer selected from the electron transport layer and the electron injection layer may include an alkaline metal, an alkaline earth metal, a rare-earth-metal, an alkaline metal compound, an alkaline earth-metal compound, a rare-earth metal compound, an alkaline metal complex, an alkaline earth-metal complex, a rare-earth metal complex, or any combinations thereof.


[Second Electrode 190]


The second electrode 190 may be disposed on the organic layer 150 having such a structure. The second electrode 190 may be a cathode that is an electron injection electrode, and in this regard, a material for forming the second electrode 190 may be a material having a low work function, and such a material may be metal, alloy, an electrically conductive compound, or a combination thereof.


The second electrode 190 may include at least one selected from lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ITO, and IZO. The second electrode 190 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 190 may have a single-layered structure, or a multi-layered structure including two or more layers.


[Description of FIGS. 2 to 5]


An organic light-emitting device 20 of FIG. 2 may include a first capping layer 210, a first electrode 110, an organic layer 150, and a second electrode 190 which are sequentially stacked in this stated order, an organic light-emitting device 30 of FIG. 3 may include a first electrode 110, an organic layer 150, a second electrode 190, and a second capping layer 220 which are sequentially stacked in this stated order, and an organic light-emitting device 40 of FIG. 4 may include a first capping layer 210, a first electrode 110, an organic layer 150, a second electrode 190, and a second capping layer 220.


Regarding FIGS. 2 to 4, the first electrode 110, the organic layer 150, and the second electrode 190 may be understood by referring to the description presented in connection with FIG. 1.


In the organic layer 150 of each of the organic light-emitting devices 20 and 40, light generated in an emission layer may pass through the first electrode 110, which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer 210 toward the outside, and in the organic layer 150 of each of the organic light-emitting devices 30 and 40, light generated in an emission layer may pass through the second electrode 190, which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer 220 toward the outside.


The first capping layer 210 and the second capping layer 220 may increase external luminescent efficiency according to the principle of constructive interference.


The first capping layer 210 and the second capping layer 220 may each independently be a capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.


At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include at least one material selected from carbocyclic compounds, heterocyclic compounds, amine-based compounds, porphine derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkaline metal complexes, and alkaline earth-based complexes. The carbocyclic compound, the heterocyclic compound, and the amine-based compound may be optionally substituted with a substituent containing at least one element selected from O, N, S, Se, Si, F, Cl, Br, and I. In various embodiments, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include an amine-based compound.


In various embodiments, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include the compound represented by Formula 201 or the compound represented by Formula 202.


In various embodiments, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include a compound selected from Compounds HT28 to HT33 and Compounds CP1 to CP5.




embedded image



FIG. 5 illustrates a schematic view of an organic light-emitting device 11 according to an embodiment. The organic light-emitting device 11 may include a first electrode 110, a hole transport layer 151, an emission auxiliary layer 153, an emission layer 155, a buffer layer 156, an electron transport layer 157, an electron injection layer 159, and a second electrode 190, which are sequentially stacked in this stated order.


Respective layers constituting the organic light-emitting device 11 of FIG. 5 may be understood by referring to corresponding descriptions above.


Hereinbefore, the organic light-emitting device according to an embodiment has been described in connection with FIGS. 1 to 5.


Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, langmuir-blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.


When the respective layers of the hole transport region, the emission layer, and the respective layers of the electron transport region are formed by deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., at a vacuum degree of about 10−8 torr to about 10−3 torr, and at a deposition rate of about 0.01 Å/sec to about 100 Å/sec by taking into account a material for forming a layer to be deposited and the structure of a layer to be formed.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by spin coating, the spin coating may be performed at a coating speed of about 2,000 rpm to about 5,000 rpm and at a heat treatment temperature of about 80° C. to about 200° C. by taking into account a material to be included in a layer to be formed and the structure of a layer to be formed.


[General Definition of Substituents]


The term “C1-C60 alkyl group,” as used herein, refers to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and non-limiting examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. The term “C1-C60 alkylene group,” as used herein, refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group,” as used herein, refers to a hydrocarbon group formed by substituting at least one carbon-carbon double bond in the middle or at the terminal of the C2-C60 alkyl group, and non-limiting examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkylene group,” as used herein, refers to a divalent group having the same structure as the C2-C60 alkyl group.


The term “C2-C60 alkynyl group,” as used herein, refers to a hydrocarbon group formed by substituting at least one carbon trip bond in the middle or at the terminal of the C2-C60 alkyl group, and non-limiting examples thereof include an ethynyl group and a propynyl group. The term “C2-C60 alkylene group,” as used herein, refers to a divalent group having the same structure as the C2-C60 alkyl group.


The term “C1-C60 alkoxy group,” as used herein, refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and non-limiting examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group,” as used herein, refers to a monovalent hydrocarbon monocyclic group having 3 to 10 carbon atoms, and non-limiting examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group,” as used herein, refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group,” as used herein, refers to a monovalent saturated monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and non-limiting examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group,” as used herein, refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group,” as used herein, refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one double bond in the ring thereof and does not have aromaticity, and non-limiting examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group,” as used herein, refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group,” as used herein, refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Non-limiting examples of the C1-C10 heterocycloalkenyl group are a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group,” as used herein, refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group,” as used herein, refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and the term “C6-C60 arylene group,” as used herein, refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Non-limiting examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be fused to each other.


The term “C1-C60 heteroaryl group,” as used herein, refers to a monovalent group having a heterocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group,” as used herein, refers to a divalent group having a heterocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, and 1 to 60 carbon atoms. Non-limiting examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be fused to each other.


The term “C6-C60 aryloxy group,” as used herein, refers to —OA102 (wherein A102 is the C6-C60 aryl group), and a C6-C60 arylthio group used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).


The term “monovalent non-aromatic condensed polycyclic group,” as used herein, refers to a monovalent group (for example, having 8 to 60 carbon atoms) that has two or more rings condensed with each other, only carbon atoms as a ring-forming atom, and non-aromaticity in the entire molecular structure. A detailed example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group,” used herein, refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group,” as used herein, refers to a monovalent group (for example, having 1 to 60 carbon atoms) that has two or more rings condensed to each other, has at least one heteroatom selected from N, O, Si, P, and S, other than carbon atoms, as a ring-forming atom, and has non-aromaticity in the entire molecular structure. An example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group,” used herein, refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C5-C60 carbocyclic group,” as used herein, refers to a monocyclic or polycyclic group having 5 to 60 carbon atoms in which a ring-forming atom is a carbon atom only. The term “C5-C60 carbocyclic group,” as used herein refers to an aromatic carbocyclic group or a non-aromatic carbocyclic group. The term “C5-C60 carbocyclic group,” as used herein, refers to a ring, such as a benzene, a monovalent group, such as a phenyl group, or a divalent group, such as a phenylene group. In various embodiments, depending on the number of substituents connected to the C5-C60 carbocyclic group, the C5-C60 carbocyclic group may be a trivalent group or a quadrivalent group.


The term “C1-C60 heterocyclic group,” as used herein, refers to a group having the same structure as the C1-C60 carbocyclic group, except that as a ring-forming atom, at least one heteroatom selected from N, O, Si, P, and S is used in addition to carbon (the number of carbon atoms may be in a range of 1 to 60).


At least one substituent selected from the substituted C5-C60 carbocyclic group, the substituted C1-C60 heterocyclic group, the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from


deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22); and


—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


wherein Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl group substituted with a C1-C60 alkyl group, a C6-C60 aryl group substituted with a C6-C60 aryl group, a terphenyl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryl group substituted with a C1-C60 alkyl group, a C1-C60 heteroaryl group substituted with a C6-C60 aryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


The term “Ph”, as used herein, may refer to a phenyl group; the term “Me”, as used herein, may refer to a methyl group; the term “Et”, as used herein, may refer to an ethyl group; the terms “ter-Bu” or “But”, as used herein, may refer to a tert-butyl group; and the term “OMe,” as used herein refers to a methoxy group.


The “biphenyl group” used therein refers to “a phenyl group substituted with a phenyl group.” The “biphenyl group” belongs to “a substituted phenyl group” having “a C6-C60 aryl group” as a substituent.


The “terphenyl group” used herein refers to “a phenyl group substituted with a biphenyl group.” The “terphenyl group” belongs to “a substituted phenyl group” having “a C6-C60 aryl group substituted with a C6-C60 aryl group.”


Symbols * and *′ used herein, unless defined otherwise, refer to a binding site to a neighboring atom in a corresponding formula.


Hereinafter, a compound according to embodiments and an organic light-emitting device according to embodiments will be described in detail with reference to Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that a molar equivalent of A was identical to a molar equivalent of B.


EXAMPLE

The following Examples and Comparative Examples are provided in order to highlight characteristics of one or more embodiments, but it will be understood that the Examples and Comparative Examples are not to be construed as limiting the scope of the embodiments, nor are the Comparative Examples to be construed as being outside the scope of the embodiments. Further, it will be understood that the embodiments are not limited to the particular details described in the Examples and Comparative Examples.


Example 1-1: Manufacture of Red Organic Light-Emitting Device

An anode was prepared by cutting an ITO glass substrate (manufactured by Corning), having a thickness of 1,200 Å and sheet resistance of 15 Ω/cm2, to a size of 50 mm×50 mm×0.5 mm, ultrasonically cleaning the ITO glass substrate using isopropyl alcohol and pure water each for 15 minutes, and then, exposing the ITO glass substrate to UV light irradiation for 30 minutes and ozone to clean the ITO glass substrate. Then, the ITO glass substrate was loaded into a vacuum deposition apparatus.


m-MTDATA was vacuum-deposited on the ITO glass substrate (anode) to a thickness of 700 Å to form a hole transport layer. Then, TCTA was vacuum deposited on the hole transport layer to a thickness of 100 Å to form an emission auxiliary layer.


Compound 1-1 (as a host) and PD11 (as a dopant) were co-deposited on the emission auxiliary layer at a weight ratio of 98:2 to form an emission layer having a thickness of 300 Å.


Compound 2-9 was deposited on the emission layer to form a buffer layer having a thickness of 100 Å, and then, Alq3 was vacuum deposited on the buffer layer to form an electron transport layer having a thickness of 200 Å. LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å.


Al was deposited on the electron injection layer to form a cathode having a thickness of 2,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 1-2 to 1-10 and Comparative Examples 1-1 to 1-3

Organic light-emitting devices were manufactured in the same manner as in Example 1-1, except that compounds shown in Table 5 were used in forming an emission layer and a buffer layer.


Evaluation Example 1

The driving voltage and efficiency of the organic light-emitting devices of Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-3 were evaluated at 5 mA/cm2 by using a Keithley SMU 236 meter. Results thereof are shown in Table 5.














TABLE 5







Emission layer

Driving
Efficiency



(host)
Buffer layer
voltage (V)
(cd/A)




















Example
Compound
Compound
5.3
23.9


1-1
1-1
2-9


Example
Compound
Compound
5.4
24.5


1-2
1-6
2-48


Example
Compound
Compound
5.2
23.7


1-3
1-124
2-147a


Example
Compound
Compound
5.3
24.1


1-4
1-97
2-143a


Example
Compound
Compound
5.5
23.8


1-5
1-41
2-48


Example
Compound
Compound
5.5
24.5


1-6
1-19
2-93


Example
Compound
Compound
5.3
25.3


1-7
1-57
2-153


Example
Compound
Compound
5.3
25.1


1-8
1-64
2-165


Example
Compound
Compound
5.4
24.0


1-9
1-126
2-189


Example
Compound
Compound
5.2
24.7


1-10
1-137
2-211


Comparative
CBP
Compound
5.9
22.3


Example

2-9


1-1


Comparative
Compound
BAlq
5.8
22.7


Example
1-1


1-2


Comparative
CBP
BAlq
6.2
21.6


Example


1-3









Referring to Table 5, it may be seen that the organic light-emitting devices of Examples 1-1 to 1-10 had a low driving voltage and high efficiency, compared to those of the organic light-emitting devices of Comparative Examples 1-1 to 1-3.


Example 2-1: Manufacture of Green (Phosphorescent) Organic Light-Emitting Device

An anode was prepared by cutting an ITO glass substrate (manufactured by Corning), having a thickness of 1,200 Å and sheet resistance of 15 Ω/cm2, to a size of 50 mm×50 mm×0.5 mm, ultrasonically cleaning the ITO glass substrate using isopropyl alcohol and pure water each for 15 minutes, and then, exposing to irradiation of UV light for 30 minutes and ozone to clean. Then, the ITO glass substrate was loaded into a vacuum deposition apparatus.


m-MTDATA was vacuum deposited on the ITO glass substrate (anode) to a thickness of 700 Å to form a hole transport layer. Then, TCTA was vacuum deposited on the hole transport layer to a thickness of 100 Å to form an emission auxiliary layer.


Compound 1-1 (as a host) and PD13 (as a dopant) were co-deposited on the emission auxiliary layer at a weight ratio of 90:10 to form an emission layer having a thickness of 300 Å.


Compound 2-9 was deposited on the emission layer to form a buffer layer having a thickness of 100 Å, and then, Alq3 was vacuum deposited on the buffer layer to form an electron transport layer having a thickness of 200 Å. LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å.


Al was deposited on the electron injection layer to form a cathode having a thickness of 2,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 2-2 to 2-5 and Comparative Examples 2-1 to 2-3

Organic light-emitting devices were manufactured in the same manner as in Example 2-1, except that compounds shown in Table 6 were used in forming an emission layer and a buffer layer.


Example 2-6

An organic light-emitting device was manufactured in the same manner as in Example 2-1, except that Compound 1-1 (as a first host), CBP (as a second host), and PD13 (as a dopant) were co-deposited at a weight ratio of 50:50:10 in forming an emission layer.


Examples 2-7 to 2-10

Organic light-emitting devices were manufactured in the same manner as in Example 2-6, except that compounds shown in Table 7 were used in forming an emission layer and a buffer layer.


Example 2-11: Manufacture of Green (Fluorescent) Organic Light-Emitting Device

An anode was prepared by cutting an ITO glass substrate (manufactured by Corning), having a thickness of 1,200 Å and sheet resistance of 15 Ω/cm2, to a size of 50 mm×50 mm×0.5 mm, ultrasonically cleaning the ITO glass substrate using isopropyl alcohol and pure water each for 15 minutes, and then, exposing to irradiation of UV light for 30 minutes and ozone to clean. Then, the ITO glass substrate was loaded into a vacuum deposition apparatus.


m-MTDATA was vacuum deposited on the ITO glass substrate (anode) to a thickness of 700 Å to form a hole transport layer. Then, NPB was vacuum deposited on the hole transport layer to a thickness of 100 Å to form an emission auxiliary layer.


Compound 1-166 (as a host) and FD19 (as a dopant) were co-deposited on the emission auxiliary layer at a weight ratio of 95:5 to form an emission layer having a thickness of 300 Å.


Compound 2-9 was deposited on the emission layer to form a buffer layer having a thickness of 100 Å, and then, Alq3 was vacuum deposited on the buffer layer to form an electron transport layer having a thickness of 200 Å. LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å.


Al was deposited on the electron injection layer to form a cathode having a thickness of 2,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 2-12 to 2-15 and Comparative Examples 2-4 to 2-6

Organic light-emitting devices were manufactured in the same manner as in Example 2-11, except that compounds shown in Table 6 were used in forming an emission layer and a buffer layer.


Evaluation Example 2

The driving voltage and efficiency of the organic light-emitting devices of Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2-6 were evaluated at 5 mA/cm2 (phosphorescence) and 10 mA/cm2 (fluorescence) by using a Keithley SMU 236 meter. Results thereof are shown in Tables 6 and 7.
















TABLE 6








Emission







Emission layer
layer
Buffer
Weight ratio
Driving
Efficiency



(host)
(dopant)
layer
(host:dopant)
voltage (V)
(cd/A)






















Example 2-1
Compound
PD13
Compound
90:10
5.5
41.5



1-1

2-9


Example 2-2
Compound
PD13
Compound
90:10
5.2
43.6



1-20

2-48


Example 2-3
Compound
PD13
Compound
90:10
5.4
42.8



1-46

2-136a


Example 2-4
Compound
PD13
Compound
90:10
5.4
43.1



1-59

2-103


Example 2-5
Compound
PD13
Compound
90:10
5.3
42.6



1-104

2-162


Comparative
CBP
PD13
Compound
90:10
5.9
38.7


Example 2-1


2-9


Comparative
Compound
PD13
BAlq
90:10
5.9
38.3


Example 2-2
1-1


Comparative
CBP
PD13
BAlq
90:10
6.1
36.1


Example 2-3


Example 2-11
Compound
FD19
Compound
95:5
4.5
19.1



1-1

2-9


Example 2-12
Compound
FD19
Compound
95:5
4.7
19.9



1-20

2-48


Example 2-13
Compound
FD19
Compound
95:5
4.4
20.1



1-46

2-136a


Example 2-14
Compound
FD19
Compound
95:5
4.3
19.8



1-59

2-103


Example 2-15
Compound
FD19
Compound
95:5
4.5
20.3



1-104

2-162


Comparative
ADN
FD19
Compound
95:5 
4.8
18.3


Example 2-4


2-9


Comparative
Compound
FD19
Alq3
95:5 
4.6
17.8


Example 2-5
1-166


Comparative
ADN
FD19
Alq3
95:5
5.0
16.2


Example 2-6























TABLE 7







Emission


Weight ratio





layer
Emission

(first



(first host:second
layer
Buffer
host:second
Driving
Efficiency



host)
(dopant)
layer
host:dopant)
voltage (V)
(cd/A)






















Example 2-6
Compound
PD13
Compound
50:50:10
5.5
41.1



1-1:CPB

2-9


Example 2-7
Compound
PD13
Compound
50:50:10
5.3
42.3



1-1:Compound

2-48



1-39


Example 2-8
Compound
PD13
Compound
50:50:10
5.2
42.7



1-20:Compound

2-136a



1-41


Example 2-9
Compound
PD13
Compound
50:50:10
5.4
42.0



1-113:Compound

2-103



1-60


Example 2-10
Compound
PD13
Compound
50:50:10
5.3
43.2



1-46:Compound

2-162



1-16









Referring to Tables 6 and 7, it may be seen that the organic light-emitting devices of Examples 2-1 to 2-10 had a low driving voltage and high efficiency, compared to those of the organic light-emitting devices of Comparative Examples 2-1 to 2-3, and the organic light-emitting devices of the Examples 2-11 to 2-15 had a low driving voltage and high efficiency, compared to those of the organic light-emitting devices of Comparative Examples 2-4 to 2-6.


Example 3-1: Manufacture of Blue Organic Light-Emitting Device

An anode was prepared by cutting an ITO glass substrate (manufactured by Corning), having a thickness of 1,200 Å and sheet resistance of 15 Ω/cm2, to a size of 50 mm×50 mm×0.5 mm, ultrasonically cleaning the ITO glass substrate using isopropyl alcohol and pure water each for 15 minutes, and then, exposing to irradiation of UV light for 30 minutes and ozone to clean. Then, the ITO glass substrate was loaded into a vacuum deposition apparatus.


m-MTDATA was vacuum deposited on the ITO glass substrate (anode) to a thickness of 700 Å to form a hole transport layer. Then, NPB was vacuum deposited on the hole transport layer to a thickness of 100 Å to form an emission auxiliary layer.


Compound 1-166 (as a host) and FD1 (as a dopant) were co-deposited on the emission auxiliary layer at a weight ratio of 95:5 to form an emission layer having a thickness of 300 Å.


Compound 2-9 was deposited on the emission layer to form a buffer layer having a thickness of 100 Å, and then, Alq3 was vacuum deposited on the buffer layer to form an electron transport layer having a thickness of 200 Å. LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å.


Al was deposited on the electron injection layer to form a cathode having a thickness of 2,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 3-2 to 3-5 and Comparative Examples 3-1 to 3-3

Organic light-emitting devices were manufactured in the same manner as in Example 3-1, except that compounds shown in Table 8 were used in forming an emission layer and a buffer layer.


Example 3-6 to 3-10

Organic light-emitting devices were manufactured in the same manner as in Example 3-1, except that 1 wt % of F4-TCNQ was doped in forming a hole transport layer and that compounds shown in Table 8 were used in forming an emission layer and a buffer layer.














TABLE 8







Emission layer

Driving
Efficiency



(host)
Buffer layer
voltage (V)
(cd/A)




















Example
Compound
Compound
4.5
5.1


3-1
1-166
2-9


Example
Compound
Compound
4.5
5.3


3-2
1-164
2-48


Example
Compound
Compound
4.6
5.0


3-3
1-178
2-136a


Example
Compound
Compound
4.4
4.9


3-4
1-164
2-103


Example
Compound
Compound
4.4
5.2


3-5
1-178
2-162


Example
Compound
Compound
4.2
5.2


3-6
1-165
2-131


Example
Compound
Compound
4.1
5.0


3-7
1-171
2-121a


Example
Compound
Compound
4.2
5.0


3-8
1-171
2-180


Example
Compound
Compound
4.2
5.2


3-9
1-176
2-13a


Example
Compound
Compound
4.3
5.1


3-10
1-176
2-242


Comparative
ADN
Compound
4.7
4.6


Example

2-9


3-1


Comparative
Compound
Alq3
4.6
4.8


Example
1-166


3-2


Comparative
ADN
Alq3
4.9
4.4


Example


3-3











embedded image


embedded image


embedded image


Referring to Table 8, it may be seen that the organic light-emitting devices of Examples 3-1 to 3-10 had a low driving voltage and high efficiency, compared to those of the organic light-emitting devices of Comparative Examples 3-1 to 3-3.


According to one or more embodiments, an organic light-emitting device may have a low driving voltage and high efficiency.


Example embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent to one of ordinary skill in the art as of the filing of the present application, features, characteristics, and/or elements described in connection with a particular embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.

Claims
  • 1. An organic light-emitting device, comprising: a first electrode;a second electrode facing the first electrode;an emission layer between the first electrode and the second electrode;a hole transport region between the first electrode and the emission layer; andan electron transport region between the emission layer and the second electrode, wherein:the emission layer includes a first compound,at least one of the hole transport region and the electron transport region includes a second compound,the first compound is represented by Formula 1A or 1B and the first compound is not Compound ST1, andthe second compound is represented by Formula 2A or 2B:
  • 2. The organic light-emitting device as claimed in claim 1, wherein rings A1 to A3 in Formulae 1A and 1B are each independently selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indene group, an indenopyridine group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an imidazole group, a quinoline group, an isoquinoline group, a quinazoline group, a phenanthroline group, a phenanthridine group, a furan group, a thiophene group, an indole group, an indolocarbazole group, a benzofuran group, a benzofurocarbazole group, a benzofuropyrimidine group, a benzothiophene group, a benzoxazole group, a benzothiazole group, a benzoimidazole group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a pyridoindole group, a dipyridofuran group, a dipyridothiophene group, a pyrimidobenzofuran group, a dipyridopyrrole group, and a pyrimidobenzothiophene group.
  • 3. The organic light-emitting device as claimed in claim 1, wherein rings A21, A22, and A23 in Formulae 2A and 2B are each independently selected from a benzene group, a naphthalene group, an anthracene group, an indene group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, a pyrrole group, a pyrazole group, an imidazole group, an oxazole group, a thiazole group, a cyclopentadiene group, a silole group, a selenophene group, a furan group, a thiophene group, an indole group, a benzoimidazole group, a benzoxazole group, a benzothiazole group, an indene group, a benzosilole group, a benzoselenophene group, a benzofuran group, a benzothiophene group, a carbazole group, a fluorene group, a dibenzosilole group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene group, a pyrrolopyridine group, a cyclopentapyridine group, a silolopyridine group, a selenophenopyridine group, a furopyridine group, a thienopyridine group, a pyrrolopyrimidine group, a cyclopentapyrimidine group, a silolopyrimidine group, a selenophenopyrimidine group, a furopyrimidine group, a thienopyrimidine group, a pyrrolopyrazine group, a cyclopentapyrazine group, a silolopyrazine group, a selenophenopyrazine group, a furopyrazine group, a thienopyrazine group, a naphthopyrrole group, a cyclopentanaphthalene group, a naphthosilole group, a naphthoselenothiophene group, a naphthofuran group, a naphthothiophene group, a pyrroloquinoline group, a cyclopentaquinoline group, a siloloquinoline group, a selenophenoquinoline group, a furoquinoline group, a thienoquinoline group, a pyrroloisoquinoline group, a cyclopentaisoquinoline group, a siloloisoquinoline group, a selenophenoisoquinoline group, a furoisoquinoline group, a thienoisoquinoline group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene group, an indenoquinoline group, an indenoisoquinoline group, an indenoquinoxaline group, a phenanthroline group, and a naphthoindole group, each substituted with at least one *-[(L22)a22-(R22)b22], in which * is a bonding site to a neighboring atom.
  • 4. The organic light-emitting device as claimed in claim 1, wherein: rings A21 A22, and A23 in Formulae 2A and 2B are each independently a group represented by one of the following Formulae 2-1 to 2-36, each substituted with at least one *-[(L22)a22-(R22)b22)], in which * is a bonding site to a neighboring atom,
  • 5. The organic light-emitting device as claimed in claim 1, wherein, in Formulae 1A and 1B: Y1 and Y2 are both a single bond,Y1 is a single bond and Y2 is selected from N[(L12)a12-(R12)b12], C(R12)(R14), Si(R12)(R14), O, S, and Se, orY1 is selected from N[(L11)a11-(R11)b11], C(R11)(R13), Si(R11)(R13), O, S, and Se, and Y2 is a single bond.
  • 6. The organic light-emitting device as claimed in claim 1, wherein X21 in Formulae 2A and 2B is N[(L21)a21-(R21)b21].
  • 7. The organic light-emitting device as claimed in claim 4, wherein: X21 in Formulae 2A and 2B is O, S, Se, C(R23)(R24), or Si(R23)(R24), andat least one of rings A21, A22, and A23 in Formula 2A and at least one of rings A21 and A23 in Formula 2B are each independently a group represented by one of Formulae 2-1 to 2-3, 2-10 to 2-27, and 2-33 to 2-36, in which X22 or X23 in Formulae 2-1 to 2-3, 2-10 to 2-27, and 2-33 to 2-36 is N-[(L22)a22-(R22)b22].
  • 8. The organic light-emitting device as claimed in claim 1, wherein, in Formulae 1A, 1B, 2A, and 2B, L11, L12, L21, and L22 are each independently selected from: a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group; anda phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), andL1 to L4 are each independently selected from:a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a guinolinylene group, an isoguinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group; anda phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a spiro-benzofluorene-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, a silolylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an indolylene group, an isoindolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoguinolinylene group, a phthalazinylene group, a naphthyridinylene group, a guinoxalinylene group, a guinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzosilolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a dibenzosilolylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, an oxazolopyridinylene group, a thiazolopyridinylene group, a benzonaphthyridinylene group, an azafluorenylene group, an azaspiro-bifluorenylene group, an azacarbazolylene group, an azadibenzofuranylene group, an azadibenzothiophenylene group, and an azadibenzosilolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31),
  • 9. The organic light-emitting device as claimed in claim 1, wherein, in Formulae 1A, 1B, 2A, and 2B, R11 to R14, R21 to R24, R27, and R28 are each independently selected from: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2); anda cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, and an azadibenzosilolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), andR1 to R4 are each independently selected from:hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2); anda cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinol group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, and an azadibenzosilolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),wherein Q1 to Q3 and Q31 to Q33 are each independently selected from:a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group; anda phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, and a quinazolinyl group, each substituted with at least one selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, and a phenyl group.
  • 10. The organic light-emitting device as claimed in claim 1, wherein the first compound is represented by one of the following Formulae 1-1 to 1-3:
  • 11. The organic light-emitting device as claimed in claim 10, wherein, in Formulae 1-1 to 1-3: ring A1 is selected from a benzene group, a naphthalene group, a pyridine group, a dibenzofuran group, and a pyrimidine group,rings A2 and A3 are each independently selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, an indene group, an indenopyridine group, a fluorene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an imidazole group, a quinoline group, an isoquinoline group, a quinazoline group, a phenanthroline group, a phenanthridine group, a furan group, a thiophene group, an indole group, an indolocarbazole group, a benzofuran group, a benzofurocarbazole group, a benzofuropyrimidine group, a benzothiophene group, a benzoxazole group, a benzothiazole group, a benzoimidazole group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a pyridoindole group, a dipyridofuran group, a dipyridothiophene group, a pyrimidobenzofuran group, a dipyridopyrrole group, and a pyrimidobenzothiophene group, andR1 to R4 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32).
  • 12. The organic light-emitting device as claimed in claim 1, wherein the emission layer includes a first host and a second host, the first host including the first compound.
  • 13. The organic light-emitting device as claimed in claim 1, wherein: the electron transport region includes a buffer layer,the buffer layer directly contacts the emission layer, andthe buffer layer includes the second compound.
  • 14. The organic light-emitting device as claimed in claim 1, wherein: the emission layer includes a dopant, andthe dopant includes an organometallic complex.
  • 15. The organic light-emitting device as claimed in claim 14, wherein the organometallic complex is represented by Formula 401, in which L401 is selected from a ligand represented by Formula 402, M(L401)xc1(L402)xc2  <Formula 401>
  • 16. The organic light-emitting device as claimed in claim 1, wherein: the electron transport region includes a buffer layer, an electron transport layer, and an electron injection layer, andat least one layer of the electron transport layer and the electron injection layer includes an alkaline metal, an alkaline earth metal, a rare-earth metal, an alkaline metal compound, an alkaline earth-metal compound, a rare-earth metal compound, an alkaline metal complex, an alkaline earth-metal complex, a rare-earth metal complex, or a combination thereof.
  • 17. The organic light-emitting device as claimed in claim 1, wherein the hole transport region includes a p-dopant, and the p-dopant includes a cyano group-containing compound.
  • 18. The organic light-emitting device as claimed in claim 1, wherein the emission layer is a first-color-light emission layer,the organic light-emitting device further includes at least one second-color-light emission layer or at least one second-color-light emission layer and at least one third-color-light emission layer, between the first electrode and the second electrode,a maximum emission wavelength of the first-color-light emission layer, a maximum emission wavelength of the second-color-light emission layer, and a maximum emission wavelength of the third-color-light emission layer are identical to or different from one another, andmixed light including first-color-light and second-color-light, or mixed light including first-color-light, second-color-light, and third-color-light is emitted.
  • 19. The organic light-emitting device as claimed in claim 1, wherein the second compound is represented by Formula 2B.
  • 20. The organic light-emitting device as claimed in claim 1, wherein the second compound is selected from the following compounds:
Priority Claims (1)
Number Date Country Kind
10-2015-0184084 Dec 2015 KR national
US Referenced Citations (67)
Number Name Date Kind
5393614 Nakada Feb 1995 A
6387544 Thompson May 2002 B1
7833632 Kawamura et al. Nov 2010 B2
8154195 Nishimura et al. Apr 2012 B2
8512875 Kawamura et al. Aug 2013 B2
8859111 Parham et al. Oct 2014 B2
9076978 Lee et al. Jul 2015 B2
9093652 Jung et al. Jul 2015 B2
9224969 Song et al. Dec 2015 B2
9331287 Hong et al. May 2016 B2
9520567 Lee et al. Dec 2016 B2
9691991 Hong et al. Jun 2017 B2
10164195 Kim et al. Dec 2018 B2
10297756 Lee et al. May 2019 B2
20020096995 Mishima et al. Jul 2002 A1
20030039858 Igarashi et al. Feb 2003 A1
20030072965 Kimura Apr 2003 A1
20030157364 Senoo et al. Aug 2003 A1
20050089717 Cosimbescu et al. Apr 2005 A1
20060061265 Kawamura et al. Mar 2006 A1
20060105202 Kitamura May 2006 A1
20060269781 Lai et al. Nov 2006 A1
20070054151 Iwakuma et al. Mar 2007 A1
20070200490 Kawamura et al. Aug 2007 A1
20070215867 Kawakami et al. Sep 2007 A1
20070267958 Kitazawa et al. Nov 2007 A1
20070273273 Kim et al. Nov 2007 A1
20080138654 Kathirgamanathan et al. Jun 2008 A1
20090009065 Nishimura et al. Jan 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090096357 Lee et al. Apr 2009 A1
20090309492 Hofmann et al. Dec 2009 A1
20100289008 Jang Nov 2010 A1
20110156013 Kim et al. Jun 2011 A1
20110315965 Takashima et al. Dec 2011 A1
20120091438 Yabunouchi et al. Apr 2012 A1
20120104940 Shin et al. May 2012 A1
20120153268 Kawamura et al. Jun 2012 A1
20120217492 Kim et al. Aug 2012 A1
20120235123 Lee et al. Sep 2012 A1
20120256174 Jung et al. Oct 2012 A1
20130207082 Cho et al. Aug 2013 A1
20140027744 Yoshida et al. Jan 2014 A1
20140054564 Kim et al. Feb 2014 A1
20140159005 Kawamura et al. Jun 2014 A1
20140183466 Lee et al. Jul 2014 A1
20140197394 Kim et al. Jul 2014 A1
20140217393 Kato et al. Aug 2014 A1
20140225072 Kim et al. Aug 2014 A1
20140291631 Lee et al. Oct 2014 A1
20140336392 Kim et al. Nov 2014 A1
20150053933 Lee et al. Feb 2015 A1
20150060808 Kim et al. Mar 2015 A1
20150102301 Cho et al. Apr 2015 A1
20150155491 Mujica-Fernaud et al. Jun 2015 A1
20150171348 Stoessel et al. Jun 2015 A1
20150194610 Hwang et al. Jul 2015 A1
20150207093 Kim et al. Jul 2015 A1
20150325794 Nishimura et al. Nov 2015 A1
20150340618 Lee et al. Nov 2015 A1
20150340621 Parham Nov 2015 A1
20160226000 Kim et al. Aug 2016 A1
20160308146 Parham et al. Oct 2016 A1
20160322583 Kim Nov 2016 A1
20160351825 Kim et al. Dec 2016 A1
20170179395 Kim et al. Jun 2017 A1
20170179396 Kim et al. Jun 2017 A1
Foreign Referenced Citations (91)
Number Date Country
1708475 Dec 2005 CN
101079472 Nov 2007 CN
101159316 Apr 2008 CN
101384560 Mar 2009 CN
101400757 Apr 2009 CN
102803437 Nov 2012 CN
103140564 Jun 2013 CN
103833507 Jun 2014 CN
103904252 Jul 2014 CN
104103765 Oct 2014 CN
104520308 Apr 2015 CN
104835921 Aug 2015 CN
106981576 Jan 2020 CN
2163550 Mar 2010 EP
2484665 Aug 2012 EP
2599851 Jun 2013 EP
10-88119 Apr 1998 JP
2002234888 Aug 2002 JP
2006256979 Sep 2006 JP
2008-177455 Jul 2008 JP
2008-243932 Oct 2008 JP
2011-100942 May 2011 JP
2015-13804 Jan 2015 JP
10-2007-0023676 Feb 2007 KR
10-2008-0080513 Sep 2008 KR
10-2010-0017136 Feb 2010 KR
10-2010-0039369 Apr 2010 KR
10-2010-0040901 Apr 2010 KR
10-2011-0008619 Jan 2011 KR
10-2011-0106193 Sep 2011 KR
10-2011-0117549 Oct 2011 KR
10-2012-0022861 Mar 2012 KR
10-2012-0052316 May 2012 KR
10-2012-0092550 Aug 2012 KR
10-2012-0092555 Aug 2012 KR
10-2012-0100709 Sep 2012 KR
10-2013-0028813 Mar 2013 KR
10-2013-0093327 Aug 2013 KR
10-2013-0098225 Sep 2013 KR
10-2013-0098229 Sep 2013 KR
10-2014-0034709 Mar 2014 KR
10-2014-0074286 Jun 2014 KR
10-2014-0085110 Jul 2014 KR
10-2014-0087882 Jul 2014 KR
10-2014-0102089 Aug 2014 KR
10-2014-0103007 Aug 2014 KR
10-2014-0119642 Oct 2014 KR
10-2014-0128653 Nov 2014 KR
10-2014-0135525 Nov 2014 KR
10-2015-0001101 Jan 2015 KR
10-2015-0008678 Jan 2015 KR
10-2015-0021861 Mar 2015 KR
10-2015-0024491 Mar 2015 KR
10-2015-0026114 Mar 2015 KR
10-2015-0034612 Apr 2015 KR
10-2015-0037119 Apr 2015 KR
10-2015-0039136 Apr 2015 KR
10-2015-0041931 Apr 2015 KR
10-2015-0070897 Jun 2015 KR
10-2015-0077284 Jul 2015 KR
10-2015-0080966 Jul 2015 KR
10-2015-0081736 Jul 2015 KR
10-2015-0086095 Jul 2015 KR
10-2015-0088066 Jul 2015 KR
10-2015-0103945 Sep 2015 KR
10-2015-0121394 Oct 2015 KR
10-2015-0124609 Nov 2015 KR
10-2016-0094834 Aug 2016 KR
00033617 Jun 2000 WO
WO 2004041774 May 2004 WO
WO 2007029403 Mar 2007 WO
WO 2007063986 Jun 2007 WO
WO 2011010839 Jan 2011 WO
WO 2011055932 May 2011 WO
2012005364 Jan 2012 WO
WO 2012015274 Feb 2012 WO
WO 2012070233 May 2012 WO
WO 2013035329 Mar 2013 WO
WO 2013039184 Mar 2013 WO
WO 2013182263 Dec 2013 WO
WO 2014094964 Jun 2014 WO
2014129869 Aug 2014 WO
WO 2015082046 Jun 2015 WO
WO 2015093812 Jun 2015 WO
WO 2015099481 Jul 2015 WO
WO 2015133804 Sep 2015 WO
WO 2015160224 Oct 2015 WO
2015167259 Nov 2015 WO
WO 2015190718 Dec 2015 WO
2016058504 Apr 2016 WO
2016122178 Aug 2016 WO
Non-Patent Literature Citations (123)
Entry
Rodrigo, et al., “Cancentrine. IV. Acetolysis Products of Cancentrine Methiodide” Canadian Journal of Chemistry, 50, 3900-3910 (1972).
European search report issued by the European Patent Office dated May 3, 2017 in the examination of the European Patent Application No. 16191361.1.
USPTO Office action dated Oct. 16, 2018, in U.S. Appl. No. 15/220,636.
Definition of Buffer. http://www.dictionary.com., Apr. 12, 2018.
Wei et al. “Emission Mechanism of Doubly, etc . . . ”, J. Am. Chem. Soc., 2009, 131, 6698-6707, 2008.
EPO Extended Search Report dated Nov. 4, 2016, corresponding to European Patent Application No. 16191351.2 (6 pages).
EPO Extended Search Report dated May 3, 2017, corresponding to European Patent Application No. 16195460.7 (8 pages).
EPO Extended Search Report dated May 3, 2017, for corresponding European Patent Application No. 16191373.6 (6 pages).
EPO Extended Search Report dated May 2, 2017, for corresponding European Patent Application No. 16195444.1 (8 pages).
EPO Extended Search Report dated May 3, 2017, for corresponding European Patent Application No. 16191328.0.
U.S. Office Action dated Oct. 16, 2018, issued in U.S. Appl. No. 15/220,636.
U.S. Office Action dated Nov. 22, 2017, issued in U.S. Appl. No. 15/197,621.
U.S. Final Office Action dated Apr. 20, 2018, issued in U.S. Appl. No. 15/197,621.
U.S. Office Action dated Dec. 17, 2018, issued in U.S. Appl. No. 15/197,621.
U.S. Office Action dated Oct. 5, 2017, issued in U.S. Appl. No. 15/187,665.
U.S. Final Office Action dated Mar. 27, 2018, issued in U.S. Appl. No. 15/187,665.
U.S. Office Action dated Oct. 25, 2018, issued in U.S. Appl. No. 15/187,665.
U.S. Office Action dated Feb. 22, 2018, issued in U.S. Appl. No. 15/284,371.
U.S. Notice of Allowance dated Jul. 18, 2018, issued in U.S. Appl. No. 15/284,371.
U.S. Office Action dated Oct. 19, 2017, issued in U.S. Appl. No. 15/192,848.
U.S. Office Action dated Apr. 23, 2018, issued in U.S. Appl. No. 15/192,848.
U.S. Office Action dated Dec. 4, 2018, issued in U.S. Appl. No. 15/192,848.
U.S. Office Action dated Feb. 21, 2019, issued in U.S. Appl. No. 15/292,040.
U.S. Office Action dated Apr. 4, 2019, issued in U.S. Appl. No. 15/294,618.
U.S. Final Office Action dated Apr. 19, 2019, issued in U.S. Appl. No. 15/187,665.
U.S. Final Office Action dated May 14, 2019, issued in U.S. Appl. No. 15/192,848.
U.S. Office Action dated Mar. 28, 2019, issued in U.S. Appl. No. 15/220,636.
English machine translation of CN 104835921 A, published Aug. 12, 2015, 28 pages.
English machine translation of WO2015133804 A1, published Sep. 11, 2015, 28 pages.
Office Action dated Jun. 27, 2019 by the USPTO in cross-reference U.S. Appl. No. 15/220,636, 11 pages.
Ran, Xue-Qin et al., “Structural, electronic, and optical properties of doubly ortho-linked quinoxaline/diphenylfluorene hybrids”, Journal of Physical Organic Chemistry, Nov. 9, 2010, pp. 646-656, John Wiley & Sons, Ltd.
Office Action issued in U.S. Appl. No. 15/192,848 by the USPTO, dated Nov. 20, 2019, 23 pages.
Office Action issued in U.S. Appl. No. 15/220,636 by the USPTO, dated Dec. 2, 2019, 11 pages.
Office Action issued in U.S. Appl. No. 15/220,636 by the USPTO, dated Mar. 12, 2020, 12 pages.
Koene, Bryan E., et al.; Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting Devices, American Chemical Society, 1998, Chemical Materials, vol. 10, pp. 2235-2250.
Office Action issued in U.S. Appl. No. 15/292,040 by the USPTO, dated Dec. 16, 2019, 16 pages.
Office Action issued in U.S. Appl. No. 15/294,638 by the USPTO, dated Dec. 17, 2019, 14 pages.
Machine English Translation of Enomoto et al. (JP 10088119 A). Jun. 18, 2020.
U.S. Final Office action dated Apr. 10, 2020, issued in U.S. Appl. No. 15/192,848 (21 pages).
U.S. Final Office Action dated Jun. 23, 2020, issued in U.S. Appl. No. 15/292,040 (17 pages).
Hu, J-Y and Yamato, T. Synthesis and photophysical properties of pyrene-based multiply conjugated shaped light-emitting architectures: toward efficient organic-light-emitting diodes. Organic Light Emitting Diode—Material, Process and Devices. InTech. Chapter 2, pp. 21-60. Jul. 27, 2011. (Year: 2011).
U.S. Office Action dated Jul. 31, 2020, issued in U.S. Appl. No. 15/187,665 (16 pages).
Machine Translation of JP 2008-243932 A. Oct. 9, 2008. (Year: 2008).
Machine Translation of WO 2014/129869 A1. Aug. 28, 2014. (Year: 2014).
Definition of alkylenes. IUPAC Compendium of Chemical Terminology. 2014. (Year: 2014).
U.S. Advisory Action dated Aug. 24, 2020, issued in U.S. Appl. No. 15/197,621, 8 pages, citing all the references listed above.
U.S. Office Action dated Sep. 30, 2020, issued in U.S. Appl. No. 15/192,848, citing references listed above (37 pages).
U.S. Office Action dated Oct. 2, 2020, issued in U.S. Appl. No. 15/197,621, citing a reference listed above (26 pages).
Machine English translation of Huang et al. (WO-2016/058504 A1 ). Nov. 16, 2020.
Google Patents translation for WO 2016/122178 A2 (publication date: Aug. 2016). (Year: 2016).
U.S. Office Action dated Nov. 19, 2020, issued in U.S. Appl. No. 15/292,040 (17 pages).
U.S. Office Action dated Dec. 7, 2020, issued in U.S. Appl. No. 15/220,636 (10 pages).
European Patent Office Summons to attend oral proceedings pursuant to Rule 115(1) EPC, for European Patent Application No. 16191351.2, issued Sep. 8, 2020, 5 pages.
U.S. Final Office action dated Mar. 8, 2021, issued in U.S. Appl. No. 15/192,848 (29 pages).
Machine English translation of Mizuki et al. (JP 2015013804 A). May 20, 2021.
Machine Translation of KR 10-2015-0121394 A. Oct. 29, 2015. (Year: 2015).
Dyes and Pigments, vol. 114, (2015), pp. 184-195. (Year: 2015).
U.S. Advisory Action dated Mar. 29, 2021, issued in U.S. Appl. No. 15/187,665 (6 pages).
U.S. Final Office Action dated Mar. 29, 2021, issued in U.S. Appl. No. 15/197,621 (29 pages).
U.S. Final Office Action dated May 4, 2021, issued in U.S. Appl. No. 15/294,638 (18 pages).
U.S. Notice of Allowance dated May 5, 2021, issued in U.S. Appl. No. 15/220,636 (9 pages).
U.S. Final Office Action dated May 25, 2021, issued in U.S. Appl. No. 15/292,040 (16 pages).
U.S. Advisory Action dated Jun. 2, 2021, issued in U.S. Appl. No. 15/197,621 (6 pages).
Machine Translation of WO2016/122178A. Aug. 4, 2016 (Year: 2016).
Application KR10-2015-0012223. Filed Jan. 6, 2015. (Year: 2015).
Machine Translation of KR20160091735A, corresponding to application KR10-2015-0012223. Filed Jan. 6, 2015. (Year 2015).
U.S. Office Action dated Jun. 28, 2021, issued in U.S. Appl. No. 15/192,848 (23 pages).
Machine Translation of KR2015-0124609A. Nov. 6, 2015. (Year: 2015).
U.S. Final Office Action dated Jan. 25, 2022, issued in U.S. Appl. No. 15/197,621 (16 pages).
Chinese Office Action dated Jan. 6, 2022, issued in Chinese Patent Application No. 201911253625.8 (6 pages).
Advisory Action for U.S. Appl. No. 15/187,665 dated Apr. 13, 2020, 6 pages.
Advisory Action for U.S. Appl. No. 15/187,665 dated Jun. 28, 2019, 4 pages.
Advisory Action for U.S. Appl. No. 15/187,665 dated Jun. 6, 2018, 5 pages.
Advisory Action for U.S. Appl. No. 15/192,848 dated Jul. 5, 2019, 5 pages.
Advisory Action for U.S. Appl. No. 15/192,848 dated Jul. 9, 2018, 5 pages.
Advisory Action for U.S. Appl. No. 15/192,848 dated Jun. 17, 2020, 4 pages.
Advisory Action for U.S. Appl. No. 15/192,848 dated May 14, 2021, 4 pages.
Advisory Action for U.S. Appl. No. 15/197,621 dated Aug. 14, 2019, 5 pages.
Advisory Action for U.S. Appl. No. 15/197,621 dated Jul. 6, 2018, 4 pages.
Advisory Action for U.S. Appl. No. 15/220,636 dated Feb. 12, 2020, 3 pages.
Advisory Action for U.S. Appl. No. 15/220,636 dated May 24, 2019, 3 pages.
Advisory Action for U.S. Appl. No. 15/220,636 dated Oct. 19, 2020, 3 pages.
Advisory Action for U.S. Appl. No. 15/292,040 dated Jul. 26, 2021, 3 pages.
Advisory Action for U.S. Appl. No. 15/292,040 dated Sep. 4, 2020, 3 pages.
Advisory Action for U.S. Appl. No. 15/292,040 dated Sep. 26, 2019, 3 pages.
Advisory Action for U.S. Appl. No. 15/294,638 dated Jul. 12, 2021, 3 pages.
Advisory Action for U.S. Appl. No. 15/294,638 dated Nov. 12, 2019, 3 pages.
Advisory Action for U.S. Appl. No. 15/294,638 dated Sep. 8, 2020, 3 pages.
Final Office Action for U.S. Appl. No. 15/187,665 dated Feb. 7, 2020, 14 pages.
Final Office Action for U.S. Appl. No. 15/187,665 dated Jan. 19, 2021, 10 pages.
Final Office Action for U.S. Appl. No. 15/197,621 dated Jun. 4, 2020, 19 pages.
Final Office Action for U.S. Appl. No. 15/197,621 dated May 29, 2019, 17 pages.
Final Office Action for U.S. Appl. No. 15/220,636 dated Aug. 11, 2020, 13 pages.
Final Office Action for U.S. Appl. No. 15/292,040 dated Jul. 3, 2019, 11 pages.
Final Office Action for U.S. Appl. No. 15/294,638 dated Aug. 28, 2019, 18 pages.
Final Office Action for U.S. Appl. No. 15/294,638 dated Jun. 26, 2020, 11 pages.
Interview Summary for U.S. Appl. No. 15/220,636 dated Oct. 9, 2020, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Aug. 6, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Feb. 25, 2022, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Jun. 1, 2022, 9 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Nov. 18, 2021, 5 pages.
Office Action for U.S. Appl. No. 15/187,665 dated Sep. 23, 2019, 12 pages.
Office Action for U.S. Appl. No. 15/197,621 dated Aug. 17, 2021, 17 pages.
Office Action for U.S. Appl. No. 15/197,621 dated Dec. 13, 2019, 18 pages.
Office Action for U.S. Appl. No. 15/197,621 dated Jul. 11, 2022, 27 pages.
Office Action for U.S. Appl. No. 15/292,040 dated Jun. 7, 2022, 15 pages.
Office Action for U.S. Appl. No. 15/294,638 dated May 10, 2022, 25 pages.
Office Action for U.S. Appl. No. 15/294,638 dated Nov. 30, 2020, 11 pages.
Restriction Requirement for U.S. Appl. No. 15/220,636 dated Jun. 22, 2018, 6 pages.
Restriction Requirement for U.S. Appl. No. 15/284,371 dated Nov. 27, 2017, 7 pages.
Restriction Requirement for U.S. Appl. No. 15/292,040 dated Oct. 4, 2018, 5 pages.
Wang, L. et al., “Synthesis and Characterization of Dibenzo[a,d]cyclohepten-5-one Derivates for Light-Emitting Diodes,” Chinese Journal of Chemistry, vol. 33, Issue 8, Aug. 2015, pp. 948-954.
Final Rejection for U.S. Appl. No. 15/292,040 dated Dec. 2, 2022, 15 pages.
Final Office Action for U.S. Appl. No. 15/197,621 dated Nov. 14, 2022, 18 pages.
Final Office Action for U.S. Appl. No. 15/294,638 dated Oct. 5, 2022, 25 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Sep. 29, 2022, 5 pages.
Advisory Action for U.S. Appl. No. 15/197,621 dated Jan. 23, 2023, 4 pages.
Advisory Action for U.S. Appl. No. 15/292,040 dated Jan. 26, 2023, 3 pages.
Advisory Action for U.S. Appl. No. 15/294,638 dated Dec. 19, 2022, 3 pages.
Chinese Office Action for CN Application No. 202010755903.6 dated Jan. 12, 2023, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/220,636 dated Feb. 1, 2023, 5 pages.
Office Action for U.S. Appl. No. 15/294,638 dated Feb. 23, 2023, 20 pages.
Office Action for U.S. Appl. No. 15/197,621 dated Apr. 11, 2023, 19 pages.
Related Publications (1)
Number Date Country
20170179395 A1 Jun 2017 US