Organic light-emitting device

Information

  • Patent Grant
  • 10573839
  • Patent Number
    10,573,839
  • Date Filed
    Monday, July 9, 2018
    6 years ago
  • Date Issued
    Tuesday, February 25, 2020
    4 years ago
Abstract
An organic light-emitting device includes: a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, the organic layer including: an emission layer, an electron transport region between the second electrode and the emission layer, and a mixed layer between the emission layer and the electron transport region, the mixed layer including a first material and a second material, the first material and the second material being selected from a pyrrolidine-based compound and a C10-C30 polycyclicaromatic hydrocarbon-based compound, and a triplet energy EgT1 of at least one selected from the first material and the second material being 2.2 eV or greater.
Description
BACKGROUND
1. Field

One or more aspects of embodiments of the present invention are directed toward organic light-emitting devices.


2. Description of the Related Art

Organic light-emitting devices (OLEDs) are self-emitting devices that have advantages, such as wide viewing angles, excellent contrast, quick response, high brightness, and excellent driving voltage characteristics, and can provide multicolored images.


The OLED has a structure including a first electrode disposed on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially placed on (e.g., formed on) the first electrode. Holes injected from the first electrode are transported to the emission layer through the hole transport region, and electrons injected from the second electrode are transported to the emission layer through the electron transport region. Carriers, such as the holes and electrons, recombine in the emission layer to generate excitons. When the excitons drop (or relax) from an excited state to a ground state, light is emitted.


SUMMARY

One or more aspects of embodiments of the present invention are directed toward an organic light-emitting device.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments disclosed herein.


According to one or more embodiments of the present invention, an organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer; an electron transport region between the second electrode and the emission layer; and a mixed layer between the emission layer and the electron transport region, the mixed layer including a first material and a second material; the first material and the second material being selected from a pyrrolidine-based compound and a C10-C30 polycyclicaromatic hydrocarbon-based compound; and a triplet energy EgT1 of at least one selected from the first material and the second material being 2.2 eV or greater.


BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawing, which is a schematic cross-sectional view of a structure of an organic light-emitting device according to an embodiment of the present invention.







DETAILED DESCRIPTION

Reference will now be made to certain embodiments, an example embodiment of which is illustrated in the accompanying drawing. As those skilled in the art would recognize, the present invention may be embodied in many different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are described below, by referring to the accompanying drawing, merely to explain aspects of embodiments of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.


Like reference numerals in the drawings denote like elements, and thus their repeated description will be omitted.


As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


It will be further understood that the terms “comprises” and/or “comprising” used herein specify the presence of stated features or components, but do not preclude the presence or addition of one or more other features or components.


It will be understood that when a layer, region, or component is referred to as being “on” or “formed on” another layer, region, or component, it can be directly or indirectly on or formed on the other layer, region, or component. That is, for example, intervening layers, regions, or components may or may not be present.


Sizes of components in the drawings may be exaggerated for convenience of explanation. In other words, since sizes and thicknesses of components in the drawings may be arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.


As used herein, the expression “organic layer” refers to a single layer and/or multiple layers disposed between a first electrode and a second electrode of an organic light-emitting device.


As used herein, the expression “pyrrolidine-based compound” refers to all organic compounds including at least one pyrrolidine moiety. The pyrrolidine moiety may be substituted with at least one substituent.


As used herein, the expression “C10-C30 polycyclic aromatic hydrocarbon-based compound” refers to all organic compounds including at least one polycyclic aromatic moiety. The polycyclic aromatic moiety may be substituted with at least one substituent.


As used herein, the expression “electron transporting compound” refers to all compounds having an electron mobility of about 1.0×10−7 cm2/(V·s) to about 1.0×10−3 cm2/(V·s). The electron transport compound may have an electron mobility of about 1.0×10−5 cm2/(V·s) or greater.


As used herein, the expression “hole transporting compound” refers to all compounds having a hole mobility of about 1.0×10−7 cm2/(V·s) to about 1.0×10−3 cm2/(V·s). The hole transport compound may have a hole mobility of about 1.0×10−5 cm2/(V·s) or greater.


Although a method of measuring hole mobility is not limited, a time of flight method may be used (utilized). The time of flight method includes measuring time properties (transient response time) of transient current that occurs due to irradiating light having a wavelength within the absorption wavelength region of an organic layer of an electrode/organic layer/electrode structure and calculating hole mobility from the following formula:

Hole mobility=(thickness of the organic layer)2/(transient response time*applied voltage)


An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode. The organic layer includes an emission layer; an electron transport region between the second electrode and the emission layer; and a mixed layer between the emission layer and the electron transport region, the mixed layer including a first material and a second material. The first material and the second material are selected from a pyrrolidine-based compound and a C10-C30 polycyclicaromatic hydrocarbon-based compound, and a triplet energy EgT1 of at least one selected from the first material and the second material is 2.2 eV or greater.


The first material and the second material have different electron transporting capabilities and hole transporting capabilities. Among the first material and the second material, a material having a relatively greater hole transporting capability may play a role in blocking movement of electrons from the second electrode to the emission layer. A material having a relatively greater electron transporting capability among the first material and the second material may play a role in moving electrons from the second electrode to the emission layer, such that current may flow between the first electrode and the second electrode.


In the organic light-emitting device, some electrons moving from the second electrode to the emission layer may be blocked, such that a number of holes moving from the first electrode to the emission layer and a number of electrons moving from the second electrode to the emission layer may achieve balance. Accordingly, the organic light-emitting device may decrease the number of (surplus) electrons and/or holes that fail (e.g., do not combine) to form excitons in the emission layer, and thus, the organic light-emitting device may have a long lifespan.


A triplet energy of at least one material selected from the first material and the second material may be higher than a triplet energy of a host of the emission layer and thus, a triplet exciton state (e.g., an exciton in a triplet state) in the emission layer may be trapped in the emission layer. When at least one material selected from the first material and the second material has a triplet energy (EgT1) of 2.2 eV or greater, the triplet exciton state (e.g., the exciton in a triplet state) in the emission layer may be trapped inside the emission layer more effectively.


A triplet energy of the first material and/or the second material may be 4.0 eV or lower, but the triplet energies are not limited thereto. A triplet energy of the first material and/or the second material may be 3.5 eV or lower, but the triplet energies are not limited thereto.


For example, any one of the first material and the second material may be selected from an electron transport compound and a hole transport compound, but the first material and the second material are not limited thereto. The first material may be an electron transport compound. The second material may be an electron transport compound. The first material may be a hole transport compound. The second material may be a hole transport compound.


In another embodiment, the first material and the second material may be selected from the electron transport compound and the hole transport compound, but the first material and the second material are not limited thereto. The first material may be a hole transport compound, and the second material may be an electron transport compound. The first material may be an electron transport compound, and the second material may be a hole transport compound.


For example, the electron transport region may include an electron transport layer, and the emission layer and the electron transport layer may be adjacent to each other, but they are not limited thereto.


For example, the pyrrolidine-based compound may be selected from, but is not limited to, a pyrrolidine-based compound represented by any of Formulae 1 and 2:




embedded image


embedded image


In Formulae 1, 2, and 9-1 to 9-6,


X21 and X91 may be each independently selected from an oxygen atom, a sulfur atom, N(Q1), C(Q1)(Q2), and Si(Q1)(Q2);


two adjacent groups among Y11, Y12, and Y21 to Y24 may correspond to carbon atoms located at * in Formulae 9-1 to 9-6;


A11, A21, and A22 may be each independently selected from benzene, naphthalene, dibenzofuran, dibenzothiophene, carbazole, fluorene, benzofuran, benzothiophene, indole, and indene;


L11, L21 and L22 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic heterocondensed polycyclic group;


a11, a21 and a22 may be each independently selected from 0, 1, 2, and 3;


Ar11, Ar21, R11, R21, R22, and R91 to R93 may be each independently selected from a hydrogen, a deuterium, F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic heterocondensed polycyclic group;


b11, b21, b22, b91, and b93 may be each independently selected from 1, 2, 3, and 4;


b92 may be selected from 1 and 2;


m11 and m21 may be each independently selected from 1, 2, and 3;


at least one substituent of the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic heterocondensed polycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic heterocondensed polycyclic group may be selected from:


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic heterocondensed polycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, monovalent non-aromatic heterocondensed polycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37);


where Q1, Q2, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently selected from a hydrogen, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group.


For example, the C10-C30 polycyclic aromatic hydrocarbon-based compound may be represented by Formula 3, but is not limited thereto:




embedded image


In Formula 3,


A3 is selected from a substituted or unsubstituted anthracene, a substituted or unsubstituted pyrene, a substituted or unsubstituted triphenylene, a substituted or unsubstituted phenanthrene, and a substituted or unsubstituted fluoranthene;


L3 is selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic heterocondensed polycyclic group;


a3 is an integer selected from 0, 1, 2, and 3;


Ar3 is selected from a substituted or unsubstituted C6-C60 an aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic heterocondensed polycyclic group;


m3 is an integer selected from 1, 2, 3, 4, 5, and 6;


at least one substituent of the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic heterocondensed polycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted a monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic heterocondensed polycyclic group is selected from:


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic heterocondensed polycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, monovalent non-aromatic heterocondensed polycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37);


where Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently selected from a hydrogen, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group.


For example, in Formulae 1 and 2, A11, A21 and A22 may be each independently selected from benzene and naphthalene, but A11, A21 and A22 are not limited thereto.


For example, in Formulae 1 and 2, L11, L21, and L22 may be each independently selected from a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group and a dibenzocarbazolylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzothiazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, and an imidazopyridinyl group, but L11, L21, and L22 are not limited thereto.


In another embodiment, in Formulae 1 and 2, L11, L21, and L22 may be each independently selected from a phenylene group, a naphthylene group, a fluorenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a carbazolylene group, a phenanthridinylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a carbazolylene group, a phenanthridinylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, n-a propoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, and a pyrimidinyl group, but L11, L21, and L22 are not limited thereto.


For example, in Formulae 1 and 2, a11, a21, and a22 may be each independently selected from 0 and 1, but al 11, a21, and a22 are not limited thereto.


For example, in Formulae 1 and 2, Ar11, Ar21, Q1, and Q2 may be each independently selected from a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group; and


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, —N(Q31)(Q32), and —Si(Q33)(Q34)(Q35);


where Q31 to Q35 may be each independently selected from a C1-C60 alkyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group, but Ar11, Ar21, Q1, and Q2 are not limited thereto.


In another embodiment, in Formulae 1 and 2, Ar11, Ar21, Q1, and Q2 may be each independently selected from a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an oxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, an indolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an oxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, an indolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, —N(Q31)(Q32), and —Si(Q33)(Q34)(Q35); and


where Q31 to Q35 may be each independently selected from a methyl group, an ethyl group, an n-propyl group, a tert-butyl group, a phenyl group, a naphthyl group, and a pyridinyl group, but Ar11, Ar21, Q1, and Q2 are not limited thereto.


For example, in Formulae 1 and 2, R11, R21, R22, and R91 to R93 may be each independently selected from a hydrogen, a deuterium, F, —Cl, —Br, —I, a C1-C60 alkyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group, but R11, R21, R22, and R91 to R93 are not limited thereto.


In another embodiment, in Formulae 1 and 2, R11, R21, R22 and R91 to R93 may be each independently selected from a hydrogen, a deuterium, F, —Cl, —Br, —I, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a pyridyl group, a pyrimidyl group, a pyrazinyl group, a fluorenyl group, and a carbazole group, but R11, R21, R22, and R91 to R93 are not limited thereto.


For example, in Formulae 1 and 2, m11 and m21 may be each independently selected from 1 and 2, but m11 and m21 are not limited thereto.


For example, in Formula 3, A3 may be selected from anthracene, triphenylene, and fluoranthene, but A3 is not limited thereto.


For example, in Formula 3, A3 may be triphenylene, but A3 is not limited thereto.


For example, in Formula 3, L3 is selected from:


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, and a dibenzocarbazolylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzothiazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, and an imidazopyridinyl group, but L3 is not limited thereto.


For example, in Formula 3, L3 may be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a carbazolylene group, a phenanthridinylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a quinoxalinylene group, a quinazolinylene group, a benzoquinazolinylene group, a carbazolylene group, a phenanthridinylene group, a benzofuranylene group, a benzothiophenylene group, a benzothiazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, and a pyrimidinyl group, but L3 is not limited thereto.


For example, in Formula 3, a3 may be an integer selected from 0 and 1, but a3 is not limited thereto.


For example, in Formula 3, Ar3 may be selected from:


an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group; and


a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, —N(Q31)(Q32), and —Si(Q33)(Q34)(Q35),


where Q31 to Q35 may be each independently selected from a C1-C60 alkyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group, but Ar3 is not limited thereto.


For example, in Formula 3, Ar3 is selected from:


a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an oxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, an indolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an oxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, an indolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, —N(Q31)(Q32), and —Si(Q33)(Q34)(Q35),


where Q31 to Q35 may be each independently selected from a methyl group, an ethyl group, an n-propyl group, a tert-butyl group, a phenyl group, a naphthyl group, and a pyridinyl group, but Ar3 is not limited thereto.


For example, in Formula 3, m3 may be an integer selected from 1, 2, and 3, but m3 is not limited thereto.


For example, in Formula 3, m3 may be 1, but m3 is not limited thereto.


In one embodiment, the pyrrolidine-based compound may be represented by one selected from Formulae 1-1 to 1-11, but the pyrrolidine-based compound is not limited thereto:




embedded image


embedded image


embedded image


In Formulae 1-1 to 1-11,


A11, X91, Ar11, L11, a11, R11, R91 to R93, b11, and b91 to b93 are the same as those described with respect to Formulae 1 and 9-1 to 9-6.


In another embodiment, the pyrrolidine-based compound may be represented by one selected from Formulae 1-1 to 1-11, but the pyrrolidine-based compound is not limited thereto:




embedded image


embedded image


embedded image


In Formulae 1-1 to 1-11,


A11 may be selected from benzene and naphthylene;


X91, Ar11, L11, a11, R11, R91 to R93, b11, b91 to b93, and m11 are the same as those described with respect to Formulae 1 and 9-1 to 9-6.


In another embodiment, the pyrrolidine-based compound may be represented by one selected from Formulae 2-1 to 2-7, but the pyrrolidine-based compound is not limited thereto:




embedded image


embedded image


In Formulae 2-1 to 2-7,


X21, X91, A21, A22, Ar21, L21, L22, a21, a22, R21, R22, R91, R92, b21, b22, b91, b92, and m21 are the same as those described with respect to Formulae 2 and 9-1 to 9-6.


In another embodiment, the pyrrolidine-based compound may be represented by one selected from Formulae 2-1A to 2-7A, but the pyrrolidine-based compound is not limited thereto:




embedded image


embedded image


In Formulae 2-1A to 2-7A,


X21, X91, A21, A22, Ar21, L21, L22, a21, a22, R21, R22, R91, R92, b21, b22, b91, and b92 are the same as those described with respect to Formulae 2 and 9-1 to 9-6.


In one embodiment, the C10-C30 polycyclic aromatic hydrocarbon-based compound may be represented by Formula 3-1, but the C10-C30 polycyclic aromatic hydrocarbon-based compound is not limited thereto:




embedded image


In Formula 3-1,


L31 to L33 are each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic heterocondensed polycyclic group;


a31 to a33 are each independently an integer selected from 0, 1, 2, and 3;


Ar31 to Ar33 are each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic heterocondensed polycyclic group;


R31 to R33 are each independently selected from a hydrogen, a deuterium, F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic heterocondensed polycyclic group;


b31 is selected from an integer selected from 0, 1, 2, and 3;


b32 and b33 are each independently an integer selected from 0, 1, 2, 3, and 4;


m31 is an integer selected from 1, 2, 3, and 4;


m32 and m33 are each independently an integer selected from 0, 1, 2, 3, and 4;


at least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic heterocondensed polycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic heterocondensed polycyclic group is selected from:


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic heterocondensed polycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfuric acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic heterocondensed polycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37);


where Q11 to Q17, Q21 to Q27, and Q31 to Q37 are each independently selected from a hydrogen, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group.


For example, in Formula 3-1, L31 to L33 may be each independently the same as L3 as described with respect to Formula 3.


For example, in Formula 3-1, a31 to a33 may be each independently the same as a3 as described with respect to Formula 3.


For example, in Formula 3-1, Ar31 to Ar33 may be each independently the same as Ar3 as described with respect to Formula 3.


For example, in Formula 3-1, m31 may be 1; and m32 and m33 may be 0, but m31, m32, and m33 are not limited thereto.


For example, in Formula 3-1, R31 to R33 may be each independently selected from a hydrogen, a deuterium, F, —Cl, —Br, —I, a C1-C60 alkyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group, but R31 to R33 are not limited thereto.


For example, in Formula 3-1, R31 to R33 may be each independently, a hydrogen, a deuterium, F, —Cl, —Br, —I, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a naphthyl group, a pyridyl group, a pyrimidyl group, a pyrazinyl group, a fluorenyl group, and a carbazolyl group, but R31 to R33 are not limited thereto.


In another embodiment, the C10-C30 polycyclic aromatic hydrocarbon-based compound may be represented by Formula 3-1A, but the C10-C30 polycyclic aromatic hydrocarbon-based compound is not limited thereto:




embedded image


In Formula 3-1A,


L31, a31, Ar31, R31 to R33, and b31 to b33 are the same as those described with respect to Formula 3-1.


In another embodiment, the C10-C30 polycyclic aromatic hydrocarbon-based compound may be represented by Formula 3-1B, but the C10-C30 polycyclic aromatic hydrocarbon-based compound is not limited thereto:




embedded image


In Formula 3-1B,


L31, a31, and Ar31 are the same as those described with respect to Formula 3-1.


In some embodiments, the first material and the second material may be selected from the following compounds, but the first material and the second material are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the first material and the second material may be selected from compounds BF1 to BF19, but the first material and the second material are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


For example, electron affinity EA1 of the first material and electron affinity EA2 of the second material may satisfy Inequation 1, but the electron affinity EA-1 of the first material and the electron affinity EA2 of the second material are not limited thereto: Inequation 1

EA1<EA2  Inequation 1


For example, the emission layer includes a host and a dopant; a triplet energy EgDT2 of the dopant may satisfy Inequation 2, but triplet energy EgDT2 is not limited thereto:

EgT1>EgDT2  Inequation 2


In another embodiment, the emission layer may include a host and a dopant; and


a triplet energy of the host EgHT2 may satisfy Inequation 3 below, but triplet energy of the host EgHT2 is not limited thereto:

EgT1>EgHT2  Inequation 3


The accompanying drawing is a schematic cross-sectional view of an organic light-emitting device 10 according to an embodiment of the present invention. The organic light-emitting device 10 includes a first electrode 110, an organic layer 150, and a second electrode 190.


Hereinafter, a structure and a method of manufacturing an organic light-emitting device according to an embodiment of the present invention will be described with reference to the accompanying drawing.


A substrate may be additionally disposed under the first electrode 110 or above the second electrode 190 in the accompanying drawing. The substrate may be a glass substrate or a transparent plastic substrate with excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.


The first electrode 110 may be formed by, for example, depositing or sputtering a first electrode material on the substrate. When the first electrode 110 is an anode, the material of the first electrode 110 may be selected from materials having a high work function to facilitate hole injection. The first electrode 110 may be a reflective electrode, a transflective electrode, or a transmissive electrode. The material of the first electrode 110 may be a transparent material having high conductivity, and examples of such a material include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). In some embodiments, at least one selected from magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or the like may be used (utilized) as the first electrode material of the first electrode 110, which may be a transflective electrode or a transmissive electrode.


The first electrode 110 may have a single-layered structure or a multi-layered structure. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO, but the first electrode 110 is not limited thereto.


The organic layer 150 may be disposed on the first electrode 110. The organic layer 150 includes an emission layer.


The organic layer 150 may include a hole transport region disposed between the first electrode 110 and the emission layer, an electron transport region disposed between the emission layer and the second electrode 190, and a mixed layer disposed between the emission layer and the electron transport region.


The hole transport region may include at least one selected from a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, and an electron blocking layer (EBL), and the electron transport region may include at least one selected from a hole-blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL), but the hole transport region and the electron transport region are not limited thereto.


The hole transport region may include a single layer including (e.g., formed of) a single material, a single layer including (e.g., formed of) a plurality of different materials, or a multi-layered structure including a plurality of layers including (e.g., formed of) a plurality of different materials.


For example, the hole transport region may have a single-layered structure including (e.g., formed of) a plurality of different materials or a structure in which HIL/HTL, HIL/HTL/buffer layer, HIL/buffer layer, HTL/buffer layer, or HIL/HTL/EBL are sequentially layered on the first electrode 110, but the hole transport region is not limited thereto.


When the hole transport region includes the HIL, the HIL may be formed on the first electrode 110 by using (utilizing) various suitable methods, such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, and laser-induced thermal imaging (LITI).


When the HIL is formed using (utilizing) vacuum deposition, vacuum deposition conditions may vary according to the compound that is used (utilized) to form the HIL, and the desired structure of the HIL to be formed. For example, vacuum deposition may be performed at a temperature of about 100° C. to about 500° C., a pressure of about 10−8 torr to about 10−3 torr, and a deposition rate of about 0.01 Å/sec to about 100 Å/sec.


When the HIL is formed using (utilizing) spin coating, the coating conditions may vary according to the compound that is used (utilized) to form the HIL, and the desired structure of the HIL to be formed. For example, the coating rate may be in the range of about 2,000 rpm to about 5,000 rpm, and a temperature at which heat treatment is performed may be in the range of about 80° C. to about 200° C.


When the hole transport region includes the HTL, the HTL may be formed on the first electrode 110 or on the HTL by using (utilizing) various suitable methods, such as vacuum deposition, spin coating, casting, LB deposition, inkjet printing, laser printing, and LITI. When the HTL is formed by vacuum deposition or spin coating, vacuum deposition conditions and coating conditions may be the same (or substantially the same) as the vacuum deposition conditions and the coating conditions of the HIL.


The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, α-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine(4,4′,4″-tris(N-carbazolyl)triphenylamine) (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (pani/CSA), or (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, and a compound represented by Formula 202:




embedded image


embedded image


embedded image


embedded image


In Formulae 201 and 202,


L201 to L205 may be each independently the same as L11 in the present specification (e.g., as described with respect to Formula 1);


xa1 to xa4 may be each independently an integer selected from 0, 1, 2, and 3;


xa5 may be an integer selected from 1, 2, 3, 4, and 5; and


R201 to R204 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic hetero-condensed polycyclic group.


For example, in Formulae 201 and 202, L201 to L205 may be each independently selected from a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorene group, a dibenzofluorene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xa1 to xa4 may be each independently an integer selected from 0, 1, or 2;


xa5 may be an integer of 1, 2, or 3;


R201 to R204 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, but Formulae 201 and 202 are not limited thereto.


The compound represented by Formula 201 may be represented by Formula 201A:




embedded image


For example, the compound represented by Formula 201 may be represented by Formula 201A-1, but Formula 201 is not limited thereto:




embedded image


The compound represented by Formula 202 may be represented by Formula 202A, but Formula 202 is not limited thereto:




embedded image


In Formulae 201A, 201A-1, and 202A, L201 to L203, xa1 to xa3, xa5, and R202 to R204 are the same as those described with respect to Formulae 201 and 202, R211 and R212 may be the same as R203 as described with respect to Formulae 201 and 202, and R213 to R216 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group.


For example, in Formulae 201A, 201A-1, and 202A, L201 to L203 may be each independently selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xa1 to xa3 may be each independently an integer selected from 0 and 1;


R203, R211, and R212 may be each independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


R213 and R214 may be each independently selected from a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


R215 and R216 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


xa5 may be an integer selected from 1 and 2.


In Formulae 201A and 201A-1, R213 and R214 may be coupled to each other (e.g., combined) to form a saturated or an unsaturated ring.


The compound represented by Formula 201 and the compound represented by Formula 202 may include Compounds HT1 to HT20, but the compound represented by Formula 201 and the compound represented by Formula 202 are not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be about 100 Å to about 10000 Å, for example, about 100 Å to about 1000 Å. When the hole transport region includes both of the HIL and the HTL, a thickness of the HIL may be about 100 Å to about 10000 Å, for example, about 100 Å to about 1000 Å and a thickness of the HTL may be about 50 Å to about 2000 Å, for example, about 100 Å to about 1500 Å. When the thicknesses of the hole transport region, the HIL, and the HTL satisfy any of the foregoing ranges, satisfactory hole injection characteristics may be obtained without a substantial increase in a driving voltage.


The hole transport region may further include a charge-generating material, in addition to the material described above. The charge-generating material may be uniformly (e.g., consistently or evenly) or disuniformly (e.g., inconsistently or unevenly) dispersed in the hole transport region.


The charge-generating material may be, for example, a p-dopant. The p-dopant may be selected from quinone derivatives, metal oxides, F-containing compounds, Cl-containing compounds, and CN-containing compounds, but the charge-generating material is not limited thereto. For example, non-limiting examples of the p-dopant include quinone derivatives, such as tetracyanoquinodimethane (TCNQ), and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinodimethane (F4-TCNQ); metal oxides such as tungsten oxides and molybdenum oxides; and a Compound HT-D1.




embedded image


The hole transport region may include at least one selected from a buffer layer and the EBL, in addition to the HIL and the HTL. The buffer layer may compensate for an optical resonance distance of light according to a wavelength of the light emitted from the EML, and thus may increase efficiency. The buffer layer may include any suitable material that may be used (utilized) in a hole transport region. The EBL may prevent (or reduce) injection of electrons from the electron transport region.


The HTL may include a first HTL and a second HTL, which may simultaneously (or concurrently) include the same material or include different materials.


Then, the EML may be formed on the first electrode 110 or the hole transport region by vacuum deposition, spin coating, casting, LB deposition, inkjet printing, laser printing, LITI, or the like. When the EML is formed using (utilizing) vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for the formation of the HIL.


When the organic light-emitting device 10 is a full color organic light-emitting device, the organic light-emitting device 10 may be patterned into a red EML, a green EML, and a blue EML, according to different EMLs and individual pixels. In some embodiments, the EML may have a structure in which the red EML, the green EML, and the blue EML are layered or a structure in which a red light emission material, a green light emission material, and a blue light emission material are mixed without separation of layers and emit white light.


The EML may include a host and a dopant.


The host may include at least one selected from TPBi, TBADN, AND (also referred to as “DNA”), CBP, CDBP, and TCP:




embedded image


embedded image


In some embodiments, the host may include a compound represented by Formula 301:

Ar301-[(L301)xb1-R301]xb2  Formula 301


In Formula 301, Ar301 may be selected from:


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, and —Si(Q301)(Q302)(Q303) (wherein, Q301 to Q303 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group);


L301 is the same as L201 as described with respect to Formulae 201 and 202;


R301 may be selected from a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xb1 may be an integer selected from 0, 1, 2, and 3; and


xb2 may be an integer selected from 1, 2, 3, and 4.


For example, in Formula 301, L301 may be selected from a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and a chrysenylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and a chrysenylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group;


R301 may be selected from a C1-C20 alkyl group and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group.


For example, the host may include a compound represented by Formula 301A:




embedded image


In Formula 301A, descriptions of substituents are as described herein (e.g., L301, xb1, R301 and xb2 are the same as those described with respect to Formula 301).


The compound represented by Formula 301 may include at least one selected from Compounds H1 to H42, but the compound represented by Formula 301 is not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the host may include at least one from Compounds H43 to H49, but the host is not limited thereto:




embedded image


embedded image


The dopant may include at least one selected from a fluorescent dopant and a phosphorescent dopant.


The phosphorescent dopant may include an organic metal complex represented by Formula 401:




embedded image


In Formula 401,


M may be selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm);


X401 to X404 may be each independently nitrogen or carbon;


Rings A401 and A402 may be each independently selected from a substituted or unsubstituted benzene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted indene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted thiophene, a substituted or unsubstituted furan, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted thiazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted oxazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzoquinoline, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, a substituted or unsubstituted carbazole, a substituted or unsubstituted benzoimidazole, a substituted or unsubstituted benzofuran, a substituted or unsubstituted benzothiophene, a substituted or unsubstituted isobenzothiophene, a substituted or unsubstituted benzoxazole, a substituted or unsubstituted isobenzoxazole, a substituted or unsubstituted triazole, a substituted or unsubstituted oxadiazole, a substituted or unsubstituted triazine, a substituted or unsubstituted dibenzofuran, and a substituted or unsubstituted dibenzothiophene;


at least one substituent of the substituted benzene, the substituted naphthalene, the substituted fluorene, the substituted spiro-fluorene, the substituted indene, the substituted pyrrole, the substituted thiophene, the substituted furan, the substituted imidazole, the substituted pyrazole, the substituted thiazole, the substituted isothiazole, the substituted oxazole, the substituted isoxazole, the substituted pyridine, the substituted pyrazine, the substituted pyrimidine, the substituted pyridazine, the substituted quinoline, the substituted isoquinoline, the substituted benzoquinoline, the substituted quinoxaline, the substituted quinazoline, the substituted carbazole, the substituted benzoimidazole, the substituted benzofuran, the substituted benzothiophene, the substituted isobenzothiophene, the substituted benzoxazole, the substituted isobenzoxazole, the substituted triazole, the substituted oxadiazole, the substituted triazine, the substituted dibenzofuran, and the substituted dibenzothiophene may be selected from:


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group (non-aromatic condensed polycyclic group), a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q401)(Q402), —Si(Q403)(Q404)(Q405), and —B(Q406)(Q407);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, and a non-aromatic condensed polycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q411)(Q412), —Si(Q413)(Q414)(Q415), and —B(Q416)(Q417); and


—N(Q421)(Q422), —Si(Q423)(Q424)(Q425) and —B(Q426)(Q427), where Q411 to Q417, Q421 to Q427 may be each independently selected from a hydrogen, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic heterocondensed polycyclic group;


L401 is an organic ligand;


xc1 is 1, 2, or 3; and


xc2 is 0, 1, 2, or 3.


L401 may be any one selected from a monovalent, a divalent, or a trivalent organic ligand. For example, L401 may be a halogen ligand (for example, Cl or F), a diketone ligand (for example, acetylacetonate, 1,3-diphenyl-1,3-propanedionate, 2,2,6,6-tetramethyl-3,5-heptanedionate, and hexafluoroacetonate), a carboxylic acid ligand (for example, picolinate, dimethyl-3-pyrazolecarboxylate, and benzoate), a carbon monoxide ligand, an isonitrile ligand, a cyano ligand, and a phosphorus ligand (for example, may be selected from phosphine and phosphite), but L401 is not limited thereto.


In Formula 401, when A401 has two or more substituents, the two or more substituents of A401 may be coupled to each other (e.g., combined) to form a saturated or an unsaturated ring.


In Formula 401, when A402 has two or more substituents, the two or more substituents of A402 may be coupled to each other (e.g., combined) to form a saturated or an unsaturated ring.


In Formula 401, when xc1 is two or greater, a plurality of ligands




embedded image



in Formula 401 may be the same or different. In Formula 401, when xc1 is two or greater, A401 and A402 may be respectively connected to A401 and A402 of a neighboring ligand either directly or via a linking group (for example, a C1-C5 alkylene group and —N(R′)— (where, R′ is a C1-C10 alkyl group or a C8-C20 aryl group) or —C(═O)—) disposed therebetween.


The phosphorescent dopant may include at least one selected from Compounds PD1 to PD74, but the phosphorescent dopant is not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the phosphorescent dopant may include PtOEP:




embedded image


The fluorescent dopant may include at least one selected from DPAVBi, BDAVBi, TBPe, DCM, DCJTB, Coumarin 6, and C545T:




embedded image


In some embodiments, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,


Ar501 may be selected from:


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, and —Si(Q501)(Q502)(Q503) (where, Q501 to Q503 may be each independently selected from a hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group);


L501 to L503 are the same as defined in the description of L201 in the present specification (e.g., are the same as L201 as described with respect to Formulae 201 and 202);


R501 and R502 may be each independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group and a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;


xd1 to xd3 may be each independently an integer selected from 0, 1, 2, and 3; and


xd4 may be an integer selected from 1, 2, 3, and 4.


The fluorescent dopant may include at least one selected from Compounds FD1 to FD8:




embedded image


embedded image


embedded image


An amount of dopant in the EML may be about 0.01 parts by weight to about 15 parts by weight based on 100 parts by weight of the dopant, but the dopant is not limited thereto.


A thickness of the EML may be about 100 Å to about 1000 Å, for example, about 200 Å to about 600 Å. When the thickness of the EML is in any of the foregoing ranges, the EML may have excellent light-emitting ability without a substantial increase in driving voltage.


A mixed layer may be disposed on the EML. The mixed layer may be formed on the EML by using (utilizing) various suitable methods such as vacuum deposition, spin coating, casting, LB, inkjet printing, laser printing, and LITI. When the mixed layer is formed by vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for forming the HIL, though the deposition and coating conditions may vary according to a compound that is used (utilized) to form the mixed layer.


As described above, the mixed layer may include a first material and a second material, wherein the first material and the second material may be a pyrrolidine-based compound and a triplet energy EgT1 of at least one of the first material and the second material may be 2.2 eV or greater.


A thickness of the mixed layer may be about 5 Å to about 400 Å, for example, about 50 Å to about 300 Å. When the thickness of the mixed layer is in any of the foregoing ranges, satisfactory device characteristics may be obtained without substantial increase in driving voltage.


For example, amounts of the first material and the second material may have a weight ratio of about 10:1 to about 1:10, but the first material and the second material are not limited thereto. In another embodiment, amounts of the first material and the second material may have a weight ratio of 50:50, but the first material and the second material are not limited thereto.


Then, the electron transport region may be disposed on the mixed layer.


The electron transport region may include at least one of the HBL, the ETL, and the EIL, but the electron transport region is not limited thereto.


For example, the electron transport region may have a structure in which the ETL/EIL or HBL/ETL/EIL are sequentially layered on the emission layer, but the electron transport region is not limited thereto.


According to an embodiment, the organic layer 150 of the organic light-emitting device includes an electron transport region disposed between the EML and the second electrode 190. The electron transport region may include at least one of the ETL and the EIL.


The ETL may include at least one selected from BCP, Bphen, and Alq3, Balq, TAZ, and NTAZ:




embedded image


In some embodiments, the ETL may include at least one compound selected from a compound represented by Formula 601 and a compound represented by Formula 602:

Ar601-[(L601)xe1-E601]xe2  Formula 601


In Formula 601, Ar601 may be selected from a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, and —Si(Q301)(Q302)(Q303) (where, Q301 to Q303 may be each independently selected from a hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C1-C60 heteroaryl group);


L601 may be the same as defined in the description of L201 (e.g., may be the same as L201 as described with respect to Formulae 201 and 202);


E601 may be selected from a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;


xe1 may be selected from 0, 1, 2, and 3; and


xe2 may be selected from 1, 2, 3, and 4.




embedded image


In Formula 602,


X611 may be N or C-(L611)xe611-R611, X612 may be N or C-(L612)xe612-R612, X613 may be N or C-(L613)xe613-R613, and at least one of X611 to X613 may be N;


L611 to L616 may be each independently the same as L201 as described with respect to Formulae 201 and 202;


R611 to R616 may be each independently selected from a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, carboxylic acid or a salt thereof, sulfonic acid or a salt thereof, phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;


xe611 to xe616 may be each independently selected from 0, 1, 2, and 3.


The compound represented by Formula 601 and the compound represented by Formula 602 may be selected from Compounds ET1 to ET15:




embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the ETL may be about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the ETL is within any of the foregoing ranges, the ETL may have satisfactory electron transport characteristics without a substantial increase in driving voltage.


The ETL may further include a metal-containing material in addition to the material described above.


The metal-containing material may include a Li complex. The Li complex may include, for example, compounds ET-D1 (lithium quinolate: LiQ) or ET-D2.




embedded image


The electron transport region may include an HBL. When the EML includes a phosphorescent dopant, the HBL may be configured (e.g., formed) to prevent (or reduce) diffusion of triplet excitons (e.g., excitons in a triplet state) or holes into the ETL.


When the electron transport region includes the HBL, the HBL may be formed on the EML by using (utilizing) various suitable methods such as vacuum deposition, spin coating, casting, LB, inkjet printing, laser printing, and LITI. When the HBL is formed by vacuum deposition and/or spin coating, the deposition and coating conditions may be similar to those for forming the HIL, though the deposition and coating conditions may vary according to a compound that is used (utilized) to form the HBL.


The HBL may include, for example, at least one selected from BCP and Bphen, but the HBL is not limited thereto.




embedded image


A thickness of the HBL may be from about 20 Å to about 1,000 Å, and in some embodiments, may be from about 30 Å to about 300 Å. When the thickness of the HBL is within any of the foregoing ranges, the HBL may have a hole blocking transporting ability without a substantial increase in driving voltage.


Then, the ETL is formed on the EML by various suitable methods such as vacuum deposition, spin coating, casting, LB, inkjet printing, laser printing, LITI. When the ETL is formed by vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for forming the HIL, though the deposition and coating conditions may vary according to a compound that is used (utilized) to form the ETL.


The electron transport region may include the ETL that facilitates injection of electrons from the second electrode 190.


The EIL may be formed on the ETL by using (utilizing) various suitable methods such as vacuum deposition, spin coating, casting, LB, inkjet printing, laser printing, and LITI. When the EIL is formed by vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for forming the HIL.


The EIL may include at least one selected from LiF, NaCl, CsF, Li2O, BaO, and LiQ.


A thickness of the EIL may be about 1 Å to about 100 Å or about 3 Å to about 90 Å. When the thickness of the EIL is within any of the foregoing ranges, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


The second electrode 190 is disposed on the organic layer 150. The second electrode 190 may be a cathode, which is an electron injection electrode, in which a material of the second electrode 190 may be a metal, an alloy, an electroconductive compound, or a mixture thereof having a low work function. Examples of the material of the second electrode 190 include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag). In some embodiments, ITO, IZO, or the like may be used (utilized) as the material of the second electrode 190. The second electrode 190 may be a reflective electrode, transflective electrode, or a transmissive electrode.


An organic layer of an organic light-emitting device according to an embodiment of the present invention may be formed by a deposition method using (utilizing) a compound according to an embodiment of the present invention or may be formed by a wet method in which a compound prepared as a solution according to an embodiment is coated.


An organic light-emitting device according to an embodiment of the present invention may be provided in various suitable flat display devices, for example, a passive matrix organic light-emitting device or an active matrix organic light-emitting device.


For example, when the organic light-emitting device is provided in the active matrix organic light-emitting device, a first electrode provided on a substrate may be electrically connected to a source electrode or a drain electrode of a thin film transistor as a pixel electrode. Also, the organic light-emitting device may be provided in a flat display device that can display image on two (e.g., both) sides of the flat display device.


Hereinabove, the organic light-emitting device was described with reference to the accompanying drawing, but organic light-emitting device is not limited thereto.


As used herein, the C1-C60 alkyl group refers to a linear or branched aliphatic C1-C60 hydrocarbon monovalent group and examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. As used herein, the C1-C60 alkylene group refers to a divalent group having the same structure as the C1-C60 alkyl group.


As used herein, the C1-C60 alkoxy group is a monovalent group having a Formula of —OA101 (wherein, A101 is the C1-C60 alkyl group) and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


As used herein, the C2-C60 alkenyl group (or C2-C60 alkenyl group) refers to a C2-C60 alkyl group having one or more carbon-carbon double bonds in a main chain (e.g., at a center thereof) or end thereof. Examples of the unsubstituted C2-C60 alkenyl group include ethenyl, propenyl, and butenyl. As used herein, the C2-C60 alkenylene group refers to a divalent group having the same structure as the C2-C60 alkenyl group.


As used herein, the C2-C60 alkynyl group (or C2-C60 alkynyl group) refers to a C2-C60 alkyl group having one or more carbon-carbon triple bonds in a main chain (e.g., at a center thereof) or end thereof. Examples of the unsubstituted C2-C60 alkynyl group include ethynyl, propynyl, and the like. As used herein, the C2-C60 alkynylene group refers to a divalent group having the same structure as the C2-C60 alkynyl group.


As used herein, the C3-C10 cycloalkyl group refers to a C3-C10 monovalent hydrocarbon monocyclic group and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. As used herein, the C3-C10 cycloalkylene group refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


As used herein, the C1-C10 heterocycloalkyl group refers to a C1-C10 monovalent monocyclic group including at least one selected from N, O, P, and S as a ring-forming atom and examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. As used herein, the C1-C10 heterocycloalkylene group refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


As used herein, the C3-C10 cycloalkenyl group refers to a C3-C10 monovalent monocyclic group having at least one double bond in a ring but without aromaticity (e.g., the C3-C10 cycloalkenyl group is non-aromatic), and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. As used herein, the C3-C10 cycloalkenylene group refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


As used herein, the C1-C10 heterocycloalkenyl group is a C1-C10 monovalent monocyclic group including at least one selected from N, O, P, and S as a ring-forming atom, and includes at least one double bond in a ring. Examples of the C2-C10 heterocycloalkenyl group include a 2,3-hydrofuranyl group and a 2,3-hydrothiophenyl group. As used herein, the C1-C10 heterocycloalkenylene group is a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


As used herein, the C6-C60 aryl group is a C6-C60 monovalent group having a carbocyclic aromatic system and the C6-C60 arylene group refers to a divalent group having a C6-C60 carbocyclic aromatic system. Examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group include two or more rings, the two or more rings may be fused to each other (e.g., the two more rings may be combined).


As used herein, the C1-C60 heteroaryl group refers to a monovalent group having a C1-C60 carbocyclic aromatic system including at least one heteroatom selected from N, O, P, and S as a ring-forming atom and the C1-C60 heteroarylene group refers to a divalent group having a C1-C60 carbocyclic aromatic system including at least one heteroatom selected from N, O, P, and S. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group include two or more rings, the two or more rings may be fused to each other (e.g., the two or more rings may be combined).


As used herein, the C6-C60 aryloxy group refers to —OA102 (wherein, A102 is the C6-C60 aryl group) and the C6-C60 arylthio group refers to —SA103 (wherein, A103 is the C6-C60 aryl group).


As used herein, the monovalent non-aromatic condensed polycyclic group refers to a monovalent group having two or more rings that are fused to each other (e.g., combined), including only carbon as a ring-forming atom (for example, carbon numbers may be 8 to 60), wherein the entire molecule does not have aromaticity (e.g., the monovalent non-aromatic condensed polycyclic group is non-aromatic). Examples of the monovalent non-aromatic condensed polycyclic group include a fluorenyl group or the like. As used herein, the divalent non-aromatic condensed polycyclic group may refer to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


As used herein, the monovalent non-aromatic hetero-condensed polycyclic group refers to a monovalent group having two or more rings that are fused to each other (e.g., combined), including a heteroatom selected from N, O, P, and S as a ring-forming atom, in addition to carbon (for example, carbon numbers may be 2 to 60), wherein the entire molecule does not have aromaticity (e.g., the monovalent non-aromatic hetero-condensed polycyclic group is non-aromatic). Examples of the monovalent non-aromatic hetero-condensed polycyclic group include a carbazolyl group or the like. As used herein, the divalent non-aromatic hetero-condensed polycyclic group refers to a divalent group having the same structure as the monovalent non-aromatic hetero-condensed polycyclic group.


Hereinafter, an organic light-emitting device according to an embodiment of the present invention is described with respect to examples, but the present invention is not limited to the examples.


Example 1-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, which was ultrasonically cleaned in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate in a thickness of 1200 Å to form an HTL. Thereafter, MADN and BD were vacuum deposited on the HTL at a weight ratio of 95:5 to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF5 were vacuum-deposited on the EML at a weight ratio of 50:50 to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited on the mixed layer to a thickness of 200 Å to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 1-2 to 1-34

An organic light-emitting device was manufactured as in Example 1-1, except that the mixed layer was formed utilizing compounds as shown in Table 1.


Comparative Examples 1 to 3

An organic light-emitting device was manufactured as in Example 1-1, except that the mixed layer was formed utilizing compounds as shown in Table 1.











TABLE 1







Mixed layer



















Example 1-1
BF1 + BF5



Example 1-2
BF1 + BF6



Example 1-3
BF1 + BF7



Example 1-4
BF1 + BF8



Example 1-5
BF1 + BF9



Example 1-6
BF1 + BF10



Example 1-7
BF1 + BF11



Example 1-8
BF1 + BF12



Example 1-9
BF1 + BF13



Example 1-10
BF1 + BF14



Example 1-11
BF1 + BF15



Example 1-12
BF2 + BF5



Example 1-13
BF2 + BF6



Example 1-14
BF2 + BF9



Example 1-15
BF2 + BF7



Example 1-16
BF2 + BF8



Example 1-17
BF2 + BF10



Example 1-18
BF2 + BF11



Example 1-19
BF2 + BF12



Example 1-20
BF2 + BF13



Example 1-21
BF2 + BF14



Example 1-22
BF2 + BF15



Example 1-23
BF3 + BF7



Example 1-24
BF3 + BF8



Example 1-25
BF4 + BF7



Example 1-26
BF4 + BF8



Example 1-27
BF16 + BF7



Example 1-28
BF16 + BF8



Example 1-29
BF17 + BF7



Example 1-30
BF17 + BF8



Example 1-31
BF18 + BF7



Example 1-32
BF18 + BF8



Example 1-33
BF19 + BF7



Example 1-34
BF19 + BF8



Comparative
Alq3



Example 1



Comparative
BF1



Example 2



Comparative
BF8



Example 3










Example 2-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, CBP and Ir(ppy)3 were vacuum-deposited on the HTL at a weight ratio of 90:10 to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF5 were vacuum-deposited at a weight ratio of 50:50 on the EML to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 2-2 to 2-11

Organic light-emitting devices were manufactured as in Example 2-1, except that the mixed layer was formed utilizing compounds as shown in Table 2.


Comparative Examples 4 to 6

Organic light-emitting devices were manufactured as in Example 2-1, except that the mixed layer was formed utilizing compounds as shown in Table 2 below.











TABLE 2







Mixed layer



















Example 2-1
BF1 + BF5



Example 2-2
BF1 + BF6



Example 2-3
BF1 + BF7



Example 2-4
BF1 + BF8



Example 2-5
BF1 + BF9



Example 2-6
BF1 + BF10



Example 2-7
BF1 + BF11



Example 2-8
BF1 + BF12



Example 2-9
BF1 + BF13



Example 2-10
BF1 + BF14



Example 2-11
BF1 + BF15



Comparative
Alq3



Example 4



Comparative
BF1



Example 5



Comparative
BF8



Example 6










Example 3-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, then washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, PH1 and Ir(ppy)3 were vacuum-deposited at a weight ratio of 90:10 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited on the EML at a weight ratio of 50:50 to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 3-2 to 3-4

An organic light-emitting device was manufactured as in Example 3-1, except that the mixed layer was formed utilizing compounds as shown in Table 3.











TABLE 3







Mixed layer



















Example 3-2
BF1 + BF8



Example 3-3
BF1 + BF9



Example 3-4
BF1 + BF11










Example 4-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, then washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, PH2 and Ir(ppy)3 were vacuum-deposited at a weight ratio of 90:10 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited on the EML at a weight ratio of 50:50 to a thickness of 200 Å to form a mixed layer.


Thereafter, Alga was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 4-2 to 4-4

An organic light-emitting device was manufactured as in Example 4-1, except that the mixed layer was formed utilizing compounds as shown in Table 4.











TABLE 4







Mixed layer



















Example 4-2
BF1 + BF8



Example 4-3
BF1 + BF9



Example 4-4
BF1 + BF11










Example 5-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, PH1, PH2, and Ir(ppy)3 were vacuum-deposited at a weight ratio of 45:45:10 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited thereon at a weight ratio of 50:50 on the EML to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 5-2 to 5-4

An organic light-emitting device was manufactured as in Example 5-1, except that the mixed layer was formed utilizing compounds as shown in Table 5.











TABLE 5







Mixed layer



















Example 5-2
BF1 + BF8



Example 5-3
BF1 + BF9



Example 5-4
BF1 + BF11










Example 6-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, CBP and Ir(pq)2acac were vacuum-deposited at a weight ratio of 95:5 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited on the EML at a weight ratio of 50:50 to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 6-2 to 6-4

An organic light-emitting device was manufactured as in Example 6-1, except that the mixed layer was formed utilizing compounds as shown in Table 6.


Comparative Examples 7 to 9

An organic light-emitting device was manufactured as in Example 6-1, except that the mixed layer was formed utilizing compounds as shown in Table 6.











TABLE 6







Mixed layer



















Example 6-2
BF1 + BF8



Example 6-3
BF1 + BF9



Example 6-4
BF1 + BF11



Comparative
Alq3



Example 7



Comparative
BF1



Example 8



Comparative
BF8



Example 9










Example 7-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, PH1 and Ir(pq)2acac were vacuum-deposited at a weight ratio of 95:5 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited thereon at a weight ratio of 50:50 on the EML to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Examples 7-2 to 7-4

An organic light-emitting device was manufactured as in Example 7-1, except that the mixed layer was formed utilizing compounds as shown in Table 7.











TABLE 7







Mixed layer



















Example 7-2
BF1 + BF8



Example 7-3
BF1 + BF9



Example 7-4
BF1 + BF11










Example 8-1

An ITO glass substrate was cut into a size of 50 mm×50 mm×0.5 mm, washed in acetone, isopropyl alcohol and pure (or substantially pure) water, separately, for 15 minutes each, and then UV ozone cleaned for 30 minutes.


HTM was vacuum-deposited on the substrate to a thickness of 1200 Å to form an HTL. Thereafter, PH2 and Ir(pq)2acac were vacuum-deposited at a weight ratio of 95:5 on the HTL to a thickness of 300 Å to form an EML. Thereafter, BF1 and BF7 were vacuum-deposited on the EML at a weight ratio of 50:50 to a thickness of 200 Å to form a mixed layer.


Thereafter, Alq3 was vacuum-deposited to a thickness of 200 Å on the mixed layer to form an ETL. LiF was vacuum-deposited on the ETL to a thickness of 10 Å to form an EIL. Al was vacuum-deposited on the EIL to a thickness of 2000 Å to manufacture an organic light-emitting device.




embedded image


embedded image


Example 8-2 to 8-4

An organic light-emitting device was manufactured as in Example 8-1, except that the mixed layer was formed utilizing compounds as shown in Table 8.











TABLE 8







Mixed layer



















Example 8-2
BF1 + BF8



Example 8-3
BF1 + BF9



Example 8-4
BF1 + BF11












embedded image


embedded image


embedded image


embedded image


embedded image


Comparative Example 10

An organic light-emitting device was manufactured as in Example 1, except that the mixed layer was formed utilizing CBP and BCP.


Evaluation Example 1

Efficiencies and lifespans (T90) of the organic light-emitting devices manufactured in Examples 1-1 to 8-4 and Comparative Examples 1 to 10 were measured and results obtained therefrom are shown in Table 9. T90 refers to the amount of time taken for brightness to decrease from an initial brightness to 90% of the initial brightness.












TABLE 9







Efficiency
T90



(cd/A)
(hr)




















Example 1-1
5.3
130



Example 1-2
5.1
110



Example 1-3
5.2
130



Example 1-4
5.9
110



Example 1-5
5.8
120



Example 1-6
5.7
110



Example 1-7
5.6
140



Example 1-8
5.7
130



Example 1-9
5.7
130



Example 1-10
5.6
130



Example 1-11
5.3
110



Example 1-12
5.2
130



Example 1-13
5.0
120



Example 1-14
5.1
120



Example 1-15
5.6
110



Example 1-16
5.5
130



Example 1-17
5.4
110



Example 1-18
5.5
120



Example 1-19
5.6
130



Example 1-20
5.4
120



Example 1-21
5.3
130



Example 1-22
5.1
100



Example 1-23
5.2
130



Example 1-24
5.5
120



Example 1-25
5.5
110



Example 1-26
5.3
120



Example 1-27
5.4
90



Example 1-28
5.3
100



Example 1-29
5.6
80



Example 1-30
5.3
90



Example 1-31
5.6
100



Example 1-32
5.5
110



Example 1-33
5.3
100



Example 1-34
5.2
110



Comparative
4.5
35



Example 1



Comparative
4.4
50



Example 2



Comparative
4.7
60



Example 3



Example 2-1
49
130



Example 2-2
50
110



Example 2-3
53
130



Example 2-4
55
150



Example 2-5
54
140



Example 2-6
52
120



Example 2-7
53
140



Example 2-8
54
150



Example 2-9
55
120



Example 2-10
55
140



Example 2-11
48
100



Example 3-1
54
160



Example 3-2
59
180



Example 3-3
60
170



Example 3-4
58
190



Example 4-1
55
150



Example 4-2
60
140



Example 4-3
58
140



Example 4-4
56
130



Example 5-1
56
200



Example 5-2
65
200



Example 5-3
62
180



Example 5-4
60
210



Comparative
44
50



Example 4



Comparative
43
40



Example 5



Comparative
48
90



Example 6



Example 6-1
23
160



Example 6-2
22
180



Example 6-3
21
190



Example 6-4
20
180



Example 7-1
22
210



Example 7-2
23
220



Example 7-3
20
200



Example 7-4
22
190



Example 8-1
25
250



Example 8-2
22
270



Example 8-3
21
220



Example 8-4
23
240



Comparative
15
120



Example 7



Comparative
11
50



Example 8



Comparative
18
130



Example 9



Comparative
16
140



Example 10










As can be seen in Table 9, it may be confirmed that the results from Examples 1-1 to 8-4 are better than the results from Comparative Examples 1 to 10.


As described above, according to one or more of embodiments of the present invention, an organic light-emitting device according to an embodiment may have high efficiency, a long lifespan, and low driving voltage characteristics.


It should be understood that the example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.


While one or more embodiments of the present invention have been described with reference to the accompanying drawing, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims, and equivalents thereof.

Claims
  • 1. An organic light-emitting device comprising: a first electrode;a second electrode facing the first electrode; andan organic layer between the first electrode and the second electrode,the organic layer comprising: an emission layer,an electron transport region between the second electrode and the emission layer, anda mixed layer between the emission layer and the electron transport region, the mixed layer comprising a first material and a second material,wherein the first material and the second material are selected from a pyrrolidine-based compound and a C10-C30 polycyclic aromatic hydrocarbon-based compound, and a triplet energy EgT1 of at least one selected from the first material and the second material is 2.2 eV or greater, andwherein the pyrrolidine-based compound is represented by Formula 2:
  • 2. The organic light-emitting device of claim 1, wherein the electron transport region comprises an electron transport layer, and the emission layer and the electron transport layer are adjacent to each other.
  • 3. The organic light-emitting device of claim 1, wherein the C10-C30 polycyclic aromatic hydrocarbon-based compound is represented by Formula 3:
  • 4. The organic light-emitting device of claim 1, wherein the pyrrolidine-based compound is a pyrrolidine-based compound represented by one selected from Formulae 2-1 to 2-7:
  • 5. The organic light-emitting device of claim 1, wherein the pyrrolidine-based compound is a pyrrolidine-based compound represented by one selected from Formulae 2-1A to 2-7A:
  • 6. The organic light-emitting device of claim 3, wherein the C10-C30 polycyclic aromatic hydrocarbon-based compound is a C10-C30 polycyclic aromatic hydrocarbon-based compound represented by Formula 3-1:
  • 7. The organic light-emitting device of claim 6, wherein the C10-C30 polycyclic aromatic hydrocarbon-based compound is represented by Formula 3-1A:
  • 8. The organic light-emitting device of claim 1, wherein the first material is a hole transporting compound, and the second material is an electron transporting compound.
  • 9. The organic light-emitting device of claim 1, wherein the first material is an electron transporting compound, and the second material is a hole transporting compound.
  • 10. The organic light-emitting device of claim 1, wherein a weight ratio of the first material to the second material is from about 10:1 to about 1:10.
  • 11. The organic light-emitting device of claim 1, wherein a thickness of the mixed layer is about 5 Å to about 400 Å.
  • 12. The organic light-emitting device of claim 1, wherein an electron affinity (EA1) of the first material and an electron affinity (EA2) of the second material satisfy Inequation 1: EA1<EA2  Inequation 1.
  • 13. The organic light-emitting device of claim 1, wherein the emission layer comprises a host and a dopant, and a triplet energy (EgDT2) of the dopant satisfies Inequation 2: EgT1>EgDT2  Inequation 2.
  • 14. The organic light-emitting device of claim 1, wherein the emission layer comprises a host and a dopant, and a triplet energy (EgHT2) of the host satisfies Inequation 3: EgT1>EgHT2  Inequation 3.
  • 15. The organic light-emitting device of claim 1, further comprising a hole transport region between the emission layer and the first electrode, the hole transport region comprising a p-dopant.
  • 16. The organic light-emitting device of claim 15, wherein the p-dopant is selected from quinone derivatives, metal oxides, F-containing compounds, Cl-containing compounds, and CN-containing compounds.
Priority Claims (1)
Number Date Country Kind
10-2014-0053618 May 2014 KR national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 14/567,986, filed Dec. 11, 2014, which claims priority to and the benefit of Korean Patent Application No. 10-2014-0053618, filed May 2, 2014, the entire content of both of which is incorporated herein by reference.

US Referenced Citations (6)
Number Name Date Kind
20070054151 Iwakuma et al. Mar 2007 A1
20110260138 Xia et al. Oct 2011 A1
20110266526 Ma et al. Nov 2011 A1
20120126222 Ogiwara et al. May 2012 A1
20120153268 Kawamura et al. Jun 2012 A1
20130001523 Chun et al. Jan 2013 A1
Foreign Referenced Citations (7)
Number Date Country
10-2013-0010056 Jan 2013 KR
10-2013-0067274 Jun 2013 KR
10-2013-0095620 Aug 2013 KR
10-2013-0100236 Sep 2013 KR
WO 2007029403 Mar 2007 WO
WO 2011086941 Jul 2011 WO
WO 2012176818 Dec 2012 WO
Related Publications (1)
Number Date Country
20180315943 A1 Nov 2018 US
Divisions (1)
Number Date Country
Parent 14567986 Dec 2014 US
Child 16030692 US