This application claims the priority benefit of Taiwan application serial no. 101134846, filed on Sep. 21, 2012. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
1. Field of the Invention
The invention relates to a display apparatus. More particularly, the invention relates to an organic light emitting diode (OLED) display apparatus.
2. Description of Related Art
With the advance of science and technology, flat panel displays have drawn most attention in the field of displays recently. Among the flat panel displays, organic light emitting diode (OLED) displays characterized by self-luminescence, wide view angle, low power consumption, simple manufacturing process, low costs, low operational temperature range, high responsive speed, and full color have a great potential of becoming the next-generation mainstream flat panel displays.
To manage the brightness of the OLED, the OLED is often serially connected to a transistor. Through controlling the conducting state of the transistor, the current flowing through the OLED may be controlled, and thereby the brightness of the OLED may be further managed. Generally, during a period of programming a pixel, it is intended to equalize the voltage between a gate and a source of the transistor coupled to the OLED with a threshold voltage, so as to subsequently perform code compensation. Hence, how to equalize the voltage between the gate and the source of the transistor coupled to the OLED with the threshold voltage through circuitry design or through adjustment of driving ways has become one of the important topics in terms of driving the OLED.
The invention is directed to an organic light emitting diode (OLED) display apparatus with favorable display quality.
In an embodiment of the invention, an OLED display apparatus that includes a power circuit and a pixel is provided. The power circuit serves to provide a first voltage. The pixel includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a capacitor, and an OLED. A first terminal of the first transistor receives a data voltage, and a control terminal of the first transistor receives a scan signal. A first terminal of the capacitor is coupled to a second terminal of the first transistor. A first terminal of the second transistor receives the first voltage, and a control terminal of the second transistor is coupled to a second terminal of the capacitor. A first terminal of the third transistor is coupled to the control terminal of the second transistor, a control terminal of the third transistor receives the scan signal, and a second terminal of the third transistor is coupled to a second terminal of the second transistor. A first terminal of the fourth transistor is coupled to the second terminal of the second transistor, and a control terminal of the fourth transistor receives a light emitting signal. The OLED, the second transistor, and the fourth transistor are serially coupled between the first voltage and a second voltage. A first terminal of the fifth transistor receives an initial voltage, a control terminal of the fifth transistor receives the light emitting signal, and a second terminal of the fifth transistor is coupled to the first terminal of the capacitor. During a programming period, the scan signal is enabled, and the light emitting signal is disabled. Besides, the power circuit regulates a voltage level or a current of the first voltage to accelerate a voltage level of the control terminal of the second transistor to reach a target voltage.
According to an embodiment of the invention, a regulating period of the first voltage is shorter than the programming period.
According to an embodiment of the invention, when the first, second, third, fourth, and fifth transistors are p-type transistors, the first voltage is a system high voltage, and the second voltage is a ground voltage.
According to an embodiment of the invention, the target voltage is obtained by subtracting a threshold voltage of the second transistor from the system high voltage.
According to an embodiment of the invention, the power circuit includes a first power supply unit and a first multiplexer. The first power supply unit serves to provide a first reference voltage and a second reference voltage, and the second reference voltage is higher than the first reference voltage. The first multiplexer is coupled to the first power supply unit to receive the first reference voltage and the second reference voltage and receive a regulating signal. When the regulating signal is enabled, the first multiplexer outputs the second reference voltage as the system high voltage according to the enabled regulating signal; when the regulating signal is disabled, the first multiplexer outputs the first reference voltage as the system high voltage according to the disabled regulating signal.
According to an embodiment of the invention, the regulating signal is enabled during a regulating period of the system high voltage.
According to an embodiment of the invention, the first multiplexer includes a sixth transistor and a seventh transistor. A first terminal of the sixth transistor receives the first reference voltage, a control terminal of the sixth transistor receives the regulating signal, and a second terminal of the sixth transistor is coupled to the first terminal of the second transistor. A first terminal of the seventh transistor receives the second reference voltage, a control terminal of the seventh transistor receives the regulating signal, and a second terminal of the seventh transistor is coupled to the first terminal of the second transistor. Here, the sixth transistor and the seventh transistor are a p-type transistor and an n-type transistor, respectively.
According to an embodiment of the invention, when the first, second, third, fourth, and fifth transistors are n-type transistors, the first voltage is a system low voltage, and the second voltage is a system high voltage.
According to an embodiment of the invention, the target voltage is obtained by adding a threshold voltage of the second transistor and the system low voltage together.
According to an embodiment of the invention, the power circuit includes a second power supply unit and a second multiplexer. The second power supply unit serves to provide a third reference voltage and a fourth reference voltage, and the fourth reference voltage is lower than the third reference voltage. The second multiplexer is coupled to the second power supply unit to receive the third reference voltage and the fourth reference voltage and receive a regulating signal. When the regulating signal is enabled, the second multiplexer outputs the fourth reference voltage as the system low voltage according to the enabled regulating signal; when the regulating signal is disabled, the second multiplexer outputs the third reference voltage as the system low voltage according to the disabled regulating signal.
According to an embodiment of the invention, the regulating signal is enabled during a regulating period of the system low voltage.
According to an embodiment of the invention, the second multiplexer includes an eighth transistor and a ninth transistor. A first terminal of the eighth transistor receives the third reference voltage, a control terminal of the eighth transistor receives the regulating signal, and a second terminal of the eighth transistor is coupled to the first terminal of the second transistor. A first terminal of the ninth transistor receives the fourth reference voltage, a control terminal of the ninth transistor receives the regulating signal, and a second terminal of the ninth transistor is coupled to the first terminal of the second transistor. Here, the eighth transistor and the ninth transistor are a p-type transistor and an n-type transistor, respectively.
According to an embodiment of the invention, the power circuit includes a third power supply unit and a third multiplexer. The third power supply unit serves to provide the first voltage and a reference current, and the reference current is a fixed current. The third multiplexer is coupled to the third power supply unit to receive the first voltage and the reference current and receive a regulating signal. When the regulating signal is enabled, the third multiplexer outputs the reference current to the first terminal of the second transistor according to the enabled regulating signal; when the regulating signal is disabled, the third multiplexer outputs the first voltage to the first terminal of the second transistor according to the disabled regulating signal.
According to an embodiment of the invention, the regulating signal is enabled during a regulating period of the first voltage.
According to an embodiment of the invention, the third multiplexer includes a tenth transistor and an eleventh transistor. A first terminal of the tenth transistor receives the first voltage, a control terminal of the tenth transistor receives the regulating signal, and a second terminal of the tenth transistor is coupled to the first terminal of the second transistor. A first terminal of the eleventh transistor receives the reference current, a control terminal of the eleventh transistor receives the regulating signal, and a second terminal of the eleventh transistor is coupled to the first terminal of the second transistor. Here, the tenth transistor and the eleventh transistor are a p-type transistor and an n-type transistor, respectively.
According to an embodiment of the invention, the scan signal is disabled and the light emitting signal is enabled during a light emitting period.
According to an embodiment of the invention, the OLED display apparatus further includes a data driver for providing the data voltage.
According to an embodiment of the invention, the OLED display apparatus further includes a scan driver for providing the scan signal and the light emitting signal.
As described above, in the OLED display apparatus described in an embodiment of the invention, the voltage level or the current of the first voltage is regulated during the programming period, so as to accelerate the voltage level of the control terminal of the second transistor to reach the target voltage. Thereby, the sampling error rate of each pixel may be reduced, and the display quality of the OLED display apparatus may accordingly be improved. Here, the sampling error rate refers to a difference between an actual voltage level and a projected voltage level of the gate of the second transistor during the light emitting period.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the invention in details.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The power circuit 140 is coupled to the display panel 150 and provides a system high voltage VDD1 (corresponding to the first voltage) and a ground voltage GND (corresponding to the second voltage) to the display panel 150. The display panel 150 has a plurality of pixels PX1, and each pixel PX1 receives the system high voltage VDD1, the ground voltage GND, a corresponding data voltage VDT1, a corresponding scan signal SC1, and a corresponding light emitting signal SEM1.
Each pixel PX1 includes a plurality of transistors T1 to T5 (respectively corresponding to the first transistor to the fifth transistor), a capacitor C1, and an OLED OLD1. Here, the transistors T1 to T5 are all p-type transistors. The source (corresponding to the first terminal) of the transistor T1 receives the corresponding data voltage VDT1, and the gate (corresponding to the control terminal) of the transistor T1 receives the corresponding scan signal SC1. A first terminal of the capacitor C 1 is coupled to the drain (corresponding to the second terminal) of the transistor T1. The source (corresponding to the first terminal) of the transistor T2 receives the system high voltage VDD1, and the gate (corresponding to the control terminal) of the transistor T2 is coupled to a second terminal of the capacitor C1. The source (corresponding to the first terminal) of the transistor T3 is coupled to the gate of the transistor T2, the gate (corresponding to the control terminal) of the transistor T3 receives the corresponding scan signal SC1, and the drain (corresponding to the second terminal) of the transistor T3 is coupled to the drain (corresponding to the second terminal) of the transistor T2. The source (corresponding to the first terminal) of the transistor T4 is coupled to the drain of the transistor T2, and the gate (corresponding to the control terminal) of the transistor T4 receives the corresponding light emitting signal SEM1. The anode of the OLED OLD1 is coupled to the drain of the transistor T4, and the cathode of the OLED OLD1 is coupled to the ground voltage GND. The source (corresponding to the first terminal) of the transistor T5 receives an initial voltage Vint1, the gate (corresponding to the control terminal) of the transistor T5 receives the corresponding light emitting signal SEM1, and the drain (corresponding to the second terminal) of the transistor T5 is coupled to the first terminal of the capacitor C1.
In the present embodiment, the OLED OLD1 is forward-coupled between the drain of the transistor T4 and the ground voltage GND; however, in another embodiment, the OLED OLD1 may be forward-coupled between the system high voltage VDD1 and the source of the transistor T2. That is, the OLED OLD1 and the transistors T2 and T4 are serially coupled between the system high voltage VDD1 and the ground voltage GND.
During the light emitting period PE1, the scan driver 120 disables the corresponding scan signal SC1 and enables the corresponding light emitting signal SEM1, and the data driver 130 re-sets the voltage level of the corresponding data voltage VDT1. Here, the voltage level for disabling the scan signal SC1 is a high voltage level, and the voltage level for enabling the light emitting signal SEM1 is a low voltage level, for instance. At this time, the transistors T1 and T3 are controlled by the corresponding scan signal SC1 and are then turned off, while the transistors T4 and T5 are controlled by the corresponding light emitting signal SEM1 and are then turned on. The conducting state of the transistor T2 corresponds to the voltage level of the gate of the transistor T2, and the voltage level of the gate of the transistor T2 is determined by the initial voltage Vint1 and the voltage across the capacitor C1.
As shown in
Here, Id1(t) denotes the transient current value of the current Id1, Ic(t) denotes the transient current value of the current Ic, VG(t) refers to the transient voltage level of the gate of the transistor T2, C refers to the capacitance of the capacitor C1, VDT refers to the voltage value of the data voltage VDT1, k0 refers to the coefficient of current of the transistor T2, the voltage level VDD refers to the voltage value of the system high voltage VDD1, Vth refers to the threshold voltage of the transistor T2, I° refers to the initial current, and Cs refers to a constant.
In view of the above, given t=∞, the voltage level of the gate of the transistor T2 is equal to VDD−|Vth| (corresponding to the target voltage obtained by subtracting the threshold voltage Vth of the second transistor T2 from the system high voltage VDD1). However, the higher the voltage level of the gate of the transistor T2, the lower the hole mobility and the electron mobility of the transistor T2. Therefore, within a limited period of time, the voltage level of the gate of the transistor T2 is unable to reach VDD−|Vth|.
According to the present embodiment, to accelerate the voltage level of the gate of the transistor T2 to reach the target voltage obtained by subtracting the threshold voltage Vth of the second transistor T2 from the system high voltage VDD1, the power circuit 140 may be controlled to raise the voltage level of the system high voltage VDD1 during a regulating period PA1. Here, the regulating period PA1 is set as half the programming period PP1, which should not be construed as a limitation to the invention. However, note that the regulating period PA1 is shorter than the programming period PP1.
To be specific, in the present embodiment, the first multiplexer 320 includes transistors T6 and T7 (corresponding to the sixth transistor and the seventh transistor), the transistor T6 is a p-type transistor, and the transistor T7 is an n-type transistor. The source (corresponding to the first terminal) of the transistor T6 receives the first reference voltage VR1, the gate (corresponding to the control terminal) of the transistor T6 receives the regulating signal SA1, and the drain (corresponding to the second terminal) of the transistor T6 is coupled to the source of the transistor T2. The drain (corresponding to the first terminal) of the transistor T7 receives the second reference voltage VR2, the gate (corresponding to the control terminal) of the transistor T7 receives the regulating signal SA1, and the source (corresponding to the second terminal) of the transistor T7 is coupled to the source of the transistor T2.
When the regulating signal SA1 is enabled, the transistor T6 is turned off, and the transistor T7 is turned on; thereby, the second reference voltage VR2 may be output to the source of the transistor T2 as the system high voltage VDD1; when the regulating signal SA1 is disabled, the transistor T6 is turned on, and the transistor T7 is turned off; thereby, the first reference voltage VR1 may be output to the source of the transistor T2 as the system high voltage VDD1. Here, the voltage level for enabling the regulating signal SA1 is a high voltage level, and the voltage level for disabling the regulating signal SA1 is a low voltage level, for instance.
The power circuit 540 is coupled to the display panel 550 and provides a system high voltage VDD2 (corresponding to the second voltage) and a system low voltage VSS (corresponding to the first voltage) to the display panel 550. The display panel 550 has a plurality of pixels PX3, and each pixel PX3 receives the system high voltage VDD2, the system low voltage VSS, a corresponding data voltage VDT2, a corresponding scan signal SC2, and a corresponding light emitting signal SEM2.
Each pixel PX3 includes a plurality of transistors T8 to T12 (respectively corresponding to the first transistor to the fifth transistor), a capacitor C2, and an OLED OLD2. Here, the transistors T8 to T12 are all n-type transistors. The drain (corresponding to the first terminal) of the transistor T8 receives the corresponding data voltage VDT2, and the gate (corresponding to the control terminal) of the transistor T8 receives the corresponding scan signal SC2. A first terminal of the capacitor C2 is coupled to the source (corresponding to the second terminal) of the transistor T8. The gate (corresponding to the control terminal) of the transistor T9 is coupled to a second terminal of the capacitor C2. The source (corresponding to the first terminal) of the transistor T10 is coupled to the gate of the transistor T9, the gate (corresponding to the control terminal) of the transistor T10 receives the corresponding scan signal SC2, and the drain (corresponding to the second terminal) of the transistor T10 is coupled to the drain (corresponding to the second terminal) of the transistor T9. The source (corresponding to the first terminal) of the transistor T11 is coupled to the drain (corresponding to the second terminal) of the transistor T9, the gate (corresponding to the control terminal) of the transistor T11 receives the corresponding light emitting signal SEM2, and the drain (corresponding to the second terminal) of the transistor T11 receives the system high voltage VDD2. The anode of the OLED OLD2 is coupled to the source (corresponding to the first terminal) of the transistor T9, and the cathode of the OLED OLD2 is coupled to the system low voltage VSS. The drain (corresponding to the first terminal) of the transistor T12 receives an initial voltage Vint2, the gate (corresponding to the control terminal) of the transistor T12 receives the corresponding light emitting signal SEM2, and the source (corresponding to the second terminal) of the transistor T12 is coupled to the first terminal of the capacitor C2. Here, the source of the transistor T9 receives the system low voltage VSS through the OLED OLD2.
In the present embodiment, the OLED OLD2 is forward-coupled between the source of the transistor T9 and the system low voltage VSS; however, in another embodiment, the OLED OLD2 may be forward-coupled between the system high voltage VDD2 and the drain of the transistor T11. That is, the OLED OLD2 and the transistors T9 and T11 are serially coupled between the system high voltage VDD2 and the system low voltage VSS.
During the light emitting period PE2, the scan driver 520 disables the corresponding scan signal SC2 and enables the corresponding light emitting signal SEM2, and the data driver 530 re-sets the voltage level of the corresponding data voltage VDT2. Here, the voltage level for disabling the scan signal SC2 is a low voltage level, and the voltage level for enabling the light emitting signal SEM2 is a high voltage level, for instance. At this time, the transistors T8 and T10 are controlled by the corresponding scan signal SC2 and are then turned off, while the transistors T11 and T12 are controlled by the corresponding light emitting signal SEM2 and are then turned on. The conducting state of the transistor T9 corresponds to the voltage level of the gate of the transistor T9, and the voltage level of the gate of the transistor T9 is determined by the initial voltage Vint2 and the voltage across the capacitor C2.
According to the present embodiment, to accelerate the voltage level of the gate of the transistor T9 to reach the target voltage obtained by adding the threshold voltage Vth of the transistor T9 and the system low voltage VSS together, the power circuit 540 may be controlled to lower down the voltage level of the system low voltage VSS during a regulating period PA2. Here, the regulating period PA2 is set as half the programming period PP2, which should not be construed as a limitation to the invention. However, note that the regulating period PA2 is shorter than the programming period PP2.
To be specific, in the present embodiment, the second multiplexer 620 includes transistors T13 and T14 (corresponding to the eighth transistor and the ninth transistor), the transistor T13 is a p-type transistor, and the transistor T14 is an n-type transistor. The source (corresponding to the first terminal) of the transistor T13 receives the third reference voltage VR3, the gate (corresponding to the control terminal) of the transistor T13 receives the regulating signal SA2, and the drain (corresponding to the second terminal) of the transistor T13 is coupled to the cathode of the OLED OLD2. The drain (corresponding to the first terminal) of the transistor T14 receives the fourth reference voltage VR4, the gate (corresponding to the control terminal) of the transistor T14 receives the regulating signal SA2, and the source (corresponding to the second terminal) of the transistor T14 is coupled to the cathode of the OLED OLD2.
When the regulating signal SA2 is enabled, the transistor T13 is turned off, and the transistor T14 is turned on; thereby, the fourth reference voltage VR4 may be output to the cathode of the OLED OLD2 as the system low voltage VSS; when the regulating signal SA2 is disabled, the transistor T13 is turned on, and the transistor T14 is turned off; thereby, the third reference voltage VR3 may be output to the cathode of the OLED OLD2 as the system low voltage VSS. Here, the voltage level for enabling the regulating signal SA2 is a high voltage level, and the voltage level for disabling the regulating signal SA2 is a low voltage level, for instance.
In the previous embodiments, the voltage level of the gate of the transistor coupled to the OLED is accelerated to reach the target voltage by regulating the voltage; nonetheless, in other embodiments, the current flowing through the transistor coupled to the OLED may also be regulated to achieve the same effect.
To be specific, in the present embodiment, the third multiplexer 820 includes transistors T15 and T16 (corresponding to the tenth transistor and the eleventh transistor), the transistor T15 is a p-type transistor, and the transistor T16 is an n-type transistor. The source (corresponding to the first terminal) of the transistor T15 receives the system high voltage VDD1, the gate (corresponding to the control terminal) of the transistor T15 receives the regulating signal SA3, and the drain (corresponding to the second terminal) of the transistor T15 is coupled to the source of the transistor T2. The drain (corresponding to the first terminal) of the transistor T16 receives the reference current IR1, the gate (corresponding to the control terminal) of the transistor T16 receives the regulating signal SA3, and the source (corresponding to the second terminal) of the transistor T16 is coupled to the source of the transistor T2.
When the regulating signal SA3 is enabled, the transistor T15 is turned off, and the transistor T16 is turned on; thereby, the reference current IR1 may be output to the source of the transistor T2; when the regulating signal SA3 is disabled, the transistor T15 is turned on, and the transistor T16 is turned off; thereby, the system high voltage VDD1 may be output to the source of the transistor T2. Here, the voltage level for enabling the regulating signal SA3 is a high voltage level, and the voltage level for disabling the regulating signal SA3 is a low voltage level, for instance.
To sum up, in the OLED display apparatus described in an embodiment of the invention, the voltage level or the current of the system high voltage or the system low voltage is regulated during the programming period, so as to accelerate the voltage level of the gate of the transistor coupled to the OLED to reach the target voltage. Thereby, the sampling error rate of each pixel may be reduced, and the display quality of the OLED display apparatus may accordingly be improved. Here, the sampling error rate refers to a difference between an actual voltage level and a projected voltage level of the gate of the transistor coupled to the OLED during the light emitting period.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101134846 | Sep 2012 | TW | national |