Field of the Invention
The present invention relates to an OLED display device and a method of fabricating the same.
Discussion of the Related Art
In recent years, organic light emitting diode (OLED) display devices are attracting considerable attention as flat panel display devices, which solve high weight and high volume, which are problems of cathode ray tubes (CRTs).
Such an OLED display device includes an anode, a cathode, and an organic semiconductor layer formed between the anode and the cathode. The organic semiconductor layer includes a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer and an electron injection layer.
In this regard, OLED display devices are disadvantageously vulnerable to deterioration caused by internal factors, for example, deterioration of electrodes and the light emitting layer by oxygen and deterioration caused by light emitting layer-interface reaction and deterioration caused by external factors such as exterior moisture, oxygen and UV. Accordingly, packaging and encapsulation of OLED display devices are considerably important.
With reference to
The organic film 90b constituting the encapsulation layer 90 is made of a polymer and is formed by applying a liquid polymer to the substrate 70 and then curing the same. The organic film 90b is flowable until it is cured and the liquid polymer constituting the organic film 90b advantageously permeates a pad region formed at the periphery of the substrate 70.
Accordingly, the present invention is directed to an OLED display device and a method of fabricating the same that substantially obviate one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide an OLED display device which includes at least one dam at the periphery of a substrate to prevent a liquid polymer constituting an organic film from permeating a pad area during production of the organic film constituting an encapsulation layer, and a method of fabricating the same.
Additional features and advantages of the invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, an OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
In another aspect, a method for manufacturing an OLED display device includes forming an organic light emitting element in a display area on a substrate, forming a plurality of dams between the display area and a pad area provided with a plurality of pads, and forming an encapsulation layer on the substrate such that the encapsulation layer covers the organic light emitting element, wherein the dam controls flow of an organic film material constituting the encapsulation layer.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Hereinafter, an OLED display device and a method of fabricating the same according to an embodiment of the present invention will be described in detail with reference to the annexed drawings.
With reference to
The dam 10 functions to prevent a liquid polymer constituting the organic film 24 from permeating the pad area AA during production of the organic film 24 constituting the encapsulation layer 20. For this purpose, the dam 10 may be formed only between the display area AA and the pad area PA and is preferably formed to surround the periphery of the display area AA.
As shown in
As such, the liquid polymer can be prevented from permeating the pad area PA during formation of the organic film 24 constituting the encapsulation layer 20 by forming the dam 10 at the periphery of the substrate SUB. The dam 10 will be described in more detail later.
Hereinafter, the organic light emitting element formed in display area AA will be described in detail.
With reference to
The switching TFT ST is formed at the intersection between a gate line (not shown) and a data line (not shown) and is connected thereto. The switching TFT ST functions to select a pixel. For this purpose, the switching TFT ST includes a gate electrode SG branching from the gate line, a semiconductor layer SA, a source electrode SS and a drain electrode SD.
The driving TFT DT functions to drive an anode ANO disposed at the pixel selected by the switching TFT ST. For this purpose, the driving TFT DT includes a gate electrode DG connected to the drain electrode SD of the switching TFT ST, a semiconductor layer DA, a source electrode DS connected to the driving current supply line (not shown) and a drain electrode DD. The drain electrode DD of the driving TFT DT is connected to the anode ANO of the OLED.
The substrate SUB provided with the switching TFT ST and the driving TFT DT are coated with a passivation film PAS and a planarization film PL. A plurality of banks BAs dividing a plurality of light emitting regions is formed on the substrate SUB including the planarization film PL. In addition, at least one spacer SP is further formed on at least one of the banks BAs.
An anode ANO contacting the drain electrode DD of the driving TFT DT through the contact hole is formed in each light emitting region. An organic semiconductor layer OL is formed on the anode ANO and a cathode CAT is stacked on the organic semiconductor layer OL. The organic semiconductor layer OL includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
The organic light emitting element on the substrate SUB including the banks BAs and the spacer SP is encapsulated by forming an encapsulation layer 20 having a plurality of layers including a first inorganic film 22, an organic film 24 and a second inorganic film 26. The encapsulation layer 20 is bonded to the encapsulation substrate (not shown) via an adhesion layer (not shown) interposed between the encapsulation layer 20 and the encapsulation substrate.
The organic film 24 provided in the encapsulation layer 20 is made of a polymer and is formed by applying a liquid polymer to the substrate SUB and curing the same. The polymer having a liquid phase upon formation of the organic film 24 is controlled by the dam 10 as shown in
With reference to
Meanwhile, a plurality of dams 10a, 10b and 10c are formed in a middle area MA between the pad area PA where the pads 30 are formed and the display area AA where the organic light emitting element is formed. The dams 10a, 10b and 10c prevent the liquid polymer from permeating the pad area PA during formation of the organic film 24 of the encapsulation layer 20.
The dam 10 may be made of an organic material constituting the banks BA and the spacers SP formed in the display area AA. In this case, the dams 10 are formed together with the banks BA or the spacer SP in the same process. In addition, the dam 10 may be made of a metal constituting the TFTs, for example, the same material as the gate, source and drain electrodes. In this case, the dam 10 is formed during the formation of TFTs.
As such, the dam 10 may be made of the same material as at least one of an organic material constituting the banks BA and spacer SP and a metal material constituting TFTs. Accordingly, a separate process or apparatus for forming the dam 10 is not needed.
Meanwhile, as shown in
Hereinafter, the dam 10 according to embodiments of the present invention will be described in detail.
In
As shown in
In addition, as shown in
With reference to
Among the dams 10a, 10b, 10c and 10d, the dams 10a, 10b and 10c formed in relatively outer regions are formed in a first direction (x direction of
The closest one 10d of the dams 10a, 10b, 10c and 10d to the display area AA includes a plurality of sub-dams spaced from one another by a predetermined distance in the first direction and each sub-dam is formed in a second direction (Y direction of
As such, the liquid polymer can be prevented from permeating the pad area PA upon formation of the organic film 24 constituting the encapsulation layer 20 by forming dams at the periphery of the substrate SUB. In addition, the dam 10 induces the liquid polymer to flow toward the periphery when flowability of the liquid polymer is deteriorated, thereby preventing blurring caused by the thickness difference of the organic film.
As apparent from the foregoing, dams may be formed at the periphery of the substrate SUB in an outer region of the substrate SUB, thereby preventing the liquid polymer from permeating the pad area PA upon formation of the organic film 24 constituting the encapsulation layer 20. In addition, the dam 10 induces the liquid polymer to flow to the periphery when flowability of the liquid polymer is deteriorated, thereby preventing blurring caused by the thickness difference of the organic film.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0104250 | Aug 2013 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 14/449,228, filed on Aug. 1, 2014, which claims the benefit of Korean Patent Application No. 10-2013-0104250, filed on Aug. 30, 2013, the entirety of each of which is hereby incorporated by reference for all purposes as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
7088418 | Yamashita et al. | Aug 2006 | B1 |
20020078559 | Buchwalter | Jun 2002 | A1 |
20030164674 | Imamura | Sep 2003 | A1 |
20050134170 | Otani et al. | Jun 2005 | A1 |
20050155704 | Yokajty et al. | Jul 2005 | A1 |
20080237895 | Saeki | Oct 2008 | A1 |
20100157412 | Lee | Jun 2010 | A1 |
20100244668 | Nakamura | Sep 2010 | A1 |
20110084290 | Nakamura | Apr 2011 | A1 |
20110141717 | Yoshinaga | Jun 2011 | A1 |
20110151612 | Dings et al. | Jun 2011 | A1 |
20120133275 | Lee | May 2012 | A1 |
20130088675 | Ochiai et al. | Apr 2013 | A1 |
20130328480 | Joo | Dec 2013 | A1 |
20140217371 | Kim et al. | Aug 2014 | A1 |
20150091030 | Lee | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2012-3989 | Jan 2012 | JP |
10-2013-0015113 | Feb 2013 | KR |
Number | Date | Country | |
---|---|---|---|
20160285045 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14449228 | Aug 2014 | US |
Child | 15174058 | US |