The application claims priority to the Chinese patent application No. 201610945114.2, filed on Nov. 2, 2016, the entire disclosure of which is incorporated herein by reference as part of the present application.
At least one embodiment of the present disclosure relates to an organic light-emitting diode display panel and a manufacturing method thereof and a mask plate.
A display which adopts an organic light-emitting diode (OLED) display panel has a wide application prospect because of following advantages: simple manufacturing process, fast response, thin, light, wide viewing angle, self-luminescent, high brightness, light emission color continuously adjustable, low power consumption, low cost, and easy to realize flexible display.
At least one embodiment of the disclosure provides an organic light-emitting diode display panel and a manufacturing method thereof and a mask plate.
At least one embodiment of the disclosure provides an organic light-emitting diode display panel, comprising a curved part and a non-curved part, the curved part comprising a plurality of organic light-emitting diodes, wherein the organic light-emitting diode comprises a light adjusting surface, and the light adjusting surface is configured to be capable of guiding light generated from the organic-light-emitting diode to exit towards the non-curved part.
At least one embodiment of the disclosure provides a manufacturing method of an organic light-emitting diode display panel, comprising:
forming a first layer of an organic light-emitting diode on a part of a base substrate of an organic light-emitting diode display panel to be bent, a surface of the first layer away from the base substrate having a curved surface;
forming a subsequent film layer of the organic light-emitting diode on the first layer, the subsequent film layer having the curved surface and comprising a luminescent layer, and
bending the organic light-emitting diode display panel to form a curved part, the organic light-emitting diode on the curved part comprising a light adjusting surface, and the light adjusting surface being configured to be capable of guiding light generated from the organic light-emitting diode to exit towards a non-curved part.
At least one embodiment of the disclosure provides a mask plate, comprising: a first portion and a second portion disposed at a periphery of the first portion, wherein the second portion comprises a plurality of sub-portions arranged in sequence in a direction from a position close to the first portion to a position away from the first portion, optical transmittances of the plurality of the sub-portions are decreased in sequence in the direction from the position close to the first portion to the position away from the first portion, and an optical transmittance of the first portion is larger than that of each of the sub-portions, or, optical transmittances of the plurality of the sub-portions are increased in sequence in the direction from the position close to the first portion to the position away from the first portion, and an optical transmittance of the first portion is smaller than that of each of the sub-portions.
In order to clearly illustrate the technical solution of the embodiments of the disclosure, the drawings of the embodiments will be briefly described in the following; it is obvious that the described drawings are only related to some embodiments of the disclosure and thus are not limitative of the disclosure.
In order to make objects, technical details and advantages of the embodiments of the disclosure apparent, the technical solutions of the embodiments will be described in a clearly and fully understandable way in connection with the drawings related to the embodiments of the disclosure. Apparently, the described embodiments are just a part but not all of the embodiments of the disclosure. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the disclosure.
Unless otherwise defined, all the technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. The terms “first,” “second,” etc., which are used in the description and the claims of the present disclosure, are not intended to indicate any sequence, amount or importance, but distinguish various components. Also, the terms such as “a,” “an,” etc., are not intended to limit the amount, but indicate the existence of at least one. The terms “comprise,” “comprising,” “include,” “including,” etc., are intended to specify that the elements or the objects stated before these terms encompass the elements or the objects and equivalents thereof listed after these terms, but do not preclude the other elements or objects. The phrases “connect”, “connected”, etc., are not intended to define a physical connection or mechanical connection, but may include an electrical connection, directly or indirectly. “On,” “under,” “right,” “left” and the like are only used to indicate relative position relationship, and when the position of the object which is described is changed, the relative position relationship may be changed accordingly.
Generally, in order to improve the display effect, a light-exiting side of an OLED display panel is processed, so that most of the light generated from the OLED is emitted at a right angle of 90 degrees, therefore, a problem that a bad viewing angle (observation angle) of a curved part of the OLED display panel is produced. As illustrated in
As illustrated in
The above-mentioned OLED display panel can further include a planarization layer 05 disposed on the interlayer insulation layer 06. A material of the planarization layer 05 can be an elastic organic material, for example, polyimide. A structure of the OLED display panel further includes a first electrode 05 of the OLED disposed on the planarization layer 05 and a pixel definition layer 09, and the pixel definition layer 09 is configured to define a sub-pixel region. The OLED can includes a plurality of layers, the first electrode 02 can be a layer of the OLED, and other layers of the OLED formed on the first electrode 02 are not illustrated herein. The OLED display panel can further include a supporting layer 10. The first electrode 02 of the OLED of a general OLED display panel is flat relative to the base substrate 01 (after the OLED display panel is bent, the first electrode 02 may have the same curve direction and the same curvature as the base substrate of the curved part), and the curved part of the OLED display panel in a state of the first electrode 02 being flat relative to the base substrate 01 limits the viewing angle. Because most of the light generated from the OLEDs on the curved part is emitted at a right angle of 90 degrees, when viewing the display panel, human eyes receive less light generated from the curved part, thereby resulting in darkening of an edge of the display panel, and affecting display effect.
At least one embodiment of the disclosure provides an OLED display panel, including a curved part and a non-curved part. The curved part includes a plurality of OLEDs, each of the OLEDs includes a light adjusting surface, and the light adjusting surface is configured to be capable of guiding light generated from the OLED to exit towards the non-curved part. A convex side of the curved part is a light-exiting side, for example, the convex side of the curved part refers to a surface of the curved part which arches up, which is said relative to a surface of the curved part which is recessed. The curved part includes a base substrate and a plurality of OLEDs disposed on the base substrate, each of the OLEDs includes a light adjusting surface, and the light adjusting surface is configured to be capable of guiding light generated from the OLED to exit toward the non-curved part. For example, the OLED on the curved part has a divergent light-emitting angle. For example, the OLED has a plurality of layers, the plurality of layers includes a luminescent layer, the luminescent layer or a layer formed after the luminescent layer has a first curved surface. On the curved part, a curve direction of the first curved surface is opposite to that of the base substrate, and alternatively, on the curved part, the curve direction of the first curved surface is the same as that of the base substrate, and a curvature of the first curved surface is larger than that of the base substrate. For example, the light adjusting surface can include the first curved surface. The first curved surface can enable most of the light generated from the OLED (for example, one OLED can correspond to one sub-pixel) to emit no longer at a right angle of 90 degrees, but to emit to various angles, to form divergent light, so that the light-emitting angle is divergent, and the sub-pixel to which the OLED belongs can be seen at different viewing angles, which can improve or avoid the phenomenon that the edge of the display panel is darkened, improve the viewing angle and improve the display quality. For example, in the OLED display panel provided by at least one embodiment of the disclosure, the light-emitting angle of the OLED is larger than 90°, for further example, the light-emitting angle can reach 150°. For example, a light-emitting angle of the OLED can be in a range from 30° to 150°. The light-emitting angle refers to an included angle between the light generated from the OLED and the base substrate on which the OLED is disposed, for example.
At least one embodiment of the disclosure further provides a manufacturing method of an OLED display panel, including: forming a first layer of an OLED on a part of a base substrate of the OLED display panel to be bent, a surface of the first layer away from the base substrate having a curved surface; forming a subsequent film layer of the OLED on the first layer, the subsequent film layer having the curved surface and including a luminescent layer; bending the OLED display panel to form a curved part, the OLED on the curved part including a light adjusting surface, and the light adjusting surface being configured to be capable of guiding light generated from the OLED to exit towards a non-curved part. For example, a convex side of the curved part is a light-exiting side, and the OLED on the curved part has a divergent light-emitting angle. For example, the luminescent layer on the curved part has a first curved surface. On the curved part, a curve direction of the first curved surface is opposite to that of the base substrate, and alternatively, on the curved part, the curve direction of the first curved surface is the same as that of the base substrate, and a curvature of the first curved surface is larger than that of the base substrate. Thus, the OLED display panel manufactured can be made to have a divergent light-emitting angle, and the display panel can be viewed from different angles, so as to improve viewing angle. The OLED display panel before being bent is in a flat state, the curved surface of the OLED before being bent is generally different from the first curved surface of the OLED after being bent, and a curvature of the curved surface of the OLED after being bent is slightly changed from a curvature of the first curved surface of the OLED before being bent.
At least one embodiment of the disclosure further provides a mask plate, including a first portion and a second portion. The second portion is disposed at a periphery of the first portion, the second portion includes a plurality of sub-portions arranged in sequence in a direction from a position close to the first portion to a position away from the first portion, optical transmittances of the plurality of the sub-portions are decreased in sequence in the direction from the position close to the first portion to the position away from the first portion, and an optical transmittance of the first portion is larger than that of each of the sub-portions, or, optical transmittances of the plurality of the sub-portions are increased in sequence in the direction from the position close to the first portion to the position away from the first portion, and an optical transmittance of the first portion is smaller than that of each of the sub-portions. The light transmitted through the mask plate forms different levels of illuminance, and thus an upper surface of a film layer manufactured by the mask plate can form a curved surface/a curved surface shape, for example, form a concave shape or a convex shape.
The following is a description of several embodiments.
The embodiment provides an OLED display panel, as illustrated in
For example, as illustrated in
For example, the function layer 103 of the OLED at least includes a luminescent layer 1030. In one example, as illustrated in
As illustrated in
As illustrated in
It should be noted that, in the OLED, the luminescent layer 1030 has the first curved surface 201 to make the light-emitting angle be divergent. The luminescent layer 1030 having the first curved surface 201 refers to both of the surface of the luminescent layer 1030 close to the light-exiting side and the surface of the luminescent layer 1030 away from the light-exiting side having the first curved surface 201, and the two surfaces being bent towards the same direction. That is, a layer having a curved surface refers to both of surfaces of the layer close to the light-exiting side and away from the light-exiting side having the curved surface and the two surfaces being bent towards the same direction. In one example, a layer of the OLED formed after the luminescent layer has the first curved surface 201. In another example, respective layers of the OLED have the first curved surface 201. As illustrated in right side of
For example, in the embodiment, same or opposite curve directions are described relative to the light-exiting side. The curve directions of two structures only can be the same or opposite. If both of a curve direction of one structure and a curve direction of the other structure are towards the light-exiting side (or the light-exiting direction), the curve directions of the two structures are the same. If a curve direction of one structure is towards the light-exiting direction and a curve direction of the other structure is away from the light-exiting side, the curve directions of the two structures are opposite. One curved structure being towards the light-exiting side refers to a side of the structure which is recessed being towards the light-exiting side. Herein, the curved structure is not required to directly face the light-exiting side, and it can deviate an angle from the light-exiting side. As illustrated in
For example, the base substrate 101 can be made of at least one selecting from the group consisting of polyimide, polycarbonate, polyacrylate, polyetherimide, polyethersulfone, polyethylene teraphthalate, and polyethylene naphthalate. The first electrode 102 can be made of a transparent conductive material having high work function. For example, the first electrode 102 can be formed by indium zinc oxide, indium tin oxide, indium tin zinc oxide, zinc oxide or tin oxide. The second electrode 104 can be formed by a material having high conductivity and low work function. For example, the second electrode 104 can be made of a metal material. The above-mentioned are listed materials of respective layers, but the materials of respective layers are not limited by the embodiment. For example, the first electrode 102 can be made of a metal material. The second electrode 104 can adopt a transparent electrode or a semi-transparent electrode, for example, the second electrode 104 can be formed by a metal, and can also be formed by a conductive oxide material, such as indium zinc oxide, indium tin oxide, indium tin zinc oxide, zinc oxide or tin oxide. For example, the first electrode 102 is an anode, and the second electrode 104 is a cathode. Holes provided by the anode and electrons provided by the cathode can be combined in the luminescent layer 1030 to emit light. For example, appropriate materials for respective layers can be selected, to form a flexible display panel.
In
For example, as illustrated in
For example, as illustrated in
The embodiment provides an OLED display panel, and as illustrated in
The thin film transistor 112 can be of a bottom-gate structure and can also be of a top-gate structure. As illustrated in
For example, a surface 2343 of the OLED close to the base substrate 101 has a first curved surface 201. Thus, a layer (for example, an anode) of the OLED close to the base substrate 101 has a first curved surface 201. For example, the first curved surface 201 can be a light adjusting surface 0201 (as illustrated in
For example, the OLED display panel further includes a planarization layer 105 disposed between the base substrate 101 and a layer of the OLED close to the base substrate 101, the layer of the OLED close to the base substrate 101 is in contact with the planarization layer 105, a surface of the planarization layer 105 away from the base substrate 101 has a second curved surface 202, and the second curved surface 202 and the first curved surface 201 have the same curve direction and the same curvature. The second curved surface 202 coincides with the first curved surface 201. For example, a material of the planarization layer 105 can include polyimide, but is not limited thereto.
The OLED display panel can further include a pixel definition layer 09 and a first electrode 102 of the OLED disposed on the planarization layer 105, and the pixel definition layer 109 is configured to define a region of a sub-pixel. The first electrode 102 is a layer of the OLED, and other layers of the OLED are not illustrated herein. The OLED display panel can further include a supporting layer 10 disposed on the pixel definition layer 109.
Both of an upper surface and a lower surface of the first electrode 102 of the OLED display panel of the embodiment are curved surfaces, and the two surfaces has the same curve direction and the same curvature, so that a subsequent film layer of the OLED also forms a structure in which an upper surface and a lower surface of the subsequent film layer are curved surfaces, so as to make the light generated from the OLED being divergent, to improve the viewing angle.
For example, a material of a source electrode 1121, a drain electrode 1122 and a gate electrode 1123 of the thin film transistor 112 can include one or more of molybdenum, titanium, aluminum, and copper etc., but is not limited thereto.
As illustrated in
S1: forming a first layer of an OLED on a part of a base substrate of the OLED display panel to be bent, a surface of the first layer away from the base substrate having a curved surface;
S2: forming a subsequent film layer of the OLED on the first layer, the subsequent film layer having a curved surface and including a luminescent layer;
S3: bending the OLED display panel to form a curved part, the OLED on the curved part including a light adjusting surface 0201 (referring to
Thus, most of the light generated from the OLED is no longer emitted at a right angle of 90 degrees, and the OLED emits divergent light having different angles. When viewing the display panel, human eyes receives more light emitted from the curved part, thereby realizing a better display effect and avoiding the phenomenon of edge darkening.
For example, as illustrated in
For example, as illustrated in
For example, in the manufacturing method of the OLED display panel, a surface of the first layer of the OLED close to the base substrate has the first curved surface. For example, an upper surface of a layer below the OLED and in contact with the OLED can be made to form a curved surface, so that both of a lower surface and an upper surface of the first layer of the OLED have curved surfaces.
For example, as illustrated in
For example, the planarization layer having the second curved surface can be formed by adopting a multi-tone mask plate.
For example, an area of the first portion 310 is larger than an area of each of the sub-portions 321 and 322. For example, a shape of the first portion 310 includes any one of a polygon and a circle.
For example, an area of the first spacing 330 is larger than that of each of the second spacings 323.
For example, in the direction from the position close to the first portion to the position away from the first portion, areas of respective second spacings 323 are equal to each other or are decreased in sequence. That is, the second portion 320 includes at least one spacing, and the areas of respective spacings are equal to each other or are decreased in sequence.
For example, in one example, optical transmittance of the first portion 310 is the largest, optical transmittances of respective sub-portions 321 and 322 of the second portion 320 are decreased in sequence in the direction from the position close to the first portion 310 to the position away from the first portion 310, and the optical transmittances of the first spacing 330 and the second spacing 323 are 0% (opaque).
For example, the optical transmittance of the first portion 310 is 80%-90%, the optical transmittance of the sub-portion 321 of the second portion 320 is 70%-80%, the optical transmittance of the sub-portion 322 of the second portion 320 is 60%-70%, and the optical transmittances of the first spacing 330 and the second spacing 323 are 0% (opaque).
The example in which the first spacing is disposed between the second portion 320 and the first portion 310 and the second spacing is disposed between any two adjacent sub-portions is illustrated above for description, but the first spacing and/or the second spacing may not be provided, so that the first portion and the second portion are abutted, any two adjacent sub-portions of the second portion are abutted, and in a direction from the first portion 310 to the second portion 320, the optical transmittances of the first portion and the respective sub-portions are decreased in sequence. The optical transmittances of the first spacing and the second spacing can also be adjusted, so that in the direction from the first portion 310 to the second portion 320, the optical transmittances are decreased in sequence. For example, in one example, in the direction from the first portion 310 to the first spacing 330 and further to the second portion 320, the optical transmittances are decreased in sequence. That is, the optical transmittances of the first portion 310, the first spacing 330, and the second portion 320 are decreased in sequence. Further, in the second portion 320, in the direction from the position close to the first portion 310 to the position away from the first portion 310, the optical transmittances are decreased in sequence. For example, the optical transmittances of the sub-portion 321, the second spacing 323 and the sub-portion 322 are decreased in sequence. Further, the optical transmittances of the first portion 310, the first spacing 330, the sub-portion 321, the second spacing 323 and the sub-portion 322 are decreased in sequence. Thus, the mask plate can be used to manufacture an upper surface of the curved/concave-shaped surface. For example, the mask plate can be used to form a planarization layer with a concave-shaped upper surface.
For example, in one example, the second portion 320 is disposed on a side of the first portion 310, the mask plate further includes at least one third portion 340 having the same structure and the same arrangement as the second portion 320, and each third portion 340 is not overlapped with the second portion 320. As illustrated in
In the case that the planarization layer 105 adopts a photoresist material, a curved surface structure can be formed on an upper surface of the planarization layer 105 after exposure and development by adopting any one of the mask plates provided by the embodiment. On this basis, the OLED having the first curvature can be manufactured.
The above listed mask plates can form a layer having a concave shape. Furthermore, according to process requirements, widths of the first portion 310, the second portion 320, the first spacing 330 and the second spacing 323 can be freely adjusted, to form the concave shape as required by the process.
For example, a layer having a convex shape can be formed by designing the mask plate. In another example, in the direction from the position close to the first portion 310 to the position away from the first portion 310, the optical transmittances of the plurality of the sub-portions are increased in sequence, and the optical transmittance of the first portion is smaller than that of each of the sub-portions. Thus, a curved surface having a convex-shaped upper surface can be formed. For example, the mask plate can be used to form a planarization layer having a convex-shaped upper surface. For example, according to process requirements, widths of the first portion 310, the second portion 320, the first spacing 330 and the second spacing 323 can be freely adjusted, to form the convex shape as required by the process.
Any mask plate provided by the embodiment can be used to manufacture the OLED display panel of the third embodiment. Further, the structure of the OLED display panel of the first embodiment or the second embodiment can be formed.
For example,
Thus, in subsequent film layers of the OLED, an interface between any two adjacent layers and a surface of a layer away from the base substrate 101 have the first curved surface 201, and the formed curved OLED can form divergent light emitting to various angles, so as to improve the viewing angle. In a case that the OLED having the first curved surface 201 is disposed on the curved part, when viewing the display panel, human eyes receives more light emitting from the curved part, thereby realizing a better display effect.
Of course, the first curved surface can be formed on the upper surface of the first electrode by adopting other methods. For example, the first electrode is etched, so that a structure of a curved surface is formed on the upper surface of the first electrode. The method of forming the curved surface is not limited by the embodiments of the disclosure.
In the above description, the surface of the planarization layer away from the base substrate having a concave shape is illustrated as an example.
The example in which light is generated from a front side of the OLED display panel is illustrated above for description. It should be noted that, the embodiments of the disclosure are not limited thereto. For example, the OLED display panel can also emit light from a back side thereof.
The embodiment provides a display device, including the OLED display panel of the first embodiment or the second embodiment.
For example, the display device can be a display such as an OLED display, and any products or components having display function and including the OLED display, such as a television set, a digital camera, a cell phone, a watch, a tablet, a laptop, a navigator, etc.
The following statements should be noted:
(1) Unless otherwise defined, the same reference numeral represents the same meaning in the embodiments of the disclosure and accompanying drawings.
(2) The accompanying drawings involve only the structure(s) in connection with the embodiment(s) of the present disclosure, and other structure(s) can be referred to common design(s).
(3) For the purpose of clarity only, in accompanying drawings for illustrating the embodiment(s) of the present disclosure, the thickness and size of a layer or a structure may be enlarged. However, it should understood that, in the case in which a component or element such as a layer, film, area, substrate or the like is referred to be “on” or “under” another component or element, it may be directly on or under the another component or element or a component or element is interposed therebetween.
(4) In case of no conflict, features in one embodiment or in different embodiments can be combined.
What are described above is the embodiments of the disclosure only and not limitative to the scope of the disclosure; any of those skilled in related arts can easily conceive variations and substitutions in the technical scopes disclosed by the disclosure, which should be encompassed in protection scopes of the disclosure. Therefore, the scopes of the disclosure should be defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201610945114.2 | Nov 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/091797 | 7/5/2017 | WO | 00 |