Organic light-emitting display device with frit seal and reinforcing structure bonded to frame

Abstract
Disclosed is an organic light-emitting display device in which a substrate and an encapsulation substrate are joined by a frit and a reinforcing structure. The first substrate has a pixel region in which an organic light-emitting diode is formed, and a non-pixel region formed outside the pixel region. The second substrate is attached the first substrate by the frit. A bracket is joined with substrates by the reinforcing structure. A curable material is applied to inside the frame, moves between the first and second substrates, and then cured to form the reinforcing structure.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of Korean Patent Application No. 2006-7893, filed on Jan. 25, 2006, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety. This application is related to and incorporates herein by reference the entire contents of the following concurrently filed applications:
















Application


Title
Filing Date
No.







ORGANIC LIGHT-EMITTING DISPLAY
Sep. 29, 2006
11/541,055


DEVICE WITH FRIT SEAL AND METHOD




OF FABRICATING THE SAME




ORGANIC LIGHT-EMITTING DISPLAY
Sep. 29, 2006
11/529,914


DEVICE AND METHOD OF




MANUFACTURING THE SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/541,139


DEVICE




ORGANIC LIGHT-EMITTING DISPLAY
Sep. 29, 2006
11/541,047


DEVICE WITH FRIT SEAL AND




REINFORCING STRUCTURE




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/540,150


AND METHOD OF FABRICATING




THE SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/541,009


WITH DOUBLE-LAYERED FRIT




SEALING




METHOD FOR PACKAGING ORGANIC
Sep. 29, 2006
11/529,910


LIGHT EMITTING DISPLAY WITH




FRIT SEAL AND REINFORCING




STURUTURE




METHOD FOR PACKAGING ORGANIC
Sep. 29, 2006
11/540,084


LIGHT EMITTING DISPLAY WITH




FRIT SEAL AND REINFORCING




STURUTURE




METHOD OF SEALING AN ORGANIC
Sep. 29, 2006
11/540,008


LIGHT-EMITTING DISPLAY BY MEANS




OF GLASS FRIT SEAL ASSEMBLY




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/541,048


AND FABRICATING METHOD OF THE




SAME




ORGANIC LIGHT-EMITTING DISPLAY
Sep. 29, 2006
11/540,021


AND METHOD OF MAKING THE




SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/540,024


AND FABRICATING METHOD OF THE




SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/529,995


DEVICE AND MANUFACTURING




METHOD THEREOF




ORGANIC LIGHT-EMITTING DISPLAY
Sep. 29, 2006
11/540,157


DEVICE AND MANUFACTURING




METHOD OF THE SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/540,149


AND METHOD OF FABRICATING THE




SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/529,916


DEVICE METHOD OF FABRICATING




THE SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/529,891


DEVICE INCLUDING A GAP TO




IMPROVE IMAGE QUALITY AND




METHOD OF FABRICATING THE




SAME




ORGANIC LIGHT EMITTING DISPLAY
Sep. 29, 2006
11/540,103


AND METHOD OF FABRICATING THE




SAME









BACKGROUND

1. Field of the Invention


The present invention relates to organic light-emitting display devices and, more particularly, to packaging such devices.


2. Discussion of Related Art


An organic light-emitting display device is one of the flat panel displays in which an electron injected to one electrode and a hole injected to the other electrode binds to each other in an organic light-emitting layer when the organic light-emitting layer is arranged between facing electrodes and a voltage is applied to both electrodes, wherein when luminescent molecules of the light-emitting layer are excited by binding of the electron and the hole, energy is emitted by returning to a ground state, and then converted into the light. The organic light-emitting display devices exhibiting such a light-emission principle has drawn attention as a next-generation display since they are excellent in visibility, and they may be also manufactured in a light weight and thin shape and driven at a low voltage. U.S. Pat. No. 6,998,776 B2 discloses that an organic light-emitting display includes a first substrate plate, a second substrate plate and a frit connecting the plates.


SUMMARY OF CERTAIN INVENTIVE ASPECTS

An aspect of the invention provides an organic light-emitting display device, which may comprises: an organic light-emitting display unit comprising: a front substrate comprising a front surface and a first side surface, a rear substrate comprising a rear surface and a first side surface, the rear substrate opposing the front substrate, an array of organic light-emitting pixels interposed between the front and rear substrates, a frit seal interposed between the front substrate and the rear substrate while surrounding the array, wherein the frit seal, the front substrate and the rear substrate together define an enclosed space in which the array is located, the frit seal comprising a first side surface, and a first side comprising the first side surfaces of the front substrate, the rear substrate and the frit seal; a bracket comprising a first surface generally opposing the first side of the unit and connected to the first side of the unit; and a first structure interconnecting the first surface of the bracket and the first side of the unit.


In the foregoing device, the first structure may be formed in substantially the entire area between the first surface of the bracket and the first side of the unit. The first structure may be formed on substantially throughout the first surface of the bracket. The first structure may be bonded to the first surface of the bracket and bonded to either or both of the first side surfaces of the front and rear substrates. The first structure may be bonded to the first side surface of the frit seal. The front substrate, the rear substrate and the first side surface of the frit seal may define a gap space, and wherein the first structure may comprise a portion extending into the gap space and interposed between the front and rear substrates. The bracket may further comprise a rear wall opposing the rear substrate. The rear wall of the bracket may be bonded to the rear surface of the rear substrate. The bracket may comprise a rear wall opposing the rear substrate, and the bracket may further comprise a plurality of side walls extending from the rear wall at an angle, and wherein a first one of the plurality of the side walls may provide the first surface opposing the first side of the unit. The first side wall may extend substantially parallel to at least one of the first side surfaces of the front and rear substrates. The first side wall may cover substantially the entirety of the first side of the unit. The first side wall may not cover at least part of the first side surface of the front substrate while generally opposing the first side of the unit. The first side wall may not cover the first side surface of the front substrate while generally opposing the first side of the unit. The structure may comprise a layer comprising a polymeric material.


Still in the foregoing device, the unit may further comprise a plurality additional sides, wherein the bracket comprises a first side wall and a plurality of additional side walls, the first side wall providing the first surface of the frame, wherein each of the plurality of additional side walls of the bracket may comprise a surface generally opposing one of the plurality of additional sides of the unit, wherein the device may further comprise a plurality of additional structures, each of which interconnects one of the plurality of additional side walls and one of the plurality of additional sides of the unit. The first side wall and the plurality of additional side walls may form a closed loop surrounding the first side and the plurality of additional sides of the unit. The front substrate may further comprise a second side surface, wherein the rear substrate may further comprise a second side surface, wherein the frit seal may further comprise a second side surface, wherein the second side surfaces of the front substrate, the second substrate and the frit seal generally face the same direction, wherein the unit may further comprise a second side comprising a second side surface of the front substrate, a second side surface of the rear substrate and a second side surface of the frit seal, wherein the bracket may further comprise a second surface generally opposing the second side of the device, and wherein the unit may further comprise a second structure interconnecting the second side of the unit and the second surface of the frame. The first and second structures may be integrated. The first and second structures may be separated. The frit seal may comprise one or more materials selected from the group consisting of magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), boron oxide (B2O3), vanadium oxide (V2O5), zinc oxide (ZnO), tellurium oxide (TeO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), lead oxide (PbO), tin oxide (SnO), phosphorous oxide (P2O5), ruthenium oxide (Ru2O), rubidium oxide (Rb2O), rhodium oxide (Rh2O), ferrite oxide (Fe2O3), copper oxide (CuO), titanium oxide (TiO2), tungsten oxide (WO3), bismuth oxide (Bi2O3), antimony oxide (Sb2O3), lead-borate glass, tin-phosphate glass, vanadate glass, and borosilicate.


Another aspect of the invention provides a method of making an organic light-emitting display device, which may comprises: providing a device comprising: a front substrate comprising a front surface and a first side surface, a rear substrate comprising a rear surface and a first side surface, the rear substrate opposing the front substrate, an array of organic light-emitting pixels interposed between the front and rear substrates, a frit seal interposed between the front substrate and the rear substrate while surrounding the array, wherein the frit seal, the front substrate and the rear substrate together define an enclosed space in which the array is located, the frit seal comprising a first side surface, and a first side comprising the first sides of the front substrate, the rear substrate and the frit seal; placing a bracket comprising a first surface so as to generally the first side of the device; and forming a structure between and interconnecting the first surface of the bracket and the first side of the device.


In the foregoing method, the method may further comprise forming a curable material on the first surface of the frame, and wherein placing the bracket may comprise arranging the bracket with respect to the device such that the curable material contacts the first side of the device. The method may further comprise curing the curable material, thereby forming the structure. A viscosity of the curable material may be less than about 5000 cP. The bracket may further comprise a rear wall, and wherein placing the bracket may further comprise arranging the rear wall so as to oppose the rear substrate.


Still another aspect of the present invention provides an organic light-emitting display device including a first substrate comprising a pixel region in which an organic light-emitting diode is formed in a surface thereof, and a non-pixel region formed in a circumference of the pixel region, the organic light-emitting diode comprising an organic light-emitting layer between a first electrode and a second electrode; a second substrate attached to one surface comprising the pixel region of the first substrate; a frit provided between the non-pixel region of the first substrate and the second substrate and attaching the first substrate and the second substrate to each other; a bracket with which the first substrate and the second substrate, both attached to each other, are mounted; and a reinforcement material applied to an inner wall of the bracket, infiltrated between the attached first and second substrates, and then cured.


Further aspect of the present invention provides a method for preparing an organic light-emitting display device including a first substrate including an organic light-emitting diode, and an encapsulation substrate for encapsulating at least a pixel region of the substrate, the method including the first step of applying a frit to form a line spaced apart from an edge of the encapsulation substrate; the second step of attaching a deposition substrate, on which an organic light-emitting diode is deposited, to the second substrate; the third step of melting the frit to attach the first substrate and the second substrate to each other by irradiating a laser or an infrared ray to the frit between the first substrate and the second substrate, both attached to each other; the fourth step of applying a reinforcement material for filling a gap between the first substrate and the second substrate in an inner wall of the bracket with which the attached first and second substrates are mounted; and the fifth step of mounting the first and second substrates so that the sealing material applied in the inner wall of the bracket can be in contact with the gap between the first substrate and the second substrate, both attached to each other. The organic light-emitting diode may be completely protected from the open air by completely coalescing a substrate and a encapsulation substrate to each other using a frit and solving brittleness of the organic light-emitting display device when the frit is used herein.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:



FIG. 1 is a cross-sectional view showing an organic light-emitting display device;



FIG. 2 is a plan view showing an organic light-emitting display device according to one embodiment of the present invention;



FIG. 3 is a cross-sectional view taken along a line A-A′ of FIG. 2;



FIGS. 4
a to 4d are cross-sectional views showing a process for preparing an organic light-emitting display device according to an embodiment of the present invention;



FIG. 5A is a schematic exploded view of a passive matrix type organic light emitting display device in accordance with one embodiment.



FIG. 5B is a schematic exploded view of an active matrix type organic light emitting display device in accordance with one embodiment.



FIG. 5C is a schematic top plan view of an organic light emitting display in accordance with one embodiment.



FIG. 5D is a cross-sectional view of the organic light emitting display of FIG. 5C, taken along the line d-d.



FIG. 5E is a schematic perspective view illustrating mass production of organic light emitting devices in accordance with one embodiment.





DETAILED DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.


An organic light emitting display (OLED) is a display device comprising an array of organic light emitting diodes. Organic light emitting diodes are solid state devices which include an organic material and are adapted to generate and emit light when appropriate electrical potentials are applied.


OLEDs can be generally grouped into two basic types dependent on the arrangement with which the stimulating electrical current is provided. FIG. 6A schematically illustrates an exploded view of a simplified structure of a passive matrix type OLED 1000. FIG. 5B schematically illustrates a simplified structure of an active matrix type OLED 1001. In both configurations, the OLED 1000, 1001 includes OLED pixels built over a substrate 1002, and the OLED pixels include an anode 1004, a cathode 1006 and an organic layer 1010. When an appropriate electrical current is applied to the anode 1004, electric current flows through the pixels and visible light is emitted from the organic layer.


Referring to FIG. 5A, the passive matrix OLED (PMOLED) design includes elongate strips of anode 1004 arranged generally perpendicular to elongate strips of cathode 1006 with organic layers interposed therebetween. The intersections of the strips of cathode 1006 and anode 1004 define individual OLED pixels where light is generated and emitted upon appropriate excitation of the corresponding strips of anode 1004 and cathode 1006. PMOLEDs provide the advantage of relatively simple fabrication.


Referring to FIG. 5B, the active matrix OLED (AMOLED) includes localdriving circuits 1012 arranged between the substrate 1002 and an array of OLED pixels. An individual pixel of AMOLEDs is defined between the common cathode 1006 and an anode 1004, which is electrically isolated from other anodes. Each driving circuit 1012 is coupled with an anode 1004 of the OLED pixels and further coupled with a data line 1016 and a scan line 1018. In embodiments, the scan lines 1018 supply scan signals that select rows of the driving circuits, and the data lines 1016 supply data signals for particular driving circuits. The data signals and scan signals stimulate the local driving circuits 1012, which excite the anodes 1004 so as to emit light from their corresponding pixels.


In the illustrated AMOLED, the local driving circuits 1012, the data lines 1016 and scan lines 1018 are buried in a planarization layer 1014, which is interposed between the pixel array and the substrate 1002. The planarization layer 1014 provides a planar top surface on which the organic light emitting pixel array is formed. The planarization layer 1014 may be formed of organic or inorganic materials, and formed of two or more layers although shown as a single layer. The local driving circuits 1012 are typically formed with thin film transistors (TFT) and arranged in a grid or array under the OLED pixel array. The local driving circuits 1012 may be at least partly made of organic materials, including organic TFT. AMOLEDs have the advantage of fast response time improving their desirability for use in displaying data signals. Also, AMOLEDs have the advantages of consuming less power than passive matrix OLEDs.


Referring to common features of the PMOLED and AMOLED designs, the substrate 1002 provides structural support for the OLED pixels and circuits. In various embodiments, the substrate 1002 can comprise rigid or flexible materials as well as opaque or transparent materials, such as plastic, glass, and/or foil. As noted above, each OLED pixel or diode is formed with the anode 1004, cathode 1006 and organic layer 1010 interposed therebetween. When an appropriate electrical current is applied to the anode 1004, the cathode 1006 injects electrons and the anode 1004 injects holes. In certain embodiments, the anode 1004 and cathode 1006 are inverted; i.e., the cathode is formed on the substrate 1002 and the anode is opposingly arranged.


Interposed between the cathode 1006 and anode 1004 are one or more organic layers. More specifically, at least one emissive or light emitting layer is interposed between the cathode 1006 and anode 1004. The light emitting layer may comprise one or more light emitting organic compounds. Typically, the light emitting layer is configured to emit visible light in a single color such as blue, green, red or white. In the illustrated embodiment, one organic layer 1010 is formed between the cathode 1006 and anode 1004 and acts as a light emitting layer. Additional layers, which can be formed between the anode 1004 and cathode 1006, can include a hole transporting layer, a hole injection layer, an electron transporting layer and an electron injection layer.


Hole transporting and/or injection layers can be interposed between the light emitting layer 1010 and the anode 1004. Electron transporting and/or injecting layers can be interposed between the cathode 1006 and the light emitting layer 1010. The electron injection layer facilitates injection of electrons from the cathode 1006 toward the light emitting layer 1010 by reducing the work function for injecting electrons from the cathode 1006. Similarly, the hole injection layer facilitates injection of holes from the anode 1004 toward the light emitting layer 1010. The hole and electron transporting layers facilitate movement of the carriers injected from the respective electrodes toward the light emitting layer.


In some embodiments, a single layer may serve both electron injection and transportation functions or both hole injection and transportation functions. In some embodiments, one or more of these layers are lacking. In some embodiments, one or more organic layers are doped with one or more materials that help injection and/or transportation of the carriers. In embodiments where only one organic layer is formed between the cathode and anode, the organic layer may include not only an organic light emitting compound but also certain functional materials that help injection or transportation of carriers within that layer.


There are numerous organic materials that have been developed for use in these layers including the light emitting layer. Also, numerous other organic materials for use in these layers are being developed. In some embodiments, these organic materials may be macromolecules including oligomers and polymers. In some embodiments, the organic materials for these layers may be relatively small molecules. The skilled artisan will be able to select appropriate materials for each of these layers in view of the desired functions of the individual layers and the materials for the neighboring layers in particular designs.


In operation, an electrical circuit provides appropriate potential between the cathode 1006 and anode 1004. This results in an electrical current flowing from the anode 1004 to the cathode 1006 via the interposed organic layer(s). In one embodiment, the cathode 1006 provides electrons to the adjacent organic layer 1010. The anode 1004 injects holes to the organic layer 1010. The holes and electrons recombine in the organic layer 1010 and generate energy particles called “excitons.” The excitons transfer their energy to the organic light emitting material in the organic layer 1010, and the energy is used to emit visible light from the organic light emitting material. The spectral characteristics of light generated and emitted by the OLED 1000, 1001 depend on the nature and composition of organic molecules in the organic layer(s). The composition of the one or more organic layers can be selected to suit the needs of a particular application by one of ordinary skill in the art.


OLED devices can also be categorized based on the direction of the light emission. In one type referred to as “top emission” type, OLED devices emit light and display images through the cathode or top electrode 1006. In these embodiments, the cathode 1006 is made of a material transparent or at least partially transparent with respect to visible light. In certain embodiments, to avoid losing any light that can pass through the anode or bottom electrode 1004, the anode may be made of a material substantially reflective of the visible light. A second type of OLED devices emits light through the anode or bottom electrode 1004 and is called “bottom emission” type. In the bottom emission type OLED devices, the anode 1004 is made of a material which is at least partially transparent with respect to visible light. Often, in bottom emission type OLED devices, the cathode 1006 is made of a material substantially reflective of the visible light. A third type of OLED devices emits light in two directions, e.g. through both anode 1004 and cathode 1006. Depending upon the direction(s) of the light emission, the substrate may be formed of a material which is transparent, opaque or reflective of visible light.


In many embodiments, an OLED pixel array 1021 comprising a plurality of organic light emitting pixels is arranged over a substrate 1002 as shown in FIG. 5C. In embodiments, the pixels in the array 1021 are controlled to be turned on and off by a driving circuit (not shown), and the plurality of the pixels as a whole displays information or image on the array 1021. In certain embodiments, the OLED pixel array 1021 is arranged with respect to other components, such as drive and control electronics to define a display region and a non-display region. In these embodiments, the display region refers to the area of the substrate 1002 where OLED pixel array 1021 is formed. The non-display region refers to the remaining areas of the substrate 1002. In embodiments, the non-display region can contain logic and/or power supply circuitry. It will be understood that there will be at least portions of control/drive circuit elements arranged within the display region. For example, in PMOLEDs, conductive components will extend into the display region to provide appropriate potential to the anode and cathodes. In AMOLEDs, local driving circuits and data/scan lines coupled with the driving circuits will extend into the display region to drive and control the individual pixels of the AMOLEDs.


One design and fabrication consideration in OLED devices is that certain organic material layers of OLED devices can suffer damage or accelerated deterioration from exposure to water, oxygen or other harmful gases. Accordingly, it is generally understood that OLED devices be sealed or encapsulated to inhibit exposure to moisture and oxygen or other harmful gases found in a manufacturing or operational environment. FIG. 5D schematically illustrates a cross-section of an encapsulated OLED device 1011 having a layout of FIG. 5C and taken along the line d-d of FIG. 5C. In this embodiment, a generally planar top plate or substrate 1061 engages with a seal 1071 which further engages with a bottom plate or substrate 1002 to enclose or encapsulate the OLED pixel array 1021. In other embodiments, one or more layers are formed on the top plate 1061 or bottom plate 1002, and the seal 1071 is coupled with the bottom or top substrate 1002, 1061 via such a layer. In the illustrated embodiment, the seal 1071 extends along the periphery of the OLED pixel array 1021 or the bottom or top plate 1002, 1061.


In embodiments, the seal 1071 is made of a frit material as will be further discussed below. In various embodiments, the top and bottom plates 1061, 1002 comprise materials such as plastics, glass and/or metal foils which can provide a barrier to passage of oxygen and/or water to thereby protect the OLED pixel array 1021 from exposure to these substances. In embodiments, at least one of the top plate 1061 and the bottom plate 1002 are formed of a substantially transparent material.


To lengthen the life time of OLED devices 1011, it is generally desired that seal 1071 and the top and bottom plates 1061, 1002 provide a substantially non-permeable seal to oxygen and water vapor and provide a substantially hermetically enclosed space 1081. In certain applications, it is indicated that the seal 1071 of a frit material in combination with the top and bottom plates 1061, 1002 provide a barrier to oxygen of less than approximately 10−3 cc/m2-day and to water of less than 10−6 g/m2-day. Given that some oxygen and moisture can permeate into the enclosed space 1081, in some embodiments, a material that can take up oxygen and/or moisture is formed within the enclosed space 1081.


The seal 1071 has a width W, which is its thickness in a direction parallel to a surface of the top or bottom substrate 1061, 1002 as shown in FIG. 5D. The width varies among embodiments and ranges from about 300 μm to about 3000 μm, optionally from about 500 μm to about 1500 μm. Also, the width may vary at different positions of the seal 1071. In some embodiments, the width of the seal 1071 may be the largest where the seal 1071 contacts one of the bottom and top substrate 1002, 1061 or a layer formed thereon. The width may be the smallest where the seal 1071 contacts the other. The width variation in a single cross-section of the seal 1071 relates to the cross-sectional shape of the seal 1071 and other design parameters.


The seal 1071 has a height H, which is its thickness in a direction perpendicular to a surface of the top or bottom substrate 1061, 1002 as shown in FIG. 5D. The height varies among embodiments and ranges from about 2 μm to about 30 μm, optionally from about 10 μm to about 15 μm. Generally, the height does not significantly vary at different positions of the seal 1071. However, in certain embodiments, the height of the seal 1071 may vary at different positions thereof.


In the illustrated embodiment, the seal 1071 has a generally rectangular cross-section. In other embodiments, however, the seal 1071 can have other various cross-sectional shapes such as a generally square cross-section, a generally trapezoidal cross-section, a cross-section with one or more rounded edges, or other configuration as indicated by the needs of a given application. To improve hermeticity, it is generally desired to increase the interfacial area where the seal 1071 directly contacts the bottom or top substrate 1002, 1061 or a layer formed thereon. In some embodiments, the shape of the seal can be designed such that the interfacial area can be increased.


The seal 1071 can be arranged immediately adjacent the OLED array 1021, and in other embodiments, the seal 1071 is spaced some distance from the OLED array 1021. In certain embodiment, the seal 1071 comprises generally linear segments that are connected together to surround the OLED array 1021. Such linear segments of the seal 1071 can extend, in certain embodiments, generally parallel to respective boundaries of the OLED array 1021. In other embodiment, one or more of the linear segments of the seal 1071 are arranged in a non-parallel relationship with respective boundaries of the OLED array 1021. In yet other embodiments, at least part of the seal 1071 extends between the top plate 1061 and bottom plate 1002 in a curvilinear manner.


As noted above, in certain embodiments, the seal 1071 is formed using a frit material or simply “frit” or glass frit,” which includes fine glass particles. The frit particles includes one or more of magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), boron oxide (B2O3), vanadium oxide (V2O5), zinc oxide (ZnO), tellurium oxide (TeO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), lead oxide (PbO), tin oxide (SnO), phosphorous oxide (P2O5), ruthenium oxide (Ru2O), rubidium oxide (Rb2O), rhodium oxide (Rh2O), ferrite oxide (Fe2O3), copper oxide (CuO), titanium oxide (TiO2), tungsten oxide (WO3), bismuth oxide (Bi2O3), antimony oxide (Sb2O3), lead-borate glass, tin-phosphate glass, vanadate glass, and borosilicate, etc. In embodiments, these particles range in size from about 2 μm to about 30 μm, optionally about 5 μm to about 10 μm, although not limited only thereto. The particles can be as large as about the distance between the top and bottom substrates 1061, 1002 or any layers formed on these substrates where the frit seal 1071 contacts.


The frit material used to form the seal 1071 can also include one or more filler or additive materials. The filler or additive materials can be provided to adjust an overall thermal expansion characteristic of the seal 1071 and/or to adjust the absorption characteristics of the seal 1071 for selected frequencies of incident radiant energy. The filler or additive material(s) can also include inversion and/or additive fillers to adjust a coefficient of thermal expansion of the frit. For example, the filler or additive materials can include transition metals, such as chromium (Cr), iron (Fe), manganese (Mn), cobalt (Co), copper (Cu), and/or vanadium. Additional materials for the filler or additives include ZnSiO4, PbTiO3, ZrO2, eucryptite.


In embodiments, a frit material as a dry composition contains glass particles from about 20 to 90 about wt %, and the remaining includes fillers and/or additives. In some embodiments, the frit paste contains about 10-30 wt % organic materials and about 70-90% inorganic materials. In some embodiments, the frit paste contains about 20 wt % organic materials and about 80 wt % inorganic materials. In some embodiments, the organic materials may include about 0-30 wt % binder(s) and about 70-100 wt % solvent(s). In some embodiments, about 10 wt % is binder(s) and about 90 wt % is solvent(s) among the organic materials. In some embodiments, the inorganic materials may include about 0-10 wt % additives, about 20-40 wt % fillers and about 50-80 wt % glass powder. In some embodiments, about 0-5 wt % is additive(s), about 25-30 wt % is filler(s) and about 65-75 wt % is the glass powder among the inorganic materials.


In forming a frit seal, a liquid material is added to the dry frit material to form a frit paste. Any organic or inorganic solvent with or without additives can be used as the liquid material. In embodiments, the solvent includes one or more organic compounds. For example, applicable organic compounds are ethyl cellulose, nitro cellulose, hydroxyl propyl cellulose, butyl carbitol acetate, terpineol, butyl cellusolve, acrylate compounds. Then, the thus formed frit paste can be applied to form a shape of the seal 1071 on the top and/or bottom plate 1061, 1002.


In one exemplary embodiment, a shape of the seal 1071 is initially formed from the frit paste and interposed between the top plate 1061 and the bottom plate 1002. The seal 1071 can in certain embodiments be pre-cured or pre-sintered to one of the top plate and bottom plate 1061, 1002. Following assembly of the top plate 1061 and the bottom plate 1002 with the seal 1071 interposed therebetween, portions of the seal 1071 are selectively heated such that the frit material forming the seal 1071 at least partially melts. The seal 1071 is then allowed to resolidify to form a secure joint between the top plate 1061 and the bottom plate 1002 to thereby inhibit exposure of the enclosed OLED pixel array 1021 to oxygen or water.


In embodiments, the selective heating of the frit seal is carried out by irradiation of light, such as a laser or directed infrared lamp. As previously noted, the frit material forming the seal 1071 can be combined with one or more additives or filler such as species selected for improved absorption of the irradiated light to facilitate heating and melting of the frit material to form the seal 1071.


In some embodiments, OLED devices 1011 are mass produced. In an embodiment illustrated in FIG. 5E, a plurality of separate OLED arrays 1021 is formed on a common bottom substrate 1101. In the illustrated embodiment, each OLED array 1021 is surrounded by a shaped frit to form the seal 1071. In embodiments, common top substrate (not shown) is placed over the common bottom substrate 1101 and the structures formed thereon such that the OLED arrays 1021 and the shaped frit paste are interposed between the common bottom substrate 1101 and the common top substrate. The OLED arrays 1021 are encapsulated and sealed, such as via the previously described enclosure process for a single OLED display device. The resulting product includes a plurality of OLED devices kept together by the common bottom and top substrates. Then, the resulting product is cut into a plurality of pieces, each of which constitutes an OLED device 1011 of FIG. 5D. In certain embodiments, the individual OLED devices 1011 then further undergo additional packaging operations to further improve the sealing formed by the frit seal 1071 and the top and bottom substrates 1061, 1002.


One problem of the organic light-emitting display device is that the device can be deteriorated when moisture contacts organic materials constituting the organic light-emitting elements. FIG. 1 is a cross-sectional view showing an encapsulation structure of an organic light-emitting device that can prevent moisture from contacting organic materials. In the illustrated structure, the organic light-emitting display device is including a substrate 1, an encapsulation substrate 2, a sealing material 3, a moisture-absorbing material 4 and a bracket 5. The substrate 1 includes a pixel region including at least one organic light-emitting device, and a non-pixel region formed outside the pixel region, and the encapsulation substrate 2 is attached against a surface in which organic light-emitting elements of the substrate 1 are formed.


In order to attach the substrate 1 to the encapsulation substrate 2, the sealing material 3 is applied along edges of the deposition substrate 1 and the encapsulation substrate 2, and the sealing material 3 is then cured using UV irradiation, etc. A moisture-absorbing material 4 is included in the encapsulation substrate 2 for capturing moisture and certain gases such as hydrogen, oxygen. The bracket 5 is a kind of a frame for supporting an organic light-emitting panel to which the substrate 1 and the encapsulation substrate 2 are attached. In one embodiment, the bracket 5 and the organic light-emitting device may be attached with a double side adhesive tape 6. Even in the illustrated device, however, the sealing material 3 may not completely prevent moisture or air entering into the enclosed space. Also, there may be cracks in the sealing material 3 and in the interfacial area where the sealing material 3 contacts the substrate for various reasons.



FIG. 2 is a plan view showing an organic light-emitting display device according to one embodiment of the present invention; and FIG. 3 is a plane view taken along a line A-A′ of FIG. 2. Referring to figures, the organic light-emitting display device includes a substrate 100, an encapsulation substrate 200, a frit 150 and a reinforcement material or structure 160. For the sake of convenience, the deposition substrate 101 refers to a base, on which circuits and layers are formed, and the substrate 100 refers to an unfinished product including the deposition substrate 101 and circuits and layers formed thereon, including an array of organic light emitting pixels.


The substrate 100, which is equivalent to the bottom plate 1002, is a plate including organic light-emitting diodes or pixels, and includes a pixel region 100a in which at least one organic light-emitting diode or pixel is formed, and a non-pixel region 100b formed outside of the pixel region 100a, the organic light-emitting diode including a first electrode 119, an organic layer 121 and a second electrode 122. Hereinafter, the pixel region 100a is referred to as a region for displaying a predetermined image using the light emitted from an organic light-emitting diode, and the non-pixel region 100b is referred to as the entire region except the pixel region 100a on the substrate 100 in the description of this application.


The pixel region 100a includes a plurality of scan lines (S1 to Sm) arranged in a horizontal direction, and a plurality of data lines (D1 to Dm) arranged in a vertical direction, and a plurality of pixels are formed in the scan lines (S1 to Sm) and the data lines (D1 to Dm), the pixels receiving signals from driver integrated circuits 300,400 for driving an organic light-emitting diode. Also, a driver integrated circuit (Driver IC) for driving an organic light-emitting diodes or pixels, and metal wirings electrically attached to each of the scan lines (S1 to Sm) and the data lines (D1 to Dm) of the pixel region are formed in the non-pixel region 100b. In an embodiment, the driver integrated circuit includes a data driving unit 170 and a scan driving unit 180.


The organic light-emitting diode is driven in an active matrix method, as shown in the drawings, and its configuration will be described in brief. A buffer layer 111 is formed on a deposition substrate 101, and the buffer layer 111 is formed of insulating materials such as silicon oxide (SiO2) or silicon nitride (SiNx). The buffer layer 111 prevents the substrate 100 from being damaged by factors such as heat from the outside, etc. On at least one region of the buffer layer 111 is formed a semiconductor layer 112 including an active layer 112a and an ohmic contact layer 112b. On the semiconductor layer 112 and the buffer layer 111 is formed a gate insulating layer 113, and on one region of the gate insulating layer 113 is formed a gate electrode 114 having a size corresponding to a width of the active layer 112a.


An interlayer insulating layer 115 includes the gate electrode 114 and is formed on the gate insulating layer 113, and source and drain electrodes 116a, 116b are formed on a predetermined region of the interlayer insulating layer 115. The source and drain electrodes 116a, 116b are formed so that they can be connected to one exposed region of the ohmic contact layer 112b, and an overcoat 117 includes the source and drain electrodes 116a,116b and is formed on the interlayer insulating layer 115. A first electrode 119 is formed on one region of the overcoat 117, wherein the first electrode 119 is connected with one exposed region of either one of the source and drain electrodes 116a,116b by means of a via hole 118.


A pixel definition layer 120 includes the first electrode 119 and is formed on the overcoat 117, the pixel definition layer 120 having an opening (not shown) to which at least one region of the first electrode 119 is exposed. An organic layer 121 is formed on the opening of the pixel definition layer 120, and a second electrode layer 122 includes the organic layer 121 and is formed on the pixel definition layer 120. In an embodiment, a passivation layer may be further formed in an upper portion of the second electrode layer 122. However, various modifications and changes may be made in an active matrix structure or a passive matrix structure of the organic light-emitting diode.


The encapsulation substrate 200, which is equivalent to the top plate 1061, is a member for encapsulating at least one pixel region 100a of the substrate in which the organic light-emitting diode is formed, and is formed of transparent materials in the case of top emission or dual emission and formed of translucent materials in the case of bottom emission. Various materials of the encapsulation substrate 200 can be used in the embodiments of the present invention, but a glass may be preferably used in this embodiment, for example in the case of the top emission, although not limited thereto.


In an embodiment, the encapsulation substrate 200 is formed in a plate shape in this embodiment, and encapsulates a pixel region in which the organic light-emitting diode is formed on at least the substrate 100. For example, the entire region is encapsulated except a data driving unit and a pad unit in this embodiment. The frit 150 is formed between the encapsulation substrate 200 and the non-pixel region 100b of the substrate 100 to seal the pixel region 100a so that the air or moisture is prevented from being infiltrated.


In an embodiment, the frit 150 preferably forms a line spaced apart at a constant distance from an edge of an interface in which the encapsulation substrate 200 and the substrate 100 are coalesced to each other. This is to secure a space that forms a reinforcement material 160, as described later. The frit 150 includes a glass material, a absorbing material for absorbing a laser, a filler for reducing a thermal expansion coefficient, etc., and is applied to the encapsulation substrate 200 in a state of frit paste, melted and cured to form the frit seal between the encapsulation substrate 200 and the substrate 100 using a laser or an infrared ray to seal between the encapsulation substrate 200 and the substrate 100. In an embodiment, the line in which the frit 150 is formed preferably has a width of about 0.5 to about 1.5 mm. Also, a height of each frit 150 preferably ranges from about 10 to about 20 μm.


Meanwhile, various configurations and materials of a surface of the substrate 100 which the frit 150 contacts can be used although not limited thereto. In an embodiment, the frit is not overlapped with a metal wiring as possible as it is, except an area where a metal wiring directly connected with a driver integrated circuit. As described above, if the frit 150 is overlapped with the metal wiring, the metal wiring may be damaged due to irradiation of a laser or an infrared ray.


The bracket 400 is a kind of a frame for supporting an organic light-emitting panel to which a substrate 100 and an encapsulation substrate 200 are attached. In an embodiment illustrated in FIG. 3, the bracket 400 has a rear wall 450 and a plurality of side walls 460 extending from the rear wall 450. In an embodiment, the bracket does not have a rear wall 450 shown in FIG. 3 and may have a closed loop shape formed by the plurality of side walls 460 shown in FIG. 3. In the embodiment illustrated in FIG. 3, the rear wall 450 of the bracket 400 and a surface of the organic light-emitting panel may be attached with an adhesive tape, etc.


In an embodiment, the reinforcement material 160 is a member that is formed in a gap between a surface of the organic light-emitting panel and an inner surface of the bracket and then cured, and therefore the reinforcement material 160 prevents an organic light-emitting display device from being easily damaged or broken and also functions as a sealing material when the frit 150 is not attached or its adhesive force is reduced. In an embodiment, curable materials which are naturally cured, thermally cured or UV-cured, may be used. Liquid materials can be used for forming the reinforcement material 160. For example, cyanoacrylate may be used as the naturally cured material; acrylate may be used as the material that is thermally cured at a temperature of about 80° C. or less; and epoxy, acrylate and urethane acrylate may be used as the UV-cured materials.


Hereinafter, embodiments of a method for preparing an organic light-emitting display device according to the present invention will be described in detail. FIGS. 4a to 4e are process views showing a process for preparing an organic light-emitting display device. Firstly, a frit 150 is applied in a linear shape in a point spaced apart at a predetermined distance from an edge of an encapsulation substrate 200, and the frit 150 is formed in a point corresponding to a non-pixel region 100a of the substrate 100, as described later. In an embodiment, a height of the frit 150 preferably ranges from about 10 to about 20 μm. The frit 150 is applied to the encapsulation substrate 200 at a state of the frit paste, sintered to remove moisture or organic binders that are included in the paste, and then cured.


Next, a substrate 100 including a pixel region including an organic light-emitting diode, and a non-pixel region in which a driver integrated circuit and a metal wiring, etc. are formed is provided, and an encapsulation substrate 200 is coalesced. In an embodiment, encapsulation substrate 200 may or may not encapsulate a driver integrated circuit of the substrate 100, depending on its design. (FIG. 4b) Next, a laser or an infrared ray is irradiated to the frit 150 between the substrate 100 and the encapsulation substrate 200, both coalesced to each other, to melt the frit 150 between the substrate 100 and the encapsulation substrate 200. In an embodiment, the irradiated laser or infrared ray preferably has, for example, a wavelength of about 800 to about 1200 nm (and preferably about 810 nm), its power preferably ranges from about 25 to about 45 watt, and a region except the frit is preferably masked. A bilayer of cooper and aluminum may be used as materials of the mask. Then, the substrate 100 and the encapsulation substrate 200 are attached to each other by curing the melted frit 150. (FIG. 4c)


Next, a curable material for forming a reinforcement material 160 is applied, for example by using a dispenser, in an inner wall surface of a bracket 400 for mounting an organic light-emitting panel including the substrate 100 and the encapsulation substrate 200, both attached to each other. Generally, metal materials are mainly used for the bracket 400, although not limited thereto, and plastics are also used for the bracket 400. In an embodiment, the curable material for forming the reinforcement material 160 is preferably applied at a liquid state. (FIG. 4d)


Next, the organic light-emitting panel or device is mounted on the bracket 400. In an embodiment, the organic light-emitting panel contacts the curable material for the reinforcement material 160 applied in the inner surface of the bracket 400 while it is mounted on the bracket 400, and then the curable material for the reinforcement material 160 moves into a gap between the substrate 100 and the encapsulation substrate 200. (FIG. 4e) In an embodiment, gaps are generated in the edge regions of the substrate 100 and the encapsulation substrate 200 since the frit 150 is not formed adjacent to the edges, but formed spaced apart at a predetermined distance from the edges. Accordingly, the curable material for the reinforcement material 160 moves into the gaps in the edge regions, and then cured. In an embodiment, the dimension of the gap between the substrate 100 and the encapsulation substrate 200 will be identical to the height of the frit, and if a liquid of the reinforcement material is applied on the edges, then the liquid moves into gaps by a capillary phenomenon, and then cured.


Meanwhile, if the materials of the reinforcement material 160 are naturally cured, then preparation of an organic light-emitting diode may be completed without an additional process, but if the materials of the reinforcement material 160 are UV-cured, then there is required an additional process for masking the reinforcement material 160 and irradiating it with UV ray, and if the materials of the reinforcement material 160 are thermally cured, then there is required an additional process for subjecting the heat to the reinforcement material


The present invention has been described in detail with reference to embodiments. However, it would be appreciated that modifications and changes might be made in these embodiments without departing from the principles and spirit of the invention. For example, an encapsulation substrate may be prepared in a cap shape, and changes may be easily made in materials of a bracket or frame.


Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes might be made in this embodiment without departing from the principles and spirit of the present invention, the scope of which is defined in the claims and their equivalents.

Claims
  • 1. An organic light-emitting display device, comprising: an organic light-emitting display unit comprising: a front substrate comprising a front surface and a first side surface,a rear substrate comprising a rear surface and a first side surface, the rear substrate opposing the front substrate,an array of organic light-emitting pixels interposed between the front and rear substrates,a frit seal interposed between the front substrate and the rear substrate while surrounding the array, wherein the frit seal, the front substrate and the rear substrate together define an enclosed space in which the array is located, the frit seal comprising a first side surface, anda first side comprising the first side surfaces of the front substrate, the rear substrate and the frit seal;a bracket comprising a first surface generally opposing the first side of the unit and connected to the first side of the unit; anda first structure interconnecting the first surface of the bracket and the first side of the unit.
  • 2. The device of claim 1, wherein the first structure is formed in substantially the entire area between the first surface of the bracket and the first side of the unit.
  • 3. The device of claim 1, wherein the first structure is formed on substantially throughout the first surface of the bracket.
  • 4. The device of claim 1, wherein the first structure is bonded to the first surface of the bracket and bonded to either or both of the first side surfaces of the front and rear substrates.
  • 5. The device of claim 1, wherein the first structure is bonded to the first side surface of the frit seal.
  • 6. The device of claim 1, wherein the bracket further comprises a rear wall opposing the rear substrate.
  • 7. The device of claim 6, wherein the rear wall of the bracket is bonded to the rear surface of the rear substrate.
  • 8. The device of claim 1, wherein the bracket comprises a rear wall opposing the rear substrate, and the bracket further comprises a plurality of side walls extending from the rear wall at an angle, and wherein a first one of the plurality of the side walls provides the first surface opposing the first side of the unit.
  • 9. The device of claim 8, wherein the first side wall extends substantially parallel to at least one of the first side surfaces of the front and rear substrates.
  • 10. The device of claim 8, wherein the first side wall covers substantially the entirety of the first side of the unit.
  • 11. The device of claim 8, wherein the first side wall does not cover at least part of the first side surface of the front substrate while generally opposing the first side of the unit.
  • 12. The device of claim 8, wherein the first side wall does not cover the first side surface of the front substrate while generally opposing the first side of the unit.
  • 13. The device of claim 1, wherein the structure comprises a layer comprising a polymeric material.
  • 14. The device of claim 1, wherein the unit further comprises a plurality additional sides, wherein the bracket comprises a first side wall and a plurality of additional side walls, the first side wall providing the first surface of the frame, wherein each of the plurality of additional side walls of the bracket comprises a surface generally opposing one of the plurality of additional sides of the unit, wherein the device further comprises a plurality of additional structures, each of which interconnects one of the plurality of additional side walls and one of the plurality of additional sides of the unit.
  • 15. The device of claim 14, wherein the first side wall and the plurality of additional side walls form a closed loop surrounding the first side and the plurality of additional sides of the unit.
  • 16. The device of claim 1, wherein the front substrate further comprises a second side surface, wherein the rear substrate further comprises a second side surface, wherein the frit seal further comprises a second side surface, wherein the second side surfaces of the front substrate, the second substrate and the frit seal generally face the same direction, wherein the unit further comprises a second side comprising a second side surface of the front substrate, a second side surface of the rear substrate and a second side surface of the frit seal, wherein the bracket further comprises a second surface generally opposing the second side of the device, and wherein the unit further comprises a second structure interconnecting the second side of the unit and the second surface of the frame.
  • 17. The device of claim 16, wherein the first and second structures are integrated.
  • 18. The device of claim 16, wherein the first and second structures are separated.
  • 19. The device of claim 1, wherein the frit seal comprises one or more materials selected from the group consisting of magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), boron oxide (B2O3), vanadium oxide (V2O5), zinc oxide (ZnO), tellurium oxide (TeO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), lead oxide (PbO), tin oxide (SnO), phosphorous oxide (P2O5), ruthenium oxide (Ru2O), rubidium oxide (Rb2O), rhodium oxide (Rh2O), ferrite oxide (Fe2O3), copper oxide (CuO), titanium oxide (TiO2), tungsten oxide (W03), bismuth oxide (Bi2O3), antimony oxide (Sb2O3), lead-borate glass, tin-phosphate glass, vanadate glass, and borosilicate.
  • 20. A method of making an organic light-emitting display device, the method comprising: providing a device comprising: a front substrate comprising a front surface and a first side surface,a rear substrate comprising a rear surface and a first side surface, the rear substrate opposing the front substrate,an array of organic light-emitting pixels interposed between the front and rear substrates,a frit seal interposed between the front substrate and the rear substrate while surrounding the array, wherein the frit seal, the front substrate and the rear substrate together define an enclosed space in which the array is located, the frit seal comprising a first side surface, anda first side comprising the first sides of the front substrate, the rear substrate and the frit seal;placing a bracket comprising a first surface so as to generally oppose the first side of the device; andforming a structure between and interconnecting the first surface of the bracket and the first side of the device.
  • 21. The method of claim 20, wherein the method further comprises forming a curable material on the first surface of the frame, and wherein placing the bracket comprises arranging the bracket with respect to the device such that the curable material contacts the first side of the device.
  • 22. The method of claim 21, wherein the method further comprises curing the curable material, thereby forming the structure.
  • 23. The method of claim 21, wherein a viscosity of the curable material is less than about 5000 cP.
  • 24. The method of claim 20, wherein the bracket further comprises a rear wall, and wherein placing the bracket further comprises arranging the rear wall so as to oppose the rear substrate.
  • 25. An organic light-emitting display device, comprising: an organic light-emitting display unit comprising: a front substrate comprising a front surface and a first side surface,a rear substrate comprising a rear surface and a first side surface, the rear substrate opposing the front substrate,an array of organic light-emitting pixels interposed between the front and rear substrates,a frit seal interposed between the front substrate and the rear substrate while surrounding the array, wherein the frit seal, the front substrate and the rear substrate together define an enclosed space in which the array is located, the frit seal comprising a first side surface, anda first side comprising the first side surfaces of the front substrate, the rear substrate and the frit seal;a bracket comprising a first surface generally opposing the first side of the unit and connected to the first side of the unit; anda first structure interconnecting the first surface of the bracket and the first side of the unit;wherein the front substrate, the rear substrate and the first side surface of the frit seal define a gap space, and wherein the first structure comprises a portion extending into the gap space and interposed between the front and rear substrates.
Priority Claims (1)
Number Date Country Kind
10-2006-0007893 Jan 2006 KR national
US Referenced Citations (132)
Number Name Date Kind
3966449 Foster Jun 1976 A
4004936 Powell Jan 1977 A
4105292 Conder et al. Aug 1978 A
4702566 Tukude Oct 1987 A
4826297 Kubo et al. May 1989 A
4984059 Kubota et al. Jan 1991 A
5808719 Fujiwara et al. Sep 1998 A
5811927 Anderson et al. Sep 1998 A
5965907 Huang et al. Oct 1999 A
6005653 Matsuzawa Dec 1999 A
6087717 Ano et al. Jul 2000 A
6195142 Gyotoku et al. Feb 2001 B1
6210815 Ooishi Apr 2001 B1
6211938 Mori Apr 2001 B1
6288487 Arai Sep 2001 B1
6424009 Ju Jul 2002 B1
6452323 Byrum et al. Sep 2002 B1
6489719 Young et al. Dec 2002 B1
6495262 Igeta Dec 2002 B2
6515417 Duggal et al. Feb 2003 B1
6551724 Ishii et al. Apr 2003 B2
6554672 Dunham et al. Apr 2003 B2
6565400 Lee et al. May 2003 B1
6590337 Nishikawa et al. Jul 2003 B1
6603254 Ando Aug 2003 B1
6605826 Yamazaki et al. Aug 2003 B2
6624572 Kim et al. Sep 2003 B1
6646284 Yamazaki et al. Nov 2003 B2
6650392 Iwangaga et al. Nov 2003 B2
6660547 Guenther Dec 2003 B2
6671029 Choi Dec 2003 B1
6717052 Wang et al. Apr 2004 B2
6744199 Tanaka Jun 2004 B1
6791660 Hayashi et al. Sep 2004 B1
6831725 Niiya Dec 2004 B2
6833668 Yamada et al. Dec 2004 B1
6861801 Kim et al. Mar 2005 B2
6878467 Chung et al. Apr 2005 B2
6896572 Park et al. May 2005 B2
6914661 Masuda et al. Jul 2005 B2
6924594 Ogura et al. Aug 2005 B2
6936963 Langer et al. Aug 2005 B2
6956324 Yamazaki Oct 2005 B2
6956638 Akiyama et al. Oct 2005 B2
6965195 Yamazaki et al. Nov 2005 B2
6980275 Konuma et al. Dec 2005 B1
6993537 Buxton et al. Jan 2006 B2
6998776 Aitken et al. Feb 2006 B2
7030558 Park et al. Apr 2006 B2
7098589 Erchak et al. Aug 2006 B2
7112115 Yamazaki et al. Sep 2006 B1
7141925 Wittmann et al. Nov 2006 B2
7154218 Murakami et al. Dec 2006 B2
7178927 Seo Feb 2007 B2
7186020 Taya et al. Mar 2007 B2
7187121 Hasegawa et al. Mar 2007 B2
7193218 Nagano Mar 2007 B2
7193364 Klausmann et al. Mar 2007 B2
7193366 Tomimatsu et al. Mar 2007 B2
7202602 Anandan Apr 2007 B2
7211938 Tanaka May 2007 B2
7214429 Kato et al. May 2007 B2
7247986 Kang et al. Jul 2007 B2
7255823 Guether et al. Aug 2007 B1
7291977 Kim et al. Nov 2007 B2
7306346 Fukuoka et al. Dec 2007 B2
7317281 Hayashi et al. Jan 2008 B2
7332858 Nomura et al. Feb 2008 B2
7342357 Sakano et al. Mar 2008 B2
7344901 Hawtof et al. Mar 2008 B2
7359021 Ota et al. Apr 2008 B2
7371143 Becken et al. May 2008 B2
7393257 Spencer et al. Jul 2008 B2
7407423 Aitken et al. Aug 2008 B2
7423375 Guenther et al. Sep 2008 B2
7425166 Burt et al. Sep 2008 B2
7425518 Yoshida et al. Sep 2008 B2
7426010 Lee et al. Sep 2008 B2
7452738 Hayashi et al. Nov 2008 B2
7474375 Kwak et al. Jan 2009 B2
7498186 Lee Mar 2009 B2
7514280 Lee Apr 2009 B2
7528544 Kwak et al. May 2009 B2
7537504 Becken et al. May 2009 B2
7564185 Song et al. Jul 2009 B2
7579203 Yamazaki et al. Aug 2009 B2
7579220 Ohnuma et al. Aug 2009 B2
7585022 Achilles et al. Sep 2009 B2
7586254 Kwak et al. Sep 2009 B2
7597603 Becken et al. Oct 2009 B2
7821197 Lee Oct 2010 B2
7825594 Lee et al. Nov 2010 B2
20020125817 Yamazaki et al. Sep 2002 A1
20030066311 Li et al. Apr 2003 A1
20030077396 Lecompte et al. Apr 2003 A1
20030227252 Ikeya et al. Dec 2003 A1
20040069017 Li et al. Apr 2004 A1
20040075380 Takemoto et al. Apr 2004 A1
20040104655 Kodera et al. Jun 2004 A1
20040135520 Park et al. Jul 2004 A1
20040169033 Kuibira et al. Sep 2004 A1
20040169174 Huh et al. Sep 2004 A1
20040206953 Morena et al. Oct 2004 A1
20050127820 Yamazaki et al. Jun 2005 A1
20050231107 Yamazaki et al. Oct 2005 A1
20050233885 Yoshida et al. Oct 2005 A1
20050248270 Ghosh et al. Nov 2005 A1
20050275342 Yanagawa Dec 2005 A1
20060082298 Becken et al. Apr 2006 A1
20060084348 Becken et al. Apr 2006 A1
20060284556 Tremel et al. Dec 2006 A1
20060290261 Sawai et al. Dec 2006 A1
20070120478 Lee et al. May 2007 A1
20070170324 Lee et al. Jul 2007 A1
20070170423 Choi et al. Jul 2007 A1
20070170605 Lee et al. Jul 2007 A1
20070170839 Choi et al. Jul 2007 A1
20070170845 Choi et al. Jul 2007 A1
20070170850 Choi et al. Jul 2007 A1
20070170855 Choi et al. Jul 2007 A1
20070170857 Choi et al. Jul 2007 A1
20070170859 Choi et al. Jul 2007 A1
20070170860 Choi et al. Jul 2007 A1
20070170861 Lee et al. Jul 2007 A1
20070171637 Choi Jul 2007 A1
20070172971 Boroson Jul 2007 A1
20070173167 Choi et al. Jul 2007 A1
20070176549 Park Aug 2007 A1
20070177069 Lee Aug 2007 A1
20070197120 Lee Aug 2007 A1
20070232182 Park Oct 2007 A1
20080074036 Wang et al. Mar 2008 A1
Foreign Referenced Citations (119)
Number Date Country
1290121 Apr 2001 CN
1438825 Aug 2003 CN
1551686 Dec 2004 CN
1577413 Feb 2005 CN
161636 May 2005 CN
1212662 Jul 2005 CN
1670570 Sep 2005 CN
030-37933 Feb 1991 JP
04-147217 May 1992 JP
04-301879 Oct 1992 JP
06-34983 Feb 1994 JP
06-337429 Oct 1994 JP
07-74583 Mar 1995 JP
09-258671 Mar 1997 JP
10-74583 Mar 1998 JP
10-125463 May 1998 JP
10-161137 Jun 1998 JP
63-163423 Jul 1998 JP
10-201585 Aug 1998 JP
11-007031 Jan 1999 JP
11-202349 Jul 1999 JP
2001-022293 Jan 2001 JP
2001-052858 Feb 2001 JP
2001-55527 Feb 2001 JP
2001-203076 Feb 2001 JP
2001-110564 Apr 2001 JP
2001-230072 Aug 2001 JP
2001-319775 Nov 2001 JP
2002 020169 Jan 2002 JP
2002-93576 Mar 2002 JP
2002-100472 Apr 2002 JP
2002 117777 Apr 2002 JP
2002 170664 Jun 2002 JP
2002-216951 Aug 2002 JP
2002-280169 Sep 2002 JP
2002-318547 Oct 2002 JP
2001-324662 Nov 2002 JP
2002-359070 Dec 2002 JP
2003-123966 Apr 2003 JP
2003-228302 Aug 2003 JP
2003 243160 Aug 2003 JP
2003 297552 Oct 2003 JP
2003-332061 Nov 2003 JP
2004 29552 Jan 2004 JP
2004 070351 Mar 2004 JP
04-151656 May 2004 JP
2004 303733 Oct 2004 JP
2004 319103 Nov 2004 JP
2005-049808 Feb 2005 JP
2005-71984 Mar 2005 JP
2005-112676 Apr 2005 JP
2005-510831 Apr 2005 JP
2005-123089 May 2005 JP
2005 158672 Jun 2005 JP
2005 190683 Jul 2005 JP
2005-222807 Aug 2005 JP
2005-251415 Sep 2005 JP
2005 251415 Sep 2005 JP
2005 258405 Sep 2005 JP
2005-302707 Oct 2005 JP
2005 340020 Dec 2005 JP
2006 524419 Oct 2006 JP
10-1995-0009817 Apr 1995 KR
10-1998-0017583 Jun 1998 KR
10-2000-0045292 Jul 2000 KR
10-2001-0079597 Aug 2001 KR
10-2001-0084380 Sep 2001 KR
10-2002-0051153 Jun 2002 KR
10-2003-0044656 Jun 2003 KR
10-2004-0011138 Feb 2004 KR
10-2005-0024592 Mar 2005 KR
10-2005-070543 Jul 2005 KR
10-2005-0076664 Jul 2005 KR
10-2005-0112318 Nov 2005 KR
10-2005-0115408 Dec 2005 KR
10-2006-0005369 Jan 2006 KR
10-2006-0006148 Jan 2006 KR
10-2006-0006149 Jan 2006 KR
10-2006-0007025 Jan 2006 KR
10-2006-0007353 Jan 2006 KR
10-2006-0007354 Jan 2006 KR
10-2006-0007889 Jan 2006 KR
10-2006-0007890 Jan 2006 KR
10-2006-0007892 Jan 2006 KR
10-2006-0007893 Jan 2006 KR
10-2006-0007962 Jan 2006 KR
10-2006-0007963 Jan 2006 KR
10-2006-0008462 Jan 2006 KR
10-2006-0008463 Jan 2006 KR
10-2006-0008464 Jan 2006 KR
10-2006-0008761 Jan 2006 KR
10-2006-0008769 Jan 2006 KR
10-2006-0011831 Feb 2006 KR
10-2006-0016188 Feb 2006 KR
10-2006-0016316 Feb 2006 KR
10-2006-0016446 Feb 2006 KR
10-2006-0016856 Feb 2006 KR
10-2006-0016857 Feb 2006 KR
10-2006-0020109 Mar 2006 KR
10-2006-0025755 Mar 2006 KR
10-2006-0026816 Mar 2006 KR
10-2006-0027321 Mar 2006 KR
10-2006-0028571 Mar 2006 KR
10-2006-0035455 Apr 2006 KR
508976 Nov 2002 TW
564563 Dec 2003 TW
569166 Jan 2004 TW
I227094 Jan 2005 TW
I228686 Mar 2005 TW
I237218 Aug 2005 TW
200541379 Dec 2005 TW
200541382 Dec 2005 TW
1I277125 Mar 2007 TW
WO 0221557 Mar 2002 WO
WO 03005774 Jan 2003 WO
WO 2004-095597 Apr 2004 WO
WO 2004094331 Nov 2004 WO
WO 2004112160 Dec 2004 WO
WO 2005050751 Jun 2005 WO
Related Publications (1)
Number Date Country
20070170860 A1 Jul 2007 US