Organic light emitting element and composition for organic material layer in organic light emitting element

Abstract
The present specification relates to an organic light emitting device comprising a first electrode, a second electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers comprise a heterocyclic compound represented by Chemical Formula 1 and a heterocyclic compound represented by Chemical Formula 2 at the same time, and a composition for an organic material layer of an organic light emitting device.
Description
TECHNICAL FIELD

This application claims priority to and the benefits of Korean Patent Application No. 10-2017-0037976, filed with the Korean Intellectual Property Office on Mar. 24, 2017, Korean Patent Application No. 10-2018-0018784, filed with the Korean Intellectual Property Office on Feb. 14, 2018, and Korean Patent Application No. 10-2018-0018780, filed with the Korean Intellectual Property Office on Feb. 14, 2018, the entire contents of which are incorporated herein by reference.


The present specification relates to an organic light emitting device and a composition for an organic material layer of an organic light emitting device.


BACKGROUND ART

An electroluminescent device is one type of self-emissive display devices, and has an advantage of having a wide viewing angle, and a high response speed as well as having an excellent contrast.


An organic light emitting device has a structure disposing an organic thin film between two electrodes. When a voltage is applied to an organic light emitting device having such a structure, electrons and holes injected from the two electrodes bind and pair in the organic thin film, and light emits as these annihilate. The organic thin film may be formed in a single layer or a multilayer as necessary.


A material of the organic thin film may have a light emitting function as necessary. For example, as a material of the organic thin film, compounds capable of forming a light emitting layer themselves alone may be used, or compounds capable of performing a role of a host or a dopant of a host-dopant-based light emitting layer may also be used. In addition thereto, compounds capable of performing roles of hole injection, hole transfer, electron blocking, hole blocking, electron transfer, electron injection and the like may also be used as a material of the organic thin film.


Development of an organic thin film material has been continuously required for enhancing performance, lifetime or efficiency of an organic light emitting device.


DISCLOSURE
Technical Problem

Researches for an organic light emitting device comprising a compound capable of satisfying conditions required for materials usable in an organic light emitting device, for example, a proper energy level, electrochemical stability, thermal stability and the like, and having a chemical structure that may perform various roles required in an organic light emitting device depending on substituents have been required.


Technical Solution

One embodiment of the present application provides an organic light emitting device comprising a first electrode, a second electrode, and one or more organic material layers provided between the first electrode and the second electrode,


wherein one or more layers of the organic material layers comprise a heterocyclic compound represented by the following Chemical Formula 1 and a heterocyclic compound represented by the following Chemical Formula 2 at the same time.




embedded image


In Chemical Formulae 1 and 2,


N-Het is a monocyclic or multicyclic heterocyclic group substituted or unsubstituted, and comprising one or more Ns,


L is a direct bond; a substituted or unsubstituted arylene group; or a substituted or unsubstituted heteroarylene group, a is an integer of 1 to 3, and when a is 2 or greater, Ls are the same as or different from each other,


Ra and Rb are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; or a substituted or unsubstituted heteroaryl group,


R1 to R10, Rc and Rd are the same as or different from each other, and each independently selected from the group consisting of hydrogen; deuterium; halogen; a cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted alkynyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted heterocycloalkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heteroaryl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted phosphine oxide group; and a substituted or unsubstituted amine group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring, b and c are each an integer of 1 to 3, and when b is 2 or greater, R9s are the same as or different from each other and when c is 2 or greater, R10s are the same as or different from each other, r and s are each an integer of 0 to 7, and when r is 2 or greater, Rcs are the same as or different from each other and when s is 2 or greater, Rds are the same as or different from each other.


Another embodiment of the present application provides a composition for an organic material layer of an organic light emitting device comprising the heterocyclic compound represented by Chemical Formula 1 and the compound represented by Chemical Formula 2 at the same time.


Lastly, one embodiment of the present application provides a method for manufacturing an organic light emitting device comprising preparing a substrate; forming a first electrode on the substrate; forming one or more organic material layers on the first electrode; and forming a second electrode on the organic material layer, wherein the forming of an organic material layer comprises forming one or more organic material layers using a composition for an organic material layer according to one embodiment of the present application.


Advantageous Effects

A heterocyclic compound according to one embodiment of the present application can be used as a material of an organic material layer of an organic light emitting device. The heterocyclic compound can be used as a material of a hole injection layer, a hole transfer layer, a light emitting layer, an electron transfer layer, an electron injection layer, a charge generation layer or the like in an organic light emitting device. Particularly, the heterocyclic compound represented by Chemical Formula 1 and the compound represented by Chemical Formula 2 can be used as a material of a light emitting layer of an organic light emitting device at the same time. In addition, using the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time in an organic light emitting device lowers a driving voltage of the device, enhances light efficiency, and can enhance a lifetime property of the device with thermal stability of the compound.


Particularly, the heterocyclic compound represented by Chemical Formula 1 has a structure with more electron stability by having an N-containing ring substituting a position of number 3 carbon in a dibenzofuran structure, and having a carbazole structure substituting benzene that is not substituted with the N-containing ring in the dibenzofuran structure, and a device lifetime can be enhanced therefrom.





DESCRIPTION OF DRAWINGS


FIG. 1 to FIG. 3 are diagrams each schematically illustrating a lamination structure of an organic light emitting device according to one embodiment of the present application.





REFERENCE NUMERAL






    • 100: Substrate


    • 200: Anode


    • 300: Organic Material Layer


    • 301: Hole Injection Layer


    • 302: Hole Transfer Layer


    • 303: Light Emitting Layer


    • 304: Hole Blocking Layer


    • 305: Electron Transfer Layer


    • 306: Electron Injection Layer


    • 400: Cathode





Mode for Disclosure

Hereinafter, the present application will be described in detail.


The term “substituted” means a hydrogen atom bonding to a carbon atom of a compound is changed to another substituent, and the position of substitution is not limited as long as it is a position at which the hydrogen atom is substituted, that is, a position at which a substituent can substitute, and when two or more substituents substitute, the two or more substituents may be the same as or different from each other.


In the present specification, the halogen may be fluorine, chlorine, bromine or iodine.


In the present specification, the alkyl group comprises linear or branched having 1 to 60 carbon atoms, and may be further substituted with other substituents. The number of carbon atoms of the alkyl group may be from 1 to 60, specifically from 1 to 40 and more specifically from 1 to 20. Specific examples thereof may comprise a methyl group, an ethyl group, a propyl group, an n-propyl group, an isopropyl group, a butyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a sec-butyl group, a 1-methyl-butyl group, a 1-ethyl-butyl group, a pentyl group, an n-pentyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, a hexyl group, an n-hexyl group, a 1-methylpentyl group, a 2-methylpentyl group, a 4-methyl-2-pentyl group, a 3,3-dimethylbutyl group, a 2-ethylbutyl group, a heptyl group, an n-heptyl group, a 1-methylhexyl group, a cyclopentylmethyl group, a cyclohexylmethyl group, an octyl group, an n-octyl group, a tert-octyl group, a 1-methylheptyl group, a 2-ethylhexyl group, a 2-propylpentyl group, an n-nonyl group, a 2,2-dimethylheptyl group, a 1-ethyl-propyl group, a 1,1-dimethyl-propyl group, an isohexyl group, a 2-methylpentyl group, a 4-methylhexyl group, a 5-methylhexyl group and the like, but are not limited thereto.


In the present specification, the alkenyl group comprises linear or branched having 2 to 60 carbon atoms, and may be further substituted with other substituents. The number of carbon atoms of the alkenyl group may be from 2 to 60, specifically from 2 to 40 and more specifically from 2 to 20. Specific examples thereof may comprise a vinyl group, a 1-propenyl group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1-pentenyl group, a 2-pentenyl group, a 3-pentenyl group, a 3-methyl-1-butenyl group, a 1,3-butadienyl group, an allyl group, a 1-phenylvinyl-1-yl group, a 2-phenylvinyl-1-yl group, a 2,2-diphenylvinyl-1-yl group, a 2-phenyl-2-(naphthyl-1-yl)vinyl-1-yl group, a 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, a stilbenyl group, a styrenyl group and the like, but are not limited thereto.


In the present specification, the alkynyl group comprises linear or branched having 2 to 60 carbon atoms, and may be further substituted with other substituents. The number of carbon atoms of the alkynyl group may be from 2 to 60, specifically from 2 to 40 and more specifically from 2 to 20.


In the present specification, the alkoxy group may be linear, branched or cyclic. The number of carbon atoms of the alkoxy group is not particularly limited, but is preferably from 1 to 20. Specific examples thereof may comprise methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benxyloxy, p-methylbenzyloxy and the like, but are not limited thereto.


In the present specification, the cycloalkyl group comprises monocyclic or multicyclic having 3 to 60 carbon atoms, and may be further substituted with other substituents. Herein, the multicyclic means a group in which the cycloalkyl group is directly linked to or fused with other cyclic groups. Herein, the other cyclic groups may be a cycloalkyl group, but may also be different types of cyclic groups such as a heterocycloalkyl group, an aryl group and a heteroaryl group. The number of carbon groups of the cycloalkyl group may be from 3 to 60, specifically from 3 to 40 and more specifically from 5 to 20. Specific examples thereof may comprise a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a 3-methylcyclopentyl group, a 2,3-dimethylcyclopentyl group, a cyclohexyl group, a 3-methylcyclohexyl group, a 4-methylcyclohexyl group, a 2,3-dimethylcyclohexyl group, a 3,4,5-trimethylcyclohexyl group, a 4-tert-butylcyclohexyl group, a cycloheptyl group, a cycloctyl group and the like, but are not limited thereto.


In the present specification, the heterocycloalkyl group comprises O, S, Se, N or Si as a heteroatom, comprises monocyclic or multicyclic having 2 to 60 carbon atoms, and may be further substituted with other substituents. Herein, the multicyclic means a group in which the heterocycloalkyl group is directly linked to or fused with other cyclic groups. Herein, the other cyclic groups may be a heterocycloalkyl group, but may also be different types of cyclic groups such as a cycloalkyl group, an aryl group and a heteroaryl group. The number of carbon atoms of the heterocycloalkyl group may be from 2 to 60, specifically from 2 to 40 and more specifically from 3 to 20.


In the present specification, the aryl group comprises monocyclic or multicyclic having 6 to 60 carbon atoms, and may be further substituted with other substituents. Herein, the multicyclic means a group in which the aryl group is directly linked to or fused with other cyclic groups. Herein, the other cyclic groups may be an aryl group, but may also be different types of cyclic groups such as a cycloalkyl group, a heterocycloalkyl group and a heteroaryl group. The aryl group comprises a spiro group. The number of carbon atoms of the aryl group may be from 6 to 60, specifically from 6 to 40 and more specifically from 6 to 25. Specific examples of the aryl group may comprise a phenyl group, a biphenyl group, a triphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, a pyrenyl group, a tetracenyl group, a pentacenyl group, a fluorenyl group, an indenyl group, an acenaphthylenyl group, a benzofluorenyl group, a spirobifluorenyl group, a 2,3-dihydro-1H-indenyl group, a fused ring thereof, and the like, but are not limited thereto.


In the present specification, the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.


When the fluorenyl group is substituted,




embedded image



and the like may be included. However, the structure is not limited thereto.


In the present specification, the heteroaryl group includes O, S, Se, N or Si as a heteroatom, comprises monocyclic or multicyclic having 2 to 60 carbon atoms, and may be further substituted with other substituents. Herein, the multicyclic means a group in which the heteroaryl group is directly linked to or fused with other cyclic groups. Herein, the other cyclic groups may be a heteroaryl group, but may also be different types of cyclic groups such as a cycloalkyl group, a heterocycloalkyl group and an aryl group. The number of carbon atoms of the heteroaryl group may be from 2 to 60, specifically from 2 to 40 and more specifically from 3 to 25. Specific examples of the heteroaryl group may comprise a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophene group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a triazolyl group, a furazanyl group, an oxadiazolyl group, a thiadiazolyl group, a dithiazolyl group, a tetrazolyl group, a pyranyl group, a thiopyranyl group, a diazinyl group, an oxazinyl group, a thiazinyl group, a dioxynyl group, a triazinyl group, a tetrazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, an isoquinazolinyl group, a qninozolinyl group, a naphthyridyl group, an acridinyl group, a phenanthridinyl group, an imidazopyridinyl group, a diazanaphthalenyl group, a triazaindene group, an indolyl group, an indolizinyl group, a benzothiazolyl group, a benzoxazolyl group, a benzimidazolyl group, a benzothiophene group, a benzofuran group, a dibenzothiophene group, a dibenzofuran group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a phenazinyl group, a dibenzosilole group, spirobi(dibenzosilole), a dihydrophenazinyl group, a phenoxazinyl group, a phenanthridyl group, an imidazopyridinyl group, a thienyl group, an indolo[2,3-a]carbazolyl group, an indolo[2,3-b]carbazolyl group, an indolinyl group, a 10,11-dihydro-dibenzo[b,f]azepine group, a 9,10-dihydroacridinyl group, a phenanthrazinyl group, a phenothiathiazinyl group, a phthalazinyl group, a naphthylidinyl group, a phenanthrolinyl group, a benzo[c][1,2,5]thiadiazolyl group, a 5,10-dihydrobenzo[b,e][1,4]azasilinyl, a pyrazolo[1,5-c]quinazolinyl group, a pyrido[1,2-b]indazolyl group, a pyrido[1,2-a]imidazo[1,2-e]indolinyl group, a 5,11-dihydroindeno[1,2-b]carbazolyl group and the like, but are not limited thereto.


In the present specification, the amine group may be selected from the group consisting of a monoalkylamine group; a monoarylamine group; a monoheteroarylamine group; —NH2; a dialkylamine group; a diarylamine group; a diheteroarylamine group; an alkylarylamine group; an alkylheteroarylamine group; and an arylheteroarylamine group, and although not particularly limited thereto, the number of carbon atoms is preferably from 1 to 30. Specific examples of the amine group may comprise a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9-methyl-anthracenylamine group, a diphenylamine group, a phenylnaphthylamine group, a ditolylamine group, a phenyltolylamine group, a triphenylamine group, a biphenylnaphthylamine group, a phenylbiphenylamine group, a biphenylfluorenylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group and the like, but are not limited thereto.


In the present specification, the arylene group means the aryl group having two bonding sites, that is, a divalent group. Descriptions on the aryl group provided above may be applied thereto except for each being a divalent. In addition, the heteroarylene group means the heteroaryl group having two bonding sites, that is, a divalent group. Descriptions on the heteroaryl group provided above may be applied thereto except for each being a divalent.


In the present specification, the phosphine oxide group may specifically be substituted with an aryl group, and the examples described above may be used as the aryl group. Examples of the phosphine oxide group may comprise a diphenylphosphine oxide group, a dinaphthylphosphine oxide group and the like, but are not limited thereto.


In the present specification, the silyl group is a substituent including Si, having the Si atom directly linked as a radical, and is represented by —SiR104R105R106. R104 to R106 are the same as or different from each other, and may be each independently a substituent formed with at least one of hydrogen; deuterium; a halogen group; an alkyl group; an alkenyl group; an alkoxy group; a cycloalkyl group; an aryl group; and a heterocyclic group. Specific examples of the silyl group may include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group and the like, but are not limited thereto.


In the present specification, an “adjacent” group may mean a substituent substituting an atom directly linked to an atom substituted by the corresponding substituent, a substituent sterically most closely positioned to the corresponding substituent, or another substituent substituting an atom substituted by the corresponding substituent. For example, two substituents substituting ortho positions in a benzene ring, and two substituents substituting the same carbon in an aliphatic ring may be interpreted as groups adjacent to each other.


Structures illustrated as the cycloalkyl group, the cycloheteroalkyl group, the aryl group and the heteroaryl group described above may be used as the aliphatic or aromatic hydrocarbon ring or heteroring that adjacent groups may form except for those that are not monovalent.


One embodiment of the present application provides an organic light emitting device comprising a first electrode, a second electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers comprise a heterocyclic compound represented by Chemical Formula 1 and a heterocyclic compound represented by Chemical Formula 2 at the same time.


In one embodiment of the present application, Chemical Formula 1 may be represented by any one of the following Chemical Formulae 3 to 6.




embedded image


In Chemical Formulae 3 to 6, substituents have the same definitions as in Chemical Formula 1.


In one embodiment of the present application, N-Het is a monocyclic or multicyclic heteroring substituted or unsubstituted, and comprising one or more Ns.


In another embodiment, N-Het is a monocyclic or multicyclic heteroring unsubstituted or substituted with one or more substituents selected from the group consisting of an aryl group and a heteroaryl group, and comprising one or more Ns.


In another embodiment, N-Het is a monocyclic or multicyclic heteroring unsubstituted or substituted with one or more substituents selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, a dimethylfluorene group, a dibenzofuran group and a dibenzothiophene group, and comprising one or more Ns.


In another embodiment, N-Het is a monocyclic or multicyclic heteroring unsubstituted or substituted with one or more substituents selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, a dimethylfluorene group, a dibenzofuran group and a dibenzothiophene group, and comprising one or more and three or less Ns.


In one embodiment of the present application, N-Het is a monocyclic heteroring substituted or unsubstituted, and comprising one or more Ns.


In one embodiment of the present application, N-Het is a dicyclic or higher heteroring substituted or unsubstituted, and comprising one or more Ns.


In one embodiment of the present application, N-Het is a monocyclic or multicyclic heteroring substituted or unsubstituted, and comprising two or more Ns.


In one embodiment of the present application, N-Het is a dicyclic or higher multicyclic heteroring comprising two or more Ns.


In one embodiment of the present application, N-Het may be a pyrimidine group unsubstituted or substituted with a phenyl group; a triazine group unsubstituted or substituted with one or more substituents selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, a dimethylfluorene group, a dibenzofuran group and a dibenzothiophene group; a benzimidazole group unsubstituted or substituted with a phenyl group; a quinazoline group unsubstituted or substituted with one or more substituents selected from the group consisting of a phenyl group and a biphenyl group; or a phenanthroline group unsubstituted or substituted with a phenyl group.


In one embodiment of the present application, Chemical Formula 1 is represented by one of the following Chemical Formulae 7 to 9.




embedded image


In Chemical Formulae 7 to 9, R1 to R10, L, a, b and c have the same definitions as in Chemical Formula 1,


X1 is CR11 or N, X2 is CR12 or N, X3 is CR13 or N, X4 is CR14 or N, and X5 is CR15 or N,


R11 to R15 and R17 to R22 are the same as or different from each other, and each independently selected from the group consisting of hydrogen; deuterium; halogen; a cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted alkynyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted heterocycloalkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heteroaryl group; a substituted or unsubstituted phosphine oxide group; and a substituted or unsubstituted amine group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring.


In one embodiment of the present application,




embedded image



may be represented by one of the following Chemical Formulae 10 to 12. Herein,




embedded image



is a site linked to L.




embedded image


In Chemical Formula 10, one or more of X1, X3 and X5 are N, and the rest have the same definitions as in Chemical Formula 7,


in Chemical Formula 11, one or more of X1, X2 and X5 are N, and the rest have the same definitions as in Chemical Formula 7,


in Chemical Formula 12, one or more of X1 to X3 are N, and the rest have the same definitions as in Chemical Formula 7, and


R12, R14 and R23 to R26 are the same as or different from each other, and each independently selected from the group consisting of hydrogen; deuterium; halogen; a cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted alkynyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted heterocycloalkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heteroaryl group; a substituted or unsubstituted phosphine oxide group; and a substituted or unsubstituted amine group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring.


In one embodiment of the present application, Chemical Formula 10 may be selected from among the following structural formulae.




embedded image


In one embodiment of the present application, Chemical Formula 11 may be represented by the following Chemical Formula 13.




embedded image


Substituents of Chemical Formula 13 have the same definitions as in Chemical Formula 11.


In one embodiment of the present application, Chemical Formula 12 may be represented by the following Chemical Formula 14.




embedded image


Substituents of Chemical Formula 14 have the same definitions as in Chemical Formula 12.


In one embodiment of the present application, Chemical Formula 11 may be represented by the following Chemical Formula 15.




embedded image


In Chemical Formula 15, R27s are the same as or different from each other, and selected from the group consisting of hydrogen; deuterium; halogen; a cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted alkynyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted heterocycloalkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heteroaryl group; a substituted or unsubstituted phosphine oxide group; and a substituted or unsubstituted amine group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring, e is an integer of 0 to 7, and when e is 2 or greater, R27s are the same as or different from each other.


In another embodiment, L is a direct bond or an arylene group.


In another embodiment, L is a direct bond or a phenylene group.


In another embodiment, R9 and R10 are hydrogen; or deuterium.


In another embodiment, R9 and R10 are hydrogen.


In another embodiment, R1 to R8 are hydrogen; deuterium; an aryl group unsubstituted or substituted with an alkyl group, an aryl group or a heteroaryl group; or a heteroaryl group unsubstituted or substituted with an aryl group or a heteroaryl group.


In another embodiment, R1 to R8 are hydrogen; deuterium; an aryl group; a heteroaryl group; or a heteroaryl group substituted with an aryl group.


In another embodiment, R1 to R8 are hydrogen; deuterium; a phenyl group; a dibenzofuran group; a dibenzothiophene group; a carbazole group; or a carbazole group substituted with a phenyl group.


In another embodiment, adjacent two substituents among R1 to R8 bond to each other to form a substituted or unsubstituted ring.


In another embodiment, adjacent two substituents among R1 to R8 bond to each other to form a ring unsubstituted or substituted with an aryl group or an alkyl group.


In another embodiment, adjacent two substituents among R1 to R8 bond to each other to form an aromatic hydrocarbon ring or heteroring unsubstituted or substituted with an aryl group or an alkyl group.


In another embodiment, adjacent two substituents among R1 to R8 bond to each other to form an aromatic hydrocarbon ring or heteroring unsubstituted or substituted with a phenyl group or a methyl group.


In another embodiment, adjacent two substituents among R1 to R8 bond to each other to form an indole ring unsubstituted or substituted with a phenyl group; a benzothiophene ring; a benzofuran ring; or an indene ring unsubstituted or substituted with a methyl group.


In another embodiment,




embedded image



may be represented by the following Chemical Formula 16. Herein,




embedded image



is a site linked to a dibenzofuran structure.




embedded image


In Chemical Formula 16,


R1 to R4 have the same definitions as in Chemical Formula 1,


Y is O, S, NR or CR′R″,


R, R′, R″, R31 and R32 are the same as or different from each other, and selected from the group consisting of hydrogen; deuterium; halogen; a cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted alkynyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted heterocycloalkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heteroaryl group; a substituted or unsubstituted phosphine oxide group; and a substituted or unsubstituted amine group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring, f is an integer of 0 to 4, and when f is 2 or greater, R31s are the same as or different from each other, g is an integer of 0 to 2, and when g is 2 or greater, R32s are the same as or different from each other.


In another embodiment, Chemical Formula 16 may be selected from among the following structural formulae.




embedded image


embedded image


In another embodiment, R18 to R21 are the same as or different from each other, and each independently hydrogen; deuterium; an aryl group; or a heteroaryl group.


In another embodiment, R18 to R21 are the same as or different from each other, and each independently hydrogen; or deuterium.


In another embodiment, R18 to R21 are hydrogen.


In another embodiment, R17 and R22 are the same as or different from each other, and each independently hydrogen; deuterium; an aryl group; or a heteroaryl group.


In another embodiment, R17 and R22 are the same as or different from each other, and each independently an aryl group; or a heteroaryl group.


In another embodiment, R17 and R22 are the same as or different from each other, and each independently an aryl group.


In another embodiment, R17 and R22 are a phenyl group.


In another embodiment, R11 to R15 are the same as or different from each other, and each independently hydrogen; deuterium; an aryl group unsubstituted or substituted with an alkyl group; or a substituted or unsubstituted heteroaryl group.


In another embodiment, R11 to R15 are the same as or different from each other, and each independently hydrogen; deuterium; an aryl group unsubstituted or substituted with an alkyl group; or a heteroaryl group.


In another embodiment, R11 to R15 are the same as or different from each other, and each independently hydrogen; an aryl group unsubstituted or substituted with a methyl group; or a heteroaryl group.


In another embodiment, R11 to R15 are the same as or different from each other, and each independently hydrogen; a phenyl group; a biphenylyl group; a naphthyl group; a dimethylfluorenyl group; a dibenzofuran group; or a dibenzothiophene group.


In another embodiment, R12 and R14 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with an alkyl group; or a heteroaryl group.


In another embodiment, R12 and R14 are the same as or different from each other, and each independently a phenyl group, a biphenylyl group, a naphthyl group, a dimethylfluorenyl group; a dibenzofuran group; or a dibenzothiophene group.


In another embodiment, R23 to R26 are the same as or different from each other, and each independently hydrogen; deuterium; an aryl group; or a heteroaryl group, or two or more groups adjacent to each other bond to each other to form a substituted or unsubstituted aliphatic or aromatic hydrocarbon ring or heteroring.


In another embodiment, R23 to R26 are the same as or different from each other, and each independently hydrogen;


deuterium; or an aryl group, or two or more groups adjacent to each other bond to each other to form aliphatic or aromatic hydrocarbon ring or heteroring.


In another embodiment, R23 to R26 are the same as or different from each other, and each independently hydrogen;


deuterium; or an aryl group, or two or more groups adjacent to each other bond to each other to form a pyridine ring.


In another embodiment, R23 to R26 are the same as or different from each other, and each independently hydrogen; or an aryl group, or two or more groups adjacent to each other bond to each other to form a pyridine ring.


In another embodiment, R23 to R26 are the same as or different from each other, and each independently hydrogen; a phenyl group; or a biphenylyl group, or two or more groups adjacent to each other bond to each other to form a pyridine ring.


In another embodiment, R27 is hydrogen; deuterium; an aryl group; or a heteroaryl group.


In another embodiment, R27 is hydrogen; deuterium; or an aryl group.


In another embodiment, R27 is hydrogen; or an aryl group. In another embodiment, R27 is hydrogen; or a phenyl group.


In another embodiment, Y is O or S.


In another embodiment, Y is NR, and R is an aryl group.


In another embodiment, Y is NR, and R is a phenyl group. In another embodiment, Y is CR′R″, and R′ and R″ are an alkyl group.


In another embodiment, Y is CR′R″, and R′ and R″ are a methyl group.


In another embodiment, R31 is hydrogen; deuterium; an aryl group; or a heteroaryl group.


In another embodiment, R31 is hydrogen; deuterium; or an aryl group.


In another embodiment, R31 is hydrogen; or a phenyl group.


In another embodiment, R32 is hydrogen; or deuterium.


In another embodiment, R32 is hydrogen.


In one embodiment of the present application, Rc and Rd of Chemical Formula 2 may be hydrogen.


In one embodiment of the present application, Ra and Rb of Chemical Formula 2 are the same as or different from each other, and may be each independently a substituted or unsubstituted aryl group.


In another embodiment, Ra and Rb of Chemical Formula 2 are the same as or different from each other, and may be each independently a substituted or unsubstituted C6 to C60 aryl group.


In another embodiment, Ra and Rb of Chemical Formula 2 are the same as or different from each other, and may be each independently a substituted or unsubstituted C6 to C40 aryl group.


In another embodiment, Ra and Rb of Chemical Formula 2 are the same as or different from each other, and may be each independently a C6 to C40 aryl group unsubstituted or substituted with one or more substituents selected from the group consisting of a C1 to C40 alkyl group, a C6 to C40 aryl group, —CN and —SiR101R102R103.


In another embodiment, Ra and Rb of Chemical Formula 2 are the same as or different from each other, and may be each independently a phenyl group unsubstituted or substituted with a phenyl group, —CN or —SiR101R102R103; a biphenyl group unsubstituted or substituted with a phenyl group; a naphthyl group; a fluorene group unsubstituted or substituted with a methyl group or a phenyl group; a spirobifluorene group; or a triphenylene group.


In one embodiment of the present application, R101, R102 and R103 of Chemical Formula 2 may be a phenyl group.


When including the compound of Chemical Formula 1 and the compound of Chemical Formula 2 at the same time in an organic material layer of an organic light emitting device, more superior efficiency and lifetime effects are obtained. Such results may lead to a forecast that an exciplex phenomenon occurs when including the two compounds at the same time.


The exciplex phenomenon is a phenomenon of releasing energy having sizes of a donor (p-host) HOMO level and an acceptor (n-host) LUMO level due to electron exchanges between two molecules. When the exciplex phenomenon occurs between two molecules, reverse intersystem crossing (RISC) occurs, and as a result, internal quantum efficiency of fluorescence may increase up to 100%. When a donor (p-host) having favorable hole transfer capability and an acceptor (n-host) having favorable electron transfer capability are used as a host of a light emitting layer, holes are injected to the p-host and electrons are injected to the n-host, and therefore, a driving voltage may decrease, which resultantly helps with lifetime enhancement.


In one embodiment of the present application, Chemical Formula 1 may be represented by any one of the following compounds, but is not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one embodiment of the present application, Chemical Formula 2 may be represented by any one of the following compounds, but is not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In addition, by introducing various substituents to the structures of Chemical Formulae 1 and 2, compounds having unique properties of the introduced substituents may be synthesized. For example, by introducing substituents normally used as hole injection layer materials, hole transfer layer materials, light emitting layer materials, electron transfer layer materials and charge generation layer materials used for manufacturing an organic light emitting device to the core structure, materials satisfying conditions required for each organic material layer may be synthesized.


In addition, by introducing various substituents to the structures of Chemical Formulae 1 and 2, the energy band gap may be finely controlled, and meanwhile, properties at interfaces between organic materials are enhanced, and material applications may become diverse.


Meanwhile, the heterocyclic compound has excellent thermal stability with a high glass transition temperature (Tg). Such an increase in the thermal stability becomes an important factor in providing driving stability to a device.


The heterocyclic compound according to one embodiment of the present application may be prepared through a multistep chemical reaction. Some intermediate compounds are prepared first, and the compound of Chemical Formula 1 or 2 may be prepared from the intermediate compounds. More specifically, the heterocyclic compound according to one embodiment of the present application may be prepared based on preparation examples to be described below.


Another embodiment of the present application provides a composition for an organic material layer of an organic light emitting device comprising the heterocyclic compound represented by Chemical Formula 1 and the compound represented by Chemical Formula 2 at the same time.


Specific descriptions on the heterocyclic compound represented by Chemical Formula 1, and the compound represented by Chemical Formula 2 are the same as the descriptions provided above.


A weight ratio of the heterocyclic compound represented by Chemical Formula 1:the compound represented by Chemical Formula 2 in the composition may be from 1:10 to 10:1, from 1:8 to 8:1, from 1:5 to 5:1, or from 1:2 to 2:1, but is not limited thereto.


The composition may be used when forming an organic material of an organic light emitting device, and particularly, may be more preferably used when forming a host of a light emitting layer.


The composition has a form of simply mixing two or more compounds, and materials in a powder state may be mixed before forming an organic material layer of an organic light emitting device, or compounds in a liquid state may be mixed at an appropriate temperature or higher. The composition is in a solid state at a temperature below a melting point of each material, and may maintain a liquid state when adjusting a temperature.


The composition may further comprise materials known in the art such as solvents or additives.


The organic light emitting device according to one embodiment of the present application may be manufactured using common organic light emitting device manufacturing methods and materials except that one or more organic material layers are formed using the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 described above.


The heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be formed into an organic material layer through a solution coating method as well as a vacuum deposition method when manufacturing the organic light emitting device. Herein, the solution coating method means spin coating, dip coating, inkjet printing, screen printing, a spray method, roll coating and the like, but is not limited thereto.


The organic material layer of the organic light emitting device of the present disclosure may be formed in a single layer structure, but may be formed in a multilayer structure in which two or more organic material layers are laminated. For example, the organic light emitting device of the present disclosure may have a structure comprising a hole injection layer, a hole transfer layer, a light emitting layer, an electron transfer layer, an electron injection layer and the like as the organic material layer. However, the structure of the organic light emitting device is not limited thereto, and may comprise less numbers of organic material layers.


Specifically, the organic light emitting device according to one embodiment of the present application comprises a first electrode, a second electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers comprise the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by


Chemical Formula 2.


In one embodiment of the present application, the first electrode may be an anode, and the second electrode may be a cathode.


In another embodiment, the first electrode may be a cathode, and the second electrode may be an anode.


In one embodiment of the present application, the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 and the heterocyclic compound according to Chemical Formula 2 may be used as a material of the blue organic light emitting device.


In one embodiment of the present application, the organic light emitting device may be a green organic light emitting device, and the compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be used as a material of the green organic light emitting device.


In one embodiment of the present application, the organic light emitting device may be a red organic light emitting device, and the compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be used as a material of the red organic light emitting device.


The organic light emitting device of the present disclosure may further comprise one, two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transfer layer, an electron injection layer, an electron transfer layer, an electron blocking layer and a hole blocking layer.


In the organic light emitting device in one embodiment of the present application, the organic material layer comprises at least one layer of a hole blocking layer, an electron injection layer and an electron transfer layer, and at least one layer of the hole blocking layer, the electron injection layer and the electron transfer layer comprises the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.


In the organic light emitting device in one embodiment of the present application, the organic material layer comprises a light emitting layer, and the light emitting layer comprises the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.


In the organic light emitting device in one embodiment of the present application, the organic material layer comprises a light emitting layer, the light emitting layer comprises a host material, and the host material includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.



FIGS. 1 to 3 illustrate a lamination order of electrodes and organic material layers of an organic light emitting device according to one embodiment of the present application. However, the scope of the present application is not limited to these diagrams, and structures of organic light emitting devices known in the art may also be used in the present application.



FIG. 1 illustrates an organic light emitting device in which an anode (200), an organic material layer (300) and a cathode (400) are consecutively laminated on a substrate (100). However, the structure is not limited to such a structure, and as illustrated in FIG. 2, an organic light emitting device in which a cathode, an organic material layer and an anode are consecutively laminated on a substrate may also be obtained.



FIG. 3 illustrates a case of the organic material layer being a multilayer. The organic light emitting device according to FIG. 3 comprises a hole injection layer (301), a hole transfer layer (302), a light emitting layer (303), a hole blocking layer (304), an electron transfer layer (305) and an electron injection layer (306). However, the scope of the present application is not limited to such a lamination structure, and as necessary, other layers except the light emitting layer may not be included, and other necessary functional layers may be further included.


One embodiment of the present application provides a method for manufacturing an organic light emitting device comprising preparing a substrate; forming a first electrode on the substrate; forming one or more organic material layers on the first electrode; and forming a second electrode on the organic material layer, wherein the forming of an organic material layer comprises forming one or more organic material layers using a composition for an organic material layer according to one embodiment of the present application.


In the method for manufacturing an organic light emitting device in one embodiment of the present application, the forming of an organic material layer is forming using a thermal vacuum deposition method after pre-mixing the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound of Chemical Formula 2.


The pre-mixing means mixing the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound of Chemical Formula 2 placing in one source of supply by mixing the materials first before depositing on the organic material layer.


The pre-mixed material may be mentioned as the composition for an organic material layer according to one embodiment of the present application.


In the organic light emitting device according to one embodiment of the present application, materials other than the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 are illustrated below, however, these are for illustrative purposes only and not for limiting the scope of the present application, and may be replaced by materials known in the art.


As the anode material, materials having relatively large work function may be used, and transparent conductive oxides, metals, conductive polymers or the like may be used. Specific examples of the anode material comprise metals such as vanadium, chromium, copper, zinc and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO2:Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.


As the cathode material, materials having relatively small work function may be used, and metals, metal oxides, conductive polymers or the like may be used. Specific examples of the cathode material comprise metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; multilayer structure materials such as LiF/Al or LiO2/Al, and the like, but are not limited thereto.


As the hole injection material, known hole injection materials may be used, and for example, phthalocyanine compounds such as copper phthalocyanine disclosed in U.S. Pat. No. 4,356,429, or starburst-type amine derivatives such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4′,4″-tri[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) or 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB) described in the literature [Advanced Material, 6, p. 677 (1994)], polyaniline/dodecylbenzene sulfonic acid, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), polyaniline/camphor sulfonic acid or polyaniline/poly(4-styrene-sulfonate) that are conductive polymers having solubility, and the like, may be used.


As the hole transfer material, pyrazoline derivatives, arylamine-based derivatives, stilbene derivatives, triphenyldiamine derivatives and the like may be used, and low molecular or high molecular materials may also be used.


As the electron transfer material, metal complexes of oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and derivatives thereof, and the like, may be used, and high molecular materials may also be used as well as low molecular materials.


As examples of the electron injection material, LiF is typically used in the art, however, the present application is not limited thereto.


As the light emitting material, red, green or blue light emitting materials may be used, and as necessary, two or more light emitting materials may be mixed and used. Herein, two or more light emitting materials may be used by being deposited as individual sources of supply or by being premixed and deposited as one source of supply. In addition, fluorescent materials may also be used as the light emitting material, however, phosphorescent materials may also be used. As the light emitting material, materials emitting light by bonding electrons and holes injected from an anode and a cathode, respectively, may be used alone, however, materials having a host material and a dopant material involved in light emission together may also be used.


When mixing light emitting material hosts, same series hosts may be mixed, or different series hosts may be mixed. For example, any two or more types of materials among n-type host materials or p-type host materials may be selected, and used as a host material of a light emitting layer.


The organic light emitting device according to one embodiment of the present application may be a top-emission type, a bottom-emission type or a dual-emission type depending on the materials used.


The heterocyclic compound according to one embodiment of the present application may also be used in an organic electronic device comprising an organic solar cell, an organic photo conductor, an organic transistor and the like under a similar principle used in the organic light emitting device.


BEST MODE FOR DISCLOSURE

Hereinafter, the present specification will be described in more detail with reference to examples, however, these are for illustrative purposes only, and the scope of the present application is not limited thereto.


[Preparation Example 1] Preparation of Compound 1(C)



embedded image


embedded image


Preparation of Compound 1-1

In a one neck round bottom flask, a mixture of 1-bromo-2,3-difluorobenzene (50 g, 259 mmol), (4-chloro-2-methoxyphenyl)boronic acid (57.7 g, 310 mmol), tetrakis(triphenylphosphine)palladium(0) (29 g, 25.9 mmol), potassium carbonate (71.5 g, 51.8 mmol) and toluene/ethanol/water (800 ml/160 ml/160 ml) was refluxed at 110° C.


The result was extracted with dichloromethane, and dried with MgSO4. The result was silica gel filtered and then concentrated to obtain Compound 1-1 (65 g, 99%).


Preparation of Compound 1-2

In a one neck round bottom flask, a mixture of 4′-chloro-2,3-difluoro-2′-methoxy-1,1′-biphenyl (65 g, 255 mmol) and MC (1000 ml) was cooled to a temperature of 0° C., BBr3 (48 mL, 500 mmol) was added dropwise thereto, the temperature was raised to room temperature, and the result was stirred for 2 hours.


The reaction was terminated using distilled water, and the result was extracted with dichloromethane and dried with MgSO4. The result was column purified (MC:HX=1:2) to obtain Compound 1-2 (49 g, 80%).


Preparation of Compound 1-3 In a one neck round bottom flask, a dimethylacetamide (500 ml) mixture of 4-chloro-2′,3′-difluoro-[1,1′-biphenyl]-2-ol (49 g, 203 mmol) and Cs2CO3 (331 g, 1018 mmol) was stirred at 120° C. The result was cooled and filtered, the solvent of the filtrate was removed, and then the result was column purified (HX:MC=5:1) to obtain Compound 1-3 (10.1 g, 88%).


Preparation of Compound 1-4

In a one neck round bottom flask, a dimethylacetamide (100 ml) mixture of 3-chloro-6-fluorodibenzo[b,d]furan (9 g, 40.7 mmol), 9H-carbazole (8.1 g, 48.9 mmol) and Cs2CO3 (66.3 g, 203.5 mmol) was refluxed for 12 hours at 170° C.


The result was cooled and filtered, the solvent of the filtrate was removed, and then the result was column purified (HX:MC=4:1) to obtain Compound 1-4 (10.1 g, 67%).


Preparation of Compound 1-5

In a one neck round bottom flask, a 1,4-dioxane (100 ml) mixture of 9-(7-chlorodibenzo[b,d]furan-4-yl)-9H-carbazole (10.1 g, 27.4 mmol), bis(pinacolato)diboron (13.9 g, 54.9 mmol), XPhos (2.6 g, 5.48 mmol), potassium acetate (8 g, 82 mmol) and Pd(dba)2 (1.57 g, 2.74 mmol) was refluxed at 140° C. The result was extracted with dichloromethane, concentrated, and treated with dichloromethane/MeOH to obtain Compound 1-5 (13.4 g, over yield).


Preparation of Compound 1

In a one neck round bottom flask, a mixture of 9-(7-(12.5 g, 27.2 mmol), 2-chloro-4,6-diphenyl-1,3,5-triazine (8.74 g, 32.6 mmol), tetrakis(triphenylphosphine)palladium(0) (3.1 g, 2.72 mmol), potassium carbonate (7.5 g, 54.5 mmol) and 1,4-dioxane/water (150 ml/30 ml) was refluxed for 3 hours at 120° C. After filtering at 120° C., the result was washed with 1,4-dioxane, distilled water and MeOH to obtain Compound 1 (11.2 g, over two step 71%).


The following Compound C was synthesized in the same manner as in the preparation of Compound 1 in Preparation Example 1 except that A and B of the following [Table 1] to [Table 8] were used as intermediates.











TABLE 1







Compound
A
B





 2


embedded image




embedded image







 3


embedded image




embedded image







 5


embedded image




embedded image







 7


embedded image




embedded image







10


embedded image




embedded image







17


embedded image




embedded image


















Yield



Compound
C
(1-3 to C)






 2


embedded image


71%






 3


embedded image


74%






 5


embedded image


67%






 7


embedded image


66%






10


embedded image


70%






17


embedded image


66%


















TABLE 2







Compound
A
B





18


embedded image




embedded image







19


embedded image




embedded image







22


embedded image




embedded image







28


embedded image




embedded image







29


embedded image




embedded image







30


embedded image




embedded image







34


embedded image




embedded image


















Yield



Compound
C
(1-3 to C)






18


embedded image


71%






19


embedded image


74%






22


embedded image


78%






28


embedded image


61%






29


embedded image


67%






30


embedded image


68%






34


embedded image


71%


















TABLE 3







Compound
A
B





38


embedded image




embedded image







39


embedded image




embedded image







43


embedded image




embedded image







45


embedded image




embedded image







48


embedded image




embedded image







51


embedded image




embedded image


















Yield



Compound
C
(1-3 to C)






38


embedded image


77%






39


embedded image


74%






43


embedded image


62%






45


embedded image


49%






48


embedded image


53%






51


embedded image


51%


















TABLE 4







Compound
A
B





53


embedded image




embedded image







55


embedded image




embedded image







59


embedded image




embedded image







62


embedded image




embedded image







65


embedded image




embedded image







67


embedded image




embedded image







70


embedded image




embedded image


















Yield



Compound
C
(1-3 to C)






53


embedded image


46%






55


embedded image


59%






59


embedded image


68%






62


embedded image


67%






65


embedded image


63%






67


embedded image


71%






70


embedded image


70%


















TABLE 5







Compound
A
B





71


embedded image




embedded image







75


embedded image




embedded image







77


embedded image




embedded image







80


embedded image




embedded image







82


embedded image




embedded image







83


embedded image




embedded image







86


embedded image




embedded image
















Yield











Compound
C
(1-3 to C)






71


embedded image


69%






75


embedded image


68%






77


embedded image


70%






80


embedded image


63%






82


embedded image


69%






83


embedded image


65%






86


embedded image


67%


















TABLE 6







Compound
A
B





90


embedded image




embedded image







92


embedded image




embedded image







95


embedded image




embedded image







100


embedded image




embedded image







101


embedded image




embedded image







109


embedded image




embedded image







111


embedded image




embedded image
















Yield


Compound
C
(1-3 to C)





90


embedded image


66%





92


embedded image


61%





95


embedded image


51%





100


embedded image


54%





101


embedded image


49%





109


embedded image


61%





111


embedded image


55%


















TABLE 7







Compound
A
B





115


embedded image




embedded image







118


embedded image




embedded image







121


embedded image




embedded image







126


embedded image




embedded image







127


embedded image




embedded image







129


embedded image




embedded image
















Yield




(1-3 to


Compound
C
C)





115


embedded image


60%





118


embedded image


59%





121


embedded image


68%





126


embedded image


64%





127


embedded image


66%





129


embedded image


69%


















TABLE 8







Compound
A
B





133


embedded image




embedded image







135


embedded image




embedded image







293


embedded image




embedded image







294


embedded image




embedded image







297


embedded image




embedded image







298


embedded image




embedded image
















Yield


Compound
C
(1-3 to C)





133


embedded image


72%





135


embedded image


70%





293


embedded image


69%





294


embedded image


73%





297


embedded image


62%





298


embedded image


64%









[Preparation Example 2] Preparation of Compound 137(D)



embedded image


Target Compound 137(D) was obtained (7.3 g, 45%) through preparation in the same manner as in the preparation of Compound 1 in Preparation Example 1 except that 1-bromo-2,4-difluorobenzene was used instead of 1-bromo-2,3-difluorobenzene.


The following Compound D was synthesized in the same manner as in the preparation of Compound 137 in Preparation Example 2 except that A and B of the following [Table 9] and [Table 10] were used as intermediates.











TABLE 9







Compound
A
B





138


embedded image




embedded image







139


embedded image




embedded image







140


embedded image




embedded image







141


embedded image




embedded image







146


embedded image




embedded image







152


embedded image




embedded image
















Yield


Compound
D
(137-3 to D)





138


embedded image


73%





139


embedded image


72%





140


embedded image


70%





141


embedded image


67%





146


embedded image


69%





152


embedded image


63%


















TABLE 10







Compound
A
B





153


embedded image




embedded image







154


embedded image




embedded image







155


embedded image




embedded image







173


embedded image




embedded image







176


embedded image




embedded image







179


embedded image




embedded image







299


embedded image




embedded image







301


embedded image




embedded image







303


embedded image




embedded image
















Yield




(137-3


Compound
D
to D)





153


embedded image


68%





154


embedded image


71%





155


embedded image


76%





173


embedded image


67%





176


embedded image


66%





179


embedded image


72%





299


embedded image


71%





301


embedded image


67%





303


embedded image


63%









[Preparation Example 3] Preparation of Compound 189(E)



embedded image


Target Compound 189(E) was obtained (8.4 g, 47%) through preparation in the same manner as in the preparation of Compound 1 in Preparation Example 1 except that 2-bromo-1,4-difluorobenzene was used instead of 1-bromo-2,3-difluorobenzene.


The following Compound E was synthesized in the same manner as in the preparation of Compound 189 in Preparation Example 3 except that A and B of the following [Table 11] and [Table 12] were used as intermediates.











TABLE 11







Compound
A
B





190


embedded image




embedded image







191


embedded image




embedded image







192


embedded image




embedded image







193


embedded image




embedded image







198


embedded image




embedded image







204


embedded image




embedded image
















Yield


Compound
E
(189-3 to E)





190


embedded image


69%





191


embedded image


73%





192


embedded image


68%





193


embedded image


66%





198


embedded image


72%





204


embedded image


68%


















TABLE 12







Compound
A
B





205


embedded image




embedded image







206


embedded image




embedded image







207


embedded image




embedded image







215


embedded image




embedded image







255


embedded image




embedded image







228


embedded image




embedded image







231


embedded image




embedded image







305


embedded image




embedded image







306


embedded image




embedded image







308


embedded image




embedded image
















Yield




(137-3


Compound
E
to E)





205


embedded image


67%





206


embedded image


74%





207


embedded image


72%





215


embedded image


70%





255


embedded image


69%





228


embedded image


69%





231


embedded image


76%





305


embedded image


59%





306


embedded image


62%





308


embedded image


64%









[Preparation Example 4] Preparation of Compound 241(F)



embedded image


embedded image


Target Compound 241(F) was obtained (6.4 g, 37%) through preparation in the same manner as in the preparation of Compound 1 in Preparation Example 1 except that 2-bromo-1,3-difluorobenzene was used instead of 1-bromo-2,3-difluorobenzene.


The following Compound F was synthesized in the same manner as in the preparation of Compound 241 in Preparation Example 4 except that A and B of the following [Table 13] and [Table 14] were used as intermediates.











TABLE 13







Compound
A
B





242


embedded image




embedded image







243


embedded image




embedded image







244


embedded image




embedded image







245


embedded image




embedded image







250


embedded image




embedded image







256


embedded image




embedded image
















Yield




(241-3 to


Compound
F
F)





242


embedded image


66%





243


embedded image


68%





244


embedded image


63%





245


embedded image


59%





250


embedded image


70%





256


embedded image


65%


















TABLE 14







Compound
A
B





257


embedded image




embedded image







258


embedded image




embedded image







259


embedded image




embedded image







272


embedded image




embedded image







277


embedded image




embedded image







280


embedded image




embedded image







283


embedded image




embedded image







312


embedded image




embedded image







314


embedded image




embedded image







315


embedded image




embedded image
















Yield




(241-3


Compound
D
to F)





257


embedded image


61%





258


embedded image


62%





259


embedded image


57%





272


embedded image


61%





277


embedded image


64%





280


embedded image


66%





283


embedded image


70%





312


embedded image


63%





314


embedded image


65%





315


embedded image


60%









Compounds 1 to 316 other than the compounds described in Tables 1 to 14 were prepared in the same manner as described in the preparation examples described above.


<Preparation Example 5> Synthesis of Compound 2-3



embedded image


1) Preparation of Compound 2-3


After dissolving 3-bromo-1,1′-biphenyl (3.7 g, 15.8 mM), 9-phenyl-9H,9′H-3,3′-bicarbazole (6.5 g, 15.8 mM), CuI (3.0 g, 15.8 mM), trans-1,2-diaminocyclohexane (1.9 mL, 15.8 mM) and K3PO4 (3.3 g, 31.6 mM) in 1,4-oxane (100 ml), the result was refluxed for 24 hours. After the reaction was completed, the result was extracted using distilled water and DCM at room temperature, the organic layer was dried with MgSO4, and then the solvent was removed using a rotary evaporator. The reaction material was purified using column chromatography (DCM:Hex=1:3), and recrystallized using methanol to obtain target Compound 2-3 (7.5 g, 85%).


Target Compound A was synthesized in the same manner as in Preparation Example 5 except that Intermediate A of the following Table 15 was used instead of 3-bromo-1,1′-biphenyl, and Intermediate B of the following Table 15 was used instead of 9-phenyl-9H,9′H-3,3′-bicarbazole.











TABLE 15







Com-




pound




No.
Intermediate A
Intermediate B





2-4


embedded image




embedded image







2-7


embedded image








2-16


embedded image








2-31


embedded image




embedded image







2-32


embedded image








2-34


embedded image








2-42


embedded image




embedded image







2-97


embedded image














Compound

Total


No.
Target Compound A
Yield





2-4


embedded image


83%





2-7


embedded image


84%





2-16


embedded image


80%





2-31


embedded image


81%





2-32


embedded image


80%





2-34


embedded image


74%





2-42


embedded image


82%





2-97


embedded image


84%









Compounds 2-1 to 2-97 other than the compounds described in Table 15 were prepared in the same manner as described in the preparation examples described above.


Synthesis identification results of the compounds prepared above are as described in the following [Table 16] and












TABLE 16





Compound
FD-Mass
Compound
FD-Mass




















1
m/z = 564.63
(C39H24N4O = 564.20)
2
m/z = 640.73
(C45H28N4O = 640.23)


3
m/z = 640.73
(C45H28N4O = 640.23)
4
m/z = 716.83
(C51H32N4O = 717.26)


5
m/z = 716.83
(C51H32N4O = 717.26)
6
m/z = 729.82
(C51H31N5O = 729.25)


7
m/z = 729.82
(C51H31N5O = 729.25)
8
m/z = 805.92
(C57H35N5O = 805.28)


9
m/z = 730.81
(C51H30N4O2 = 730.81)
10
m/z = 680.79
(C48H32N4O = 680.26)


11
m/z = 680.79
(C48H32N4O = 680.26)
12
m/z = 680.79
(C48H32N4O = 680.26)


13
m/z = 670.78
(C45H26N4OS = 670.18)
14
m/z = 654.71
(C45H26N4O2 = 654.21)


15
m/z = 654.71
(C45H26N4O2 = 654.21)
16
m/z = 670.78
(C45H26N4OS = 670.18)


17
m/z = 640.73
(C45H2N4O = 640.23)
18
m/z = 716.83
(C51H32N4O = 716.26)


19
m/z = 716.83
(C51H32N4O = 716.26)
20
m/z = 792.92
(C57H36N4O = 792.29)


21
m/z = 792.92
(C57H36N4O = 792.29)
22
m/z = 640.73
(C45H2N4O = 640.23)


23
m/z = 792.92
(C57H36N4O = 792.29)
24
m/z = 792.92
(C57H36N4O = 792.29)


25
m/z = 792.92
(C57H36N4O = 792.29)
26
m/z = 728.84
(C52H32N4O = 728.26)


27
m/z = 728.84
(C52H32N4O = 728.26)
28
m/z = 804.93
(C58H36N4O = 804.29)


29
m/z = 746.21
(C51H30N4OS = 746.21)
30
m/z = 756.89
(C54H36N4O = 756.29)


31
m/z = 756.89
(C54H36N4O = 756.29)
32
m/z = 679.81
(C49H33N3O = 679.26)


33
m/z = 746.88
(C51H30N4OS = 746.21)
34
m/z = 730.81
(C51H30N4O2 = 730.24


35
m/z = 730.81
(C51H30N4O2 = 730.24
36
m/z = 669.79
(C46H27N3OS = 669.19)


37
m/z = 640.73
(C45H28N4O = 640.23)
38
m/z = 640.73
(C45H28N4O = 640.23)


39
m/z = 716.83
(C51H32N4O = 717.26)
40
m/z = 716.83
(C51H32N4O = 717.26)


41
m/z = 716.83
(C51H43N4O = 716.26)
42
m/z = 716.83
(C51H32N4O = 717.26)


43
m/z = 715.84
(C52H33N3O = 715.26)
44
m/z = 715.84
(C52H33N3O = 715.26)


45
m/z = 640.73
(C45H28N4O = 640.23
46
m/z = 716.83
(C51H32N4O = 716.26)


47
m/z = 716.83
(C51H32N4O = 716.26)
48
m/z = 792.92
(C57H36N4O = 792.29)


49
m/z = 756.89
(C54H36N4O = 756.29)
50
m/z = 716.83
(C51H32N4O = 716.26)


51
m/z = 716.83
(C51H32N4O = 716.26)
52
m/z = 716.83
(C51H32N4O = 716.26)


53
m/z = 792.92
(C57H36N4O = 792.29)
54
m/z = 792.92
(C57H36N4O = 792.29)


55
m/z = 601.69
(C43H27N3O = 601.69)
56
m/z = 601.69
(C43H27N3O = 601.69)


57
m/z = 677.79
(C49H31N3O = 677.25)
58
m/z = 677.79
(C49H31N3O = 677.25)


59
m/z = 677.79
(C49H31N3O = 677.25)
60
m/z = 677.79
(C49H31N3O = 677.25)


61
m/z = 753.89
(C55H35N3O = 753.28)
62
m/z = 753.89
(C55H35N3O = 753.28)


63
m/z = 753.89
(C55H35N3O = 753.28)
64
m/z = 753.89
(C55H35N3O = 753.28)


65
m/z = 717.85
(C52H35N3O = 717.28)
66
m/z = 717.85
(C52H35N3O = 717.28)


67
m/z = 707.84
(C49H29N3OS = 707.20)
68
m/z = 691.77
(C49H29N3O2 = 691.23)


69
m/z = 613.70
(C44H27N3O = 613.22)
70
m/z = 689.80
(C50H31N3O = 689.25)


71
m/z = 689.80
(C50H31N3O = 689.25)
72
m/z = 689.80
(C50H31N3O = 689.25)


73
m/z = 765.90
(C56H35N3O = 765.28)
74
m/z = 765.90
(C56H35N3O = 765.28)


75
m/z = 729.86
(C53H35N3O = 729.28)
76
m/z = 719.20
(C50H29N3OS = 719.20)


77
m/z = 537.61
(C38H23N3O = 537.18)
78
m/z = 613.70
(C44H27N3O = 613.22)


79
m/z = 613.70
(C44H27N3O = 613.22)
80
m/z = 613.70
(C44H27N3O = 613.22)


81
m/z = 689.80
(C50H31N3O = 689.25)
82
m/z = 689.80
(C50H31N3O = 689.25)


83
m/z = 702.80
(C50H30N4O = 702.24)
84
m/z = 702.80
(C50H30N4O = 702.24)


85
m/z = 537.61
(C38H23N3O = 537.18)
86
m/z = 613.70
(C44H27N3O = 613.22)


87
m/z = 613.70
(C44H27N3O = 613.22)
88
m/z = 613.70
(C44H27N3O = 613.22)


89
m/z = 689.80
(C50H31N3O = 689.25)
90
m/z = 689.80
(C50H31N3O = 689.25)


91
m/z = 778.90
(C56H34N4O = 78.27)
92
m/z = 703.78
(C50H29N3O2 = 703.23)


93
m/z = 536.62
(C39H24N2O = 536.19)
94
m/z = 612.72
(C45H28N2O = 612.22)


95
m/z = 612.72
(C45H28N2O = 612.22)
96
m/z = 612.72
(C45H28N2O = 612.22)


97
m/z = 688.81
(C51H32N2O = 688.25)
98
m/z = 688.81
(C51H32N2O = 688.25)


99
m/z = 652.78
(C48H32N2O = 652.25)
100
m/z = 652.78
(C48H32N2O = 652.25)


101
m/z = 536.62
(C39H24N2O = 536.19)
102
m/z = 612.72
(C45H28N2O = 612.22)


103
m/z = 612.72
(C45H28N2O = 612.22)
104
m/z = 612.72
(C45H28N2O = 612.22)


105
m/z = 688.81
(C51H32N2O = 688.25)
106
m/z = 688.81
(C51H32N2O = 688.25)


107
m/z = 642.77
(C45H26N2OS = 642.18)
108
m/z = 626.70
(C45H27N2O2 = 626.20)


109
m/z = 587.67
(C42H25N3O = 587.20)
110
m/z = 663.76
(C48H29N3O = 663.23)


111
m/z = 663.76
(C48H29N3O = 663.23)
112
m/z = 663.76
(C48H29N3O = 663.23)


113
m/z = 739.86
(C54H33N3O = 739.26)
114
m/z = 739.86
(C54H33N3O = 739.26)


115
m/z = 677.75
(C48H27N3O2 = 677.21)
116
m/z = 693.81
(C48H27NOS = 693.19)


117
m/z = 563.65
(C40525N3O = 563.20)
118
m/z = 639.73
(C46H29N3O = 639.23)


119
m/z = 639.73
(C46H29N3O = 639.23)
120
m/z = 715.84
(C52H33N3O = 715.26)


121
m/z = 715.84
(C52H33N3O = 715.26)
122
m/z = 715.84
(C52H33N3O = 715.26)


123
m/z = 639.74
(C46H29N3O = 639.23)
124
m/z = 715.84
(C52H33N3O = 715.26)


125
m/z = 664.75
(C47H28N4O = 664.23)
126
m/z = 740.85
(C53H32N4O = 740.26)


127
m/z = 740.85
(C53H32N4O = 740.26)
128
m/z = 740.85
(C53H32N4O = 740.26)


129
m/z = 816.94
(C59H36N4O = 816.29)
130
m/z = 816.94
(C59H36N4O = 816.29)


131
m/z = 829.94
(C59H35N5O = 829.28)
132
m/z = 829.94
(C59H35N5O = 829.28)


133
m/z = 729.82
(C51H31N5O = 729.25)
134
m/z = 805.92
(C57H35N5O = 805.28)


135
m/z = 702.80
(C50H30N4O = 702.24)
136
m/z = 766.27
(C55H34N4O = 766.27)


137
m/z = 564.63
(C39H24N4O = 564.20)
138
m/z = 640.73
(C45H28N4O = 640.23)


139
m/z = 640.73
(C45H28N4O = 640.23)
140
m/z = 716.83
(C51H32N4O = 717.26)


141
m/z = 716.83
(C51H32N4O = 717.26)
142
m/z = 729.82
(C51H31N5O = 729.25)


143
m/z = 729.82
(C51H31N5O = 729.25)
144
m/z = 805.92
(C57H35N5O = 805.28)


145
m/z = 730.81
(C51H30N4O2 = 730.81)
146
m/z = 680.79
(C48H32N4O = 680.26)


147
m/z = 680.79
(C48H32N4O = 680.26)
148
m/z = 680.79
(C48H32N4O = 680.26)


149
m/z = 670.78
(C45H26N4OS = 670.18)
150
m/z = 654.71
(C45H26N4O2 = 654.21)


151
m/z = 654.71
(C45H26N4O2 = 654.21)
152
m/z = 670.78
(C45H26N4OS = 670.18)


153
m/z = 640.73
(C45H2N4O = 640.23)
154
m/z = 716.83
(C51H32N4O = 716.26)


155
m/z = 716.83
(C51H32N4O = 716.26)
156
m/z = 792.92
(C57H36N4O = 792.29)


157
m/z = 792.92
(C57H36N4O = 792.29)
158
m/z = 640.73
(C45H2N4O = 640.23)


159
m/z = 792.92
(C57H36N4O = 792.29)
160
m/z = 792.92
(C57H36N4O = 792.29)


161
m/z = 792.92
(C57H36N4O = 792.29)
162
m/z = 728.84
(C52H32N4O = 728.26)


163
m/z = 728.84
(C52H32N4O = 728.26)
164
m/z = 804.93
(C58H36N4O = 804.29)


165
m/z = 746.21
(C51H30N4OS = 746.21)
166
m/z = 756.89
(C54H36N4O = 756.29)


167
m/z = 756.89
(C54H36N4O = 756.29)
168
m/z = 679.81
(C49H33N3O = 679.26)


169
m/z = 746.88
(C51H30N4OS = 746.21)
170
m/z = 730.81
(C51H30N4O2 = 730.24


171
m/z = 730.81
(C51H30N4O2 = 730.24
172
m/z = 669.79
(C46H27N3OS = 669.19)


173
m/z = 640.73
(C45H28N4O = 640.23)
174
m/z = 640.73
(C45H28N4O = 640.23)


175
m/z = 716.83
(C51H32N4O = 717.26)
176
m/z = 716.83
(C51H32N4O = 717.26)


177
m/z = 716.83
(C51H43N4O = 716.26)
178
m/z = 716.83
(C51H32N4O = 717.26)


179
m/z = 715.84
(C52H33N3O = 715.26)
180
m/z = 715.84
(C52H33N3O = 715.26)


181
m/z = 664.75
(C47H28N4O = 664.23)
182
m/z = 740.85
(C53H32N4O = 740.26)


183
m/z = 740.85
(C53H32N4O = 740.26)
184
m/z = 740.85
(C53H32N4O = 740.26)


185
m/z = 816.94
(C59H36N4O = 816.29)
186
m/z = 816.94
(C59H36N4O = 816.29)


187
m/z = 829.94
(C59H35N5O = 829.28)
188
m/z = 829.94
(C59H35N5O = 829.28)


189
m/z = 564.63
(C39H24N4O = 564.20)
190
m/z = 640.73
(C45H28N4O = 640.23)


191
m/z = 640.73
(C45H28N4O = 640.23)
192
m/z = 716.83
(C51H32N4O = 717.26)


193
m/z = 716.83
(C51H32N4O = 717.26)
194
m/z = 729.82
(C51H31N5O = 729.25)


195
m/z = 729.82
(C51H31N5O = 729.25)
196
m/z = 805.92
(C57H35N5O = 805.28)


197
m/z = 730.81
(C51H30N4O2 = 730.81)
198
m/z = 680.79
(C48H32N4O = 680.26)


199
m/z = 680.79
(C48H32N4O = 680.26)
200
m/z = 680.79
(C48H32N4O = 680.26)


201
m/2 = 670.78
(C45H26N4OS = 670.18)
202
m/z = 654.71
(C45H26N4O2 = 654.21)


203
m/z = 654.71
(C45H26N4O2 = 654.21)
204
m/z = 670.78
(C45H26N4OS = 670.18)


205
m/z = 640.73
(C45H2N4O = 640.23)
206
m/z = 716.83
(C51H32N4O = 716.26)


207
m/z = 716.83
(C51H32N4O = 716.26)
208
m/z = 792.92
(C57H36N4O = 792.29)


209
m/z = 792.92
(C57H36N4O = 792.29)
210
m/z = 640.73
(C45H2N4O = 640.23)


211
m/z = 792.92
(C57H36N4O = 792.29)
212
m/z = 792.92
(C57H36N4O = 792.29)


213
m/z = 792.92
(C57H36N4O = 792.29)
214
m/z = 728.84
(C52H32N4O = 728.26)


215
m/z = 728.84
(C52H32N4O = 728.26)
216
m/z = 804.93
(C58H36N4O = 804.29)


217
m/z = 746.21
(C51H30N4OS = 746.21)
218
m/z = 756.89
(C54H36N4O = 756.29)


219
m/z = 756.89
(C54H36N4O = 756.29)
220
m/z = 679.81
(C49H33N3O = 679.26)


221
m/z = 746.88
(C51H30N4OS = 746.21)
222
m/z = 730.81
(C51H30N4O2 = 730.24


223
m/z = 730.81
(C51H30N4O2 = 730.24
224
m/z = 669.79
(C46H27N3OS = 669.19)


225
m/z = 640.73
(C45H28N4O = 640.23)
226
m/z = 640.73
(C45H28N4O = 640.23)


227
m/z = 716.83
(C51H32N4O = 717.26)
228
m/z = 716.83
(C51H32N4O = 717.26)


229
m/z = 716.83
(C51H43N4O = 716.26)
230
m/z = 716.83
(C51H32N4O = 717.26)


231
m/z = 715.84
(C52H33N3O = 715.26)
232
m/z = 715.84
(C52H33N3O = 715.26)


233
m/z = 664.75
(C47H28N4O = 664.23)
234
m/z = 740.85
(C53H32N4O = 740.26)


235
m/z = 740.85
(C53H32N4O = 740.26)
236
m/z = 740.85
(C53H32N4O = 740.26)


237
m/z = 816.94
(C59H36N4O = 816.29)
238
m/z = 816.94
(C59H36N4O = 816.29)


239
m/z = 829.94
(C59H35N5O = 829.28)
240
m/z = 829.94
(C59H35N5O = 829.28)


241
m/z = 564.63
(C39H24N4O = 564.20)
242
m/z = 640.73
(C45H28N4O = 640.23)


243
m/z = 640.73
(C45H28N4O = 640.23)
244
m/z = 716.83
(C51H32N4O = 717.26)


245
m/z = 716.83
(C51H32N4O = 717.26)
246
m/z = 729.82
(C51H31N5O = 729.25)


247
m/z = 729.82
(C51H31N5O = 729.25)
248
m/z = 805.92
(C57H35N5O = 805.28)


249
m/z = 730.81
(C51H30N4O2 = 730.81)
250
m/z = 680.79
(C48H32N4O = 680.26)


251
m/z = 680.79
(C48H32N4O = 680.26)
252
m/z = 680.79
(C48H32N4O = 680.26)


253
m/z = 670.78
(C45H26N4OS = 670.18)
254
m/z = 654.71
(C45H26N4O2 = 654.21)


255
m/z = 654.71
(C45H26N4O2 = 654.21)
256
m/z = 670.78
(C45H26N4OS = 670.18)


257
m/z = 640.73
(C45H2N4O = 640.23)
258
m/z = 716.83
(C51H32N4O = 716.26)


259
m/z = 716.83
(C51H32N4O = 716.26)
260
m/z = 792.92
(C57H36N4O = 792.29)


261
m/z = 792.92
(C57H36N4O = 792.29)
262
m/z = 640.73
(C45H2N4O = 640.23)


263
m/z = 792.92
(C57H36N4O = 792.29)
264
m/z = 792.92
(C57H36N4O = 792.29)


265
m/z = 792.92
(C57H36N4O = 792.29)
266
m/z = 728.84
(C52H32N4O = 728.26)


267
m/z = 728.84
(C52H32N4O = 728.26)
268
m/z = 804.93
(C58H36N4O = 804.29)


269
m/z = 746.21
(C51H30N4OS = 746.21)
270
m/z = 756.89
(C54H36N4O = 756.29)


271
m/z = 756.89
(C54H36N4O = 756.29)
272
m/z = 679.81
(C49H33N3O = 679.26)


273
m/z = 746.88
(C51H30N4OS = 746.21)
274
m/z = 730.81
(C51H30N4O2 = 730.24


275
m/z = 730.81
(C51H30N4O2 = 730.24
276
m/z = 669.79
(C46H27N3OS = 669.19)


277
m/z = 640.73
(C45H28N4O = 640.23)
278
m/z = 640.73
(C45H28N4O = 640.23)


279
m/z = 716.83
(C51H32N4O = 717.26)
280
m/z = 716.83
(C51H32N4O = 717.26)


281
m/z = 716.83
(C51H43N4O = 716.26)
282
m/z = 716.83
(C51H32N4O = 717.26)


283
m/z = 715.84
(C52H33N30 = 715.26)
284
m/z = 715.84
(C52H33N3O = 715.26)


285
m/z = 664.75
(C47H28N40 = 664.23)
286
m/z = 740.85
(C53H32N4O = 740.26)


287
m/z = 740.85
(C53H32N4O = 740.26)
288
m/z = 740.85
(C53H32N4O = 740.26)


289
m/z = 816.94
(C59H36N40 = 816.29)
290
m/z = 816.94
(C59H36N4O = 816.29)


291
m/z = 829.94
(C59H35N5O = 829.28)
292
m/z = 829.94
(C59H35N5O = 829.28)


293
m/z = 716.83
(C51H32N40 = 716.26)
294
m/z = 654.71
(C45H26N4O2 = 654.21)


295
m/z = 730.81
(C51H30N4O2 = 730.24)
296
m/z = 654.71
(C45H26N4O2 = 654.21)


297
m/z = 730.81
(C51H30N4O2 = 730.24)
298
m/z = 730.81
(C51H30N4O2 = 730.24)


299
m/z = 716.83
(C51H32N4O = 716.26)
300
m/z = 654.71
(C45H26N4O2 = 654.21)


301
m/z = 730.81
(C51H30N4O2 = 730.24)
302
m/z = 730.81
(C51H30N4O2 = 730.24)


303
m/z = 746.88
(C51H30N4OS = 741.21)
304
m/z = 756.89
(C54H36N4O = 756.29)


305
m/z = 716.83
(C51H32N4O = 716.26)
306
m/z = 654.71
(C45H26N4O2 = 654.21)


307
m/z = 730.81
(C51H30N4O2 = 730.24)
308
m/z = 746.88
(C51H30N4OS = 741.21)


309
m/z = 730.81
(C51H30N4O2 = 730.24)
310
m/z = 730.81
(C51H30N4O2 = 730.24)


311
m/z = 756.89
(C54H36N4O = 756.29)
312
m/z = 716.83
(C51H32N4O = 716.26)


313
m/z = 730.81
(C51H30N4O2 = 730.24)
314
m/z = 654.71
(C45H26N4O2 = 654.21)


315
m/z = 730.81
(C51H30N4O2 = 730.24)
316
m/z = 730.81
(C51H30N4O2 = 730.24)


2-1 
m/z = 484.19
(C36H24N2 = 484.60)
2 = 2 
m/z = 560.23
(C42H28N2 = 560.70)


2-3 
m/z = 560.23
(C42H28N2 = 560.70)
2 = 4 
m/z = 560.23
(C42H28N2 = 560.70)


2-5 
m/z = 636.26
(C48H32N2 = 636.80)
2 = 6 
m/z = 636.26
(C48H32N2 = 636.80)


2-7 
m/z = 636.26
(C48H32N2 = 636.80)
2 = 8 
m/z = 534.21
(C40H26N2 = 534.66)


2-9 
m/z = 534.21
(C40H26N2 = 534.66)
2 = 10
m/z = 600.26
(C45H32N2 = 600.76)


2-11
m/z = 600.26
(C45H32N2 = 600.76)
2 = 12
m/z = 724.29
(C55H36N2 = 724.91)


2-13
m/z = 724.29
(C55H36N2 = 724.91)
2 = 14
m/z = 722.27
(C55H34N2 = 722.89)


2-15
m/z = 722.27
(C55H34N2 = 722.89)
2 = 16
m/z = 634.24
(C48H30N2 = 634.78)


2-17
m/z = 509.19
(C37H23N3 = 509.61)
2 = 18
m/z = 742.28
(C54H38N2Si = 743.00)


2-19
m/z = 636.26
(C48H32N2 = 636.80)
2 = 20
m/z = 636.26
(C48H32N2 = 636.80)


2-21
m/z = 636.26
(C48H32N2 = 636.80)
2 = 22
m/z = 712.29
(C54H36N2 = 712.90)


2-23
m/z = 712.29
(C54H36N2 = 712.90)
2 = 24
m/z = 712.29
(C54H36N2 = 712.90)


2-25
m/z = 610.24
(C46H30N2 = 610.76)
2 = 26
m/z = 610.24
(C46H30N2 = 610.76)


2-27
m/z = 676.29
(C51H36N2 = 676.86)
2 = 28
m/z = 710.27
(C54H34N2 = 710.88)


2-29
m/z = 585.22
(C43H27N3 = 585.71)
2 = 30
m/z = 818.31
(C60H42N2Si = 819.10)


2-31
m/z = 636.26
(C48H32N2 = 636.80)
2 = 32
m/z = 636.26
(C48H32N2 = 636.80)


2-33
m/z = 712.29
(C54H36N2 = 712.90)
2 = 34
m/z = 712.29
(C54H36N2 = 712.90)


2-35
m/z = 712.29
(C54H36N2 = 712.90)
2 = 36
m/z = 610.24
(C46H30N2 = 610.76)


2-37
m/z = 610.24
(C46H30N2 = 610.76)
2 = 38
m/z = 676.29
(C51H36N2 = 676.86)


2-39
m/z = 710.27
(C54H34N2 = 710.88)
2 = 40
m/z = 585.22
(C43H27N3 = 585.71)


2-41
m/z = 818.31
(C60H42N2Si = 819.10)
2 = 42
m/z = 636.26
(C48H32N2 = 636.80)


2-43
m/z = 712.29
(C54H36N2 = 712.90)
2 = 44
m/z = 712.29
(C54H36N2 = 712.90)


2-45
m/z = 712.29
(C54H36N2 = 712.90)
2 = 46
m/z = 610.24
(C46H30N2 = 610.76)


2-47
m/z = 610.24
(C46H30N2 = 610.76)
2 = 48
m/z = 676.29
(C51H36N2 = 676.86)


2-49
m/z = 710.27
(C54H34N2 = 710.88)
2 = 50
m/z = 585.22
(C43H27N3 = 585.71)


2-51
m/z = 818.31
(C60H42N2Si = 819.10)
2 = 52
m/z = 788.32
(C60H40N2 = 788.99)


2-53
m/z = 788.32
(C60H40N2 = 788.99)
2 = 54
m/z = 788.32
(C60H40N2 = 788.99)


2-55
m/z = 686.27
(C52H34N2 = 686.86)
2 = 56
m/z = 686.27
(C52H34N2 = 686.86)


2-57
m/z = 752.32
(C57H40N2 = 752.96)
2 = 58
m/z = 786.30
(C60H38N2 = 786.98)


2-59
m/z = 661.25
(C49H31N3 = 661.81)
2 = 60
m/z = 894.34
(C66H46N2Si = 895.19)


2-61
m/z = 788.32
(C60H40N2 = 788.99)
2 = 62
m/z = 788.32
(C60H40N2 = 788.99)


2-63
m/z = 686.27
(C52H34N2 = 686.86)
2 = 64
m/z = 686.27
(C52H34N2 = 686.86)


2-65
m/z = 752.32
(C57H40N2 = 752.96)
2 = 66
m/z = 786.30
(C60H38N2 = 786.98)


2-67
m/z = 661.25
(C49H31N3 = 661.81)
2 = 68
m/z = 894.34
(C66H46N2Si = 895.19)


2-69
m/z = 788.32
(C60H40N2 = 788.99)
2 = 70
m/z = 686.27
(C52H34N2 = 686.86)


2-71
m/z = 686.27
(C52H34N2 = 686.86)
2 = 72
m/z = 752.32
(C57H40N2 = 752.96)


2-73
m/z = 786.30
(C60H38N2 = 786.98)
2 = 74
m/z = 661.25
(C49H31N3 = 661.81)


2-75
m/z = 894.34
(C66H46N2Si = 895.19)
2 = 76
m/z = 584.23
(C44H28N2 = 584.72)


2-77
m/z = 584.23
(C44H28N2 = 584.72)
2 = 78
m/z = 650.27
(C49H34N2 = 650.83)


2-79
m/z = 684.26
(C52H32N2 = 684.84)
2 = 80
m/z = 559.20
(C41H25N3 = 559.67)


2-81
m/z = 792.30
(C58H40N2Si = 793.06)
2 = 82
m/z = 584.23
(C44H28N2 = 584.72)


2-83
m/z = 650.27
(C49H34N2 = 650.83)
2 = 84
m/z = 684.26
(C52H32N2 = 684.84)


2-85
m/z = 559.20
(C41H25N3 = 559.67)
2 = 86
m/z = 792.30
(C58H40N2Si = 793.06)


2-87
m/z = 716.32
(C54H40N2 = 716.93)
2 = 88
m/z = 750.30
(C57H38N2 = 750.94)


2-89
m/z = 625.25
(C46H31N3 = 625.77)
2 = 90
m/z = 858.34
(C63H46N2Si = 859.16)


2-91
m/z = 784.29
(C60H36N2 = 784.96)
2 = 92
m/z = 659.24
(C49H29N3 = 659.79)


2-93
m/z = 892.33
(C66H44N2Si = 893.18)
2 = 94
m/z = 534.18
(C38H22N4 = 534.62)


2-95
m/z = 767.28
(C55H37N3Si = 768.01)
2 = 96
m/z = 1000.37
(C72H52N2Si2 = 1001.39)


2-97
m/z = 712.88
(C54H36N2 = 712.29)

















TABLE 17





Com-



pound

1H NMR (CDCl3, 200 Mz)

















1
δ = 8.55 (1H, d), 8.28 (4H, d) , 8.12 (1H, d), 7.95~7.89 (3H,



m) 6, 7.75 (1H, d), 7.64~7.63 (2H, d), 7.51~7.32 (12H, m)


2
δ = 8.55 (1H, d), 8.28 (4H, d), 8.18 (1H, d), 7.95~7.89 (3H,



m), 7.79~7.75 (2H, q), 7.64~7.62 (2H, d), 7.52~7.32 (15H, m)


3
δ = 8.55 (1H, d), 8.28 (4H, d), 7.95~7.87 (4H, m),



7.77~7.89 (3H, m), 7.75 (1H, d), 7.63~7.32 (26H, m)


7
δ = 8.55 (1H, d), 8.28 (4H, d), 8.12 (1H, d), 7.95~7.89 (3H,



m), 7.75 (1H, d), 7.63~7.32 (26H, m)


18
δ = 8.55 (1H, d), 8.28~8.18 (3H, m), 7.95~7.89 (3H, m),



7.79~7.70 (3H, m), 7.64~7.32 (21H, m)


30
δ = 8.39 (1H, s), 8.28~8.24 (3H, m), 8.12~8.09 (2H, d), 7.95



(1H, d), 7.89 (1H, d), 7.75~7.24 (22H, m), 1.72 (6H, s)


55
δ = 8.56~8.55 (2H, m), 8.12 (1H, d), 7.95~7.85 (5H, m), 7.75



(1H, d), 7.63~7.45 (10H, m), 7.33~7.22 (8H, m)


82
δ = 8.49 (1H, d), 8.18~8.10 (3H, m), 7.95~7.75 (8H, m),



7.62~7.32 (19H, m)


111
δ = 8.55 (1H, d), 8.30~8.26 (3H, m), 8.15~8.06 (4H, m),



7.98~7.77 (6H, m), 7.69 (2H, d), 7.54~7.25 (14H, m)


137
δ = 8.55 (1H, d), 8.25 (4H, d), 8.12 (2H, d), 7.95~7.89



(3H., m), 7.75~7.73 (2H, m), 7.64~7.63 (2H, m), 7.51~7.25



(1H, m)


139
δ = 8.55 (1H, d), 8.28 (4H, d), 7.95~7.87 (4H, m), 7.77~7.73



(5H, m), 7.52~7.25 (14H, m)


141
δ = 8.27 (4H, d), 8.17 (1H, d), 8.00~7.87 (4H, m),



7.77~7.73 (6H, m), 7.52~7.41 (17H, m)


146
δ = 8.39 (1H, d), 8.28 (2H, d), 8.12~8.09 (2H, t), 7.95~7.89



(2H, q), 7.75~7.61 (6H, m), 7.51~7.41 (4H, m), 7.57~7.25



(20H, m)


154
δ = 8.55 (1H, d), 8.28~8.18 (4H, m), 7.95~7.89 (3H, m),



7.79~7.75 (4H, m), 7.57~7.25 (20H, m)


155
δ = 8.55 (1H, s), 8.28~8.24 (3H, m), 7.77~7.40 (24H, m)


189
δ = 8.56 (1H, d), 8.28 (4H, d), 8.12 (1H, d), 7.95~7.94 (2H,



m), 7.80~7.75 (2H, m), 7.66~7.63 (3H, m), 7.51~7.25 (11H, m)


190
δ = 8.55 (1H, d), 8.28 (4H, d), 8.18 (1H, d), 7.95~7.94 (2H,



m), 7.66~~7.62 (3H, m), 7.52~7.25 (14H, m)


193
δ = 8.28 (4H, m), 8.18 (1H, s), 8.00~7.95 (2H, q), 7.87 (1H, d)



7.80~7.64 (7H, m), 7.51~7.41 (17H, m)


231
δ = 8.23~8.18 (2H, m), 8.00~7.95 (2H, q), 7.87 (1H, d),



7.80~7.64 (11H, m), 7.52~7.41 (17H, m)


242
δ = 8.55 (1H, d), 8.27~8.26 (4H, d), 8.18 (1H, d), 7.95~7.94



(2H, m), 7.79~7.75 (2H, m), 7.66~7.62 (3H, m), 7.52~7.25



(15H, m)


272
δ = 8.28~8.23 (3H, m), 8.12~8.09 (2H, t), 7.95 (1H, d),



7.82~7.79 (4H, m), 7.66~7.61 (4H, m), 7.51~7.24 (12H m),



7.01 (1H, d), 1.72 (6H, s)


298
δ = 8.55 (1H, d), 8.28 (2H, d), 8.18 (1H, d),



7.89~7.75 (8H, .6m), 7.66~7.62 (3H, m), 7.51~7.25 (15H, m)


315
δ = 8.28 (2H, d), 8.18~8.12 (2H, q), 8.00~7.77 (7H, m),



7.66~7.64 (4H, m), 7.51~7.32 (15H, m)


2-3 
δ = 8.55 (1H, d), 8.30 (1H, d), 8.21~8.13 (3H, m),



7.99~7.89 (4H, m), 7.77~7.35 (17H, m), 7.20~7.16 (2H, m)


2-4 
δ = 8.55 (1H, d), 8.30 (1H, d), 8.19~8.13 (2H, m),



7.99~7.89 (8H, m), 7.77~7.75 (3H, m), 7.62~7.35 (11H, m),



7.20~7.16 (2H, m)


2-7 
δ = 8.55 (1H, d), 8.31~8.30 (3H, d), 8.19~8.13 (2H, m),



7.99~7.89 (5H, m), 7.77~7.75 (5H, m), 7.62~7.35 (14H, m),



7.20~7.16 (2H, m)


2-16
δ = 8.93~8.90 (3H, d), 8.55 (1H, d), 8.18~8.10 (5H, m),



8.00~7.77 (10H, m), 7.58~7.45 (8H, m), 7.33~7.29 (2H, m)


2-31
δ = 8.55 (1H, d), 8.30 (1H, d), 8.21~8.13 (4H, m),



7.99~7.89 (4H, m), 7.77~7.35 (20H, m), 7.20~7.16 (2H, m)


2-32
δ = 8.55 (1H, d), 8.30 (1H, d), 8.21~8.13 (3H, m),



7.99~7.89 (8H, m), 7.77~7.35 (17H, m), 7.20~7.16 (2H, m)


2-34
δ = 8.55 (1H, d), 8.18~8.09 (3H, m), 8.00~7.94 (2H, m), 7.87



(1H, d), 7.79~7.77 (4H, m), 7.69~7.63 (4H, m), 7.51~7.25



(21H, m)


2-42
δ = 8.55 (1H, d), 8.18~8.12 (2H, m), 8.00~7.87 (3H, m),



7.79~7.77 (6H, m), 7.69~7.63 (6H, m), 7.52~7.25 (14H, m)


2-97
δ = 8.55 (1H, d), 8.18~8.09 (3H, m), 8.00~7.94 (2H, m),



7.87 (1H, d), 7.79~7.77 (4H, m), 7.57~7.29 (25H, m)









<Experimental Example 1> Manufacture of Organic Light Emitting Device

A glass substrate on which ITO was coated as a thin film to a thickness of 1500 Å was cleaned with distilled water ultrasonic waves. After the cleaning with distilled water was finished, the substrate was ultrasonic cleaned with solvents such as acetone, methanol and isopropyl alcohol, then dried, and UVO treatment was carried out for 5 minutes in a UV cleaner using UV. After that, the substrate was transferred to a plasma cleaner (PT), and plasma treatment was carried out under vacuum for ITO work function and remaining film removal, and the substrate was transferred to a thermal deposition apparatus for organic deposition.


On the transparent ITO electrode (anode), a hole injection layer 4,4′,4″-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) and a hole transfer layer biphenyl)-4,4′-diamine (NPB), which are common layers, were formed.


A light emitting layer was thermal vacuum deposited thereon as follows. As for the light emitting layer, one type of compound described in Chemical Formula 1 and one type of compound described in Chemical Formula 2 were deposited to 400 Å in each individual source of supply as a host, and a green phosphorescent dopant was deposited by 7% doping Ir(ppy)3. After that, BCP was deposited to 60 Å as a hole blocking layer, and Alq3 was deposited to 200 Å thereon as an electron transfer layer. Lastly, an electron injection layer was formed on the electron transfer layer by depositing lithium fluoride (LiF) to a thickness of 10 Å, and then a cathode was formed on the electron injection layer by depositing an aluminum (Al) cathode to a thickness of 1,200 Å to manufacture an organic electroluminescent device.


Meanwhile, all the organic compounds required to manufacture the OLED device were vacuum sublimation purified under 10−6 torr to 10−8 torr by each material to be used in the OLED manufacture.


<Experimental Example 2> Manufacture of Organic Light Emitting Device

A glass substrate on which ITO was coated as a thin film to a thickness of 1500 Å was cleaned with distilled water ultrasonic waves. After the cleaning with distilled water was finished, the substrate was ultrasonic cleaned with solvents such as acetone, methanol and isopropyl alcohol, then dried, and UVO treatment was carried out for 5 minutes in a UV cleaner using UV. After that, the substrate was transferred to a plasma cleaner (PT), and plasma treatment was carried out under vacuum for ITO work function and remaining film removal, and the substrate was transferred to a thermal deposition apparatus for organic deposition.


On the transparent ITO electrode (anode), a hole injection layer 4,4′,4″-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) and a hole transfer layer N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), which are common layers, were formed.


A light emitting layer was thermal vacuum deposited thereon as follows. As for the light emitting layer, one type of compound described in Chemical Formula 1 and one type of compound described in Chemical Formula 2 were premixed, and then deposited to 400 Å in one source of supply as a host, and a green phosphorescent dopant was deposited by 7% doping Ir(ppy)3. After that, BCP was deposited to 60 Å as a hole blocking layer, and Alq3 was deposited to 200 Å thereon as an electron transfer layer. Lastly, an electron injection layer was formed on the electron transfer layer by depositing lithium fluoride (LiF) to a thickness of 10 Å, and then a cathode was formed on the electron injection layer by depositing an aluminum (Al) cathode to a thickness of 1,200 Å to manufacture an organic electroluminescent device.


Meanwhile, all the organic compounds required to manufacture the OLED device were vacuum sublimation purified under 10−6 torr to 10−8 torr by each material to be used in the OLED manufacture.


Driving voltage and light emission efficiency of the organic electroluminescent devices according to Experimental Example 1 and Experimental Example 2 are as shown in the following Table 19 and Table 20.


For the organic electroluminescent devices manufactured as above, electroluminescent light emission (EL) properties were measured using M7000 manufactured by McScience Inc., and with the measurement results, T90 when standard luminance was 6,000 cd/m2 was measured using a lifetime test system (M6000) manufactured by McScience Inc.


Properties of the organic electroluminescent devices of the present disclosure are as shown in the following Tables 19 and 20. The following Table 19 shows examples depositing two host compounds at the same time as an individual source of supply in Experimental Example 1, the following Table 20 shows examples depositing two light emitting layer compounds as one source of supply after pre-mixing in Experimental Example 2, and the following Table 18 shows examples using a single host material in Experimental Example 1.














TABLE 18






Light







Emitting
Driving

Color




Layer
Voltage
Efficiency
Coordinate
Lifetime



Compound
(V)
(cd/A)
(x, y)
(T90)




















Comparative
1
4.01
70.2
(0.277,
174


Example 1 



0.669)



Comparative
2
3.67
80.3
(0.280,
183


Example 2 



0.678)



Comparative
3
3.66
75.2
(0.280,
168


Example 3 



0.677)



Comparative
7
4.64
67.2
(0.272,
138


Example 4 



0.669)



Comparative
18
3.74
76.3
(0.279,
162


Example 5 



0.675)



Comparative
30
3.83
72.4
(0.280,
153


Example 6 



0.674)



Comparative
55
3.87
70.9
(0.281,
166


Example 7 



0.673)



Comparative
82
4.10
65.4
(0.279,
139


Example 8 



0.676)



Comparative
111
4.13
67.4
(0.279,
153


Example 9 



0.676)



Comparative
139
3.63
79.3
(0.281,
169


Example 10



0.678)



Comparative
141
4.72
63.4
(0.278,
142


Example 11



0.673)



Comparative
146
4.23
67.2
(0.276,
139


Example 12



0.672)



Comparative
154
3.92
79.7
(0.281,
178


Example 13



0.672)



Comparative
155
3.73
71.3
(0.280,
178


Example 14



0.674)



Comparative
189
3.79
74.8
(0.278,
172


Example 15



0.679)



Comparative
190
3.99
78.3
(0.279,
166


Example 16



0.680)



Comparative
191
4.12
71.3
(0.279,
171


Example 17



0.678)



Comparative
193
4.41
69.2
(0.283,
159


Example 18



0.685)



Comparative
215
4.33
69.4
(0.284,
132


Example 19



0.689)



Comparative
231
3.87
76.2
(0.279,
149


Example 20



0.680)



Comparative
242
4.03
69.4
(0.280,
155


Example 21



0.671)



Comparative
272
4.24
72.3
(0.279,
167


Example 22



0.678



Comparative
298
4.18
71.1
(0.282,
159


Example 23



0.681



Comparative
315
4.31
71.6
(0.281,
151


Example 24



0.673)



Comparative
2-3 
4.75
51.2
(0.265,
59


Example 25



0.694)



Comparative
2-4 
4.83
50.9
(0.269,
41


Example 26



0.683)



Comparative
2-7 
4.73
52.2
(0.264,
51


Example 27



0.699)



Comparative
2-16
5.12
44.2
(0.268,
30


Example 28



0.691)



Comparative
2-31
4.81
49.9
(0.268,
52


Example 29



0.692)



Comparative
2-32
4.74
55.2
(0.266,
43


Example 30



0.689)



Comparative
2-34
4.93
51.2
(0.269,
42


Example 31



0.695)



Comparative
2-42
5.13
42.5
(0.268,
50


Example 32



0.696)



Comparative
2-97
5.09
47.3
(0.267,
36


Example 33



0.694)






















TABLE 19






Light








Emitting

Driving

Color




Layer

Voltage
Efficiency
Coordinate
Lifetime



Compound
Ratio
(V)
(cd/A)
(x, y)
(T90)







Example
1:2-3
1:8
4.82
30.3
(0.278,
235


1




0.683)



Example

1:5
4.31
43.2
(0.277,
263


2




0.682)



Example

1:2
3.41
103.4
(0.277,
420


3




0.678)



Example

1:1
3.40
110.3
(0.276,
390


4




0.679)



Example

2:1
3.67
112.1
(0.276,
312


5




0.676)



Example

5:1
4.32
89.7
(0.277,
272


6




0.677)



Example

8:1
4.99
65.3
(0.279,
276


7




0.677)



Example
3:2-31
1:2
3.42
101.2
(0.277,
443


8




0.677)



Example

1:1
3.44
112.4
(0.277,
380


9




0.680)



Example
7:2-16
1:2
3.53
100.2
(0.278,
393


10




0.681)



Example

1:1
3.56
108.7
(0.277,
382


11




0.682)



Example
18:2-16
1:2
3.38
105.3
(0.281,
460


12




0.676)



Example

1:1
3.39
115.3
(0.280,
400


13




0.676)



Example
30:2-31
1:2
3.43
104.2
(0.276,
455


14




0.679)



Example

1:1
3.43
114.8
(0.275,
412


15




0.679)



Example
2:2-7
1:2
3.31
110.4
(0.278,
500


16




0.678)



Example

1:1
3.29
117.6
(0.279,
442


17




0.677)



Example
55:2-4
1:2
3.88
96.7
(0.275,
401


18




0.680)



Example

1:1
3.78
100.7
(0.274,
388


19




0.678)



Example
82:2-42
1:2
3.77
99.3
(0.276,
408


20




0.676)



Example

1:1
3.78
104.7
(0.274,
379


21




0.679)



Example
111:2-34
1:2
3.98
89.7
(0.288,
398


22




0.681)



Example

1:1
3.72
101.4
(0.285,
382


23




0.680)



Example
139:2-42
1:2
3.01
121.4
(0.276,
585


24




0.679)



Example

1:1
3.07
124.7
(0.276,
530


25




0.676)



Example
141:2-34
1:2
3.32
112.6
(0.278,
440


26




0.681)



Example

1:1
3.42
118.4
(0.275,
413


27




0.680)



Example
146:2-42
1:2
3.62
109.4
(0.277,
401


28




0.678)



Example

1:1
3.66
116.1
(0.276,
385


29




0.677)



Example
154:2-97
1:2
3.31
112.3
(0.279,
480


30




0.678)



Example

1:1
3.22
116.1
(0.277,
443


31




0.677)



Example
189:2-4
1:2
3.03
119.5
(0.275,
566


32




0.678)



Example

1:1
3.12
126.6
(0.277,
521


33




0.678)



Example
190:2-32
1:2
3.23
115.4
(0.279,
487


34




0.678)



Example

1:1
3.29
121.4
(0.278,
443


35




0.678)



Example
191:2-42
1:2
3.31
112.4
(0.280,
478


36




0.679)



Example

1:1
3.21
119.7
(0.281,
430


37




0.680)



Example
193:2-34
1:2
3.32
114.7
(0.279,
488


38




0.679)



Example

1:1
3.33
121.3
(0.280,
437


39




0.679)



Example
215:2-97
1:2
3.55
109.3
(0.276,
393


40




0.676)



Example

1:1
3.76
112.9
(0.277,
383


41




0.675)



Example
231:2-31
1:2
3.58
101.8
(0.278,
410


42




0.679)



Example

1:1
3.59
112.7
(0.277,
389


43




0.680)



Example
242:2-16
1:2
3.44
112.5
(0.277,
440


44




0.677)



Example

1:1
3.48
113.4
(0.278,
400


45




0.678)



Example
272:2-34
1:2
3.33
108.3
(0.276,
413


46




0.677)



Example

1:1
3.48
114.9
(0.276,
389


47




0.676)



Example
925:2-97
1:2
3.28
113.4
(0.279,
470


48




0.679)



Example

1:1
3.27
118.6
(0.279,
421


49




0.678)



Example
315:2-3
1:2
3.41
105.1
(0.277,
454


50




0.676)



Example

1:1
3.66
113.2
(0.274,
420


51




0.679)
























TABLE 20









Example
18:2-16
1:2
3.36
104.9
(0.282,
459



52




0.677)




Example

1:1
3.35
114.9
(0.281,
401



53




0.678)




Example
82:2-42
1:2
3.73
99.8
(0.275,
407



54




0.676)




Example

1:1
3.74
104.6
(0.274,
381



55




0.679)




Example
141:2-34
1:2
3.34
112.2
(0.277,
438



56




0.682)




Example

1:1
3.41
118.8
(0.275,
412



57




0.681)




Example
190:2-32
1:2
3.26
115.3
(0.278,
488



58




0.679)




Example

1:1
3.28
121.7
(0.276,
440



59




0.677)




Example
193:2-34
1:2
3.33
114.6
(0.275,
489



60




0.679)




Example

1:1
3.36
121.4
(0.281,
435



61




0.678)




Example
272:2-34
1:2
3.32
108.2
(0.279,
411



62




0.677)




Example

1:1
3.49
114.7
(0.276,
386



63




0.677)










As identified from Tables 18 to 20, more superior efficiency and lifetime effects were obtained when including the compound of Chemical Formula 1 and the compound of Chemical Formula 2 at the same time in the organic material layer of the organic light emitting device. Such results may lead to a forecast that an exciplex phenomenon occurred when including the two compounds at the same time.


The exciplex phenomenon is a phenomenon of releasing energy having sizes of a donor (p-host) HOMO level and an acceptor (n-host) LUMO level due to electron exchanges between two molecules. When the exciplex phenomenon occurs between two molecules, reverse intersystem crossing (RISC) occurs, and as a result, internal quantum efficiency of fluorescence may increase up to 100%. When a donor (p-host) having favorable hole transfer capability and an acceptor (n-host) having favorable electron transfer capability are used as a host of a light emitting layer, holes are injected to the p-host and electrons are injected to the n-host, and therefore, a driving voltage may decrease, which resultantly helps with lifetime enhancement.

Claims
  • 1. An organic light emitting device comprising: a first electrode;a second electrode; andone or more organic material layers provided between the first electrode and the second electrode,wherein one or more layers of the organic material layers comprise a heterocyclic compound represented by the following Chemical Formula 1 and a heterocyclic compound represented by the following Chemical Formula 2 at the same time:
  • 2. The organic light emitting device of claim 1, wherein Chemical Formula 1 is represented by one of the following Chemical Formulae 3 to 6:
  • 3. The organic light emitting device of claim 1, wherein Chemical Formula 1 is represented by one of the following Chemical Formulae 7 to 9:
  • 4. The organic light emitting device of claim 3, wherein
  • 5. The organic light emitting device of claim 4, wherein Chemical Formula 10 is selected from among the following structural formulae:
  • 6. The organic light emitting device of claim 1, wherein Rc and Rd of Chemical Formula 2 are hydrogen.
  • 7. The organic light emitting device of claim 1, wherein Ra and Rb of Chemical Formula 2 are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C40 aryl group.
  • 8. The organic light emitting device of claim 1, wherein Chemical Formula 1 is represented by any one of the following compounds:
  • 9. The organic light emitting device of claim 1, wherein Chemical Formula 2 is represented by any one of the following compounds:
  • 10. The organic light emitting device of claim 1, wherein the organic material layer comprises at least one layer of a hole blocking layer, an electron injection layer and an electron transfer layer, and at least one layer of the hole blocking layer, the electron injection layer and the electron transfer layer comprises the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.
  • 11. The organic light emitting device of claim 1, wherein the organic material layer comprises a light emitting layer, and the light emitting layer comprises the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.
  • 12. The organic light emitting device of claim 1, wherein the organic material layer comprises a light emitting layer, the light emitting layer comprises a host material, and the host material comprises the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 at the same time.
  • 13. The organic light emitting device of claim 1, further comprising one, two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transfer layer, an electron injection layer, an electron transfer layer, an electron blocking layer and a hole blocking layer.
  • 14. A composition for an organic material layer of an organic light emitting device, the composition comprising a heterocyclic compound represented by the following Chemical Formula 1 and a heterocyclic compound represented by the following Chemical Formula 2 at the same time:
  • 15. The composition for an organic material layer of an organic light emitting device of claim 14, wherein a weight ratio of the heterocyclic compound represented by Chemical Formula 1: the heterocyclic compound represented by Chemical Formula 2 in the composition is from 1:10 to 10:1.
  • 16. A method for manufacturing an organic light emitting device comprising: preparing a substrate;forming a first electrode on the substrate;forming one or more organic material layers on the first electrode; andforming a second electrode on the organic material layer,wherein the forming of an organic material layer comprises forming one or more organic material layers using the composition for an organic material layer of claim 14.
  • 17. The method for manufacturing an organic light emitting device of claim 16, wherein the forming of an organic material layer is forming using a thermal vacuum deposition method after pre-mixing the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound of Chemical Formula 2.
Priority Claims (3)
Number Date Country Kind
10-2017-0037976 Mar 2017 KR national
10-2018-0018780 Feb 2018 KR national
10-2018-0018784 Feb 2018 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2018/003537 3/26/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/174681 9/27/2018 WO A
US Referenced Citations (20)
Number Name Date Kind
4356429 Tang Oct 1982 A
9334260 Parham et al. May 2016 B2
9406892 Zeng et al. Aug 2016 B2
9865822 Song et al. Jan 2018 B2
10135002 Ono et al. Nov 2018 B2
20110279020 Inoue et al. Nov 2011 A1
20130062597 Yoshida et al. Mar 2013 A1
20140284581 Zheng Sep 2014 A1
20150104636 Takemura Apr 2015 A1
20150179949 Miyata Jun 2015 A1
20150318487 Ito et al. Nov 2015 A1
20150336937 Lee et al. Nov 2015 A1
20160268516 Tanaka et al. Sep 2016 A1
20160293856 Ji et al. Oct 2016 A1
20170005275 Jeon et al. Jan 2017 A1
20170186965 Parham et al. Jun 2017 A1
20170207396 Park et al. Jul 2017 A1
20180037546 Sugino Feb 2018 A1
20190047991 Jung Feb 2019 A1
20190372012 Cho Dec 2019 A1
Foreign Referenced Citations (17)
Number Date Country
2013-510803 Mar 2013 JP
2013-131518 Jul 2013 JP
2014-209618 Nov 2014 JP
2015-122185 Jul 2015 JP
2016-128432 Jul 2016 JP
2016-149473 Aug 2016 JP
2017-103436 Jun 2017 JP
10-2012-0057561 Jun 2012 KR
10-2014-0065863 May 2014 KR
10-2014-0068847 Jun 2014 KR
10-2015-0126756 Nov 2015 KR
10-2016-0011582 Feb 2016 KR
10-2016-0028524 Mar 2016 KR
10-2616-0030402 Mar 2016 KR
10-2017-0004793 Jan 2017 KR
10-2017-0111387 Oct 2017 KR
WO 2012105310 Aug 2012 WO
Non-Patent Literature Citations (5)
Entry
Jung et al. Forign priority document KR-10-2017-0116136, filing date Sep. 11, 2017, 122 pages. (Year: 2017).
Extended European Search Report for European Appacation No. 18770925.8, dated Oct. 22, 2020.
International Search Report for PCT/KR2018/003537 dated Jul. 24, 2018.
International Search Report for PCT/KR2018/003539 dated Aug. 1, 2018.
Kuwabara et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4′-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino)triphenylamine (m-MTDATA), as Hole-Transport Materials”, Advanced Materials, 1994, vol. 6, No. 9, pp. 677-679.
Related Publications (1)
Number Date Country
20200119285 A1 Apr 2020 US