ORGANIC METAL COMPOUND AND ORGANIC LIGHT-EMITTING DEVICES EMPLOYING THE SAME

Information

  • Patent Application
  • 20190207127
  • Publication Number
    20190207127
  • Date Filed
    July 05, 2018
    6 years ago
  • Date Published
    July 04, 2019
    5 years ago
Abstract
Organic metal compounds and organic light-emitting devices employing the same are provided. The organic metal compound has a chemical structure of Formula (I) or Formula (II):
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The application is based on, and claims priority from, Taiwan Application Serial Number 106146227, filed on Dec. 28, 2017, the disclosure of which is hereby incorporated by reference herein in its entirety.


TECHNICAL FIELD

The disclosure relates to an organic metal compound and an organic light-emitting device employing the same.


BACKGROUND

An organic light-emitting diode (OLED) is a light-emitting diode employing an organic electroluminescent layer as an active layer. OLED display devices have high luminescent efficiency and long operating lifespans. Unlike liquid-crystal displays, a device employing an organic light-emitting diode does not need a back-light source thanks to spontaneous emission.


Generally, an organic light-emitting device is composed of a light-emission layer sandwiched between a pair of electrodes. When an electric field is applied to the electrodes, the cathode injects electrons into the light-emission layer and the anode injects holes into the light-emission layer. When the electrons recombine with the holes in the light-emission layer, excitons are formed. Recombination of the electron and hole results in light emission.


Depending on the spin states of the hole and electron, the exciton, which results from the recombination of the hole and electron, can have either a triplet or singlet spin state. Luminescence from a singlet exciton results in fluorescence whereas luminescence from a triplet exciton results in phosphorescence. The emissive efficiency of phosphorescence is three times that of fluorescence. Therefore, it is crucial to develop highly efficient phosphorescent material, in order to increase the emissive efficiency of an OLED.


SUMMARY

According to embodiments of the disclosure, the disclosure provides an organic metal compound, which has a structure represented by Formula (I) or Formula (II)




embedded image


wherein X is O or S; R1 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R2, R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; wherein R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; L is




embedded image


or




embedded image


wherein R12 is




embedded image


R13, R14, R15, R16, R17, R18, R19 and R20 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R13, R14, R15, R16, R17, R18, R19 and R20 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; R21, R22, R23, R24 and R25 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, or C1-8 alkoxy group; and, n is 0, 1, or 2.


According to another embodiment of the disclosure, the disclosure provides an organic light-emitting device. The organic light-emitting device includes a pair of electrodes and an organic light-emitting element disposed between the electrodes, wherein the organic light-emitting element includes the aforementioned organic metal compound.


A detailed description is given in the following embodiments with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:



FIG. 1 shows a cross section of an organic light-emitting device disclosed by an embodiment of the disclosure.





DETAILED DESCRIPTION

In the following detailed description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown schematically in order to simplify the drawing.


According to embodiments of the disclosure, the organic metal compound of the disclosure is a six-coordinate iridium compound having at least one of thiopyrimidine-based (or furopyrimidine-based) ligand and having a phenylpyridine-based ligand (such as methylphenylpyridine (mppy) ligand or diisopropyl carbodiimide ligand). Accordingly, the organic metal compound of the disclosure can exhibit a red-shifted emission and facilitate the electrons recombining with the holes to form excitons, resulting in enhancing the luminescent efficiency of the organic light-emitting device employing the organic metal compound. In addition, since the ligand of high thermal stability is introduced into the organic metal compound of the disclosure and the conjugation length of the organic metal compound is extended by the ligand, the organic metal compound of the disclosure exhibits high electrochemical stability and thermal stability and is suitable for being purified by a sublimation process (the organic metal compound of the disclosure has a sublimation yield that is between 80% and 90% at a sublimation temperature less than 260° C.). The organic light-emitting device employing the organic metal compound can exhibit high operating lifespan and luminescent efficiency.


According to embodiments of the disclosure, the disclosure provides an organic metal compound having a structure represented by Formula (I) or Formula (II):




embedded image


wherein X is O or S; R1 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R2, R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; wherein R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; L is




embedded image


wherein R12 is




embedded image


R13, R14, R15, R16, R17, R18, R19 and R20 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R13, R14, R15, R16, R17, R18, R19 and R20 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; R21, R22, R23, R24 and R25 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, or C1-8 alkoxy group; and, n is 0, 1, or 2.


According to embodiments of the disclosure, C1-8 alkyl group can be linear or branched alkyl group. For example, C1-8 alkyl group can be methyl group, ethyl group, propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, pentyl group or hexyl group. According to embodiments of the disclosure, C1-8 haloalkyl group can be an alkyl group which a part of or all hydrogen atoms bonded on the carbon atom are replaced with halogen atoms, and C1-8 haloalkyl group can be linear or branched haloalkyl group. For example, fluoromethyl group can be monofluoromethyl group, difluoromethyl group or trifluoromethyl group. According to embodiments of the disclosure, C1-8 alkoxy group can be linear or branched alkoxy group. For example, C1-8 alkoxy group can be methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group. According to embodiments of the disclosure, C5-10 cycloalkyl group can be cyclopentyl or cyclohexyl. According to embodiments of the disclosure, C6-12 aryl group can be phenyl, biphenyl, or naphthyl.


According to embodiments of the disclosure, R1, R2, R3, R4, R5 and R6 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.


According to embodiments of the disclosure, R1 can be




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


According to embodiments of the disclosure, L can be




embedded image


wherein R21, R22, R23, R24 and R25 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


According to some embodiments of the disclosure, L can be




embedded image


wherein R13, R14, R15, R16, R17, R18, R19 and R20 is independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.


According to some embodiments of the disclosure, the organic metal compound can be




embedded image


wherein R1 can be independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; and, R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group. For example, R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group. In addition, R1 can be




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


According to some embodiments of the disclosure, the organic metal compound is




embedded image


wherein R1 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C6-12 aryl group, C1-8 alkyl group, C1-8 haloalkyl group, or C1-8 alkoxy group; and, R21, R22, R23, R24 and R25 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, or C1-8 alkoxy group. For example, R1, R3, R4, R5 and R6 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group. In addition, R1 can be




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group. For example, R21, R22, R23, R24 and R25 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


According to some embodiments of the disclosure, the organic metal compound can be




embedded image


wherein R1 can be independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; wherein R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; and, R13, R14, R5, R16, R17, R18, R19 and R20 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R13, R14, R15, R16, R17, R18, R19 and R20 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group. For example, R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group. In addition, R1 is




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group. For example, R13, R14, R15, R16, R17, R18, R19 and R20 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.


According to some embodiments of the disclosure, the organic metal compound can be




embedded image


embedded image


wherein R1 can be independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R3, R1, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; and, R21, R22, R23, R24 and R25 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, or C1-8 alkoxy group. For example, R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group. In addition, R1 can be




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group. For example, R21, R22, R23, R24 and R25 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


According to some embodiments of the disclosure, the organic metal compound can be




embedded image


wherein R1 is independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, or




embedded image


R3, R4, R5 and R6 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R3, R4, R5 and R6 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group; wherein R7, R8, R9, R10 and R11 are independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C6-12 aryl group, or C1-8 alkoxy group; and, R13, R14, R15, R16, R17, R18, R19 and R20 can be independently hydrogen, halogen, C1-8 alkyl group, C1-8 haloalkyl group, C1-8 alkoxy group, C5-10 cycloalkyl group, C6-12 aryl group, or two adjacent groups of R13, R14, R15, R16, R17, R18, R19 and R20 are optionally combined with the carbon atoms to which they are attached, to form a cycloalkyl group, or an aryl group.


For example, R1, R3, R4, R5 and R6 can be independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.


R1 can be




embedded image


wherein R7, R8, R9, R10 and R11 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.


For example, R13, R14, R15, R16, R17, R18, R19 and R20 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.


The organic metal compounds having the structure represented by Formula (I) or Formula (II) of the disclosure include the following compounds shown in Table 1 and the structures thereof are shown in Table 1.











TABLE 1






structure of organic metal compound








Example 1


embedded image


Organic metal compound (I)





Example 2


embedded image


Organic metal compound (II)





Example 3


embedded image


Organic metal compound (III)





Example 4


embedded image


Organic metal compound (IV)





Example 5


embedded image


Organic metal compound (V)





Example 6


embedded image


Organic metal compound (VI)





Example 7


embedded image


Organic metal compound (VII)





Example 8


embedded image


Organic metal compound (VIII)





Example 9


embedded image


Organic metal compound (IX)





Example 10


embedded image


Organic metal compound (X)





Example 11


embedded image


Organic metal compound (XI)





Example 12


embedded image


Organic metal compound (XII)





Example 13


embedded image


Organic metal compound (XIII)





Example 14


embedded image


Organic metal compound (XIV)





Example 15


embedded image


Organic metal compound (XV)





Example 16


embedded image


Organic metal compound (XVI)





Example 17


embedded image


Organic metal compound (XVII)





Example 18


embedded image


Organic metal compound (XVIII)





Example 19


embedded image


Organic metal compound (XIX)





Example 20


embedded image


Organic metal compound (XX)





Example 21


embedded image


Organic metal compound (XXI)





Example 22


embedded image


Organic metal compound (XXII)





Example 23


embedded image


Organic metal compound (XXIII)





Example 24


embedded image


Organic metal compound (XXIV)





Example 25


embedded image


Organic metal compound (XXV)





Example 26


embedded image


Organic metal compound (XXVI)





Example 27


embedded image


Organic metal compound (XXVII)





Example 28


embedded image


Organic metal compound (XXVIII)





Example 29


embedded image


Organic metal compound (XXIX)





Example 30


embedded image


Organic metal compound (XXX)





Example 31


embedded image


Organic metal compound (XXXI)





Example 32


embedded image


Organic metal compound (XXXII)





Example 33


embedded image


Organic metal compound (XXXIII)





Example 34


embedded image


Organic metal compound (XXXIV)





Example 35


embedded image


Organic metal compound (XXXV)





Example 36


embedded image


Organic metal compound (XXXVI)





Example 37


embedded image


Organic metal compound (XXXVII)





Example 38


embedded image


Organic metal compound (XXXVIII)





Example 39


embedded image


Organic metal compound (XXXIX)









In order to clearly illustrate the method for preparing the organic metal compound of the disclosure, the preparation of compounds disclosed in Examples 1-4, 12, 15-16, 28-29, 35 and 38 are described in detail below.


Preparation of Organic Metal Compound (I)




embedded image


A reaction bottle was provided, and Compound (1) (1.54 mmole) and iridium trichloride (IrCl3) (0.7 mmole), 2-methoxyethanol (15 mL) and water (5 mL) were added into the reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the reaction bottle was heated to reflux. After reacting for 24 hr, the reaction bottle was cooled to room temperature. After adding water into the reaction bottle and filtrating, the filter cake was washed with water and methanol. After drying by a vacuum, Compound (2) was obtained. The synthesis pathway of the above reaction was as follows:




embedded image


Next, 10 mL of tetrahydrofuran (THF) and bromobenzene (3.2 mmole) were added into a reaction bottle. After cooling to −78° C., n-butyl lithium (n-BuLi) (3.2 mmole) was added dropwise into the reaction bottle and the result was stirred for 30 min. Next, N,N-diisopropylcarbodiimide (3.2 mmole) was added into the reaction bottle at −78° C. After stirring for 30 min, the result was added dropwise into a solution including Compound (2) (0.8 mmole of Compound (2) dissolved in 14 mL of tetrahydrofuran (THF)). Next, the reaction bottle was heated to reflux. After reacting for 8 hr, the result was concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (I). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (II)




embedded image


Organic Metal Compound (II)


10 mL of tetrahydrofuran (THF) and bromobenzene (3.2 mmole) were added into a reaction bottle. After cooling to −78° C., n-butyl lithium (n-BuLi) (3.2 mmole) was added dropwise into the reaction bottle and the result was stirred for 30 min. Next N,N-diisopropylcarbodiimide (3.2 mmole) was added into the reaction bottle at −78° C. After stirring for 30 min, the result was added dropwise into a solution including Compound (3) (0.8 mmole of Compound (3) was dissolved in 14 mL of tetrahydrofuran (THF)). Next, the reaction bottle was heated to reflux. After reacting for 8 hr, the result was concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (II). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (III)




embedded image


10 mL of tetrahydrofuran (THF) and bromobenzene (3.2 mmole) were added into a reaction bottle. After cooling to −78° C., n-butyl lithium (n-BuLi) (3.2 mmole) was added dropwise into the reaction bottle and the result was stirred for 30 min. Next N,N-diisopropylcarbodiimide (3.2 mmole) was added into the reaction bottle at −78° C. After stirring for 30 min, the result was added dropwise into a solution including compound (4) (0.8 mmole of Compound (4) was dissolved in 14 mL of tetrahydrofuran (THF)). Next, the reaction bottle was heated to reflux. After reacting for 8 hr, the result was concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (III). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (IV)




embedded image


10 mL of tetrahydrofuran (THF) and 1-methyl-4-bromobenzene (3.2 mmole) were added into a reaction bottle. After cooling to −78° C., n-butyl lithium (n-BuLi) (3.2 mmole) was added dropwise into the reaction bottle and the result was stirred for 30 min. Next, N,N-diisopropylcarbodiimide (3.2 mmole) was added into the reaction bottle at −78° C. After stirring for 30 min, the result was added dropwise into a solution including compound (2) (0.8 mmole of Compound (2) was dissolved in 14 mL of tetrahydrofuran (THF)). Next, the reaction bottle was heated to reflux. After reacting for 8 hr, the result was concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (IV). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XV)




embedded image


Compound (5) (1.54 mmole) and iridium trichloride (IrCl3) (0.7 mmole), 2-methoxyethanol (15 mL) and water (5 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the reaction bottle was heated to reflux. After reacting for 24 hr, the reaction bottle was cooled to room temperature. After adding water into the reaction bottle and filtrating, the filter cake was washed with water and methanol. After drying by a vacuum, Compound (6) was obtained. The synthesis pathway of the above reaction was as follows:




embedded image


Next, silver trifluoroacetate (AgTFA) (15 mL) and methanol (50 mL) were added into a reaction bottle. Next, Compound (6) (10 mmole) and dichloromethane (100 mL) were added into the reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at room temperature. Next, the result was dried, filtrated and concentrated, obtaining Compound (7). The synthesis pathway of the above reaction was as follows:




embedded image


Next, Compound (7) (0.6 mmole), Compound (8) (0.9 mmole), 2-methoxyethanol (0.75 mL) and N,N-Dimethylformamide (0.75 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XV). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XVI)




embedded image


Next, Compound (7) (0.3 mmole), Compound (9) (0.45 mmole), 2-methoxyethanol (3.75 mL) and N,N-Dimethylformamide (3.75 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XVI). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XXVIII)




embedded image


Next, Compound (7) (2 mmole), Compound (10) (3 mmole), 2-methoxyethanol (2.5 mL) and N,N-Dimethylformamide (2.5 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XXVIII). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XXIX)




embedded image


Next, Compound (7) (2 mmole), Compound (11) (3 mmole), 2-methoxyethanol (2.5 mL) and N,N-Dimethylformamide (2.5 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XXIX). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XXXV)




embedded image


Next, Compound (7) (2 mmole), Compound (12) (3 mmole), 2-methoxyethanol (2.5 mL) and N,N-Dimethylformamide (2.5 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XXXV). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XXXVIII)




embedded image


Next, Compound (7) (2 mmole), Compound (13) (3 mmole), 2-methoxyethanol (2.5 mL) and N,N-Dimethylformamide (2.5 mL) were added into a reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the result was stirred for 18 hr at 130° C. After cooling to room temperature, water was added into the reaction bottle until a solid was precipitated. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography, obtaining Organic metal compound (XXXVIII). The synthesis pathway of the above reaction was as follows:




embedded image


Preparation of Organic Metal Compound (XII)




embedded image


A reaction bottle was provided, and compound (2) (1 mmole), acetylacetone (4 mmole), sodium carbonate (2.2 mmole) and 2-methoxyethanol (10 mL) were added into the reaction bottle. Next, after removing moisture and purging nitrogen gas several times, the reaction bottle was heated at 120° C. After reacting for 3 hr, the reaction bottle was cooled to room temperature, and water was added into the reaction bottle. After filtrating, the filter cake was washed with n-hexane and water, and then the solid was dissolved in dichloromethane (CH2Cl2). Next, the result was extracted three times using dichloromethane (CH2Cl2) and water as the extraction solvent. Next, an organic phase was separated, dried, filtrated and concentrated by rotary evaporator, and then purified by column chromatography with dichloromethane/n-hexane (1:5) as the extraction solvent, obtaining Compound (14). The synthesis pathway of the above reaction was as follows:




embedded image


Next, Compound (14) (1 mmole), Compound (1) (2 mmole), and ethylene glycol (1 mL) were added into a reaction bottle. Next, the reaction bottle was heated to 160° C. in nitrogen atmosphere. After stirring for 48 hr, the reaction bottle was cooled to room temperature, and then water (5 mL) was added into the reaction bottle. After stirring and filtrating, the filter cake was washed with water. After drying, the solid was purified by column chromatography with ethyl acetate/n-hexane (1:10) as the extraction solvent, obtaining Organic metal compound (XII). The synthesis pathway of the above reaction was as follows:




embedded image


Next, the measurement results of nuclear magnetic resonance spectrometry of Organic metal compounds disclosed in Examples 1-4, 12, 15-16, 28-29, 35 and 38 are shown in Table 2.










TABLE 2






Nuclear magnetic resonance spectrum data







Organic metal

1H NMR (200 MHz, CDCl3) δ 9.66 (d, 2H), 8.03 (d, 2H),



compound (I)
7.29-7.40 (m, 5H), 6.83-6.85 (m, 2H), 6.42 (d, 2H), 3.23



(m, 2H), 2.55-2.57 (s, 12H), 1.00 (s, 18H), 0.63 (d, 6H),



−0.09 (d, 6H).


Organic metal

1H NMR (200 MHz, CDCl3) δ 9.66 (d, 2H), 8.03 (d, 2H),



compound (II)
7.29-7.40 (m, 5H), 6.83-6.85 (m, 2H), 6.42 (d, 2H), 3.23



(m, 2H), 2.55-2.57 (s, 12H), 2.00 (s, 6H), 0.63 (d, 6H),



−0.09 (d, 6H).


Organic metal

1H NMR (200 MHz, CDCl3) δ 9.68 (d, 2H), 8.18 (d, 2H),



compound (III)
7.28-7.42 (m, 5H), 6.80-6.83 (m, 2H), 6.66-6.70 (d, 2H),



6.41-6.43 (d, 2H), 3.21-3.24 (m, 2H), 2.59-2.61 (s, 12H),



0.65 (d, 6H), −0.09 (d, 6H).


Organic metal

1H NMR (200 MHz, CDCl3) δ 9.66 (d, 2H), 8.01-8.03 (d, 2H),



compound (IV)
7.18-7.22 (m, 4H), 6.83-6.85 (d, 2H), 6.41-6.42



(d, 2H), 3.23-3.25 (m, 2H), 2.55-2.57 (d, 12H), 2.35



(s, 2H), 1.00 (s, 18H), 0.62 (d, 6H), −0.09 (d, 6H).


Organic metal

1H NMR (200 MHz, CDCl3, δ): 8.04 (d, 3H), 7.76 (s, 3H),



compound (XII)
6.97 (d, 3H), 6.85 (s, 3H), 2.50 (s, 9H), 2.46 (s, 9H), 1.07



(s, 27H).


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.07 (d, 2H), 7.94-7.96



compound (XV)
(d, 2H), 7.85-7.87 (d, 2H), 7.80-7.82 (d, 2H), 7.74-7.76



(m, 6H), 7.41-7.59 (m, 12H), 6.90-6.93 (m, 6H), 6.80 (t, 2H),



6.75 (t, 4H), 6.7 (d, 2H), 6.65 (t, 2H), 6.60 (t, 4H),



2.71 (s, 6H), 2.04 (s, 6H), 1.96 (s, 6H), 1.00 (s, 18H).


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.11 (d, 2H), 8.04-8.05



compound (XVI)
(d, 2H), 7.84-7.86 (d, 2H), 7.71-7.77 (m, 8H), 7 46-7.55



(m, 10H), 7.41-7.42 (m, 2H), 6.87-6.93 (m, 6H), 6.80



(dd, 4H), 6.75 (t, 6H), 6.65 (t, 2H), 6.55 (d, 4H), 2.70 (s, 6H),



1.98 (s, 6H), 1.96 (s, 6H).


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.35 (s, 2H), 8.11 (d, 2H),



compound (XXVIII)
7.83-7.85 (m, 4H), 7.78-7.80 (d, 2H), 7.71-7.73 (d, 2H),



7.51-7.57 (m, 4H), 7.42-7.46 (m, 4H), 7.00-7.03



(t, 2H), 6.72-6.93 (m, 12H), 6.70 (d, 2H), 6.60 (t, 2H),



6.55 (d, 2H), 6.25 (d, 2H), 1.98 (s, 6H), 1.86 (s, 6H)


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.26 (s, 2H), 8.14-8.16



compound (XXIX)
(d, 2H), 8.07-8.08 (d, 2H), 7.83-7.84 (d, 2H), 7.78-7.79



(d, 2H), 7.71-7.72 (d, 2H), 7.51-7.56 (m, 6H), 7.43-7.46



(t, 2H), 6.65-6.98 (m, 16H), 6.60 (t, 2H), 6.53 (d, 2H),



6.32 (d, 2H), 1.97 (s, 6H), 1.88 (s, 6H).


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.26 (s, 2H), 8.01 (d, 2H),



compound (XXXV)
7.83-7.85 (m, 4H), 7.74-7.76 (m, 6H), 7.55-7.61 (m, 4H),



7.51 (s, 2H), 7.41-7.44 (t, 2H), 7.16-7.19 (t, 4H),



7.03-7.05 (d, 2H), 6.90-6.93 (m, 4H), 6.75-6.83 (m, 6H),



6.68 (d, 2H), 6.58-6.63 (m, 4H), 6.35 (d, 2H), 2.03



(s, 6H), 1.93 (s, 6H), 1.03 (s, 18H).


Organic metal

1H-NMR (200 MHz, CDCl3, δ): 8.30 (s, 2H), 8.01-8.03



compound (XXXVIII)
(d, 2H), 7.85-7.87 (d, 2H), 7.80-7.82 (d, 2H), 7.73-7.78



(m, 6H), 7.52-7.59 (m, 6H), 7.46-7.49 (t, 2H), 7.16-7.20



(t, 4H), 6.72-6.94 (m, 14H), 6.62-6.65 (t, 2H), 6.60



(s, 2H), 6.56 (d, 2H), 6.35 (d, 2H), 2.11 (s, 6H), 1.99 (s, 6H),



1.93 (s, 6H).









Next, Organic metal compounds (I)-(IX), Organic metal compounds (XIII)-(XIX), Organic metal compounds (XXI) and Organic metal compounds (XXIII)-(XXXIX) of Examples 1-9, 13-19, 21 and 23-39 were individually dissolved into dichloromethane, obtaining solutions with a concentration of 10−5M. Next, the photoluminescence (PL) spectra of the solutions were measured, and the results are shown in Table 3.












TABLE 3








Maximum




luminous




intensity peak




(Emission λmax)









Organic metal compound (I)
609 nm



Organic metal compound (II)
601 nm



Organic metal compound (III)
612 nm



Organic metal compound (IV)
611 nm



Organic metal compound (V)
605 nm



Organic metal compound (VI)
599 nm



Organic metal compound (VII)
584 nm



Organic metal compound (VIII)
611 nm



Organic metal compound (IX)
630 nm



Organic metal compound (XIII)
564 nm



Organic metal compound (XIV)
586 nm



Organic metal compound (XV)
583 nm



Organic metal compound (XVI)
593 nm



Organic metal compound (XVII)
627 nm



Organic metal compound (XVIII)
608 nm



Organic metal compound (XIX)
646 nm



Organic metal compound (XXI)
609 nm



Organic metal compound (XXIII)
643 nm



Organic metal compound (XXIV)
561 nm



Organic metal compound (XXV)
594 nm



Organic metal compound (XXVI)
595 nm



Organic metal compound (XXVII)
607 nm



Organic metal compound (XXVIII)
614 nm



Organic metal compound (XXIX)
603 nm



Organic metal compound (XXX)
598 nm



Organic metal compound (XXXI)
640 nm



Organic metal compound (XXXII)
629 nm



Organic metal compound (XXXIII)
616 nm



Organic metal compound (XXXIV)
625 nm



Organic metal compound (XXXV)
634 nm



Organic metal compound (XXXVI)
636 nm



Organic metal compound (XXXVII)
642 nm



Organic metal compound (XXXVIII)
629 nm



Organic metal compound (XXXIX)
636 nm










As shown in Table 3, the organic metal compounds of the disclosure having a structure represented by Formula (I) or Formula (II) have a maximum luminous intensity peak between 561 nm and 646 nm (i.e. the organic metal compounds of the disclosure are red or yellowish red phosphorescent materials). In addition, when introducing phenyl group or alkyl group (such as tert-butyl group) into thiopyrimidine or furopyrimidine ligand, the obtained organic metal compound exhibits a red-shifted maximum luminous intensity peak, as shown in Table 3.


Next, the sublimation temperature and sublimation yield of Organic metal compounds of disclosed in Examples 1-4, 15, 16 and 28 were measured, and the results are shown in Table 4:











TABLE 4






Sublimation
Sublimation



temperature
yield



(° C.)
(%)







Organic metal compound (I)
240
86


Organic metal compound (II)
230
86


Organic metal compound (III)
230
82


Organic metal compound (IV)
230
93


Organic metal compound (XV)
260
92


Organic metal compound (XXI)
245
81


Organic metal compound (XXVIII)
260
88









As shown in Table 4, since the organic metal compound of the disclosure has thiopyrimidine-based (or furopyrimidine-based) ligand and phenylpyridine-based ligand (such as methylphenylpyridine (mppy) ligand) (or diisopropyl carbodiimide ligand), the obtained six-coordinate iridium compound exhibits high thermal stability and is suitable to be purified by sublimation process. The organic light-emitting device employing the organic metal compound of the disclosure exhibits high operating lifespan and luminescent efficiency.


Organic Light-Emitting Device



FIG. 1 shows an embodiment of an organic light-emitting device 10. The organic light-emitting device 10 includes a substrate 12, a bottom electrode 14, an organic light-emitting element 16, and a top electrode 18, as shown in FIG. 2. The organic light-emitting device can be a top-emission, bottom-emission, or dual-emission device. The substrate 12 can be a glass, plastic, or semiconductor substrate. Suitable materials for the bottom and top electrodes can be Ca, Ag, Mg, Al, Li, In, Au, Ni, W, Pt, Cu, indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), or zinc oxide (ZnO), formed by sputtering, electron beam evaporation, thermal evaporation, or chemical vapor deposition. Furthermore, at least one of the bottom and top electrodes 14 and 18 is transparent.


The organic light-emitting element 16 at least includes an emission layer, and can further include a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. In an embodiment of the disclosure, at least one layer of the organic light-emitting element 16 includes the aforementioned organic metal compound.


According to another embodiment of the disclosure, the organic light-emitting device can be a phosphorescent organic light-emitting device, and the emission layer of the organic light-emitting element 16 can include a host material and a phosphorescence dopant, wherein the phosphorescence dopant can include the aforementioned organic metal compound having the structure represented by Formula (I) or Formula (II). The emission layer emits blue or cyan light under a bias voltage. The dose of the dopant is not limited and can optionally be modified by a person of ordinary skill in the field.


In order to clearly disclose the organic light-emitting devices of the disclosure, the following examples (having an emitting layer employing the organic metal compounds of the disclosure) are intended to illustrate the disclosure more fully without limiting their scope, since numerous modifications and variations will be apparent to those skilled in this art.


Example 40

A glass substrate with an indium tin oxide (ITO) film with a thickness of 150 nm was provided and then washed with a cleaning agent, acetone, and isopropanol with ultrasonic agitation. After drying with nitrogen flow, the ITO film was subjected to a UV/ozone treatment for 30 min. Next, PEDOT (poly(3,4)-ethylendioxythiophen):PSS (e-polystyrenesulfonate) was coated on the ITO film by a blade and spin coating process (with a rotation rate of 500 rpm for 5 sec and a rotation rate of 2000 rpm for 30 sec) and baked at 130° C. for 10 min to form a PEDO:PSS film serving as a hole injection layer (with a thickness of 40 nm). Next, TAPC (1,1-bis[4-[N,N′-di (p-tolyl)amino]phenyl]cyclobexane, with a thickness of 35 nm), TCTA (4,4′,4′-tri (N-carbazolyl)triphenylamine) doped with Organic metal compound (I) (the weight ratio between TCTA and Organic metal compound (I) was 100:6, with a thickness of 10 nm), TmPyPB (1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, with a thickness of 42 nm), LiF (with a thickness of 0.5 nm), and Al (with a thickness of 120 nm) were subsequently formed on the PEDO:PSS film at 10−6 torr, obtaining Organic light-emitting device (I) after encapsulation. The materials and layers of Organic light-emitting device (I) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (I)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (I) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 41

Example 41 was performed in the same manner as in Example 40 except that Organic metal compound (II) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (II). The materials and layers of Organic light-emitting device (II) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (II)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (II) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 42

Example 42 was performed in the same manner as in Example 40 except that Organic metal compound (III) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (III). The materials and layers of Organic light-emitting device (III) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (III)(6%)/TmPyPB/LiF/Al


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (III) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 43

Example 43 was performed in the same manner as in Example 40 except that Organic metal compound (IV) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (IV). The materials and layers of Organic light-emitting device (IV) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (IV)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (IV) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 44

Example 44 was performed in the same manner as in Example 40 except that Organic metal compound (XV) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (V). The materials and layers of Organic light-emitting device (V) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XV)(6%)/TmPyPB/LiF/Al


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (V) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 45

Example 45 was performed in the same manner as in Example 40 except that Organic metal compound (XVI) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (VI). The materials and layers of Organic light-emitting device (VI) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XVI)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (VI) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 46

Example 46 was performed in the same manner as in Example 40 except that Organic metal compound (XXVIII) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (VII). The materials and layers of Organic light-emitting device (VII) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XXVIII)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (VII) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 47

Example 47 was performed in the same manner as in Example 40 except that Organic metal compound (XXIX) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (VIII). The materials and layers of Organic light-emitting device (VIII) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XXIX)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (VIII) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 48

Example 48 was performed in the same manner as in Example 40 except that Organic metal compound (XXXV) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (IX). The materials and layers of Organic light-emitting device (IX) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XXXV)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (IX) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.


Example 49

Example 48 was performed in the same manner as in Example 40 except that Organic metal compound (XXXVIII) was substituted for Organic metal compound (I), obtaining Organic light-emitting device (X). The materials and layers of Organic light-emitting device (X) are described in the following: ITO/PEDOT:PSS/TAPC/TCTA:Organic metal compound (XXXVIII)(6%)/TmPyPB/LiF/Al.


Next, the optical properties (such as maximum luminous intensity peak (Emission λmax) of electroluminescent (EL) spectrum, voltage, brightness, current efficiency (cd/A), power efficiency (lm/W) and C.I.E coordinate (x, y)) of Organic light-emitting device (X) were measured by a spectra colorimeter and a luminance meter. The results are shown in Table 5.
















TABLE 5









current
power





voltage
brightness
efficiency
efficiency

Emission



(V)
(cd/m2)
(cd/A)
(lm/W)
C.I.E coordinate
λmax (nm)






















Organic
4.0
1000
24.5
19.4
(0.61, 0.39)
600


light-emitting


device (I)


Organic
3.6
1000
29.0
25.6
(0.59, 0.41)
592


light-emitting


device (II)


Organic
4.0
1000
25.8
20.1
(0.62, 0.38)
604


light-emitting


device (III)


Organic
3.9
1000
25.5
20.6
(0.62, 0.38)
604


light-emitting


device (IV)


Organic
3.3
1000
62.5
58.8
(0.54, 0.46)
580


light-emitting


device (V)


Organic
3.4
1000
45.5
42.0
(0.60, 0.40)
592


light-emitting


device (VI)


Organic
3.5
1000
24.2
21.9
(0.62, 0.38)
604


light-emitting


device


(VII)


Organic
3.6
1000
28.2
24.6
(0.62, 0.38)
604


light-emitting


device


(VIII)


Organic
3.4
1000
24.8
22.9
(0.65, 0.34)
628


light-emitting


device (IX)


Organic
3.5
1000
24.2
21.7
(0.62, 0.38)
628


light-emitting


device (X)









In addition, the lifespan (the time before falling to 50% of original brightness (1000 cd/m2)) (LT50) of Organic light-emitting device (III) and Organic light-emitting devices (V)-(X) were measured, and the results are shown in Table 6.












TABLE 6








Lifespan




(hours)



















Organic light-emitting
210,000



device (III)




Organic light-emitting
>500,000



device (V)




Organic light-emitting
>500,000



device (VI)




Organic light-emitting
>200,000



device (VII)




Organic light-emitting
>300,000



device (VIII)




Organic light-emitting
>200,000



device (IX)




Organic light-emitting
>200,000



device (X)











As shown in Table 5, the organic light-emitting device employing the organic metal compound of the disclosure emits red light under a bias voltage and exhibits higher luminescent efficiency.


In addition, as shown in Table 6, the organic light-emitting device employing the organic metal compound of the disclosure can have an operating lifespan (LT50) greater than 200,000 hr. Accordingly, due to the specific ligand introduced into the organic metal compound of the disclosure, the organic light-emitting device employing the organic metal compound of the disclosure exhibits higher operating lifespan and luminescent efficiency.


It will be clear that various modifications and variations can be made to the disclosed methods and materials. It is intended that the specification and examples be considered as exemplary only, with the true scope of the disclosure being indicated by the following claims and their equivalents.

Claims
  • 1. An organic metal compound, having a structure of Formula (I) or Formula (II):
  • 2. The organic metal compound as claimed in claim 1, wherein R1, R2, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 3. The organic metal compound as claimed in claim 1, wherein R1 is
  • 4. The organic metal compound as claimed in claim 1, wherein L is
  • 5. The organic metal compound as claimed in claim 1, wherein L is
  • 6. The organic metal compound as claimed in claim 1, wherein the organic metal compound is
  • 7. The organic metal compound as claimed in claim 6, wherein R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 8. The organic metal compound as claimed in claim 6, wherein R1 is
  • 9. The organic metal compound as claimed in claim 1, wherein the organic metal compound is
  • 10. The organic metal compound as claimed in claim 9, wherein R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 11. The organic metal compound as claimed in claim 9, wherein R21, R22, R23, R24 and R25 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.
  • 12. The organic metal compound as claimed in claim 1, wherein the organic metal compound is
  • 13. The organic metal compound as claimed in claim 12, wherein R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 14. The organic metal compound as claimed in claim 12, wherein R13, R14, R15, R16, R17, R18, R19 and R20 is independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 15. The organic metal compound as claimed in claim 1, wherein the organic metal compound is
  • 16. The organic metal compound as claimed in claim 15, wherein R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 17. The organic metal compound as claimed in claim 15, wherein R21, R22, R23, R24 and R25 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, or hexyloxy group.
  • 18. The organic metal compound as claimed in claim 1, wherein the organic metal compound is
  • 19. The organic metal compound as claimed in claim 18, wherein R1, R3, R4, R5 and R6 are independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 20. The organic metal compound as claimed in claim 18, wherein R13, R14, R15, R16, R17, R18, R19 and R20 is independently hydrogen, fluorine, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, fluoromethyl, fluoroethyl, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, sec-butoxy group, iso-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclopentyl group, cyclohexyl group, phenyl group, biphenyl group, or naphthyl group.
  • 21. An organic light-emitting device, comprising: a pair of electrodes; andan organic light-emitting element, disposed between the electrodes, wherein the organic light-emitting element comprises the organic metal compound as claimed in claim 1.
Priority Claims (1)
Number Date Country Kind
106146227 Dec 2017 TW national