The invention relates to a rectifier having at least two organic diodes or organic field effect transistors, which is employed for example as a rectifier of an RFID transponder (RFID=Radio Frequency Identification), and to an electronic device in the form of a flexible, multilayer film body.
RFID transponders are increasingly being employed for providing merchandise, articles or security products with information that can be read out electronically. They are thus being employed for example as electronic bar code for consumer goods, as luggage tag for identifying luggage or as security element that is incorporated into the binding of a passport and stores authentication information.
RFID transponders usually comprise two components, an antenna and a silicon chip. The RF carrier signal transmitted by a base station is coupled into the antenna resonant circuit of the RFID transponder. The silicon chip modulates an additional item of information onto the signal fed back to the base station. In this case, the RFID transponder is not usually provided with an independent power source. Power is supplied to the silicon chip by means of a rectifier which converts the RF carrier signal coupled into the antenna resonant circuit into a DC voltage and thus additionally uses it as a power source for the silicon chip.
In order to be able to reduce the production costs for RFID transponders, it has been proposed to use organic integrated circuits on the basis of organic field effect transistors in RFID transponders. Thus, WO 99/30432 for example, proposes using an integrated circuit constructed substantially from organic material in an RFID transponder, said integrated circuit providing the function of an ID code generator. The ID code generator is fed with a supply voltage by means of two rectifier diodes coupled to the antenna resonant circuit. Said rectifier diodes, downstream of which a smoothing capacitor is connected, comprise two specially interconnected field effect transistors.
Although the use of such specially interconnected field effect transistors makes it possible to realize rectifier diodes by means of organic components, if organic field effect transistors are connected up in this way in order to use them as rectifier diodes, the frequency that can be picked up by said diodes is very limited since the organic field effect transistors generally switch significantly more slowly than the RF carrier frequency.
Typical frequency ranges used for RFID transponders are e.g. 125 to 135 kHz, 13 to 14 MHz, 6 to 8 MHz, 20 to 40 MHz, 860 to 950 MHz or 1.7 to 2.5 GHz. However, organic circuits are significantly slower than all silicon-based circuits since organic semiconductors generally have a lower charge carrier mobility than silicon and organic field effect transistors are based on the principle of charge carrier accumulation rather than on the principle of charge carrier inversion. This results in a lower switching speed in comparison with silicon transistors and a different switching behavior (e.g. unsuitability for AC voltage). If organic field effect transistors as described in WO 99/30342 are thus connected up to form a rectifier, the rectifier thus realized switches significantly more slowly (less than 100 kHz) than the transmission frequency of the carrier signal emitted by the base station.
It is furthermore proposed in WO 02/21612 to construct an organic rectifier in which at least one of the pn-doped conductive layers a conventional pn semiconductor diode is supplemented or replaced by an organically conductive material. It is furthermore proposed, in a conventional metal-semiconductor diode (Schottky diode) to replace at least one layer by an organic layer. The choice of dimensions of the capacitive areas of this rectifier makes it possible to set the switching frequency of the switching rectifier. A description is furthermore given of connecting a smoothing capacitor downstream of a rectifier constructed from such organic components, which smoothing capacitor smooths the DC voltage arriving in pulsating fashion downstream of the rectifier and is connected up in parallel with the load resistor.
However, such organic rectifiers, too, are not very effective at frequencies above 1 MHz. This is attributable to the low mobility of the organic semiconductors which are available nowadays and which can be used in such an organic rectifier. The space charge zone leading to the rectifying effect is no longer built up rapidly enough at high frequencies on account of the low charge carrier mobility in the organic semiconductor. The efficiency of the rectifier decreases as a result of this, which makes it more difficult to supply downstream loads with DC voltage.
The invention is based on the object, then, of improving the supply of downstream loads by an organic rectifier.
This object is achieved by a rectifier for converting an AC voltage present between two input terminals of the rectifier into a DC voltage, which rectifier has at least two organic diodes and/or organic field effect transistors each having at least one electrical functional layer composed of a semiconducting organic material and also two or more charging or charge-reversal capacitors which are connected up to the two or more organic diodes or organic field effect transistors in such a way that the charging or charge-reversal capacitors can be charged via different current paths. This object is furthermore achieved by an electronic device in the form of a flexible, multilayer film body, which electronic device has a voltage source and a rectifier configured in the manner described above, said rectifier being fed by the voltage source.
In this case, the invention is based on the concept of compensating for the low charge carrier mobility of organic semiconductors by the interconnection with two or more charging or charge-reversal capacitors which are charged via different current paths of the rectifier.
The above-described interconnection of organic components and capacitors to form an organic rectifier enables the rectification factor GRS=U=/U≈ to be significantly increased. Experiments have thus shown, for example, that by means of a conventional organic half-wave rectifier at a frequency of 13.56 MHz, for example, only approximately 5% of the AC voltage amplitude U≈ fed in is converted into a DC voltage U= at the output, which corresponds to a rectification factor of GRV=U=/U≈=0.05, such that downstream loads can be supplied with DC voltage only with very great difficulty. Thus, the possibility of the rectification of coupled-in HF signals (HF=high frequency) by means of organic components is deemed impossible at the present time even by many experts, the use of organic rectifiers in RFID transponders is rejected and this is accounted for by the low charge carrier mobility in the organic semiconductors known at the present time. The invention provides a remedy here and makes it possible, through the interconnection referred to above of organic components with charging or charge-reversal capacitors, to provide an organic rectifier which can supply downstream loads with the required DC voltage even at high frequencies. In this case, possible loads include organic logic circuits, display elements and also conventional electronics.
In this case, the rectifier according to the invention comprises a multilayer construction composed of two, three or more layers, at least one layer of which is an active layer composed of organic semiconductor material. In this case, an organic diode realized in this multilayer construction has a metal-semiconductor junction or a pn junction with organic semiconductors, in which case the metal can also be replaced by an organic conductor. In this case, the sequence of the individual functional layers can be arranged both vertically and laterally. For improving the electrical properties—e.g. injection of charge carriers—, it is also conceivable to introduce additional interlayers which supplement the actual functional layers.
Moreover, it is also possible for organic field effect transistors whose gate electrode is connected to the source or drain electrode to be used as organic diodes in the rectifier.
Advantageous developments of the invention are referred to in the subclaims.
In accordance with the first exemplary embodiment of the invention, a first charging capacitor and a first organic diode are arranged in a first conducting line branch and a second charging capacitor and a second organic diode are arranged in a second conducting line branch. The first and the second conducting line branch are coupled in a parallel arrangement to the input of the rectifier, the first and the second organic diode being connected up in a back-to-back arrangement of the respective anode and cathode in the first and respectively the second conducting line branch.
In accordance with a further exemplary embodiment of the invention, a first organic diode and a second organic diode are connected in a back-to-back arrangement of the respective anode and cathode via a charge-reversal capacitor to the first input terminal of the rectifier. The first organic diode is connected to the second input terminal of the rectifier. The second organic diode is connected via a charging capacitor to the second input terminal of the rectifier. In accordance with this arrangement, the cathode of the first organic diode and the anode of the second organic diode can thus be connected via the charge-reversal capacitor to the first input terminal, such that the anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor and the anode of the first organic diode is connected to the second input terminal. However, the anode of the first organic diode and the cathode of the second organic diode can also be connected via the charge-reversal capacitor to the first input terminal, such that the cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor and the anode of the first organic diode is connected to the second input terminal.
Organic rectifiers constructed in this way have the advantage that even with a low outlay it is possible to achieve an increase in the supply voltage that can be obtained on the output side. The organic rectifier can thus be fabricated particularly cost-effectively, for example by means of a roll-to-roll process.
A further increase in the supply voltage available on the output side can be obtained by constructing the rectifier from two or more stages which are connected up to one another. Each stage of the rectifier comprises two charging or charge-reversal capacitors and two organic diodes or organic field effect transistors which are connected up in such a way that the charging or charge-reversal capacitors can be charged via different current paths and they have in each case two input terminals and two coupling terminals for coupling input terminals of a further stage.
The rectifier can in this case be constructed from two or more stages of identical type which are connected up in cascading fashion.
In one particularly advantageously constructed stage which can be used for such cascading, the cathode of the first organic diode and the anode of the second organic diode are connected to the first coupling terminal of the first stage and via the charge-reversal capacitor to the first input terminal of the first stage. The anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor. The anode of the first organic diode is connected to the second input terminal of the stage and the cathode of the second organic diode is connected to the second coupling terminal of the stage. A stage constructed in this way is referred to hereinafter as “first stage”.
Furthermore, it is also possible for the anode of the first organic diode and the cathode of the second organic diode to be connected to the first coupling terminal of the stage and via the charge-reversal capacitor to the first input terminal of the stage. The cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor. The cathode of the first organic diode is connected to the second input terminal of the stage and the anode of the second organic diode is connected to the second coupling terminal of the stage. A stage constructed in this way is referred to hereinafter as “second stage”.
In the cascading of first stages or second stages, the first and second input terminals of the foremost stage form the first and respectively the second input terminal of the rectifier. The coupling terminals of the respective stage are connected to the input terminals of the downstream stage, provided that the respective stage does not form the last stage of the rectifier. The output of the rectifier is formed by the second input terminal of the foremost stage and by the second coupling terminal of the last stage.
Furthermore, it is also possible for first and second stages to be connected up to one another in a rectifier. In a rectifier constructed in this way, the first and second input terminals of a first stage and of a second stage are connected to one another and form the input terminals of the rectifier. An arbitrary number of first and second stages are subsequently connected in the manner described above in each case to the coupling terminals of the preceding first and respectively second stage. The output of the rectifier is formed by the second coupling terminal of the last first stage and by the second coupling terminal of the last second stage.
The advantage of such an arrangement of two different types of stages is that—for the same supply voltage—the DC current that can be made available to the downstream load can be increased.
The rectification factor can furthermore be increased by using as organic diodes organic components which have an interlayer for lowering the parasitic capacitance of the organic diode. As a result of the reduction of the parasitic capacitances of the organic diodes, the effectiveness of the charging/charge-reversal processes at the charging or charge-reversal capacitors is improved and the efficiency of the rectifier is thus increased.
In accordance with a further exemplary embodiment of the invention, the first and/or the second input terminal of the rectifier is connected via one or a plurality of first organic field effect transistors to a charge-reversal capacitor. The charge-reversal capacitor is connected via one or a plurality of second field effect transistors to a charging capacitor. The one or the plurality of first and second field effect transistors are driven by a logic circuit. In this case, the logic circuit drives the first field effect transistors in such a way that an alternating voltage is applied to the charge-reversal capacitor.
Particular advantages are afforded when a rectifier according to the invention is used in an electronic device having, as voltage source, a resonant circuit comprising an antenna and a capacitor. By coupling such an antenna resonant circuit to a rectifier according to the invention, a DC voltage supply of downstream electronic assemblies can be provided which can be produced particularly cost-effectively, provides a sufficient supply voltage and can be realized in the form of a flexible body. Particular advantages are furthermore afforded if an organic integrated circuit is used as downstream electronic assembly. On account of the particular characteristic of organic integrated circuits (e.g. very low current requirement), such a circuit is matched particularly well to the characteristic of the rectifier according to the invention. Furthermore, an electronic device of this type can be manufactured cost-effectively for mass production applications and disposable products using a uniform manufacturing technology.
In addition to the use of such a resonant circuit as a voltage source, it is also possible to provide an oscillator, for example a ring oscillator, in the voltage source or to apply an alternating voltage to the charging and/or charge-reversal capacitors through corresponding driving of two or more field effect transistors.
The invention is explained by way of example below on the basis of a plurality of exemplary embodiments with the aid of the accompanying drawing.
The rectifiers illustrated in the figures
In this case, the electrical functional layers of the respective film body are configured such that they realize the electrical circuit illustrated in the figures
The electrical circuits described below with reference to the figures
Organic diodes are realized in the multilayer film body by a metal-semiconductor junction or a pn junction between an n-conducting and a p-conducting semi-conductor. In this case, the sequence of the individual functional layers can be arranged both vertically and laterally. Furthermore, it is possible here, in order to improve the electrical properties—e.g. injection of nutrient carriers—to introduce additional inter-layers which supplement the electrically functional layers described above. An organic diode can thus be realized for example by means of three successive layers, the first layer being an electrically conductive electrode layer that forms the cathode, the second layer being a layer composed of an organic semi-conductor material, and the third layer being an electrically conductive electrode layer that forms the anode. In this case, the organic semiconductor layer has a layer thickness of 60 to 2000 nm, for example. The conductive layer may comprise one of the materials described above, that is to say either a metal or an organically conductive material, which can be applied by a printing process.
Furthermore, it is also possible for organic diodes to be realized by means of a four-layer construction comprising two electrode layers and two intervening organic semiconductor layers, one of which has n-conducting properties and the other of which has p-conducting properties.
Reference is made hereinafter to the content of WO 02/21612 A1 with regard to the construction of organic diodes.
Furthermore, it is also possible for the organic diodes to be formed by an organic field effect transistor whose gate electrode is connected to the drain electrode.
The charging or charge-reversal capacitors realized in the multilayer film body are formed by two electrically conductive layers and an intervening insulating layer. The electrically conductive layers may comprise one of the materials described above, may thus comprise for example metallic layers or organic electrically conductive layers, which have been applied by means of a printing method. In this case, the charging or charge-reversal capacitors have a capacitance within the range of 1 pF to 2 nF.
The input AC voltage present at the input E1 is rectified by means of the organic diode OD1 in a negative voltage across the charging capacitor C1 and rectified by means of the organic diode OD2 to form a positive voltage. The output-side DC voltage present at the output A1 thus corresponds to the sum of the magnitudes of the voltages across C1 and C2.
The rectifiers illustrated in
The input terminals E41 and E42 of the first stage of the rectifier 4 form an input of the rectifier 4, which is designated by E4 in
It is also possible to construct the rectifier 4 by means of a cascaded arrangement of individual stages which are each constructed like the rectifier 3 according to
The rectifier 6 furthermore has two or more stages is configured like the rectifier 3 according to
In this case, the power source 51 is formed by an antenna resonant circuit comprising an antenna and a tuning capacitor. The rectifier 52 is formed by a rectifier constructed like one of the rectifiers 1, 2, 3, 4 or 6 according to
The electronic circuit 53 is an ID code generator constructed from one or a plurality of active or passive organic components, preferably organic field effect transistors.
However, it is also possible for the electronic circuit 53 to provide a different function or to be replaced by an output unit, for example to be formed by an organic light emitting diode or a liquid crystal display.
The voltage source 71 supplies an arbitrary AC voltage with or without a DC voltage component. The voltage source 71 can thus be formed for example by an antenna resonant circuit according to
Furthermore, it is also possible to provide even further organic field effect transistors in the switching matrix in order thus for example to utilize the negative half-cycle of the voltage source 71. Furthermore, it is also possible in this way to increase a DC voltage present on the input side at the switching matrix.
The voltage source 81 is a DC voltage source, for example a battery. Furthermore, it is also possible for the voltage source 81 to be a rectifier which is constructed according to the figures
The oscillator 82 is a printable ring oscillator which converts the input voltage into an AC voltage, preferably having a frequency of less than 1 MHz. The rectifier 83 is a rectifier which is constructed like one of the rectifiers according to the figures
It is also possible for a rectifier according to the figures
Number | Date | Country | Kind |
---|---|---|---|
10 2004 063 435 | Dec 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/002293 | 12/20/2005 | WO | 00 | 9/5/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/066559 | 6/29/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3512052 | MacIver et al. | May 1970 | A |
3769096 | Ashkin | Oct 1973 | A |
3955098 | Kawamoto | May 1976 | A |
3999122 | Winstel et al. | Dec 1976 | A |
4165022 | Bentley et al. | Aug 1979 | A |
4246298 | Guarnery | Jan 1981 | A |
4302648 | Sado et al. | Nov 1981 | A |
4340057 | Bloch | Jul 1982 | A |
4442019 | Marks | Apr 1984 | A |
4445166 | Berglund et al. | Apr 1984 | A |
4554229 | Small | Nov 1985 | A |
4865197 | Craig | Sep 1989 | A |
4926052 | Hatayama | May 1990 | A |
4937119 | Nikles et al. | Jun 1990 | A |
5075816 | Stormbom | Dec 1991 | A |
5173835 | Cornett et al. | Dec 1992 | A |
5206525 | Yamamoto et al. | Apr 1993 | A |
5259926 | Kuwabara et al. | Nov 1993 | A |
5321240 | Takahira | Jun 1994 | A |
5347144 | Garnier et al. | Sep 1994 | A |
5364735 | Akamatsu et al. | Nov 1994 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5480839 | Ezawa et al. | Jan 1996 | A |
5486851 | Gehner et al. | Jan 1996 | A |
5502396 | Desarzens | Mar 1996 | A |
5528222 | Moskowitz | Jun 1996 | A |
5546889 | Wakita et al. | Aug 1996 | A |
5569879 | Gloton | Oct 1996 | A |
5574291 | Dodabalapur et al. | Nov 1996 | A |
5578513 | Maegawa | Nov 1996 | A |
5580794 | Allen | Dec 1996 | A |
5625199 | Baumbach et al. | Apr 1997 | A |
5629530 | Brown et al. | May 1997 | A |
5630986 | Charlton et al. | May 1997 | A |
5652645 | Jain | Jul 1997 | A |
5691089 | Smayling | Nov 1997 | A |
5693956 | Shi | Dec 1997 | A |
5705826 | Aratani et al. | Jan 1998 | A |
5729428 | Sakata et al. | Mar 1998 | A |
5731691 | Noto | Mar 1998 | A |
5854139 | Aratani et al. | Dec 1998 | A |
5869972 | Birch et al. | Feb 1999 | A |
5883397 | Isoda et al. | Mar 1999 | A |
5892244 | Tanaka et al. | Apr 1999 | A |
5946551 | Dimitrakopoulos et al. | Aug 1999 | A |
5967048 | Fromson et al. | Oct 1999 | A |
5970318 | Choi et al. | Oct 1999 | A |
5973598 | Beigel | Oct 1999 | A |
5994773 | Hirakawa | Nov 1999 | A |
5997817 | Crismore et al. | Dec 1999 | A |
5998805 | Shi et al. | Dec 1999 | A |
6036919 | Thym et al. | Mar 2000 | A |
6045977 | Chandross et al. | Apr 2000 | A |
6060338 | Tanaka et al. | May 2000 | A |
6072716 | Jacobson et al. | Jun 2000 | A |
6083104 | Choi | Jul 2000 | A |
6087196 | Sturm et al. | Jul 2000 | A |
6133835 | De Leeuw et al. | Oct 2000 | A |
6150668 | Bao | Nov 2000 | A |
6180956 | Chondroudis | Jan 2001 | B1 |
6197663 | Chandross | Mar 2001 | B1 |
6207472 | Callegari et al. | Mar 2001 | B1 |
6215130 | Dodabalapur | Apr 2001 | B1 |
6221553 | Wolk | Apr 2001 | B1 |
6251513 | Rector | Jun 2001 | B1 |
6284562 | Batlogg et al. | Sep 2001 | B1 |
6291126 | Wolk et al. | Sep 2001 | B2 |
6300141 | Segal et al. | Oct 2001 | B1 |
6321571 | Themont et al. | Nov 2001 | B1 |
6322736 | Bao | Nov 2001 | B1 |
6329226 | Jones | Dec 2001 | B1 |
6330464 | Colvin | Dec 2001 | B1 |
6335539 | Dimitrakopoulos et al. | Jan 2002 | B1 |
6340822 | Brown et al. | Jan 2002 | B1 |
6344662 | Dimitrakopoulos et al. | Feb 2002 | B1 |
6362509 | Hart | Mar 2002 | B1 |
6366017 | Antoniadis et al. | Apr 2002 | B1 |
6384804 | Dodabalapur et al. | May 2002 | B1 |
6403396 | Gudesen et al. | Jun 2002 | B1 |
6429450 | Mutsaers et al. | Aug 2002 | B1 |
6498114 | Amundson et al. | Dec 2002 | B1 |
6517955 | Takada et al. | Feb 2003 | B1 |
6518949 | Drzaic | Feb 2003 | B2 |
6521109 | Bartic et al. | Feb 2003 | B1 |
6548875 | Nishiyama | Apr 2003 | B2 |
6555840 | Hudson | Apr 2003 | B1 |
6593690 | McCormick | Jul 2003 | B1 |
6603139 | Tessler | Aug 2003 | B1 |
6621098 | Jackson | Sep 2003 | B1 |
6852583 | Bernds et al. | Feb 2005 | B2 |
6903958 | Bernds et al. | Jun 2005 | B2 |
6960489 | Bernds et al. | Nov 2005 | B2 |
7078937 | Baude et al. | Jul 2006 | B2 |
20010026187 | Oku | Oct 2001 | A1 |
20010046081 | Hayashi et al. | Nov 2001 | A1 |
20020018911 | Bernius et al. | Feb 2002 | A1 |
20020022284 | Heeger et al. | Feb 2002 | A1 |
20020025391 | Angelopoulos | Feb 2002 | A1 |
20020053320 | Duthaler et al. | May 2002 | A1 |
20020056839 | Joo et al. | May 2002 | A1 |
20020068392 | Lee et al. | Jun 2002 | A1 |
20020130042 | Moerman et al. | Sep 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20020195644 | Dodabalapur et al. | Dec 2002 | A1 |
20030059987 | Sirringhaus Henning et al. | Mar 2003 | A1 |
20030070500 | Hung | Apr 2003 | A1 |
20030112576 | Brewer et al. | Jun 2003 | A1 |
20030141807 | Kawase | Jul 2003 | A1 |
20030178620 | Bernds et al. | Sep 2003 | A1 |
20040002176 | Xu | Jan 2004 | A1 |
20040013982 | Jacobson et al. | Jan 2004 | A1 |
20040026689 | Bernds et al. | Feb 2004 | A1 |
20040070500 | Pratt et al. | Apr 2004 | A1 |
20040084670 | Tripsas et al. | May 2004 | A1 |
20040211329 | Funahata et al. | Oct 2004 | A1 |
20040233065 | Freeman | Nov 2004 | A1 |
20040256467 | Clemens et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
2102735 | Aug 1972 | DE |
33 38 597 | May 1985 | DE |
41 03 675 | Aug 1992 | DE |
692 32 740 | Apr 1993 | DE |
42 43 832 | Jun 1994 | DE |
43 12 766 | Oct 1994 | DE |
196 29 291 | Jan 1997 | DE |
195 06 907 | Sep 1998 | DE |
198 52 312 | May 1999 | DE |
198 16 860 | Nov 1999 | DE |
199 18 193 | Nov 1999 | DE |
198 51 703 | May 2000 | DE |
100 06 257 | Sep 2000 | DE |
199 21 024 | Nov 2000 | DE |
199 33 757 | Jan 2001 | DE |
695 19 782 | Jan 2001 | DE |
199 35 527 | Feb 2001 | DE |
199 37 262 | Mar 2001 | DE |
100 12 204 | Sep 2001 | DE |
100 33 112 | Jan 2002 | DE |
201 11 825 | Feb 2002 | DE |
100 43 204 | Apr 2002 | DE |
100 45 192 | Apr 2002 | DE |
100 47 171 | Apr 2002 | DE |
100 58 559 | May 2002 | DE |
100 61 297 | Jun 2002 | DE |
101 17 663 | Oct 2002 | DE |
101 20 687 | Oct 2002 | DE |
101 20 686 | Nov 2002 | DE |
101 51 440 | Feb 2003 | DE |
101 41 440 | Mar 2003 | DE |
101 63 267 | Jul 2003 | DE |
102 09 400 | Oct 2003 | DE |
102 19 905 | Dec 2003 | DE |
103 41 962 | Apr 2004 | DE |
699 13 745 | Oct 2004 | DE |
0 108 650 | May 1984 | EP |
0 128 529 | Dec 1984 | EP |
0 268 370 | May 1988 | EP |
0 268 370 | May 1988 | EP |
0 350 179 | Jan 1990 | EP |
0 418 504 | Mar 1991 | EP |
0 442 123 | Aug 1991 | EP |
0 460 242 | Dec 1991 | EP |
0 501 456 | Sep 1992 | EP |
0 501 456 | Sep 1992 | EP |
0 511 807 | Nov 1992 | EP |
0 528 662 | Feb 1993 | EP |
0 603 939 | Jun 1994 | EP |
0 615 256 | Sep 1994 | EP |
0 685 985 | Dec 1995 | EP |
0 716 458 | Jun 1996 | EP |
0 716 458 | Jun 1996 | EP |
0 785 578 | Jul 1997 | EP |
0 785 578 | Jul 1997 | EP |
0 786 820 | Jul 1997 | EP |
0 690 457 | Dec 1999 | EP |
0 962 984 | Dec 1999 | EP |
0 962 984 | Dec 1999 | EP |
0 966 182 | Dec 1999 | EP |
0 979 715 | Feb 2000 | EP |
0 981 165 | Feb 2000 | EP |
0 989 614 | Mar 2000 | EP |
1 048 912 | Nov 2000 | EP |
1 052 594 | Nov 2000 | EP |
1 065 725 | Jan 2001 | EP |
1 065 725 | Jan 2001 | EP |
1 083 775 | Mar 2001 | EP |
1 102 335 | May 2001 | EP |
1 103 916 | May 2001 | EP |
1 104 035 | May 2001 | EP |
1 113 502 | Jul 2001 | EP |
1 134 694 | Sep 2001 | EP |
1 170 851 | Jan 2002 | EP |
1 224 999 | Jul 2002 | EP |
1 237 207 | Sep 2002 | EP |
1 296 280 | Mar 2003 | EP |
1 318 084 | Jun 2003 | EP |
2793089 | Nov 2000 | FR |
723598 | Feb 1955 | GB |
2 058 462 | Apr 1981 | GB |
54069392 | Jun 1979 | JP |
60117769 | Jun 1985 | JP |
61001060 | Jan 1986 | JP |
61167854 | Jul 1986 | JP |
62065472 | Mar 1987 | JP |
362065477 | Mar 1987 | JP |
63205943 | Aug 1988 | JP |
01169942 | Jul 1989 | JP |
2969184 | Dec 1991 | JP |
03290976 | Dec 1991 | JP |
05152560 | Jun 1993 | JP |
05259434 | Oct 1993 | JP |
05347422 | Dec 1993 | JP |
08197788 | Aug 1995 | JP |
09083040 | Mar 1997 | JP |
09320760 | Dec 1997 | JP |
10026934 | Jan 1998 | JP |
2001085272 | Mar 2001 | JP |
WO 9316491 | Aug 1993 | WO |
WO 9417556 | Aug 1994 | WO |
WO 9506240 | Mar 1995 | WO |
WO 9531831 | Nov 1995 | WO |
WO 9602924 | Feb 1996 | WO |
WO 9619792 | Jun 1996 | WO |
WO 9712349 | Apr 1997 | WO |
WO 9718944 | May 1997 | WO |
WO 9818156 | Apr 1998 | WO |
WO 9818186 | Apr 1998 | WO |
WO 9840930 | Sep 1998 | WO |
WO 9907189 | Feb 1999 | WO |
WO 9910929 | Mar 1999 | WO |
WO 9910939 | Mar 1999 | WO |
WO 9921233 | Apr 1999 | WO |
WO 9930432 | Jun 1999 | WO |
WO 9939373 | Aug 1999 | WO |
WO 9940631 | Aug 1999 | WO |
WO 9953371 | Oct 1999 | WO |
WO 9954842 | Oct 1999 | WO |
WO 9954936 | Oct 1999 | WO |
WO 9966540 | Dec 1999 | WO |
WO 0007151 | Feb 2000 | WO |
WO 0033063 | Jun 2000 | WO |
WO 0036666 | Jun 2000 | WO |
WO 0079617 | Dec 2000 | WO |
WO 0103126 | Jan 2001 | WO |
WO 0106442 | Jan 2001 | WO |
WO 0108241 | Feb 2001 | WO |
WO 0115233 | Mar 2001 | WO |
WO 0117029 | Mar 2001 | WO |
WO 0117041 | Mar 2001 | WO |
WO 0127998 | Apr 2001 | WO |
WO 0146987 | Jun 2001 | WO |
WO 0147044 | Jun 2001 | WO |
WO 0147044 | Jun 2001 | WO |
WO 0147045 | Jun 2001 | WO |
WO 0169517 | Sep 2001 | WO |
WO 0173109 | Oct 2001 | WO |
WO 0173109 | Oct 2001 | WO |
WO 0205360 | Jan 2002 | WO |
WO 0205361 | Jan 2002 | WO |
WO 0215264 | Feb 2002 | WO |
WO 0217233 | Feb 2002 | WO |
WO 0219443 | Mar 2002 | WO |
WO 0221612 | Mar 2002 | WO |
WO 0229912 | Apr 2002 | WO |
WO 03027948 | Apr 2002 | WO |
WO 0243071 | May 2002 | WO |
WO 0247183 | Jun 2002 | WO |
WO 02065557 | Aug 2002 | WO |
WO 02071139 | Sep 2002 | WO |
WO 02071505 | Sep 2002 | WO |
WO 02076924 | Oct 2002 | WO |
WO 02091495 | Nov 2002 | WO |
WO 02091495 | Nov 2002 | WO |
WO 02095805 | Nov 2002 | WO |
WO 02095805 | Nov 2002 | WO |
WO 02099907 | Dec 2002 | WO |
WO 02099908 | Dec 2002 | WO |
WO 03036686 | May 2003 | WO |
WO 03038897 | May 2003 | WO |
WO 03046922 | Jun 2003 | WO |
WO 03057501 | Jul 2003 | WO |
WO 03067680 | Aug 2003 | WO |
WO 03069552 | Aug 2003 | WO |
WO 03081671 | Oct 2003 | WO |
WO 03095175 | Nov 2003 | WO |
WO 2004032257 | Apr 2004 | WO |
WO 2004042837 | May 2004 | WO |
WO 2004042837 | May 2004 | WO |
WO 2004047144 | Jun 2004 | WO |
WO 2004047144 | Jun 2004 | WO |
WO 2004047194 | Jun 2004 | WO |
WO 2004047194 | Jun 2004 | WO |
WO 2004083859 | Sep 2004 | WO |
WO 2005004194 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080225564 A1 | Sep 2008 | US |