Organic rectifier

Information

  • Patent Grant
  • 7724550
  • Patent Number
    7,724,550
  • Date Filed
    Tuesday, December 20, 2005
    19 years ago
  • Date Issued
    Tuesday, May 25, 2010
    14 years ago
Abstract
The invention relates to an electronic device (5) in the form of a flexible multilayer film body, in particular an RFID transponder, and to a rectifier (52) for such an electronic device. The rectifier (52) has at least two organic diodes or organic field effect transistors each having at least one electrical functional layer composed of a semiconducting organic material. The rectifier (52) furthermore has two or more charging or charge-reversal capacitors which are connected up to the two or more organic diodes or organic field effect transistors in such a way that the charging or charge-reversal capacitors can be charged via different current paths.
Description

The invention relates to a rectifier having at least two organic diodes or organic field effect transistors, which is employed for example as a rectifier of an RFID transponder (RFID=Radio Frequency Identification), and to an electronic device in the form of a flexible, multilayer film body.


RFID transponders are increasingly being employed for providing merchandise, articles or security products with information that can be read out electronically. They are thus being employed for example as electronic bar code for consumer goods, as luggage tag for identifying luggage or as security element that is incorporated into the binding of a passport and stores authentication information.


RFID transponders usually comprise two components, an antenna and a silicon chip. The RF carrier signal transmitted by a base station is coupled into the antenna resonant circuit of the RFID transponder. The silicon chip modulates an additional item of information onto the signal fed back to the base station. In this case, the RFID transponder is not usually provided with an independent power source. Power is supplied to the silicon chip by means of a rectifier which converts the RF carrier signal coupled into the antenna resonant circuit into a DC voltage and thus additionally uses it as a power source for the silicon chip.


In order to be able to reduce the production costs for RFID transponders, it has been proposed to use organic integrated circuits on the basis of organic field effect transistors in RFID transponders. Thus, WO 99/30432 for example, proposes using an integrated circuit constructed substantially from organic material in an RFID transponder, said integrated circuit providing the function of an ID code generator. The ID code generator is fed with a supply voltage by means of two rectifier diodes coupled to the antenna resonant circuit. Said rectifier diodes, downstream of which a smoothing capacitor is connected, comprise two specially interconnected field effect transistors.


Although the use of such specially interconnected field effect transistors makes it possible to realize rectifier diodes by means of organic components, if organic field effect transistors are connected up in this way in order to use them as rectifier diodes, the frequency that can be picked up by said diodes is very limited since the organic field effect transistors generally switch significantly more slowly than the RF carrier frequency.


Typical frequency ranges used for RFID transponders are e.g. 125 to 135 kHz, 13 to 14 MHz, 6 to 8 MHz, 20 to 40 MHz, 860 to 950 MHz or 1.7 to 2.5 GHz. However, organic circuits are significantly slower than all silicon-based circuits since organic semiconductors generally have a lower charge carrier mobility than silicon and organic field effect transistors are based on the principle of charge carrier accumulation rather than on the principle of charge carrier inversion. This results in a lower switching speed in comparison with silicon transistors and a different switching behavior (e.g. unsuitability for AC voltage). If organic field effect transistors as described in WO 99/30342 are thus connected up to form a rectifier, the rectifier thus realized switches significantly more slowly (less than 100 kHz) than the transmission frequency of the carrier signal emitted by the base station.


It is furthermore proposed in WO 02/21612 to construct an organic rectifier in which at least one of the pn-doped conductive layers a conventional pn semiconductor diode is supplemented or replaced by an organically conductive material. It is furthermore proposed, in a conventional metal-semiconductor diode (Schottky diode) to replace at least one layer by an organic layer. The choice of dimensions of the capacitive areas of this rectifier makes it possible to set the switching frequency of the switching rectifier. A description is furthermore given of connecting a smoothing capacitor downstream of a rectifier constructed from such organic components, which smoothing capacitor smooths the DC voltage arriving in pulsating fashion downstream of the rectifier and is connected up in parallel with the load resistor.


However, such organic rectifiers, too, are not very effective at frequencies above 1 MHz. This is attributable to the low mobility of the organic semiconductors which are available nowadays and which can be used in such an organic rectifier. The space charge zone leading to the rectifying effect is no longer built up rapidly enough at high frequencies on account of the low charge carrier mobility in the organic semiconductor. The efficiency of the rectifier decreases as a result of this, which makes it more difficult to supply downstream loads with DC voltage.


The invention is based on the object, then, of improving the supply of downstream loads by an organic rectifier.


This object is achieved by a rectifier for converting an AC voltage present between two input terminals of the rectifier into a DC voltage, which rectifier has at least two organic diodes and/or organic field effect transistors each having at least one electrical functional layer composed of a semiconducting organic material and also two or more charging or charge-reversal capacitors which are connected up to the two or more organic diodes or organic field effect transistors in such a way that the charging or charge-reversal capacitors can be charged via different current paths. This object is furthermore achieved by an electronic device in the form of a flexible, multilayer film body, which electronic device has a voltage source and a rectifier configured in the manner described above, said rectifier being fed by the voltage source.


In this case, the invention is based on the concept of compensating for the low charge carrier mobility of organic semiconductors by the interconnection with two or more charging or charge-reversal capacitors which are charged via different current paths of the rectifier.


The above-described interconnection of organic components and capacitors to form an organic rectifier enables the rectification factor GRS=U=/U to be significantly increased. Experiments have thus shown, for example, that by means of a conventional organic half-wave rectifier at a frequency of 13.56 MHz, for example, only approximately 5% of the AC voltage amplitude U fed in is converted into a DC voltage U= at the output, which corresponds to a rectification factor of GRV=U=/U=0.05, such that downstream loads can be supplied with DC voltage only with very great difficulty. Thus, the possibility of the rectification of coupled-in HF signals (HF=high frequency) by means of organic components is deemed impossible at the present time even by many experts, the use of organic rectifiers in RFID transponders is rejected and this is accounted for by the low charge carrier mobility in the organic semiconductors known at the present time. The invention provides a remedy here and makes it possible, through the interconnection referred to above of organic components with charging or charge-reversal capacitors, to provide an organic rectifier which can supply downstream loads with the required DC voltage even at high frequencies. In this case, possible loads include organic logic circuits, display elements and also conventional electronics.


In this case, the rectifier according to the invention comprises a multilayer construction composed of two, three or more layers, at least one layer of which is an active layer composed of organic semiconductor material. In this case, an organic diode realized in this multilayer construction has a metal-semiconductor junction or a pn junction with organic semiconductors, in which case the metal can also be replaced by an organic conductor. In this case, the sequence of the individual functional layers can be arranged both vertically and laterally. For improving the electrical properties—e.g. injection of charge carriers—, it is also conceivable to introduce additional interlayers which supplement the actual functional layers.


Moreover, it is also possible for organic field effect transistors whose gate electrode is connected to the source or drain electrode to be used as organic diodes in the rectifier.


Advantageous developments of the invention are referred to in the subclaims.


In accordance with the first exemplary embodiment of the invention, a first charging capacitor and a first organic diode are arranged in a first conducting line branch and a second charging capacitor and a second organic diode are arranged in a second conducting line branch. The first and the second conducting line branch are coupled in a parallel arrangement to the input of the rectifier, the first and the second organic diode being connected up in a back-to-back arrangement of the respective anode and cathode in the first and respectively the second conducting line branch.


In accordance with a further exemplary embodiment of the invention, a first organic diode and a second organic diode are connected in a back-to-back arrangement of the respective anode and cathode via a charge-reversal capacitor to the first input terminal of the rectifier. The first organic diode is connected to the second input terminal of the rectifier. The second organic diode is connected via a charging capacitor to the second input terminal of the rectifier. In accordance with this arrangement, the cathode of the first organic diode and the anode of the second organic diode can thus be connected via the charge-reversal capacitor to the first input terminal, such that the anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor and the anode of the first organic diode is connected to the second input terminal. However, the anode of the first organic diode and the cathode of the second organic diode can also be connected via the charge-reversal capacitor to the first input terminal, such that the cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor and the anode of the first organic diode is connected to the second input terminal.


Organic rectifiers constructed in this way have the advantage that even with a low outlay it is possible to achieve an increase in the supply voltage that can be obtained on the output side. The organic rectifier can thus be fabricated particularly cost-effectively, for example by means of a roll-to-roll process.


A further increase in the supply voltage available on the output side can be obtained by constructing the rectifier from two or more stages which are connected up to one another. Each stage of the rectifier comprises two charging or charge-reversal capacitors and two organic diodes or organic field effect transistors which are connected up in such a way that the charging or charge-reversal capacitors can be charged via different current paths and they have in each case two input terminals and two coupling terminals for coupling input terminals of a further stage.


The rectifier can in this case be constructed from two or more stages of identical type which are connected up in cascading fashion.


In one particularly advantageously constructed stage which can be used for such cascading, the cathode of the first organic diode and the anode of the second organic diode are connected to the first coupling terminal of the first stage and via the charge-reversal capacitor to the first input terminal of the first stage. The anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor. The anode of the first organic diode is connected to the second input terminal of the stage and the cathode of the second organic diode is connected to the second coupling terminal of the stage. A stage constructed in this way is referred to hereinafter as “first stage”.


Furthermore, it is also possible for the anode of the first organic diode and the cathode of the second organic diode to be connected to the first coupling terminal of the stage and via the charge-reversal capacitor to the first input terminal of the stage. The cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor. The cathode of the first organic diode is connected to the second input terminal of the stage and the anode of the second organic diode is connected to the second coupling terminal of the stage. A stage constructed in this way is referred to hereinafter as “second stage”.


In the cascading of first stages or second stages, the first and second input terminals of the foremost stage form the first and respectively the second input terminal of the rectifier. The coupling terminals of the respective stage are connected to the input terminals of the downstream stage, provided that the respective stage does not form the last stage of the rectifier. The output of the rectifier is formed by the second input terminal of the foremost stage and by the second coupling terminal of the last stage.


Furthermore, it is also possible for first and second stages to be connected up to one another in a rectifier. In a rectifier constructed in this way, the first and second input terminals of a first stage and of a second stage are connected to one another and form the input terminals of the rectifier. An arbitrary number of first and second stages are subsequently connected in the manner described above in each case to the coupling terminals of the preceding first and respectively second stage. The output of the rectifier is formed by the second coupling terminal of the last first stage and by the second coupling terminal of the last second stage.


The advantage of such an arrangement of two different types of stages is that—for the same supply voltage—the DC current that can be made available to the downstream load can be increased.


The rectification factor can furthermore be increased by using as organic diodes organic components which have an interlayer for lowering the parasitic capacitance of the organic diode. As a result of the reduction of the parasitic capacitances of the organic diodes, the effectiveness of the charging/charge-reversal processes at the charging or charge-reversal capacitors is improved and the efficiency of the rectifier is thus increased.


In accordance with a further exemplary embodiment of the invention, the first and/or the second input terminal of the rectifier is connected via one or a plurality of first organic field effect transistors to a charge-reversal capacitor. The charge-reversal capacitor is connected via one or a plurality of second field effect transistors to a charging capacitor. The one or the plurality of first and second field effect transistors are driven by a logic circuit. In this case, the logic circuit drives the first field effect transistors in such a way that an alternating voltage is applied to the charge-reversal capacitor.


Particular advantages are afforded when a rectifier according to the invention is used in an electronic device having, as voltage source, a resonant circuit comprising an antenna and a capacitor. By coupling such an antenna resonant circuit to a rectifier according to the invention, a DC voltage supply of downstream electronic assemblies can be provided which can be produced particularly cost-effectively, provides a sufficient supply voltage and can be realized in the form of a flexible body. Particular advantages are furthermore afforded if an organic integrated circuit is used as downstream electronic assembly. On account of the particular characteristic of organic integrated circuits (e.g. very low current requirement), such a circuit is matched particularly well to the characteristic of the rectifier according to the invention. Furthermore, an electronic device of this type can be manufactured cost-effectively for mass production applications and disposable products using a uniform manufacturing technology.


In addition to the use of such a resonant circuit as a voltage source, it is also possible to provide an oscillator, for example a ring oscillator, in the voltage source or to apply an alternating voltage to the charging and/or charge-reversal capacitors through corresponding driving of two or more field effect transistors.





The invention is explained by way of example below on the basis of a plurality of exemplary embodiments with the aid of the accompanying drawing.



FIG. 1 shows a block diagram of an organic rectifier in accordance with a first exemplary embodiment.



FIG. 2 shows a block diagram of an organic rectifier for a further exemplary embodiment.



FIG. 3 shows a block diagram of an organic rectifier for a further exemplary embodiment.



FIG. 4 shows a block diagram of a cascaded organic rectifier for a further exemplary embodiment.



FIG. 5 shows a block diagram of a cascaded organic rectifier for a further exemplary embodiment.



FIG. 6 shows a block diagram of an electronic device with a rectifier.



FIG. 7 shows a block diagram of an electronic device for a further exemplary embodiment.



FIG. 8 shows a block diagram of an electronic device for a further exemplary embodiment.





The rectifiers illustrated in the figures FIG. 1 to FIG. 5 each comprise a flexible, multilayer film body having one or a plurality of electrical functional layers. The electrical functional layers of the film body comprise (organically) conductive layers, organically semiconducting layers and/or organic insulating layers which, at least partly in structured form, are arranged one above another. Alongside these electrical functional layers, the multilayer film body optionally also comprises one or a plurality of carrier layers, protective layers, decorative layers, adhesion promoting layers or adhesive layers. The electrically conductive functional layers preferably comprise a conductive, structured metallization, preferably composed of gold or silver. However, provision may also be made for forming said functional layers from an inorganic electrically conductive material, for example for forming them from indium tin oxide or from a conductive polymer, for example from polyaniline or polypyrrole. The organically semiconducting functional layers comprise for example conjugated polymers, such as polythiophenes, polythienylenevinylenes or polyfluorene derivatives, which are applied as a solution by spin-coating, blade coating or printing. So-called “small molecules”, i.e. oligomers such as sexithiophene or pentacene, which are vapor-deposited by a vacuum technique, are also suitable as organic semiconductor layer. These organic layers are preferably applied in a manner already structured partially or in patterned fashion by means of a printing method (intaglio printing, screen printing, pad printing). For this purpose, the organic materials provided for the layers are formed as soluble polymers, the term polymers in this case, as already described further above, also including oligomers and “small molecules”.


In this case, the electrical functional layers of the respective film body are configured such that they realize the electrical circuit illustrated in the figures FIG. 1 to FIG. 5.


The electrical circuits described below with reference to the figures FIG. 1 to FIG. 5 in each case comprise two or more charging or charge-reversal capacitors and two or more organic diodes.


Organic diodes are realized in the multilayer film body by a metal-semiconductor junction or a pn junction between an n-conducting and a p-conducting semi-conductor. In this case, the sequence of the individual functional layers can be arranged both vertically and laterally. Furthermore, it is possible here, in order to improve the electrical properties—e.g. injection of nutrient carriers—to introduce additional inter-layers which supplement the electrically functional layers described above. An organic diode can thus be realized for example by means of three successive layers, the first layer being an electrically conductive electrode layer that forms the cathode, the second layer being a layer composed of an organic semi-conductor material, and the third layer being an electrically conductive electrode layer that forms the anode. In this case, the organic semiconductor layer has a layer thickness of 60 to 2000 nm, for example. The conductive layer may comprise one of the materials described above, that is to say either a metal or an organically conductive material, which can be applied by a printing process.


Furthermore, it is also possible for organic diodes to be realized by means of a four-layer construction comprising two electrode layers and two intervening organic semiconductor layers, one of which has n-conducting properties and the other of which has p-conducting properties.


Reference is made hereinafter to the content of WO 02/21612 A1 with regard to the construction of organic diodes.


Furthermore, it is also possible for the organic diodes to be formed by an organic field effect transistor whose gate electrode is connected to the drain electrode.


The charging or charge-reversal capacitors realized in the multilayer film body are formed by two electrically conductive layers and an intervening insulating layer. The electrically conductive layers may comprise one of the materials described above, may thus comprise for example metallic layers or organic electrically conductive layers, which have been applied by means of a printing method. In this case, the charging or charge-reversal capacitors have a capacitance within the range of 1 pF to 2 nF.



FIG. 1 shows a rectifier 1 comprising two organic diodes OD1 and OD2 and two charging capacitors C1 and C2. The rectifier 1 has an input E1 with input terminals E11 and E12 and an output A1. The input terminal E11 is connected to the cathode of the organic diode OD1 and to the anode of the organic diode OD2. The anode of the organic diode OD1 is connected via the charging capacitor C1 and the cathode of the organic diode OD2 is connected via the charging capacitor C2 to the input terminal E12. The output voltage is tapped off between the cathode of the organic diode OD2 and the anode of the organic diode OD1.


The input AC voltage present at the input E1 is rectified by means of the organic diode OD1 in a negative voltage across the charging capacitor C1 and rectified by means of the organic diode OD2 to form a positive voltage. The output-side DC voltage present at the output A1 thus corresponds to the sum of the magnitudes of the voltages across C1 and C2.



FIG. 2 shows a rectifier 2 having a charge-reversal capacitor C1, a charging capacitor C2 and two organic diodes OD1 and OD2. The rectifier 2 has an input E2 with two input terminals E21 and E22, an output A2 and two coupling terminals B21 and B22. The charge-reversal capacitor C1 is connected at one end to the input terminal E21 and at the other end to the coupling terminal B21, the cathode of the organic diode OD1 and the anode of the organic diode OD2. The charging capacitor C2 is connected at one end to the anode of the organic diode OD1 and the input terminal E22 and at the other end to the cathode of the organic diode OD2 and the coupling terminal B22. The output voltage is tapped off via the charging capacitor C2. The input AC voltage applied to the input E2 is rectified by means of the organic diode OD1 to form a voltage across the charge-reversal capacitor C1. During the positive half-cycle of the input AC voltage, the positive charges situated on the charge-reversal capacitor C1 can be transported via the organic diode OD2 to the charging capacitor C2. An increased positive voltage thus builds up across the charging capacitor C2, and can be tapped off via the output A2.



FIG. 3 shows a rectifier 3 having a charge-reversal capacitor C1, two organic diodes OD1 and OD2 and a charging capacitor C2. The rectifier 3 has an input E3 with two input terminals E31 and E32, an output A3 and two coupling terminals B31 and B32. The charge-reversal capacitor C1 is connected at one end to the input terminal E31 and at the other end to the anode of the organic diode OD1, the cathode or organic diode OD2 and the coupling terminal B31. The charging capacitor C2 is connected at one end to the cathode of the organic diode OD1 and to the input terminal E32 and is connected at the other end to the anode of the organic diode OD2 and the coupling terminal B32. The output voltage is tapped off via the charging capacitor C2. In contrast to the rectifier 2, in the case of the rectifier 3, during the negative half-cycle of the input AC voltage, the negative charge situated on the charge-reversal capacitor C1 is transported via the organic diode OD2 to the charging capacitor C2. An increased negative voltage thus builds up across the charging capacitor C2, and is tapped off via the output A3.


The rectifiers illustrated in FIG. 2 and FIG. 3 can be cascaded in a cascaded arrangement in each case to form a multistage organic or printable rectifier.



FIG. 4 shows an example of such a rectifier. FIG. 4 shows a rectifier 4 constructed from two or more stages, of which two stages S41 and S42 are shown in FIG. 4. The stages S41 and S42 are in each case constructed like the rectifier 2 according to FIG. 2. The stage S41 thus has an input with two input terminals in E41 and E42, an output A41 and two coupling terminals B41 and B42. The stage S42 has two input terminals E43 and E44, an output A42 and two coupling terminals B43 and B44. The input terminals and coupling terminals of the stages S41 and S42 are connected up to a charge-reversal capacitor, a charging capacitor and two organic diodes as shown in FIG. 2.


The input terminals E41 and E42 of the first stage of the rectifier 4 form an input of the rectifier 4, which is designated by E4 in FIG. 4. The input terminals of the downstream stage are respectively connected to the coupling terminals of one stage of the rectifier 4. The output-side DC voltage thus results from the sum of the output voltages at the outputs of the individual stages, such that the voltage present at the output A4 of the rectifier 4 is increased further.


It is also possible to construct the rectifier 4 by means of a cascaded arrangement of individual stages which are each constructed like the rectifier 3 according to FIG. 3.



FIG. 5 shows a rectifier 6 composed of differently constructed individual stages. The rectifier 6 has, on the one hand, two or more stages which are each constructed like the rectifier 2 according to FIG. 2. Of said stages, FIG. 5 shows two stages S61 and S62 having input terminals E61 and E62 and respectively E63 and E64, coupling terminals B61 and B62 and respectively B63 and B64 and outputs A61 and respectively A62. These stages, as already explained with reference to FIG. 4, are connected up to one another in a cascaded arrangement in such a way that the input terminals of the downstream stage are connected up to the coupling terminals of the preceding stage.


The rectifier 6 furthermore has two or more stages is configured like the rectifier 3 according to FIG. 3. Of said stages, FIG. 5 shows two stages S63 and S64 having input terminals E61 and E62 and respectively E65 and E66, coupling terminals B65 and B66 and respectively B67 and B68 and outputs A63 and respectively A64. Said stages are likewise connected up to one another in cascading fashion, as explained in FIG. 4, in such a way that the input terminals of the downstream stage are connected to the coupling terminals of the preceding stage. The input terminals of the stages S61 and S63 are in each case connected to the input E6 of the rectifier 6, such that the positive output voltages present at the outputs of the stages S61 and S62 are added to the negative voltages present at the outputs of the stages S63 and S64 and an increased output voltage is thus present at the output A6 of the rectifier 6.



FIG. 6 shows an electronic device 5 having a power source 51, a rectifier 52 and an electronic circuit 53 fed by the rectifier 52. The electronic device 5 is an RFID transponder. The electronic device 5, as already explained with reference to the figures FIG. 1 to FIG. 5, is constructed from a multilayer flexible film body having two or more electrical functional layers.


In this case, the power source 51 is formed by an antenna resonant circuit comprising an antenna and a tuning capacitor. The rectifier 52 is formed by a rectifier constructed like one of the rectifiers 1, 2, 3, 4 or 6 according to FIG. 1 to FIG. 5.


The electronic circuit 53 is an ID code generator constructed from one or a plurality of active or passive organic components, preferably organic field effect transistors.


However, it is also possible for the electronic circuit 53 to provide a different function or to be replaced by an output unit, for example to be formed by an organic light emitting diode or a liquid crystal display.



FIG. 7 shows an electronic device 7 serving for supplying an organic or printable logic circuit. The electronic device 7 has a voltage source 71, a logic circuit 72, a plurality of organic field effect transistors OF1, OF2, OF3, OF4, two charge-reversal capacitors CS1 and CS2 and a charging capacitor CO. The two charge-reversal capacitors CS1 and CS2 in each case have the capacitance of the charging capacitor CO and can also be replaced by a capacitor having twice the capacitance or a greater capacitance. In this case, the logic circuit is fed by the output voltage present at an output A7 of the electronic device.


The voltage source 71 supplies an arbitrary AC voltage with or without a DC voltage component. The voltage source 71 can thus be formed for example by an antenna resonant circuit according to FIG. 6 and/or by a battery, for example a printed battery or storage battery. The logic circuit 72 comprises one or a plurality of organic field effect transistors connected up to one another. It controls a switching matrix comprising the organic field effect transistors OF1 to OF4. Through suitable construction and driving of the switching matrix, a DC voltage arises as a result of the charging and charge-reversal processes at the output of the switching matrix. The logic circuit 72 thus drives the organic field effect transistors OF1 to OF4 for example in such a way that during the positive half-cycle, the field effect transistors OF1 and OF2 are turned on and the field effect transistors OF3 and OF4 are turned off. During a further positive half-cycle, the organic field effect transistors OF3 and OF4 are then turned on and the organic field effect transistors OF1 and OF2 are turned off.


Furthermore, it is also possible to provide even further organic field effect transistors in the switching matrix in order thus for example to utilize the negative half-cycle of the voltage source 71. Furthermore, it is also possible in this way to increase a DC voltage present on the input side at the switching matrix.



FIG. 8 shows an electronic device having a voltage source 81, an oscillator 82 and a rectifier 83. The rectifier 83 has an input with two input terminals A81 and A82 and an output 8. The rectifier 83 is constructed like one of the rectifiers 1, 2, 3, 4 and 6 according to FIG. 1 to FIG. 5.


The voltage source 81 is a DC voltage source, for example a battery. Furthermore, it is also possible for the voltage source 81 to be a rectifier which is constructed according to the figures FIG. 1 to FIG. 5 and which is fed by an AC voltage source, for example an antenna resonant circuit.


The oscillator 82 is a printable ring oscillator which converts the input voltage into an AC voltage, preferably having a frequency of less than 1 MHz. The rectifier 83 is a rectifier which is constructed like one of the rectifiers according to the figures FIG. 1 to FIG. 5. By means of this construction, the voltage is effectively rectified into a DC voltage present at the output 8.


It is also possible for a rectifier according to the figures FIG. 1 to FIG. 5 also to be combined with a rectifier according to FIG. 7 in this way, that is to say for a rectifier according to the figures FIG. 1 to FIG. 5 together with an AC voltage source to form the voltage source 71 according to FIG. 7. An arrangement of this type makes it possible to obtain for example an impedance matching to the electronic circuit supplied by the rectifier.

Claims
  • 1. A rectifier for an electronic device for converting an AC voltage present between two input terminals into a DC voltage, comprising: two input terminals;an antenna resonant circuit comprising an antenna and a capacitor;at least two organic diodes and/or organic field effect transistors, each having at least one electrical functional layer composed of a semiconducting organic material, and wherein the at least two organic diodes and/or organic field effect transistors are coupled to the antenna resonant circuit; andtwo or more charging or charge-reversal capacitors connected to the two or more organic diodes and/or organic field effect transistors for charging of or charge-reversal of the two or more capacitors via different current paths;the rectifier being constructed from two or more stages connected to one another, wherein in each case, two charging or charge-reversal capacitors and two organic diodes are connected such that the charging or charge-reversal capacitors are charged via different current paths, and in each case have two input terminals and two coupling terminals for coupling to the input terminals of a further stage.
  • 2. The rectifier as claimed in claim 1, wherein a first charging capacitor and a first organic diode are arranged in a first conducting line branch, in that a second charging capacitor and a second organic diode are arranged in a second conducting line branch, in that the first and the second conducting line branch are coupled in a parallel arrangement to the input terminals of the rectifier, and in that the first and the second organic diode are connected in a back-to-back arrangement of the respective anode and cathode in the first and the second conducting line branch.
  • 3. The rectifier as claimed in claim 1, wherein a first organic diode and a second organic diode are connected in a back-to-back arrangement of the respective anode and cathode via a charge-reversal capacitor to the first input terminal of the rectifier, in that the first organic diode is connected to the second input terminal of the rectifier and the second organic diode is connected via a charging capacitor to the second input terminal of the rectifier.
  • 4. The rectifier as claimed in claim 3, wherein the cathode of the first organic diode and the anode of the second organic diode are connected via the charge-reversal capacitor to the first input terminal, in that the anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor, and in that the anode of the first organic diode is connected to the second input terminal.
  • 5. The rectifier as claimed in claim 3, wherein the anode of the first organic diode and the cathode of the second organic diode are connected via the charge-reversal capacitor to the first input terminal, in that the cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor, and in that the cathode of the first organic diode is connected to the second input terminal.
  • 6. The rectifier as claimed in claim 1, wherein, in a first stage, the cathode of the first organic diode and the anode of the second organic diode are connected to the first coupling terminal of the first stage and via the charge-reversal capacitor to the first input terminal of the first stage, in that the anode of the first organic diode and the cathode of the second organic diode are connected to one another via the charging capacitor, and in that the anode of the first organic diode is connected to the second input terminal of the first stage and the cathode of the second organic diode is connected to the second coupling terminal of the first stage.
  • 7. The rectifier as claimed in claim 6, wherein the rectifier has two or more first stages, the first and the second input terminal of the foremost first stage forming the first and respectively the second input terminal of the rectifier (4), the first and the second coupling terminal of the respective first stage being connected to the first and respectively second input terminal of the downstream first stage, provided that the respective first stage does not form the last stage of the rectifier, and the output of the rectifier being formed by the second input terminal of the foremost first stage and by the second coupling terminal of the last first stage.
  • 8. The rectifier as claimed in claim 1, wherein, in a second stage, the anode of the first organic diode and the cathode of the second organic diode are connected to the first coupling terminal of the second stage and via the charge-reversal capacitor to the first input terminal of the second stage, in that the cathode of the first organic diode and the anode of the second organic diode are connected to one another via the charging capacitor, and in that the cathode of the first organic diode is connected to the second input terminal of the second stage and the anode of the second organic diode is connected to the second coupling terminal of the second stage.
  • 9. The rectifier as claimed in claim 8, wherein the rectifier has two or more second stages, the first and the second input terminal of the foremost second stage forming the first and respectively the second input terminal of the rectifier, the first and the second coupling terminal of the respective second stage being connected to the first and respectively second input terminal of the downstream second stage, provided that the respective second stage does not form the last stage of the rectifier, and the output of the rectifier being formed by the second input terminal of the foremost second stage and by the second coupling terminal of the last second stage.
  • 10. The rectifier as claimed in claim 6 wherein the rectifier has one or a plurality of first stages and one or a plurality of second stages, in that the first and the second input terminals of a first stage are connected to the first and respectively second input terminal of a second stage and form the first and respectively the second input terminal of the rectifier, and in that the output of the rectifier is formed by the second coupling terminal of the last first stage and by the second coupling terminal of the last second stage.
  • 11. The rectifier as claimed in claim 1 wherein one or a plurality of the organic diodes are formed by organic field effect transistors whose gate electrode is connected to the source or drain electrode.
  • 12. The rectifier as claimed in claim 1, wherein one or a plurality of the organic diodes has an interlayer for lowering the parasitic capacitance of the organic diode.
  • 13. The rectifier as claimed in claim 1, wherein the first and/or the second input terminal of the rectifier is connected via one or a plurality of first organic field effect transistors to the charge-reversal capacitor, in that the charge-reversal capacitor is connected via one or a plurality of second field effect transistors to the charging capacitor, and in that the one or the plurality of first field effect transistors are driven by a logic circuit.
  • 14. An electronic device in the form of a flexible, multilayer film body of an RFID transponder, wherein the electronic device has a voltage source and a rectifier as claimed in one of the preceding claims, said rectifier being fed by the voltage source, the voltage source having the antenna resonant circuit, for coupling in an electromagnetic radiation radiated onto the electronic device.
  • 15. The electronic device as claimed in claim 14, wherein the electronic device comprises an electronic circuit based on one or a plurality of active or passive organic components fed by the rectifier.
  • 16. A rectifier for an RFID transponder for converting an applied AC voltage present between two input terminals of the rectifier into a DC voltage, comprising: at least two organic diodes and/or organic field effect transistors coupled to the input terminals, each of the at least two organic diodes and/or organic field effect transistors each having at least one electrical functional layer composed of a semiconducting organic material; andtwo or more charging or charge-reversal capacitors connected to the at least two or more organic diodes and/or organic field effect transistors for charging of or charge-reversal of the two or more charging or charge-reversal capacitors via different current paths;the rectifier being constructed of two or more stages connected to one another and which have in each case two charging or charge-reversal capacitors and the two organic diodes are connected such that the charging or charge-reversal capacitors are charged via different current paths, and which have in each case two input terminals and two coupling terminals for coupling to the input terminals of a further stage.
  • 17. The rectifier of claim 16 further including a voltage source coupled to the input terminals comprising an antenna resonant circuit including an antenna and a further capacitor, for converting an AC voltage present between the two input terminals into the applied voltage.
Priority Claims (1)
Number Date Country Kind
10 2004 063 435 Dec 2004 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE2005/002293 12/20/2005 WO 00 9/5/2007
Publishing Document Publishing Date Country Kind
WO2006/066559 6/29/2006 WO A
US Referenced Citations (117)
Number Name Date Kind
3512052 MacIver et al. May 1970 A
3769096 Ashkin Oct 1973 A
3955098 Kawamoto May 1976 A
3999122 Winstel et al. Dec 1976 A
4165022 Bentley et al. Aug 1979 A
4246298 Guarnery Jan 1981 A
4302648 Sado et al. Nov 1981 A
4340057 Bloch Jul 1982 A
4442019 Marks Apr 1984 A
4445166 Berglund et al. Apr 1984 A
4554229 Small Nov 1985 A
4865197 Craig Sep 1989 A
4926052 Hatayama May 1990 A
4937119 Nikles et al. Jun 1990 A
5075816 Stormbom Dec 1991 A
5173835 Cornett et al. Dec 1992 A
5206525 Yamamoto et al. Apr 1993 A
5259926 Kuwabara et al. Nov 1993 A
5321240 Takahira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5395504 Saurer et al. Mar 1995 A
5480839 Ezawa et al. Jan 1996 A
5486851 Gehner et al. Jan 1996 A
5502396 Desarzens Mar 1996 A
5528222 Moskowitz Jun 1996 A
5546889 Wakita et al. Aug 1996 A
5569879 Gloton Oct 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5578513 Maegawa Nov 1996 A
5580794 Allen Dec 1996 A
5625199 Baumbach et al. Apr 1997 A
5629530 Brown et al. May 1997 A
5630986 Charlton et al. May 1997 A
5652645 Jain Jul 1997 A
5691089 Smayling Nov 1997 A
5693956 Shi Dec 1997 A
5705826 Aratani et al. Jan 1998 A
5729428 Sakata et al. Mar 1998 A
5731691 Noto Mar 1998 A
5854139 Aratani et al. Dec 1998 A
5869972 Birch et al. Feb 1999 A
5883397 Isoda et al. Mar 1999 A
5892244 Tanaka et al. Apr 1999 A
5946551 Dimitrakopoulos et al. Aug 1999 A
5967048 Fromson et al. Oct 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Beigel Oct 1999 A
5994773 Hirakawa Nov 1999 A
5997817 Crismore et al. Dec 1999 A
5998805 Shi et al. Dec 1999 A
6036919 Thym et al. Mar 2000 A
6045977 Chandross et al. Apr 2000 A
6060338 Tanaka et al. May 2000 A
6072716 Jacobson et al. Jun 2000 A
6083104 Choi Jul 2000 A
6087196 Sturm et al. Jul 2000 A
6133835 De Leeuw et al. Oct 2000 A
6150668 Bao Nov 2000 A
6180956 Chondroudis Jan 2001 B1
6197663 Chandross Mar 2001 B1
6207472 Callegari et al. Mar 2001 B1
6215130 Dodabalapur Apr 2001 B1
6221553 Wolk Apr 2001 B1
6251513 Rector Jun 2001 B1
6284562 Batlogg et al. Sep 2001 B1
6291126 Wolk et al. Sep 2001 B2
6300141 Segal et al. Oct 2001 B1
6321571 Themont et al. Nov 2001 B1
6322736 Bao Nov 2001 B1
6329226 Jones Dec 2001 B1
6330464 Colvin Dec 2001 B1
6335539 Dimitrakopoulos et al. Jan 2002 B1
6340822 Brown et al. Jan 2002 B1
6344662 Dimitrakopoulos et al. Feb 2002 B1
6362509 Hart Mar 2002 B1
6366017 Antoniadis et al. Apr 2002 B1
6384804 Dodabalapur et al. May 2002 B1
6403396 Gudesen et al. Jun 2002 B1
6429450 Mutsaers et al. Aug 2002 B1
6498114 Amundson et al. Dec 2002 B1
6517955 Takada et al. Feb 2003 B1
6518949 Drzaic Feb 2003 B2
6521109 Bartic et al. Feb 2003 B1
6548875 Nishiyama Apr 2003 B2
6555840 Hudson Apr 2003 B1
6593690 McCormick Jul 2003 B1
6603139 Tessler Aug 2003 B1
6621098 Jackson Sep 2003 B1
6852583 Bernds et al. Feb 2005 B2
6903958 Bernds et al. Jun 2005 B2
6960489 Bernds et al. Nov 2005 B2
7078937 Baude et al. Jul 2006 B2
20010026187 Oku Oct 2001 A1
20010046081 Hayashi et al. Nov 2001 A1
20020018911 Bernius et al. Feb 2002 A1
20020022284 Heeger et al. Feb 2002 A1
20020025391 Angelopoulos Feb 2002 A1
20020053320 Duthaler et al. May 2002 A1
20020056839 Joo et al. May 2002 A1
20020068392 Lee et al. Jun 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020170897 Hall Nov 2002 A1
20020195644 Dodabalapur et al. Dec 2002 A1
20030059987 Sirringhaus Henning et al. Mar 2003 A1
20030070500 Hung Apr 2003 A1
20030112576 Brewer et al. Jun 2003 A1
20030141807 Kawase Jul 2003 A1
20030178620 Bernds et al. Sep 2003 A1
20040002176 Xu Jan 2004 A1
20040013982 Jacobson et al. Jan 2004 A1
20040026689 Bernds et al. Feb 2004 A1
20040070500 Pratt et al. Apr 2004 A1
20040084670 Tripsas et al. May 2004 A1
20040211329 Funahata et al. Oct 2004 A1
20040233065 Freeman Nov 2004 A1
20040256467 Clemens et al. Dec 2004 A1
Foreign Referenced Citations (176)
Number Date Country
2102735 Aug 1972 DE
33 38 597 May 1985 DE
41 03 675 Aug 1992 DE
692 32 740 Apr 1993 DE
42 43 832 Jun 1994 DE
43 12 766 Oct 1994 DE
196 29 291 Jan 1997 DE
195 06 907 Sep 1998 DE
198 52 312 May 1999 DE
198 16 860 Nov 1999 DE
199 18 193 Nov 1999 DE
198 51 703 May 2000 DE
100 06 257 Sep 2000 DE
199 21 024 Nov 2000 DE
199 33 757 Jan 2001 DE
695 19 782 Jan 2001 DE
199 35 527 Feb 2001 DE
199 37 262 Mar 2001 DE
100 12 204 Sep 2001 DE
100 33 112 Jan 2002 DE
201 11 825 Feb 2002 DE
100 43 204 Apr 2002 DE
100 45 192 Apr 2002 DE
100 47 171 Apr 2002 DE
100 58 559 May 2002 DE
100 61 297 Jun 2002 DE
101 17 663 Oct 2002 DE
101 20 687 Oct 2002 DE
101 20 686 Nov 2002 DE
101 51 440 Feb 2003 DE
101 41 440 Mar 2003 DE
101 63 267 Jul 2003 DE
102 09 400 Oct 2003 DE
102 19 905 Dec 2003 DE
103 41 962 Apr 2004 DE
699 13 745 Oct 2004 DE
0 108 650 May 1984 EP
0 128 529 Dec 1984 EP
0 268 370 May 1988 EP
0 268 370 May 1988 EP
0 350 179 Jan 1990 EP
0 418 504 Mar 1991 EP
0 442 123 Aug 1991 EP
0 460 242 Dec 1991 EP
0 501 456 Sep 1992 EP
0 501 456 Sep 1992 EP
0 511 807 Nov 1992 EP
0 528 662 Feb 1993 EP
0 603 939 Jun 1994 EP
0 615 256 Sep 1994 EP
0 685 985 Dec 1995 EP
0 716 458 Jun 1996 EP
0 716 458 Jun 1996 EP
0 785 578 Jul 1997 EP
0 785 578 Jul 1997 EP
0 786 820 Jul 1997 EP
0 690 457 Dec 1999 EP
0 962 984 Dec 1999 EP
0 962 984 Dec 1999 EP
0 966 182 Dec 1999 EP
0 979 715 Feb 2000 EP
0 981 165 Feb 2000 EP
0 989 614 Mar 2000 EP
1 048 912 Nov 2000 EP
1 052 594 Nov 2000 EP
1 065 725 Jan 2001 EP
1 065 725 Jan 2001 EP
1 083 775 Mar 2001 EP
1 102 335 May 2001 EP
1 103 916 May 2001 EP
1 104 035 May 2001 EP
1 113 502 Jul 2001 EP
1 134 694 Sep 2001 EP
1 170 851 Jan 2002 EP
1 224 999 Jul 2002 EP
1 237 207 Sep 2002 EP
1 296 280 Mar 2003 EP
1 318 084 Jun 2003 EP
2793089 Nov 2000 FR
723598 Feb 1955 GB
2 058 462 Apr 1981 GB
54069392 Jun 1979 JP
60117769 Jun 1985 JP
61001060 Jan 1986 JP
61167854 Jul 1986 JP
62065472 Mar 1987 JP
362065477 Mar 1987 JP
63205943 Aug 1988 JP
01169942 Jul 1989 JP
2969184 Dec 1991 JP
03290976 Dec 1991 JP
05152560 Jun 1993 JP
05259434 Oct 1993 JP
05347422 Dec 1993 JP
08197788 Aug 1995 JP
09083040 Mar 1997 JP
09320760 Dec 1997 JP
10026934 Jan 1998 JP
2001085272 Mar 2001 JP
WO 9316491 Aug 1993 WO
WO 9417556 Aug 1994 WO
WO 9506240 Mar 1995 WO
WO 9531831 Nov 1995 WO
WO 9602924 Feb 1996 WO
WO 9619792 Jun 1996 WO
WO 9712349 Apr 1997 WO
WO 9718944 May 1997 WO
WO 9818156 Apr 1998 WO
WO 9818186 Apr 1998 WO
WO 9840930 Sep 1998 WO
WO 9907189 Feb 1999 WO
WO 9910929 Mar 1999 WO
WO 9910939 Mar 1999 WO
WO 9921233 Apr 1999 WO
WO 9930432 Jun 1999 WO
WO 9939373 Aug 1999 WO
WO 9940631 Aug 1999 WO
WO 9953371 Oct 1999 WO
WO 9954842 Oct 1999 WO
WO 9954936 Oct 1999 WO
WO 9966540 Dec 1999 WO
WO 0007151 Feb 2000 WO
WO 0033063 Jun 2000 WO
WO 0036666 Jun 2000 WO
WO 0079617 Dec 2000 WO
WO 0103126 Jan 2001 WO
WO 0106442 Jan 2001 WO
WO 0108241 Feb 2001 WO
WO 0115233 Mar 2001 WO
WO 0117029 Mar 2001 WO
WO 0117041 Mar 2001 WO
WO 0127998 Apr 2001 WO
WO 0146987 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0147045 Jun 2001 WO
WO 0169517 Sep 2001 WO
WO 0173109 Oct 2001 WO
WO 0173109 Oct 2001 WO
WO 0205360 Jan 2002 WO
WO 0205361 Jan 2002 WO
WO 0215264 Feb 2002 WO
WO 0217233 Feb 2002 WO
WO 0219443 Mar 2002 WO
WO 0221612 Mar 2002 WO
WO 0229912 Apr 2002 WO
WO 03027948 Apr 2002 WO
WO 0243071 May 2002 WO
WO 0247183 Jun 2002 WO
WO 02065557 Aug 2002 WO
WO 02071139 Sep 2002 WO
WO 02071505 Sep 2002 WO
WO 02076924 Oct 2002 WO
WO 02091495 Nov 2002 WO
WO 02091495 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02099907 Dec 2002 WO
WO 02099908 Dec 2002 WO
WO 03036686 May 2003 WO
WO 03038897 May 2003 WO
WO 03046922 Jun 2003 WO
WO 03057501 Jul 2003 WO
WO 03067680 Aug 2003 WO
WO 03069552 Aug 2003 WO
WO 03081671 Oct 2003 WO
WO 03095175 Nov 2003 WO
WO 2004032257 Apr 2004 WO
WO 2004042837 May 2004 WO
WO 2004042837 May 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004047194 Jun 2004 WO
WO 2004047194 Jun 2004 WO
WO 2004083859 Sep 2004 WO
WO 2005004194 Jan 2005 WO
Related Publications (1)
Number Date Country
20080225564 A1 Sep 2008 US