ORGANOMETALLIC COMPOUND AND LIGHT-EMITTING DEVICE INCLUDING THE SAME

Information

  • Patent Application
  • 20230337524
  • Publication Number
    20230337524
  • Date Filed
    November 02, 2022
    a year ago
  • Date Published
    October 19, 2023
    6 months ago
Abstract
Embodiments provide an organometallic compound, a light-emitting device including the organometallic compound, and an electronic apparatus including the light-emitting device. The light-emitting device includes a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and the organometallic compound, which is represented by Formula 1, as defined in the specification:
Description
CROSS REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0026302 under 35 U.S.C. §119, filed on Feb. 28, 2022, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

Embodiments relate to an organometallic compound and a light-emitting device including the same.


2. Description of the Related Art

Among light-emitting devices, organic light-emitting devices are self-emissive devices that have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, compared to devices in the art.


In an example, an organic light-emitting device may have a structure in which a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. The excitons may transition from an excited state to a ground state, thus generating light.


It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.


SUMMARY

Embodiments include an organometallic compound having low driving voltage, excellent luminescence efficiency, and a long lifespan, and a light-emitting device using the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.


According to embodiments, provided is an organometallic compound which may be represented by Formula 1:




embedded image - [Formula 1]


In Formula 1,

  • M may be platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au),
  • X1 to X4 may each independently be C or N,
  • Y1 to Y3 may each independently be O, S, C(Z11)(Z12), or Si(Z11)(Z12),
  • c1 to c3 may each independently be 0 or 1, wherein at least one of c1 to c3 may be 1,
  • A1 to A3 and A51 to A53 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,
  • L1 to L3 may each independently be a single bond, a double bond, *—N(Z21)—*′, *—B(Z21)—*′, *—P(Z21)—*′, *—C(Z21)(Z22)—*′, *—Si(Z21)(Z22)—*′, *—Ge(Z21)(Z22)—*′, *—S—*′, *—Se—*′, *—O—*′ *—C (═O)—*′ *—S(═O)—*′, *—S(═O)2—*′, *—C(Z21)═*′, *═C(Z21)—*′, *—C(Z21)═C(Z22)—*′, *—C(═S)—*′, or *—C═C—*′, wherein * and *′ each indicate a binding site to a neighboring atom,
  • a1 to a3 may each independently be an integer from 0 to 3,
  • R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2),
  • b1 to b4 may each independently be an integer from 0 to 10,
  • b51 to b53 may each independently be an integer from 0 to 6,
  • two of R1(s) in the number of b1; two of R2(s) in the number of b2; two of R3(s) in the number of b3; two of R4(s) in the number of b4; two of R51(s) in the number of b51; two of R52(s) in the number of b52; two of R53(s) in the number of b53; Z11 and Z12; or Z21 and Z22, may each optionally be bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —P(Q11)(Q12), —C(═O)(Q11), —S(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), —P(═S)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —P(Q21)(Q22), —C(═O)(Q21), —S(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), —P(═S)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or —P(═S)(Q31)(Q32), and
  • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group, or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, a bond between X1 and M and a bond between X4 and M may each be a coordinate bond; and a bond between X2 and M and a bond between X3 and M may each be a covalent bond.


In an embodiment, at least one of Y1, Y2, and Y3 may be C(Z11)(Z12).


In an embodiment, A1 may be an X1-containing 6-membered ring; A2 may be an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring; and A3 may be an X3-containing 6-membered ring.


In an embodiment, A1 to A3 and A51 to A53 may each independently be a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, or a carbazole group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A4(1) and A4(2), which are explained below.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A5(1) to A5(3), which are explained below.


In an embodiment, R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
  • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a naphthyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof;
  • a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, or a dibenzocarbazolyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
  • —P(Q1)(Q2) or —C(═O)(Q1).


In an embodiment, Z11, Z12, Z21, and Z22 may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group; or
  • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof.


In an embodiment, the organometallic compound may be selected from Compounds BD1 to BD120, which are explained below.


In an embodiment, the organometallic compound may emit blue light having a maximum emission wavelength in a range of about 400 nm to about 490 nm.


According to embodiments, provided is a light-emitting device which may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and the organometallic compound represented by Formula 1.


In an embodiment, the first electrode may be an anode; the second electrode may be a cathode; the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode; the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof; and the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the emission layer may include the organometallic compound.


In an embodiment, the emission layer may include a host and a dopant, and the dopant may include the organometallic compound.


In an embodiment, the host may include at least one compound including Si, P(═O), or any combination thereof.


In an embodiment, the electron transport region may include a hole blocking layer; the hole blocking layer may directly contact the emission layer; and the hole blocking layer may include at least one compound including Si, P(═O), or any combination thereof.


In an embodiment, the interlayer may include: a first compound which is the organometallic compound represented by Formula 1; and a second compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound including a group represented by Formula 3, or any combination thereof, wherein the first compound, the second compound, and the third compound may be different from each other, and Formula 3 is explained below.


According to embodiments, provided is an electronic apparatus which may include the light-emitting device, and a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.


In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.


It is to be understood that the embodiments above are described in a generic and explanatory sense only and not for the purpose of limitation, and the disclosure is not limited to the embodiments described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the disclosure will be more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of a light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment; and



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.


In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.


In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.


As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.


In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group of” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.” When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.


The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.


The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ±20%, ±10%, or ±5% of the stated value.


It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.


Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.


An aspect of the disclosure provides an organometallic compound which may be represented by Formula 1:




embedded image - [Formula 1]


In Formula 1, M may be platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au).


For example, M may be Pt, but embodiments are not limited thereto.


In Formula 1, X1 to X4 may each independently be C or N.


For example, X1 may be N, and X2 to X4 may each be C, but embodiments are not limited thereto.


In an embodiment, a bond between X1 and M and a bond between X4 and M may each be a coordinate bond, and a bond between X2 and M and a bond between X3 and M may each be a covalent bond.


In Formula 1, Y1 to Y3 may each independently be O, S, C(Z11)(Z12), or Si(Z11)(Z12). Z11 and Z12 may each be the same as described herein.


In an embodiment, at least one of Y1, Y2, and Y3 may be C(Z11)(Z12).


In Formula 1, c1 to c3 may each independently be 0 or 1, wherein at least one of c1 to c3 may be 1.


In an embodiment, c1 and c2 may each be 1, and c3 may be 0; c1 to c3 may each be 1; or c1 and c2 may each be 0, and c3 may be 1. In Formula 1, c1 indicates the number of Y1, c2 indicates the number of Y2, and c3 indicates the number of Y3.


In Formula 1, A1 to A3 and A51 to A53 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.


In an embodiment, A1 may be an X1-containing 6-membered ring; A2 may be an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring; and A3 may be an X3-containing 6-membered ring.


For example, the X1-containing 6-membered ring in A1, the X2-containing 6-membered ring and the X2-containing 6-membered ring condensed with at least one 5-membered ring in A2, and the X3-containing 6-membered ring in A3 may each independently be a benzene group, a pyridine group, or a pyrimidine group.


For example, the 5-membered ring in A2 may be a cyclopentene group, a cyclopentadiene group, a pyrrole group, a thiophene group, or a furan group.


In embodiments, A1 to A3 and A51 to A53 may each independently be a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, an indenoanthracene group, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, or an azadibenzofuran group.


In an embodiment, A1 to A3 and A51 to A53 may each independently be a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, or a carbazole group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A1(1) to A1 (15):




embedded image - A1(1)




embedded image - A1(2)




embedded image - A1(3)




embedded image - A1(4)




embedded image - A1(5)




embedded image - A1(6)




embedded image - A1(7)




embedded image - A1(8)




embedded image - A1(9)




embedded image - A1(10)




embedded image - A1(11)




embedded image - A1(12)




embedded image - A1(13)




embedded image - A1(14)




embedded image - A1(15)


In Formulae A1(1) to A1(15),

  • X1 may be the same as described in Formula 1,
  • R11 to R14 may each independently be the same as described in connection with R1 in Formula 1, wherein each of R11 to R14 may not be hydrogen, and
  • * and *′ each indicate a binding site to a neighboring atom.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A2(1) to A2(7):




embedded image - A2(1)




embedded image - A2(2)




embedded image - A2(3)




embedded image - A2(4)




embedded image - A2(5)




embedded image - A2(6)




embedded image - A2(7)


In Formulae A2(1) to A2(7),

  • X2 and R2 may each be the same as described in Formula 1,
  • b26 may be an integer from 0 to 6,
  • b25 may be an integer from 0 to 5, and
  • *, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A3(1) to A3(8):




embedded image - A3(1)




embedded image - A3(2)




embedded image - A3(3)




embedded image - A3(4)




embedded image - A3(5)




embedded image - A3(6)




embedded image - A3(7)




embedded image - A3(8)


In Formulae A3(1) to A3(8),

  • X3 may be the same as described in Formula 1,
  • R31 to R33 may each independently be the same as described in connection with R3 in Formula 1, wherein each of R31 to R33 may not be hydrogen, and
  • *, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A4(1) and A4(2):




embedded image - A4(1)




embedded image - A4(2)


In Formulae A4(1) and A4(2),

  • X4 and R4 may each be the same as described in Formula 1,
  • b42 may be an integer from 0 to 2,
  • b44 may be an integer from 0 to 4,
  • two of R4(s) in the number of b42; or two R4(s) in the number of b44, may each optionally be bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, wherein R10a may be the same as defined herein, and
  • *, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A5(1) to A5(3):




embedded image


In Formulae A5(1) to A5(3),

  • Y1 to Y3, c1 to c3, and R51 to R53 may each be the same as described in Formula 1,
  • b51 and b53 may each independently be an integer from 0 to 3,
  • b52 may be an integer from 0 to 2,
  • two of R51(s) in the number of b51; two of R52(s) in the number of b52; or two of R53(s) in the number of b53, may each optionally be bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, wherein R10a may be the same as defined herein, and
  • *” indicates a binding site to a neighboring atom.


In Formula 1, L1 to L3 may each independently be a single bond, a double bond, *—N(Z21)—*′, *—B(Z21)—*′, *—P(Z21)—*′, *—C(Z21)(Z22)—*′, *—Si(Z21)(Z22)—*′, *—Ge(Z21)(Z22)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(Z21)═*′, *═C(Z21)—*′, *—C(Z21)═C(Z22)—*′, *—C(═S)—*′, or *—C≡C—*′, wherein * and *, each indicate a binding site to a neighboring atom.


For example, L1 to L3 may be a single bond, but embodiments are not limited thereto.


In Formula 1, a1 to a3 may each independently be an integer from 0 to 3. For example, a1 to a3 may each be 1, but embodiments are not limited thereto. In Formula 1, a1 indicates the number of L1, a2 indicates the number of L2, and a3 indicates the number of L3. When a1 is 2 or more, two or more of L1(s) may be identical to or different from each other. When a2 is 2 or more, two or more of L2(s) may be identical to or different from each other. When a3 is 2 or more, two or more of L3(s) may be identical to or different from each other.


In Formula 1, R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2), and Q1 to Q3 may each be the same as described herein.


In embodiments, R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
  • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof;
  • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
  • —B(Q1)(Q2), —P(Q1)(Q2), or —C(═O)(Q1), wherein Q1, Q2, and Q31 to Q33 may each be the same as defined herein.


In an embodiment, R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
  • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a naphthyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof;
  • a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, or a dibenzocarbazolyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
  • —P(Q1)(Q2) or —C(═O)(Q1), wherein Q1, Q2, and Q31 to Q33 may each be the same as defined herein.


In an embodiment, Z11, Z12, Z21, and Z22 may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group; or
  • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof, wherein Q31 to Q33 may each be the same as defined herein.


In Formula 1, b1 to b4 may each independently be an integer from 0 to 10. For example, b1 to b4 may each independently be an integer from 0 to 5. In Formula 1, b1 indicates the number of R1, b2 indicates the number of R2, b3 indicates the number of R3, and b4 indicates the number of R4. When b1 is 2 or more, two or more of R1(s) may be identical to or different from each other. When b2 is 2 or greater, two or more of R2(s) may be identical to different from each other. When b3 is 2 or more, two or more of R3(s) may be identical to or different from each other. When b4 is 2 or more, two or more of R4(s) may be identical to or different from each other.


In Formula 1, b51 to b53 may each independently be an integer from 0 to 6. For example, b51 to b53 may each independently be an integer from 0 to 3. In Formula 1, b51 indicates the number of R51, b52 indicates the number of R52, and b53 indicates the number of R53. When b51 is 2 or more, two or more of R51(s) may be identical to or different from each other. When b52 is 2 or greater, two or more of R52(s) may be identical to different from each other. When b53 is 2 or more, two or more of R53(s) may be identical to or different from each other.


In an embodiment, two of R1(s) in the number of b1; two of R2(s) in the number of b2; two of R3(s) in the number of b3; two of R4(s) in the number of b4; two of R51(s) in the number of b51; two of R52(s) in the number of b52; two of R53(s) in the number of b53; Z11 and Z12; or Z21 and Z22, may each optionally be bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In Formula 1, R10a may be:

  • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
  • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —P(Q11)(Q12), —C(═O)(Q11), —S(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), —P(═S)(Q11)(Q12), or any combination thereof;
  • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —P(Q21)(Q22), —C(═O)(Q21), —S(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), —P(═S)(Q21)(Q22), or any combination thereof; or
  • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or —P(═S)(Q31)(Q32), and [00140] Q1 to Q3, Q11 to Q13, Q21 to Q23 and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; C1-C60 alkyl group; C2-C60 alkenyl group; C2-C60 alkynyl group; C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, the organometallic compound represented by Formula 1 may be selected from Compounds BD1 to BD120:




embedded image - BD1




embedded image - BD2




embedded image - BD3




embedded image - BD4




embedded image - BD5




embedded image - BD6




embedded image - BD7




embedded image - BD8




embedded image - BD9




embedded image - BD10




embedded image - BD11




embedded image - BD12




embedded image - BD13




embedded image - BD14




embedded image - BD15




embedded image - BD16




embedded image - BD17




embedded image - BD18




embedded image - BD19




embedded image - BD20




embedded image - BD21




embedded image - BD22




embedded image - BD23




embedded image - BD24




embedded image - BD25




embedded image - BD26




embedded image - BD27




embedded image - BD28




embedded image - BD29




embedded image - BD30




embedded image - BD31




embedded image - BD32




embedded image - BD33




embedded image - BD34




embedded image - BD35




embedded image - BD36




embedded image - BD37




embedded image - BD38




embedded image - BD39




embedded image - BD40




embedded image - BD41




embedded image - BD42




embedded image - BD43




embedded image - BD44




embedded image - BD45




embedded image - BD46




embedded image - BD47




embedded image - BD48




embedded image - BD49




embedded image - BD50




embedded image - BD51




embedded image - BD52




embedded image - BD53




embedded image - BD54




embedded image - BD55




embedded image - BD56




embedded image - BD57




embedded image - BD58




embedded image - BD59




embedded image - BD60




embedded image - BD61




embedded image - BD62




embedded image - BD63




embedded image - BD64




embedded image - BD65




embedded image - BD66




embedded image - BD67




embedded image - BD68




embedded image - BD69




embedded image - BD70




embedded image - BD71




embedded image - BD72




embedded image - BD73




embedded image - BD74




embedded image - BD75




embedded image - BD76




embedded image - BD77




embedded image - BD78




embedded image - BD79




embedded image - BD80




embedded image - BD81




embedded image - BD82




embedded image - BD83




embedded image - BD84




embedded image - BD85




embedded image - BD86




embedded image - BD87




embedded image - BD88




embedded image - BD89




embedded image - BD90




embedded image - BD91




embedded image - BD92




embedded image - BD93




embedded image - BD94




embedded image - BD95




embedded image - BD96




embedded image - BD97




embedded image - BD98




embedded image - BD99




embedded image - BD100




embedded image - BD101




embedded image - BD102




embedded image - BD103




embedded image - BD104




embedded image - BD105




embedded image - BD106




embedded image - BD107




embedded image - BD108




embedded image - BD109




embedded image - BD100




embedded image - BD111




embedded image - BD112




embedded image - BD113




embedded image - BD114




embedded image - BD115




embedded image - BD116




embedded image - BD117




embedded image - BD118




embedded image - BD119




embedded image - BD120


In Compounds BD1 to BD120, D5 represents substitution with five deuterium atoms. For example, a group represented by




embedded image


may be identical to a group represented by




embedded image


In an embodiment, the organometallic compound may emit blue light having a maximum emission wavelength in a range of about 400 nm to about 490 nm.


In the organometallic compound represented by Formula 1, each of A51 to A53 is bonded to N, and thus a bulky substituent (for example, a substituent including a triphenylamine group in a case where A51 to A53 are each a benzene group) may be included. Accordingly, a steric shielding effect is increased, and thus a light-emitting device including the organometallic compound may have excellent color purity and long lifespan effect due to increased stability. Such a bulky substituent may improve horizontal orientation of the organometallic compound, and thus a light-emitting device including the organometallic compound may have a low driving voltage and excellent luminescence efficiency. Therefore, an electronic apparatus, for example, an organic light-emitting device, including the organometallic compound may be used for the manufacture of a high-quality electronic apparatus.


Synthesis methods of the organometallic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to Synthesis Examples and/or Examples provided below.


At least one organometallic compound represented by Formula 1 may be used in a light-emitting device (for example, an organic light-emitting device). Accordingly, another aspect of the disclosure provides a light-emitting device which may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and the organometallic compound represented by Formula 1.


In an embodiment, the first electrode may be an anode, the second electrode may be a cathode, and

  • the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode, wherein
    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the organometallic compound may be included between the first electrode and the second electrode of the light-emitting device. Accordingly, the interlayer of the light-emitting device may include the organometallic compound. For example, in an embodiment, the emission layer of the interlayer may include the organometallic compound.


In an embodiment, the emission layer in the interlayer of the light-emitting device may include a host and a dopant, and the dopant may include the organometallic compound. For example, the organometallic compound may serve as a dopant. The emission layer may emit red light, green light, blue light, and/or white light. For example, the emission layer may emit blue light. The blue light may have, for example, a maximum emission wavelength in a range of about 400 nm to about 490 nm. In an embodiment, the host may include at least one compound including Si, P(═O), or any combination thereof.


In embodiments, the light-emitting device may include the electron transport region, wherein the electron transport region includes a hole blocking layer, and the hole blocking layer may directly contact the emission layer, and the hole blocking layer may include at least one compound including Si, P(═O), or any combination thereof.


In an embodiment, the interlayer of the light-emitting device may include:

  • a first compound which is the organometallic compound represented by Formula 1; and
  • a second compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound including a group represented by Formula 3, or any combination thereof, and
  • the first compound, the second compound, and the third compound may be different from each other:
  • embedded image - [Formula 3]


In Formula 3,

  • ring CY71 and ring CY72 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
  • X71 may be:
  • a single bond; or
  • a linking group including O, S, N, B, C, Si, or any combination thereof, and
  • * indicates a binding site to a neighboring atom in the third compound.


In an embodiment, the interlayer may include the first compound. In embodiments, the interlayer may further include the second compound. In embodiments, the interlayer may further include the third compound, in addition to the first compound and the second compound.


In embodiments, the emission layer in the interlayer may include:

  • the first compound; and
  • the second compound, the third compound, or any combination thereof.


The emission layer may emit phosphorescence or fluorescence emitted from the first compound. For example, the phosphorescence or fluorescence emitted from the first compound may be blue light.


In embodiments, the emission layer of the light-emitting device may include the first compound and the second compound, wherein the first compound and the second compound may form an exciplex.


In embodiments, the emission layer of the light-emitting device may include the first compound, the second compound, and the third compound, wherein the first compound and the second compound may form an exciplex.


Description of Second Compound and Third Compound

The second compound may include a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or any combination thereof.


In an embodiment, the second compound may include a compound represented by Formula 2:




embedded image - [Formula 2]


In Formula 2,

  • L61 to L63 may each independently be a single bond, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • b61 to b63 may each independently be an integer from 1 to 5,
  • X64 may be N or C(R64), X65 may be N or C(R65), X66 may be N or C(R66), wherein at least one of X64 to X66 may be N,
  • R61 to R66 may each be the same as described herein, and
  • R10a may be the same as described herein.


In an embodiment, the third compound may not include CBP or mCBP:




embedded image




embedded image


In embodiments, the third compound may include a compound represented by Formula 3-1, a compound represented by Formula 3-2, a compound represented by Formula 3-3, a compound represented by Formula 3-4, a compound represented by Formula 3-5, or any combination thereof:




embedded image - [Formula 3-1]




embedded image - [Formula 3-2]




embedded image - [Formula 3-3]




embedded image - [Formula 3-4]




embedded image - [Formula 3-5]


In Formulae 3-1 to 3-5,

  • ring CY71 to ring CY74 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
  • X82 may be a single bond, O, S, N—[(L82)b82—R82], C(R82a)(R82b), or Si(R82a)(R82b),
  • X83 may be a single bond, O, S, N—[(L83)b83—R83], C(R83a)(R83b), or Si(R83a)(R83b),
  • X84 may be O, S, N—[(L84)b84—R84], C(R84a)(R84b), or Si(R84a)(R84b),
  • X85 may be C or Si,
  • L81 to L85 may each independently be a single bond, *—C(Q4)(Q5)—*′, *—Si(Q4)(Q5)—*′, a π electron-rich C3-C60 cyclic group unsubstituted or substituted with at least one R10a, or a pyridine group unsubstituted or substituted with at least one R10a, wherein Q4 and Q5 may each independently be the same as described in connection with Q1,
  • b81 to b85 may each independently be an integer from 1 to 5,
  • R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b may each be the same as described herein,
  • a71 to a74 may each independently be an integer from 0 to 20, and
  • R10a may be the same as described herein.


Description of Formulae 2, 3, and 3-1 to 3-5

In Formula 2, b61 to b63 respectively indicate the number of L61(s) to the number of L63(s), and may each independently be an integer from 1 to 5. When b61 is 2 or greater, two or more of L61(s) may be identical to or different from each other, when b62 is 2 or greater, two or more of L62(s) may be identical to or different from each other, and when b63 is 2 or greater, two or more of L63(s) may be identical to or different from each other. For example, b61 to b63 may each independently be 1 or 2.


In embodiments, in Formula 2, L61 to L63 may each independently be:

  • a single bond; or
  • a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a dibenzooxacilline group, a dibenzothiacilline group, a dibenzodihydroazacilline group, a dibenzodihydrodicilline group, a dibenzodihydrocilline group, a dibenzodioxane group, a dibenzooxathiene group, a dibenzooxazine group, a dibenzopyran group, a dibenzodithiine group, a dibenzothiazine group, a dibenzothiopyran group, a dibenzocyclohexadiene group, a dibenzodihydropyridine group, or a dibenzodihydropyrazine group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof, and
  • Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.


In an embodiment, in Formula 2, a bond between L61 and R61, a bond between L62 and R62, a bond between L63 and R63, a bond between two or more L61(s), a bond between two or more L62(s), a bond between two or more L63(s), a bond between L61 and carbon between X64 and X65 in Formula 2, a bond between L62 and carbon between X64 and X66 in Formula 2, and a bond between L63 and carbon between X65 and X66 in Formula 2 may each be a carbon-carbon single bond.


In Formula 2, X64 may be N or C(R64), X65 may be N or C(R65), X66 may be N or C(R66), wherein at least one of X64 to X66 may be N. R64 to R66 may each be the same as described herein. For example, two or three of X64 to X66 may each be N.


In the specification, R61 to R66, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), wherein Q1 to Q3 may each be the same as described herein.


In an embodiment, R61 to R66, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b in Formulae 2 and 3-1 to 3-5; and R10a may each independently be:

  • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
  • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or any combination thereof;
  • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
  • —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
  • Q1 to Q3 and Q31 to Q33 may each independently be:
    • —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2; or
    • an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof:
    • embedded image - [Formula 91]


In Formula 91,

  • ring CY91 and ring CY92 may each independently be a C5-C30 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group unsubstituted or substituted with at least one R10a,
  • X91 may be a single bond, O, S, N(R91), B(R91), C(R91a)(R91b), or Si(R91a)(R91b),
  • R91, R91a, and R91b may respectively be the same as described in connection with R82, R82a, and R82b, as described herein,
  • R10a may be the same as described herein, and
  • * indicates a binding site to a neighboring atom.


For example, in Formula 91,

  • ring CY91 and ring CY92 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, or a triazine group, each unsubstituted or substituted with at least one R10a, and
  • R91, R91a, and R91b may each independently be:
    • hydrogen or a C1-C10 alkyl group; or
    • a phenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof.


In embodiments, R61 to R66, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b, in Formulae 2 and 3-1 to 3-5; and R10a may each independently be:


hydrogen, deuterium, —F, a cyano group, a nitro group, —CH3, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a group represented by one of Formulae 9-1 to 9-19, a group represented by one of Formulae 10-1 to 10-249, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), or —P(═O)(Q1)(Q2), wherein Q1 to Q3 may each be the same as described herein:




embedded image - 9-1




embedded image - 9-2




embedded image - 9-3




embedded image - 9-4




embedded image - 9-5




embedded image - 9-6




embedded image - 9-7




embedded image - 9-8




embedded image - 9-9




embedded image - 9-10




embedded image - 9-11




embedded image - 9-12




embedded image - 9-13




embedded image - 9-14




embedded image - 9-15




embedded image - 9-16




embedded image - 9-17




embedded image - 9-18




embedded image - 9-19




embedded image - 10-1




embedded image - 10-2




embedded image - 10-3




embedded image - 10-4




embedded image - 10-5




embedded image - 10-6




embedded image - 10-7




embedded image - 10-8




embedded image - 10-9




embedded image - 10-10




embedded image - 10-11




embedded image - 10-12




embedded image - 10-13




embedded image - 10-14




embedded image - 10-15




embedded image - 10-16




embedded image - 10-17




embedded image - 10-18




embedded image - 10-19




embedded image - 10-20




embedded image - 10-21




embedded image - 10-22




embedded image - 10-23




embedded image - 10-24




embedded image - 10-25




embedded image - 10-26




embedded image - 10-27




embedded image - 10-28




embedded image - 10-29




embedded image - 10-30




embedded image - 10-31




embedded image - 10-32




embedded image - 10-33




embedded image - 10-34




embedded image - 10-35




embedded image - 10-36




embedded image - 10-37




embedded image - 10-38




embedded image - 10-39




embedded image - 10-40




embedded image - 10-41




embedded image - 10-42




embedded image - 10-43




embedded image - 10-44




embedded image - 10-45




embedded image - 10-46




embedded image - 10-47




embedded image - 10-48




embedded image - 10-49




embedded image - 10-50




embedded image - 10-51




embedded image - 10-52




embedded image - 10-53




embedded image - 10-54




embedded image - 10-55




embedded image - 10-56




embedded image - 10-57




embedded image - 10-58




embedded image - 10-59




embedded image - 10-60




embedded image - 10-61




embedded image - 10-62




embedded image - 10-63




embedded image - 10-64




embedded image - 10-65




embedded image - 10-66




embedded image - 10-67




embedded image - 10-68




embedded image - 10-69




embedded image - 10-70




embedded image - 10-71




embedded image - 10-72




embedded image - 10-73




embedded image - 10-74




embedded image - 10-75




embedded image - 10-76




embedded image - 10-77




embedded image - 10-78




embedded image - 10-79




embedded image - 10-80




embedded image - 10-81




embedded image - 10-82




embedded image - 10-83




embedded image - 10-84




embedded image - 10-85




embedded image - 10-86




embedded image - 10-87




embedded image - 10-88




embedded image - 10-89




embedded image - 10-90




embedded image - 10-91




embedded image - 10-92




embedded image - 10-93




embedded image - 10-94




embedded image - 10-95




embedded image - 10-96




embedded image - 10-97




embedded image - 10-98




embedded image - 10-99




embedded image - 10-100




embedded image - 10-101




embedded image - 10-102




embedded image - 10-103




embedded image - 10-104




embedded image - 10-105




embedded image - 10-106




embedded image - 10-107




embedded image - 10-108




embedded image - 10-109




embedded image - 10-110




embedded image - 10-111




embedded image - 10-112




embedded image - 10-113




embedded image - 10-114




embedded image - 10-115




embedded image - 10-116




embedded image - 10-117




embedded image - 10-118




embedded image - 10-119




embedded image - 10-120




embedded image - 10-121




embedded image - 10-122




embedded image - 10-123




embedded image - 10-124




embedded image - 10-125




embedded image - 10-126




embedded image - 10-127




embedded image - 10-128




embedded image - 10-129




embedded image - 10-130




embedded image - 10-131




embedded image - 10-132




embedded image - 10-133




embedded image - 10-134




embedded image - 10-135




embedded image - 10-136




embedded image - 10-137




embedded image - 10-138




embedded image - 10-139




embedded image - 10-140




embedded image - 10-141




embedded image - 10-142




embedded image - 10-143




embedded image - 10-144




embedded image - 10-145




embedded image - 10-146




embedded image - 10-147




embedded image - 10-148




embedded image - 10-149




embedded image - 10-150




embedded image - 10-151




embedded image - 10-152




embedded image - 10-153




embedded image - 10-154




embedded image - 10-155




embedded image - 10-156




embedded image - 10-157




embedded image - 10-158




embedded image - 10-159




embedded image - 10-160




embedded image - 10-161




embedded image - 10-162




embedded image - 10-163




embedded image - 10-164




embedded image - 10-165




embedded image - 10-166




embedded image - 10-167




embedded image - 10-168




embedded image - 10-169




embedded image - 10-170




embedded image - 10-171




embedded image - 10-172




embedded image - 10-173




embedded image - 10-174




embedded image - 10-175




embedded image - 10-176




embedded image - 10-177




embedded image - 10-178




embedded image - 10-179




embedded image - 10-180




embedded image - 10-181




embedded image - 10-182




embedded image - 10-183




embedded image - 10-184




embedded image - 10-185




embedded image - 10-186




embedded image - 10-187




embedded image - 10-188




embedded image - 10-189




embedded image - 10-190




embedded image - 10-191




embedded image - 10-192




embedded image - 10-193




embedded image - 10-194




embedded image - 10-195




embedded image - 10-196




embedded image - 10-197




embedded image - 10-198




embedded image - 10-199




embedded image - 10-200




embedded image - 10-201




embedded image - 10-202




embedded image - 10-203




embedded image - 10-204




embedded image - 10-205




embedded image - 10-206




embedded image - 10-207




embedded image - 10-208




embedded image - 10-209




embedded image - 10-210




embedded image - 10-211




embedded image - 10-212




embedded image - 10-213




embedded image - 10-214




embedded image - 10-215




embedded image - 10-216




embedded image - 10-217




embedded image - 10-218




embedded image - 10-219




embedded image - 10-220




embedded image - 10-221




embedded image - 10-222




embedded image - 10-223




embedded image - 10-224




embedded image - 10-225




embedded image - 10-226




embedded image - 10-227




embedded image - 10-228




embedded image - 10-229




embedded image - 10-230




embedded image - 10-231




embedded image - 10-232




embedded image - 10-233




embedded image - 10-234




embedded image - 10-235




embedded image - 10-236




embedded image - 10-237




embedded image - 10-238




embedded image - 10-239




embedded image - 10-240




embedded image - 10-241




embedded image - 10-242




embedded image - 10-243




embedded image - 10-244




embedded image - 10-245




embedded image - 10-246




embedded image - 10-247




embedded image - 10-248




embedded image - 10-249


In Formulae 9-1 to 9-19 and 10-1 to 10-249, * indicates a binding site to a neighboring atom, Ph represents a phenyl group, and TMS represents a trimethylsilyl group.


In Formulae 3-1 to 3-5, a71 to a74 respectively indicate the number of R71(s) to the number of R74(s), and may each independently be an integer from 0 to 20. When a71 is 2 or greater, two or more of R71(s) may be identical to or different from each other, when a72 is 2 or greater, two or more of R72(s) may be identical to or different from each other, when a73 is 2 or greater, two or more of R73(s) may be identical to or different from each other, and when a74 is 2 or greater, two or more of R74(s) may be identical to or different from each other. In an embodiment, a71 to a74 may each independently be an integer from 0 to 8.


In an embodiment, in Formula 2, a group represented by *—(L61)b61—R61 and a group represented by *—(L62)b62—R62 may each not be a phenyl group.


In an embodiment, in Formula 2, a group represented by *—(L61)b61—R61 and a group represented by *—(L62)b62—R62 may be identical to each other.


In an embodiment, in Formula 2, a group represented by *—(L61)b61—R61 and a group represented by *—(L62)b62—R62 may be different from each other.


In embodiments, in Formula 2, b61 and b62 may each independently be 1, 2, or 3, and L61 and L62 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyridazine group, a pyrazine group, or a triazine group, each unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 2, R61 and R62 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3), and


Q1 to Q3 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, in Formula 2,

  • a group represented by *—(L61)b61—R61 may be a group represented by one of Formulae CY51-1 to CY51-26, and/or
  • a group represented by *—(L62)b62—R62 may be a group represented by one of Formulae CY52-1 to CY52-26, and/or
  • a group represented by *—(L63)b63—R63 may be a group represented by one of Formulae CY53-1 to CY53-27, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3), wherein Q1 to Q3 may each be the same as described herein:
  • embedded image - CY51-1
  • embedded image - CY51-2
  • embedded image - CY51-3
  • embedded image - CY51-4
  • embedded image - CY51-5
  • embedded image - CY51-6
  • embedded image - CY51-7
  • embedded image - CY51-8
  • embedded image - CY51-9
  • embedded image - CY51-10
  • embedded image - CY51-11
  • embedded image - CY51-12
  • embedded image - CY51-13
  • embedded image - CY51-14
  • embedded image - CY51-15
  • embedded image - CY51-16
  • embedded image - CY51-17
  • embedded image - CY51-18
  • embedded image - CY51-19
  • embedded image - CY51-20
  • embedded image - CY51-21
  • embedded image - CY51-22
  • embedded image - CY51-23
  • embedded image - CY51-24
  • embedded image - CY51-25
  • embedded image - CY51-26
  • embedded image - CY52-1
  • embedded image - CY52-2
  • embedded image - CY52-3
  • embedded image - CY52-4
  • embedded image - CY52-5
  • embedded image - CY52-6
  • embedded image - CY52-7
  • embedded image - CY52-8
  • embedded image - CY52-9
  • embedded image - CY52-10
  • embedded image - CY52-11
  • embedded image - CY52-12
  • embedded image - CY52-13
  • embedded image - CY52-14
  • embedded image - CY52-15
  • embedded image - CY52–16
  • embedded image - CY52-17
  • embedded image - CY52-18
  • embedded image - CY52-19
  • embedded image - CY52-20
  • embedded image - CY52-21
  • embedded image - CY52-22
  • embedded image - CY52-23
  • embedded image - CY52-24
  • embedded image - CY52-25
  • embedded image - CY52-26
  • embedded image - CY53-1
  • embedded image - CY53-2
  • embedded image - CY53-3
  • embedded image - CY63-4
  • embedded image - CY53-5
  • embedded image - CY53-6
  • embedded image - CY53-7
  • embedded image - CY53-8
  • embedded image - CY53-9
  • embedded image - CY53-10
  • embedded image - CY63-11
  • embedded image - CY63-12
  • embedded image - CY53-13
  • embedded image - CY53-14
  • embedded image - CY53-15
  • embedded image - CY53-16
  • embedded image - CY53-17
  • embedded image - CY53-18
  • embedded image - CY53-19
  • embedded image - CY53-20
  • embedded image - CY53-21
  • embedded image - CY53-22
  • embedded image - CY53-23
  • embedded image - CY53-24
  • embedded image - CY53-25
  • embedded image - CY53-26
  • embedded image - CY53-27


In Formulae CY51-1 to CY51-26, CY52-1 to CY52-26, and CY53-1 to CY53-27,

  • Y63 may be a single bond, O, S, N(R63), B(R63), C(R63a)(R63b), or Si(R63a)(R63b),
  • Y64 may be a single bond, O, S, N(R64), B(R64), C(R64a)(R64b), or Si(R64a)(R64b),
  • Y67 may be a single bond, O, S, N(R67), B(R67), C(R67a)(R67b), or Si(R67a)(R67b),
  • Y68 may be a single bond, O, S, N(R68), B(R68), C(R68a)(R68b), or Si(R68a)(R68b),
  • Y63 and Y64 in Formulae CY51-16 and CY51-17 may not each be a single bond at the same time,
  • Y67 and Y68 in Formulae CY52-16 and CY52-17 may not each be a single bond at the same time,
  • R51a to R51e, R61 to R64, R63a, R63b, R64a, and R64b may each independently be the same as described in connection with R61, wherein R51a to R51e may not each be hydrogen,
  • R52a to R52e, R65 to R68, R67a, R67b, R68a, and R68b may each independently be the same as described in connection with R62, wherein R52a to R52e may not each be hydrogen,
  • R53a to R53e, R69a, and R69b may each independently be the same as described in connection with R63, wherein R53a to R53e may not each be hydrogen, and
  • * indicates a binding site to a neighboring atom.


In embodiments, in Formulae CY51-1 to CY51-26 and Formulae CY52-1 to 52-26, R51a to R51e and R52a to R52e may each independently be:

  • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or any combination thereof; or
  • —C(Q1)(Q2)(Q3) or —Si(Q1)(Q2)(Q3),
  • wherein Q1 to Q3 may each independently be a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof, and
  • Formula 91 is the same as described herein,
  • in Formulae CY51-16 and CY51-17, Y63 may be O or S and Y64 may be Si(R64a)(R64b); or Y63 may be Si(R63a)(R63b) and Y64 may be O or S, and
  • in Formulae CY52-16 and CY52-17, Y67 may be O or S, and Y68 may be Si(R68a)(R68b); or Y67 may be Si(R67a)(R67b), and Y68 may be O or S.


In an embodiment, in Formulae 3-1 to 3-5, L81 to L85 may each independently be:

  • a single bond; or
  • *—C(Q4)(Q5)—*′ or *—Si(Q4)(Q5)—*′; or
  • a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, or a benzothiadiazole group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
  • wherein Q4, Q5, and Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.


In embodiments, a group represented by




embedded image


in Formulae 3-1 and 3-2 may be a group represented by one of Formulae CY71-1 (1) to CY71-1(8), and/or

  • a group represented by
  • embedded image
  • in Formulae 3-1 and 3-3 may be a group represented by one of Formulae CY71-2(1) to CY71-2(8), and/or
  • a group represented by
  • embedded image
  • in Formulae 3-2 and 3-4 may be a group represented by one of Formulae CY71-3(1) to CY71-3(32),
  • a group represented by
  • embedded image
  • in Formulae 3-3 to 3-5 may be a group represented by one of Formulae CY71-4(1) to CY71-4(32), and/or
  • a group represented by
  • embedded image
  • in Formula 3-5 may be a group represented by one of Formulae CY71-5(1) to CY71-5(8):
  • embedded image - CY71-1(1)
  • embedded image - CY71-1(2)
  • embedded image - CY71-1(3)
  • embedded image - CY71-1(4)
  • embedded image - CY71-1(5)
  • embedded image - CY71-1(6)
  • embedded image - CY71-1(7)
  • embedded image - CY71-1(8)
  • embedded image - CY71-2(1)
  • embedded image - CY71-2(2)
  • embedded image - CY71-2(3)
  • embedded image - CY71-2(4)
  • embedded image - CY71-2(5)
  • embedded image - CY71-2(6)
  • embedded image - CY71-2(7)
  • embedded image - CY71-2(8)
  • embedded image - CY71-3(1)
  • embedded image - CY71-3(2)
  • embedded image - CY71-3(3)
  • embedded image - CY71-3(4)
  • embedded image - CY71-3(5)
  • embedded image - CY71-3(6)
  • embedded image - CY71-3(7)
  • embedded image - CY71-3(8)
  • embedded image - CY71-3(9)
  • embedded image - CY71-3(10)
  • embedded image - CY71-3(11)
  • embedded image - CY71-3(12)
  • embedded image - CY71-3(13)
  • embedded image - CY71-3(14)
  • embedded image - CY71-3(15)
  • embedded image - CY71-3(16)
  • embedded image - CY71-3(17)
  • embedded image - CY71-3(18)
  • embedded image - CY71-3(19)
  • embedded image - CY71-3(20)
  • embedded image - CY71-3(21)
  • embedded image - CY71-3(22)
  • embedded image - CY71-3(23)
  • embedded image - CY71-3(24)
  • embedded image - CY71-3(25)
  • embedded image - CY71-3(26)
  • embedded image - CY71-3(27)
  • embedded image - CY71-3(28)
  • embedded image - CY71-3(29)
  • embedded image - CY71-3(30)
  • embedded image - CY71-3(31)
  • embedded image - CY71-3(32)
  • embedded image - CY71-4(1)
  • embedded image - CY71-4(2)
  • embedded image - CY71-4(3)
  • embedded image - CY71-4(4)
  • embedded image - CY71-4(5)
  • embedded image - CY71-4(6)
  • embedded image - CY71-4(7)
  • embedded image - CY71-4(8)
  • embedded image - CY71-4(9)
  • embedded image - CY71-4(10)
  • embedded image - CY71-4(11)
  • embedded image - CY71-4(12)
  • embedded image - CY71-4(13)
  • embedded image - CY71-4(14)
  • embedded image - CY71-4(15)
  • embedded image - CY71-4(16)
  • embedded image - CY71-4(17)
  • embedded image - CY71-4(18)
  • embedded image - CY71-4(19)
  • embedded image - CY71-4(20)
  • embedded image - CY71-4(21)
  • embedded image - CY71-4(22)
  • embedded image - CY71-4(23)
  • embedded image - CY71-4(24)
  • embedded image - CY71-4(25)
  • embedded image - CY71-4(26)
  • embedded image - CY71-4(27)
  • embedded image - CY71-4(28)
  • embedded image - CY71-4(29)
  • embedded image - CY71-4(30)
  • embedded image - CY71-4(31)
  • embedded image - CY71-4(32)
  • embedded image - CY71-5(1)
  • embedded image - CY71-5(2)
  • embedded image - CY71-5(3)
  • embedded image - CY71-5(4)
  • embedded image - CY71-5(5)
  • embedded image - CY71-5(6)
  • embedded image - CY71-5(7)
  • embedded image - CY71-5(8)


In Formulae CY71-1(1) to CY71-1(8), CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), CY71-4(1) to CY71-4(32), and CY71-5(1) to CY71-5(8),

  • X82 to X85, L81, b81, R81, and R85 may each be the same as described herein,
  • X86 may be a single bond, O, S, N(R86), B(R86), C(R86a)(R86b), or Si(R86a)(R86b),
  • X87 may be a single bond, O, S, N(R87), B(R87), C(R87a)(R87b), or Si(R87a)(R87b),
  • in Formulae CY71-1(1) to CY71-1(8) and CY71-4(1) to CY71-4(32), X86 and X87 may not each be a single bond at the same time,
  • X88 may be a single bond, O, S, N(R88), B(R88), C(R88a)(R88b), or Si(R88a)(R88b),
  • X89 may be a single bond, O, S, N(R89), B(R89), C(R89a)(R89b), or Si(R89a)(R89b),
  • in Formulae CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), and CY71-5(1) to CY71-5(8), X88 and X89 may not each be a single bond at the same time, and
  • R86 to R89, R86a, R86b, R87a, R87b, R88a, R88b, R89a, and R89b may each independently be the same as described in connection with R81.


Detailed Examples of Second Compound and Third Compound

In embodiment, the second compound may include at least one of Compounds ETH1 to ETH84:




embedded image - ETH1




embedded image - ETH2




embedded image - ETH3




embedded image - ETH4




embedded image - ETH5




embedded image - ETH6




embedded image - ETH7




embedded image - ETH8




embedded image - ETH9




embedded image - ETH10




embedded image - ETH11




embedded image - ETH12




embedded image - ETH13




embedded image - ETH14




embedded image - ETH15




embedded image - ETH16




embedded image - ETH17




embedded image - ETH18




embedded image - ETH19




embedded image - ETH20




embedded image - ETH21




embedded image - ETH22




embedded image - ETH23




embedded image - ETH24




embedded image - ETH25




embedded image - ETH26




embedded image - ETH27




embedded image - ETH28




embedded image - ETH29




embedded image - ETH30




embedded image - ETH31




embedded image - ETH32




embedded image - ETH33




embedded image - ETH34




embedded image - ETH35




embedded image - ETH36




embedded image - ETH37




embedded image - ETH38




embedded image - ETH39




embedded image - ETH40




embedded image - ETH41




embedded image - ETH42




embedded image - ETH43




embedded image - ETH44




embedded image - ETH45




embedded image - ETH46




embedded image - ETH47




embedded image - ETH48




embedded image - ETH49




embedded image - ETH50




embedded image - ETH51




embedded image - ETH52




embedded image - ETH53




embedded image - ETH54




embedded image - ETH55




embedded image - ETH56




embedded image - ETH57




embedded image - ETH58




embedded image - ETH59




embedded image - ETH60




embedded image - ETH61




embedded image - ETH62




embedded image - ETH63




embedded image - ETH64




embedded image - ETH65




embedded image - ETH66




embedded image - ETH67




embedded image - ETH68




embedded image - ETH69




embedded image - ETH70




embedded image - ETH71




embedded image - ETH72




embedded image - ETH73




embedded image - ETH74




embedded image - ETH75




embedded image - ETH76




embedded image - ETH77




embedded image - ETH78




embedded image - ETH79




embedded image - ETH80




embedded image - ETH81




embedded image - ETH82




embedded image - ETH83




embedded image - ETH84


In embodiments, the third compound may include at least one of Compounds HTH1 to HTH52:




embedded image - HTH1




embedded image - HTH2




embedded image - HTH3




embedded image - HTH4




embedded image - HTH5




embedded image - HTH6




embedded image - HTH7




embedded image - HTH8




embedded image - HTH9




embedded image - HTH10




embedded image - HTH11




embedded image - HTH12




embedded image - HTH13




embedded image - HTH14




embedded image - HTH15




embedded image - HTH16




embedded image - HTH17




embedded image - HTH18




embedded image - HTH19




embedded image - HTH20




embedded image - HTH21




embedded image - HTH22




embedded image - HTH23




embedded image - HTH24




embedded image - HTH25




embedded image - HTH26




embedded image - HTH27




embedded image - HTH28




embedded image - HTH29




embedded image - HTH30




embedded image - HTH31




embedded image - HTH32




embedded image - HTH33




embedded image - HTH34




embedded image - HTH35




embedded image - HTH36




embedded image - HTH37




embedded image - HTH38




embedded image - HTH39




embedded image - HTH40




embedded image - HTH41




embedded image - HTH42




embedded image - HTH43




embedded image - HTH44




embedded image - HTH45




embedded image - HTH46




embedded image - HTH47




embedded image - HTH48




embedded image - HTH49




embedded image - HTH50




embedded image - HTH51




embedded image - HTH52


In Compounds ETH1 to ETH84 and HTH1 to HTH52, “Ph” represents a phenyl group, “D5” represents substitution with five deuterium atoms, and “D4” represents substitution with four deuterium atoms. For example, a group represented by




embedded image


may be identical to a group represented by




embedded image


In an embodiment, the light-emitting device may satisfy at least one of Conditions 1 to 4:


Condition 1

Lowest unoccupied molecular orbital (LUMO) energy level (eV) of the third compound > LUMO energy level (eV) of the first compound


Condition 2

LUMO energy level (eV) of the first compound > LUMO energy level (eV) of the second compound


Condition 3

Highest occupied molecular orbital (HOMO) energy level (eV) of the first compound > HOMO energy level (eV) of the third compound


Condition 4

HOMO energy level (eV) of the third compound > HOMO energy level (eV) of the second compound


A highest occupied molecular orbital (HOMO) energy level and a lowest unoccupied molecular orbital (LUMO) energy level of each of the first compound, the second compound, and the third compound may each be a negative value, and may be measured according to a method of the related art.


In embodiments, an absolute value of a difference between the LUMO energy level of the first compound and the LUMO energy level of the second compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the LUMO energy level of the first compound and the LUMO energy level of the third compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the HOMO energy level of the first compound and the HOMO energy level of the second compound may be equal to or less than about 1.25 eV (e.g., in a range of about 0.2 eV to about 1.25 eV), and an absolute value of a difference between the HOMO energy level of the first compound and the HOMO energy level of the third compound may be equal to or less than about 1.25 eV (e.g., in a range of about 0.2 eV to about 1.25 eV).


When the relationships between the LUMO energy levels and the HOMO energy levels satisfy the conditions as described above, a balance between holes and electrons injected into the emission layer can be achieved.


In embodiments, the light-emitting device may include a capping layer arranged outside the first electrode or outside the second electrode.


In an embodiment, the light-emitting device may further include at least one of a first capping layer arranged outside the first electrode and a second capping layer arranged outside the second electrode, and the organometallic compound represented by Formula 1 may be included in at least one of the first capping layer and the second capping layer. The first capping layer and/or the second capping layer may each be the same as described herein.


In an embodiment, the light-emitting device may further include:

  • a first capping layer arranged outside the first electrode and including the organometallic compound represented by Formula 1;
  • a second capping layer arranged outside the second electrode and including the organometallic compound represented by Formula 1; or
  • the first capping layer and the second capping layer.


The wording “(interlayer and/or capping layer) includes an organometallic compound” as used herein may be understood as “(interlayer and/or capping layer) may include one kind of organometallic compound represented by Formula 1 or two or more different kinds of organometallic compounds, each independently represented by Formula 1.”


For example, the interlayer and/or the capping layer may include Compound BD01 as the organometallic compound. In this regard, Compound BD1 may exist in the emission layer of the light-emitting device. In embodiments, the interlayer may include, as the organometallic compound, Compound BD1 and Compound BD2. In this regard, Compound BD1 and Compound BD2 may exist in an identical layer (for example, both Compound BD1 and Compound BD2 may exist in an emission layer), or in different layers (for example, Compound BD1 may exist in an emission layer and Compound BD2 may exist in an electron transport region).


The term “interlayer” as used herein may be a single layer and/or multiple layers between the first electrode and the second electrode of the light-emitting device.


Another aspect of the disclosure provides an electronic apparatus which may include the light-emitting device. The electronic apparatus may further include a thin-film transistor. In an embodiment, the electronic apparatus may include the light-emitting device, and a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. The electronic apparatus may be the same as described herein.


[Description of FIG. 1]


FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment. The light-emitting device 10 includes a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described with reference to FIG. 1.


First Electrode 110

In FIG. 1, a substrate may be further included under the first electrode 110 or on the second electrode 150. In an embodiment, the substrate may be a glass substrate or a plastic substrate. In embodiments, the substrate may be a flexible substrate, and for example, may include plastics with excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an embodiment, when the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li, calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a structure consisting of a single layer or a structure including multiple layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


Interlayer 130

The interlayer 130 is arranged on the first electrode 110. The interlayer 130 may include an emission layer.


The interlayer 130 may further include a hole transport region arranged between the first electrode 110 and the emission layer, and an electron transport region arranged between the emission layer and the second electrode 150.


In an embodiment, the interlayer 130 may further include, in addition to various organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, and the like.


In embodiments, the interlayer 130 may include two or more emitting units stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer, the light-emitting device 10 may be a tandem light-emitting device.


Hole Transport Region in Interlayer 130

The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


In embodiments, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 its respective stated order, but the structure of the hole transport region is not limited thereto.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image - [Formula 201]




embedded image - [Formula 202]


In Formulae 201 and 202,

  • L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • L205 may be *—O—*′, *—S—*′, *—N(Q201)—*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • xa1 to xa4 may each independently be an integer from 0 to 5,
  • xa5 may be an integer from 1 to 10,
  • R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • R201 and R202 may optionally be bonded to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group (for example, a carbazole group, etc.) unsubstituted or substituted with at least one R10a (for example, Compound HT16, etc.),
  • R203 and R204 may optionally be bonded to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and
  • na1 may be an integer from 1 to 4.


In embodiments, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY217:




embedded image - CY201




embedded image - CY202




embedded image - CY203




embedded image - CY204




embedded image - CY205




embedded image - CY206




embedded image - CY207




embedded image - CY208




embedded image - CY209




embedded image - CY210




embedded image - CY211




embedded image - CY212




embedded image - CY213




embedded image - CY214




embedded image - CY215




embedded image - CY216




embedded image - CY217


In Formulae CY201 to CY217, R10b and R10c may each independently be the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.


In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In embodiments, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY203.


In embodiments, a compound represented by Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.


In embodiments, in Formula 201, xa1 may be 1, R201 may be one of groups represented by Formulae CY201 to CY203, xa2 may be 0, and R202 may be one of groups represented by Formulae CY204 to CY207.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY203.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY203, and may each include at least one of groups represented by Formulae CY204 to CY217.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY217.


In embodiments, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:




embedded image - HT1




embedded image - HT2




embedded image - HT3




embedded image - HT4




embedded image - HT5




embedded image - HT6




embedded image - HT7




embedded image - HT8




embedded image - HT9




embedded image - HT10




embedded image - HT11




embedded image - HT12




embedded image - HT13




embedded image - HT14




embedded image - HT15




embedded image - HT16




embedded image - HT17




embedded image - HT18




embedded image - HT19




embedded image - HT20




embedded image - HT21




embedded image - HT22




embedded image - HT23




embedded image - HT24




embedded image - HT25




embedded image - HT26




embedded image - HT27




embedded image - HT28




embedded image - HT29




embedded image - HT30




embedded image - HT31




embedded image - HT32




embedded image - HT33




embedded image - HT34




embedded image - HT35




embedded image - HT36




embedded image - HT37




embedded image - HT38




embedded image - HT39




embedded image - HT40




embedded image - HT41




embedded image - HT42




embedded image - HT43




embedded image - HT44




embedded image - HT45




embedded image - HT46




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image




embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to a wavelength of light emitted by the emission layer, and the electron blocking layer may block the leakage of electrons from the emission layer to the hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


P-dopant

The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant.


In embodiments, the p-dopant may have a lowest unoccupied molecular orbital (LUMO) energy level equal to or less than about -3.5 eV.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.


Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and the like:




embedded image




embedded image




embedded image




embedded image - [Formula 221]


In Formula 221,

  • R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and
  • at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —, —I, or any combination thereof; or any combination thereof.


In the compound including element EL1 and element EL2, element EL1 may be a metal, a metalloid, or any combination thereof, and element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of the metal may include: an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.); and the like.


Examples of the metalloid may include silicon (Si), antimony (Sb), tellurium (Te), and the like.


Examples of the non-metal may include oxygen (O), a halogen (for example, F, Cl, Br, I, etc.), and the like.


Examples of the compound including element EL1 and element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, a metal iodide, etc.), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, a metalloid iodide, etc.), a metal telluride, or any combination thereof.


Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), rhenium oxide (for example, ReO3, etc.), and the like.


Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, a lanthanide metal halide, and the like.


Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCI, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, Lil, Nal, KI, Rbl, Csl, and the like.


Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, Bel2, Mgl2, Cal2, Srl2, Bal2, and the like.


Examples of the transition metal halide may include a titanium halide (for example, TiF4, TiCl4, TiBr4, Til4, etc.), a zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, Zrl4, etc.), a hafnium halide (for example, HfF4, HfCl4, HfBr4, Hfl4, etc.), a vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), a niobium halide (for example, NbF3, NbCl3, NbBr3, Nbl3, etc.), a tantalum halide (for example, TaF3, TaCl3, TaBr3, Tal3, etc.), a chromium halide (for example, CrF3, CrCl3, CrBr3, Crl3, etc.), a molybdenum halide (for example, MoF3, MoCl3, MoBr3, Mol3, etc.), a tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), a manganese halide (for example, MnF2, MnCl2, MnBr2, Mnl2, etc.), a technetium halide (for example, TcF2, TcCl2, TcBr2, Tcl2, etc.), a rhenium halide (for example, ReF2, ReCl2, ReBr2, Rel2, etc.), an iron halide (for example, FeF2, FeCl2, FeBr2, Fel2, etc.), a ruthenium halide (for example, RuF2, RuCl2, RuBr2, Rul2, etc.), an osmium halide (for example, OsF2, OsCl2, OsBr2, Osl2, etc.), a cobalt halide (for example, CoF2, CoCl2, CoBr2, Col2, etc.), a rhodium halide (for example, RhF2, RhCl2, RhBr2, Rhl2, etc.), an iridium halide (for example, IrF2, IrCl2, IrBr2, Irl2, etc.), a nickel halide (for example, NiF2, NiCl2, NiBr2, Nil2, etc.), a palladium halide (for example, PdF2, PdCl2, PdBr2, Pdl2, etc.), a platinum halide (for example, PtF2, PtCl2, PtBr2, Ptl2, etc.), a copper halide (for example, CuF, CuCl, CuBr, Cul, etc.), a silver halide (for example, AgF, AgCl, AgBr, Agl, etc.), a gold halide (for example, AuF, AuCl, AuBr, Aul, etc.), and the like.


Examples of the post-transition metal halide may include a zinc halide (for example, ZnF2, ZnCl2, ZnBr2, Znl2, etc.), an indium halide (for example, Inl3, etc.), a tin halide (for example, Snl2, etc.), and the like.


Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBr3, SmBr3, Ybl, Ybl2, Ybl3, Sml3, and the like.


Examples of the metalloid halide may include an antimony halide (for example, SbCl5, etc.) and the like.


Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, a na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.), and the like.


Emission Layer in Interlayer 130

When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other to emit white light. In embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


In the emission layer, an amount of the dopant may be in a range of about 0.01 parts by weight to about 15 parts by weight, based on 100 parts by weight of the host.


In embodiments, the emission layer may include a quantum dot.


In embodiments, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may serve as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.


Host

In an embodiment, the host may include a compound represented by Formula 301:




embedded image - [Formula 301]


In Formula 301,

  • Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • xb11 may be 1, 2, or 3,
  • xb1 may be an integer from 0 to 5,
  • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),
  • xb21 may be an integer from 1 to 5, and
  • Q301 to Q303 may each independently be the same as described in connection with Q1.


In an embodiment, in Formula 301, when xb11 is 2 or more, two or more of Ar301(s) may be bonded to each other via a single bond.


In embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image - [Formula 301-1]




embedded image - [Formula 301-2]


In Formulae 301-1 and 301-2,

  • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • X301 may be O, S, N—[(L304)xb4—R304], C(R304)(R305), or Si(R304)(R305),
  • xb22 and xb23 may each independently be 0, 1, or 2,
  • L301, xb1, and R301 may each be the same as described herein,
  • L302 to L304 may each independently be the same as described in connection with L301,
  • xb2 to xb4 may each independently be the same as described in connection with xb1, and
  • R302 to R305 and R311 to R314 may each independently be the same as described in connection with R301.


In embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or any combination thereof. For example, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or any combination thereof.


In embodiments, the host may include one of Compounds H1 to H124, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image - H1




embedded image - H2




embedded image - H3




embedded image - H4




embedded image - H5




embedded image - H6




embedded image - H7




embedded image - H8




embedded image - H9




embedded image - H10




embedded image - H11




embedded image - H12




embedded image - H13




embedded image - H14




embedded image - H15




embedded image - H16




embedded image - H17




embedded image - H18




embedded image - H19




embedded image - H20




embedded image - H21




embedded image - H22




embedded image - H23




embedded image - H24




embedded image - H25




embedded image - H26




embedded image - H27




embedded image - H28




embedded image - H29




embedded image - H30




embedded image - H31




embedded image - H32




embedded image - H33




embedded image - H34




embedded image - H35




embedded image - H36




embedded image - H37




embedded image - H38




embedded image - H39




embedded image - H40




embedded image - H41




embedded image - H42




embedded image - H43




embedded image - H44




embedded image - H45




embedded image - H46




embedded image - H47




embedded image - H48




embedded image - H49




embedded image - H50




embedded image - H51




embedded image - H52




embedded image - H53




embedded image - H54




embedded image - H55




embedded image - H56




embedded image - H57




embedded image - H58




embedded image - H59




embedded image - H60




embedded image - H61




embedded image - H62




embedded image - H63




embedded image - H64




embedded image - H65




embedded image - H66




embedded image - H67




embedded image - H68




embedded image - H69




embedded image - H70




embedded image - H71




embedded image - H72




embedded image - H73




embedded image - H74




embedded image - H75




embedded image - H76




embedded image - H77




embedded image - H78




embedded image - H79




embedded image - H80




embedded image - H81




embedded image - H82




embedded image - H83




embedded image - H84




embedded image - H85




embedded image - H86




embedded image - H87




embedded image - H88




embedded image - H89




embedded image - H90




embedded image - H91




embedded image - H92




embedded image - H93




embedded image - H94




embedded image - H95




embedded image - H96




embedded image - H97




embedded image - H98




embedded image - H99




embedded image - H100




embedded image - H101




embedded image - H102




embedded image - H103




embedded image - H104




embedded image - H105




embedded image - H106




embedded image - H107




embedded image - H108




embedded image - H109




embedded image - H110




embedded image - H111




embedded image - H112




embedded image - H113




embedded image - H114




embedded image - H115




embedded image - H116




embedded image - H117




embedded image - H118




embedded image - H119




embedded image - H120




embedded image - H121




embedded image - H122




embedded image - H123




embedded image - H124


Phosphorescent Dopant

The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In embodiments, the phosphorescent dopant may include the organometallic compound represented by Formula 1.


In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image - [Formula 401]




embedded image - [Formula 402]


In Formulae 401 and 402,

  • M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
  • L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is 2 or more, two or more of L401(s) may be identical to or different from each other,
  • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,
  • X401 and X402 may each independently be nitrogen or carbon,
  • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
  • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)—*′, *—C(Q411)(Q412)—*′, *—C(Q411)═C(Q412)—*′, *—C(Q411)═*′, or *═C═*′,
  • X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordination bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
  • Q411 to Q414 may each independently be the same as described in connection with Q1,
  • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402,
  • Q401 to Q403 may each independently be the same as described in connection with Q1,
  • xc11 and xc12 may each independently be an integer from 0 to 10, and
  • * and *′ in Formula 402 each indicate a binding site to M in Formula 401.


In an embodiment, in Formula 402, X401 may be nitrogen and X402 may be carbon, or each of X401 and X402 may be nitrogen.


In embodiments, in Formula 401, when xc1 is 2 or more, two ring A401(s) in two or more of L401(s) may be optionally bonded to each other via T402, which is a linking group, and two ring A402(s) may be optionally bonded to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described in connection with T401.


In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, a —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39, or any combination thereof:




embedded image - PD1




embedded image - PD2




embedded image - PD3




embedded image - PD4




embedded image - PD5




embedded image - PD6




embedded image - PD7




embedded image - PD8




embedded image - PD9




embedded image - PD10




embedded image - PD11




embedded image - PD12




embedded image - PD13




embedded image - PD14




embedded image - PD15




embedded image - PD16




embedded image - PD17




embedded image - PD18




embedded image - PD19




embedded image - PD20




embedded image - PD21




embedded image - PD22




embedded image - PD23




embedded image - PD24




embedded image - PD25




embedded image - PD26




embedded image - PD27




embedded image - PD28




embedded image - PD29




embedded image - PD30




embedded image - PD31




embedded image - PD32




embedded image - PD33




embedded image - PD34




embedded image - PD35




embedded image - PD36




embedded image - PD37




embedded image - PD38




embedded image - PD39


Fluorescent Dopant

The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In embodiments, the fluorescent dopant may include a compound represented by Formula 501:




embedded image - [Formula 501]


In Formula 501,

  • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • xd1 to xd3 may each independently be 0, 1, 2, or 3, and
  • xd4 may be 1, 2, 3, 4, 5, or 6.


In an embodiment, in Formula 501, Ar501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, a pyrene group, etc.) in which three or more monocyclic groups are condensed together.


In an embodiment, in Formula 501, xd4 may be 2.


In embodiments, the fluorescent dopant may include one of Compounds FD1 to FD36, DPVBi, DPAVBi, or any combination thereof:




embedded image - FD1




embedded image - FD2




embedded image - FD3




embedded image - FD4




embedded image - FD5




embedded image - FD6




embedded image - FD7




embedded image - FD8




embedded image - FD9




embedded image - FD10




embedded image - FD11




embedded image - FD12




embedded image - FD13




embedded image - FD14




embedded image - FD15




embedded image - FD16




embedded image - FD17




embedded image - FD18




embedded image - FD19




embedded image - FD20




embedded image - FD21




embedded image - FD22




embedded image - FD23




embedded image - FD24




embedded image - FD25




embedded image - FD26




embedded image - FD27




embedded image - FD28




embedded image - FD29




embedded image - FD30




embedded image - FD31




embedded image - FD32




embedded image - FD33




embedded image - FD34




embedded image - FD35




embedded image - FD36




embedded image - DPVBi




embedded image - DPAVBi


Delayed Fluorescence Material

The emission layer may include a delayed fluorescence material.


In the specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence, based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may serve as a host or as a dopant, depending on the type of other materials included in the emission layer.


In an embodiment, a difference between a triplet energy level (eV) of the delayed fluorescence material and a singlet energy level (eV) of the delayed fluorescence material may be in a range of about 0 eV to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the range described above, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the light-emitting device 10 may have improved luminescence efficiency.


In an embodiment, the delayed fluorescence material may include a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group and the like, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, a π electron-deficient nitrogen-containing C1-C60 cyclic group, and the like); or the delayed fluorescence material may include a material including a C8-C60 polycyclic group including at least two cyclic groups condensed to each other while sharing boron (B), and the like.


Examples of the delayed fluorescence material may include at least one of Compounds DF1 to DF9:




embedded image - (DMAC-DPS)




embedded image - (ACRFLCN)




embedded image - (ACRSA)




embedded image - (CC2TA)




embedded image - (PIC-TRZ)




embedded image - (PIC-TRZ2)




embedded image - (PXZ-TRZ)




embedded image - (DABNA-1)




embedded image - (DABNA-2)


Quantum Dot

The emission layer may include a quantum dot.


The term “quantum dot” as used herein may be a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths according to a size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.


The wet chemical process is a method including mixing a precursor material with an organic solvent and growing quantum dot particle crystals. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which costs lower, and may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).


The quantum dot may include a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, a Group IV element or compound, or any combination thereof.


Examples of the Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and the like; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, and the like; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, and the like; or any combination thereof.


Examples of the Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AIN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AINAs, AINSb, AIPAs, AIPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, and the like; a quaternary compound, such as GaAINP, GaAINAs, GaAlNSb, GaAlPAs, GaAlPSb, GalnNP, GalnNAs, GaInNSb, GaInPAs, GaInPSb, InAINP, InAINAs, InAINSb, InAlPAs, InAlPSb, and the like; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include a Group II element. Examples of the Group III-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, InAlZnP, and the like.


Examples of the Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, InTe, and the like; a ternary compound, such as InGaS3, InGaSe3, and the like; or any combination thereof.


Examples of the Group I-III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, AgAlO2, and the like; or any combination thereof.


Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, and the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, and the like; or any combination thereof.


Examples of the Group IV element or compound may include: a single element material, such as Si, Ge, and the like; a binary compound, such as SiC, SiGe, and the like; or any combination thereof.


Each element included in a multi-element compound, such as a binary compound, a ternary compound, or a quaternary compound, may be present at a uniform concentration or at a non-uniform concentration in a particle.


In an embodiment, the quantum dot may have a single structure in which the concentration of each element in the quantum dot is uniform, or the quantum dot may have a core-shell structure. In an embodiment, in case that the quantum dot has a core-shell structure, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer that prevents chemical denaturation of the core to maintain semiconductor characteristics, and/or may serve as a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. The interface between the core and the shell may have a concentration gradient in which the concentration of an element in the shell decreases toward the core.


Examples of the shell of the quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, or any combination thereof. Examples of the metal oxide, the metalloid oxide, or the non-metal oxide may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, NiO, and the like; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, CoMn2O4, and the like; or any combination thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. Examples of the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


The quantum dot may have a full width at half maximum (FWHM) of an emission wavelength spectrum equal to or less than about 45 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum equal to or less than about 40 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum equal to or less than about 30 nm. When the FWHM of the quantum dot is within these ranges, the quantum dot may have improved color purity or color reproducibility. Light emitted through the quantum dot may be emitted in all directions, so that a wide viewing angle may be improved.


In embodiments, the quantum dot may be in the form of a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle.


Since the energy band gap may be adjusted by controlling the size of the quantum dot, light having various wavelength bands may be obtained from the quantum dot emission layer. Accordingly, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green, and/or blue light. For example, the size of the quantum dot may be configured to emit white light by the combination of light of various colors.


Electron Transport Region in Interlayer 130

The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers of each structure may be stacked from the emission layer in its respective stated order, but the structure of the electron transport region is not limited thereto.


In an embodiment, the electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


For example, the electron transport region may include a compound represented by Formula 601:




embedded image - [Formula 601]


In Formula 601,

  • Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
  • xe11 may be 1, 2, or 3,
  • xe1 may be 0, 1, 2, 3, 4, or 5,
  • R601 may be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Qeo1), or —P(═O)(Q601)(Q602),
  • Q601 to Q603 may each independently be the same as described in connection with Q1,
  • xe21 may be 1, 2, 3, 4, or 5, and
  • at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 601, when xe11 is 2 or more, two or more of Ar601(s) may be bonded to each other via a single bond.


In an embodiment, in Formula 601, Ar601 may be a substituted or unsubstituted anthracene group.


In embodiments, the electron transport region may include a compound represented by Formula 601-1:




embedded image - [Formula 601-1]


In Formula 601-1,

  • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may be N,
  • L611 to L613 may each independently be the same as described in connection with L601,
  • xe611 to xe613 may each independently be the same as described in connection with xe1,
  • R611 to R613 may each independently be the same as described in connection with R601, and
  • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


In embodiments, the electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, or any combination thereof:




embedded image - ET1




embedded image - ET2




embedded image - ET3




embedded image - ET4




embedded image - ET5




embedded image - ET6




embedded image - ET7




embedded image - ET8




embedded image - ET9




embedded image - ET10




embedded image - ET11




embedded image - ET12




embedded image - ET13




embedded image - ET14




embedded image - ET15




embedded image - ET16




embedded image - ET17




embedded image - ET18




embedded image - ET19




embedded image - ET20




embedded image - ET21




embedded image - ET22




embedded image - ET23




embedded image - ET24




embedded image - ET25




embedded image - ET26




embedded image - ET27




embedded image - ET28




embedded image - ET29




embedded image - ET30




embedded image - ET31




embedded image - ET32




embedded image - ET33




embedded image - ET34




embedded image - ET35




embedded image - ET36




embedded image - ET37




embedded image - ET38




embedded image - ET39




embedded image - ET40




embedded image - ET41




embedded image - ET42




embedded image - ET43




embedded image - ET44




embedded image - ET45




embedded image - Alq3




embedded image - BAlq




embedded image - TAZ




embedded image - NTAZ


A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thicknesses of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (for example, an electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of an alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion. A metal ion of an alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or with the metal ion of the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image - ET-D1




embedded image - ET-D2


The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.


The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, iodides, etc.), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include: an alkali metal oxide, such as Li2O, Cs2O, K2O, and the like; an alkali metal halide, such as LiF, NaF, CsF, KF, Lil, Nal, Csl, Kl, and the like; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal oxide, such as BaO, SrO, CaO, BaxSr1-xO (where x is a real number satisfying 0<x<1), BaxCa1-xO (where x is a real number satisfying 0<x<1), and the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, Ybl3, Scl3, Tbl3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3, and the like.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include one of an ion of an alkali metal, an ion of an alkaline earth metal, and an ion of a rare earth metal, and a ligand bonded to the metal ion (for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof).


In an embodiment, the electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In an embodiment, the electron injection layer may consist of an alkali metal-containing compound (for example, alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an Rbl:Yb co-deposited layer, a LiF:Yb co-deposited layer, and the like.


When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be uniformly or nonuniformly dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


Second Electrode 150

The second electrode 150 may be arranged on the interlayer 130 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode. A material for forming the second electrode 150 may be a material having a low work function, for example, a metal, an alloy, an electrically conductive compound, or any combination thereof.


The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layered structure or a multilayered structure.


Capping Layer

The light-emitting device 10 may include a first capping layer arranged outside the first electrode 110, and/or a second capping layer arranged outside the second electrode 150. For example, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.


Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and through the first capping layer. Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and through the second capping layer.


The first capping layer and the second capping layer may each increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


The first capping layer and the second capping layer may each include a material having a refractive index equal to or greater than about 1.6 (with respect to a wavelength of about 589 nm).


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth metal complex, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image - CP1




embedded image - CP2




embedded image - CP3




embedded image - CP4




embedded image - CP5




embedded image - CP6




embedded image


Film

The organometallic compound represented by Formula 1 may be included in various films. Accordingly, another aspect of the disclosure provides a film including the organometallic compound represented by Formula 1. The film may be, for example, an optical member (or a light control means) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, or like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, or the like), or a protective member (for example, an insulating layer, a dielectric layer, or the like).


Electronic Apparatus

The light-emitting device may be included in various electronic apparatuses. For example, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, and the like.


The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be arranged in at least one traveling direction of light emitted from the light-emitting device. In embodiments, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described herein. In an embodiment, the color conversion layer may include a quantum dot. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.


A pixel-defining film may be arranged between the subpixels to define each subpixel.


The color filter may further include color filter areas and light-shielding patterns arranged between the color filter areas, and the color conversion layer may further include color conversion areas and light-shielding patterns arranged between the color conversion areas.


The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In embodiments, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot may be the same as described herein. The first area, the second area, and/or the third area may each further include a scatterer.


In an embodiment, the light-emitting device may emit first light, the first area may absorb the first light to emit first-first color light, the second area may absorb the first light to emit second-first color light, and the third area may absorb the first light to emit third-first color light. The first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths. For example, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described herein. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, or the like.


The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be arranged between the color filter and/or the color conversion layer, and the light-emitting device. The sealing portion may allow light from the light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including an organic layer and/or an inorganic layer. When the sealing portion is a thin-film encapsulation layer, the electronic apparatus may be flexible.


Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, an authentication apparatus, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device as described above, a biometric information collector.


The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.


[Description of FIGS. 2 and 3]


FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment.


The electronic apparatus of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be arranged on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be arranged on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.


A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be arranged on the active layer 220, and the gate electrode 240 may be arranged on the gate insulating film 230.


An interlayer insulating film 250 may be arranged on the gate electrode 240. The interlayer insulating film 250 may be arranged between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be arranged on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may respectively contact the exposed portions of the source region and the drain region of the active layer 220.


The TFT may be electrically connected to a light-emitting device to drive the light-emitting device, and may be covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. A light-emitting device may be provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be arranged on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270, and the first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.


A pixel defining layer 290 including an insulating material may be arranged on the first electrode 110. The pixel defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide or polyacrylic organic film. Although not shown in FIG. 2, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 to be provided in the form of a common layer.


The second electrode 150 may be arranged on the interlayer 130, and a capping layer 170 may be further included on the second electrode 150. The capping layer 170 may cover the second electrode 150.


The encapsulation portion 300 may be arranged on the capping layer 170. The encapsulation portion 300 may be arranged on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or any combination thereof; or any combination of the inorganic films and the organic films.



FIG. 3 shows a schematic cross-sectional view of an electronic apparatus according to another embodiment.


The electronic apparatus of FIG. 3 may differ from the electronic apparatus of FIG. 2, at least in that a light-shielding pattern 500 and a functional region 400 are further included on the encapsulation portion 300. The functional region 400 may be a color filter area, a color conversion area, or a combination of the color filter area and the color conversion area. In an embodiment, the light-emitting device included in the electronic apparatus of FIG. 3 may be a tandem light-emitting device.


Manufacturing Method

Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, laser-induced thermal imaging, and the like.


When respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10-8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


Definitions of Terms

The term “C3-C60 carbocyclic group” as used herein may be a cyclic group consisting of carbon as the only ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein may be a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, at least one heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. For example, the number of ring-forming atoms of the C1-C60 heterocyclic group may be from 3 to 61.


The term “cyclic group” as used herein may include the C3-C60 carbocyclic group or the C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as used herein may be a cyclic group that has three to sixty carbon atoms and may not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may be a heterocyclic group that has one to sixty carbon atoms and may include *—N═*’ as a ring-forming moiety.


In embodiments,

  • the C3-C60 carbocyclic group may be a T1 group, or a group in which two or more T1 groups are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
  • the C1-C60 heterocyclic group may be a T2 group, a group in which at least two T2 groups are condensed with each other, or a group in which at least one T2 group and at least one T1 group are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, or the like.),
  • the π electron-rich C3-C60 cyclic group may be a T1 group, a group in which at least two T1 groups are condensed with each other, a T3 group, a group in which at least two T3 groups are condensed with each other, or a group in which at least one T3 group and at least one T1 group are condensed with each other (for example, a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, or the like.),
  • the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a group in which at least two T4 groups are condensed with each other, a group in which at least one T4 group and at least one T1 group are condensed with each other, a group in which at least one T4 group and at least one T3 group are condensed with each other, or a group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, and the like),
  • wherein the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
  • the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
  • the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
  • the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may each be a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is used. For example, a “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


Examples of a monovalent C3-C60 carbocyclic group and a monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Examples of a divalent C3-C60 carbocyclic group and a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as used herein may be a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein may be a divalent group having a same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, a butenyl group, and the like. The term “C2-C60 alkenylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethynyl group, a propynyl group, and the like. The term “C2-C60 alkynylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein may be a monovalent group represented by -O(A101) (wherein A101 may be a C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, an isopropyloxy group, and the like.


The term “C3-C10 cycloalkyl group” as used herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.2]octyl group, and the like. The term “C3-C10 cycloalkylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein may be a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and the like. The term “C3-C10 cycloalkenylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, a 2,3-dihydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkenylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein may be a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein may be a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of the C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, and the like. When the C6-C60 aryl group and the C6-C60 arylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as used herein may be a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as used herein may be a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Examples of the C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as used herein may be a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, an indeno anthracenyl group, and the like. The term “divalent non-aromatic condensed polycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed polycyclic group described above.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein may be a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphtho indolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, a benzothienodibenzothiophenyl group, and the like. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed heteropolycyclic group described above.


The term “C6-C60 aryloxy group” as used herein may be a group represented by —O(A102) (wherein A102 may be a C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein may be a group represented by —S(A103) (wherein A103 may be a C6-C60 aryl group).


The term “C7-C60 arylalkyl group” as used herein may be a group represented by —(A104)(A10s) (wherein A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroarylalkyl group” as used herein may be a group represented by —(A106)(A107) (wherein A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


The group “R10a” as used herein may be:

  • deuterium (—D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
  • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
  • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
  • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).


In the specification, Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof; a C7-C60 arylalkyl group; or a C2-C60 heteroarylalkyl group.


The term “heteroatom” as used herein may be any atom other than a carbon atom or a hydrogen atom. Examples of the heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the terms “tert-Bu” or “But” as used herein each refer to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.


The term “biphenyl group” as used herein may be a “phenyl group substituted with a phenyl group.” For example, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein may be a “phenyl group substituted with a biphenyl group.” For example, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


The symbols *, *′, and *″ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


Hereinafter, compounds according to embodiments and light-emitting devices according to embodiments will be described in detail with reference to the Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.


EXAMPLES
Synthesis Example 1: Synthesis of Compound BD1



embedded image




embedded image




embedded image


1) Synthesis of Intermediate [1-A]

7-bromo-5,5,9,9-tetramethyl-5,9-dihydroquinolino[3,2,1-de]acridine (1.0 eq) (CAS No. 1333316-06-5) (1.2 eq), 2-nitroaniline (1.2 eq), SPhos (0.07 eq), Pd2(dba)3 (0.05 eq), and sodium tert-butoxide (2.0 eq) were suspended in toluene (0.1 M). The reaction temperature was raised to 110° C., and the reaction mixture was stirred for 12 hours. After completion of the reaction, the reaction product was decompressed to remove the solvent therefrom, and an extraction process was performed thereon using distilled water and methylene chloride. The extracted organic layer was washed using a saturated NaCl aqueous solution and dried using magnesium sulfate. The residue from which the solvent was removed was separated by using column chromatography to obtain Intermediate [1-A] (yield: 83%).


2) Synthesis of Intermediate [1-B]

Intermediate [1-A] (1.0 eq), Tin (3.0 eq), and HCl (5.0 eq) were suspended in ethanol (0.1 M). The reaction temperature was raised to 80° C., and the reaction mixture was stirred for 12 hours. After completion of the reaction, the reaction product was neutralized with NaOH in an ice bath, and an extraction process was performed thereon using distilled water and methylene chloride. The extracted organic layer was washed using a saturated NaCl aqueous solution and dried using magnesium sulfate. The residue from which the solvent was removed was separated by using column chromatography to obtain Intermediate [1-B] (yield: 79%).


3) Synthesis of Intermediate [1-C]

Intermediate [1-B] (1.0 eq), 2-(3-bromophenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole (CAS No. 2448397-99-5) (1.2 eq), SPhos (0.07 eq), Pd2(dba)3 (0.05 eq), and sodium tert-butoxide (2.0 eq) were suspended in toluene (0.1 M). The reaction temperature was raised to 110° C., and the reaction mixture was stirred for 12 hours. After completion of the reaction, the reaction product was decompressed to remove the solvent therefrom, and an extraction process was performed thereon using distilled water and methylene chloride. The extracted organic layer was washed using a saturated NaCl aqueous solution and dried using magnesium sulfate. The residue from which the solvent was removed was separated by using column chromatography to obtain Intermediate [1-C] (yield: 78%).


4) Synthesis of Intermediate [1-D]

After dissolving Intermediate [1-C] (1.0 eq), triethylorthoformate (50 eq), and HCl (1.2 eq), the reaction temperature was raised to 80° C., and the reaction mixture was stirred for 12 hours. After completion of the reaction, the reaction product was decompressed to remove the solvent therefrom, and an extraction process was performed thereon using distilled water and methylene chloride. The extracted organic layer was washed using a saturated NaCl aqueous solution and dried using magnesium sulfate. The residue from which the solvent was removed was separated by using column chromatography to obtain Intermediate [1-D] (yield: 87%).


5) Synthesis of Intermediate [1-E]

Intermediate [1-D] (1.0 eq.) was added to a reaction vessel and suspended in a mixed solution containing methanol and distilled water at a ratio of 2:1. In a sufficiently dissolved state, ammonium hexafluorophosphate (3.0 eq.) was slowly added to the reaction solution, which was stirred at room temperature for 12 hours. A solid produced after completion of the reaction was filtered. The filtrate was dissolved in dichloromethane and dried using magnesium sulfate, and the solvent was removed therefrom, to obtain Intermediate [1-E] (yield: 94%).


6) Synthesis of Compound BD1

Intermediate [1-E] (1.0 eq.), dichloro(1,5-cyclooctadiene)platinum (1.1 eq.), and sodium acetate (3.0 eq) were suspended in 1,4-dioxane (0.1 M). The reaction mixture was heated to a temperature of 120° C. and stirred for 72 hours. After completion of the reaction, the reaction product was cooled to room temperature, and an extraction process was performed thereon using distilled water and ethyl acetate. The extracted organic layer was washed using a saturated NaCl aqueous solution and dried using magnesium sulfate. The residue from which the solvent was removed was separated by using column chromatography to obtain Compound BD1 (yield: 37%).


Synthesis Example 2: Synthesis of Compound BD36



embedded image




embedded image




embedded image


1) Synthesis of Intermediate [36-A]

Intermediate [36-A] (yield: 80%) was obtained in the same manner as in the synthesis of Intermediate [1-A], except that 10-(4-bromophenyl)-9,9-dimethyl-9,10-dihydroacridine was used instead of 7-bromo-5,5,9,9-tetramethyl-5,9-dihydroquinolino[3,2,1-de]acridine.


2) Synthesis of Intermediate [36-B]

Intermediate [36-B] (yield: 82%) was obtained in the same manner as in the synthesis of Intermediate [1-B], except that Intermediate [36-A] was used instead of Intermediate [1-A].


3) Synthesis of Intermediate [36-C]

Intermediate [36-C] (yield: 79%) was obtained in the same manner as in the synthesis of Intermediate [1-C], except that Intermediate [36-B] was used instead of Intermediate [1-B] and 2-(3-bromo-5-(tert-butyl)phenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole was used instead of 2-(3-bromophenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole.


4) Synthesis of Intermediate [36-D]

Intermediate [36-D] (yield: 77%) was obtained in the same manner as in the synthesis of Intermediate [1-D], except that Intermediate [36-C] was used instead of Intermediate [1-C].


5) Synthesis of Intermediate [36-E]

Intermediate [36-E] (yield: 92%) was obtained in the same manner as in the synthesis of Intermediate [1-E], except that Intermediate [36-D] was used instead of Intermediate [1-D].


6) Synthesis of Compound BD36

Compound BD36 (yield: 30%) was obtained in the same manner as in the synthesis of Compound BD1, except that Intermediate [36-E] was used instead of Intermediate [1-E].


Synthesis Example 3: Synthesis of Compound BD62



embedded image




embedded image




embedded image


1) Synthesis of Intermediate [62-A]

Intermediate [62-A] (yield: 70%) was obtained in the same manner as in the synthesis of Intermediate [1-A], except that 10-bromo-8,8,12,12-tetramethyl-8,12-dihydrobenzo[9,1]quinolizino[3,4,5,6,7-klmn]phenoxazine was used instead of 7-bromo-5,5,9,9-tetramethyl-5,9-dihydroquinolino[3,2,1-de]acridine.


2) Synthesis of Intermediate [62-B]

Intermediate [62-B] (yield: 84%) was obtained in the same manner as in the synthesis of Intermediate [1-B], except that Intermediate [62-A] was used instead of Intermediate [1-A].


3) Synthesis of Intermediate [62-C]

Intermediate [62-C] (yield: 80%) was obtained in the same manner as in the synthesis of Intermediate [1-C], except that Intermediate [62-B] was used instead of Intermediate [1-B] and 2-(3-bromophenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-6-(phenyl-d5)-9H-carbazole was used instead of 2-(3-bromophenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole.


4) Synthesis of Intermediate [62-D]

Intermediate [62-D] (yield: 72%) was obtained in the same manner as in the synthesis of Intermediate [1-D], except that Intermediate [62-C] was used instead of Intermediate [1-C].


5) Synthesis of Intermediate [62-E]

Intermediate [62-E] (yield: 90%) was obtained in the same manner as in the synthesis of Intermediate [1-E], except that Intermediate [62-D] was used instead of Intermediate [1-D].


6) Synthesis of Compound BD62

Compound BD62 (yield: 29%) was obtained in the same manner as in the synthesis of Compound BD1, except that Intermediate [62-E] was used instead of Intermediate [1-E].


Synthesis Example 4: Synthesis of Compound BD99



embedded image




embedded image




embedded image


1) Synthesis of Intermediate [99-A]

Intermediate [99-A] (yield: 78%) was obtained in the same manner as in the synthesis of Intermediate [1-A], except that 7-bromo-9,9-dimethyl-9H-quinolino[3,2,1-kl]phenothiazine was used instead of 7-bromo-5,5,9,9-tetramethyl-5,9-dihydroquinolino[3,2,1-de]acridine.


2) Synthesis of Intermediate [99-B]

Intermediate [99-B] (yield: 85%) was obtained in the same manner as in the synthesis of Intermediate [1-B], except that Intermediate [99-A] was used instead of Intermediate [1-A].


3) Synthesis of Intermediate [99-C]

Intermediate [99-C] (yield: 84%) was obtained in the same manner as in the synthesis of Intermediate [1-C], except that Intermediate [99-B] was used instead of Intermediate [1-B] and 2-(3-bromophenoxy)-6-(tert-butyl)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole was used instead of 2-(3-bromophenoxy)-9-(4-(tert-butyl)pyridin-2-yl)-9H-carbazole.


4) Synthesis of Intermediate [99-D]

Intermediate [99-D] (yield: 74%) was obtained in the same manner as in the synthesis of Intermediate [1-D], except that Intermediate [99-C] was used instead of Intermediate [1-C].


5) Synthesis of Intermediate [99-E]

Intermediate [99-E] (yield: 86%) was obtained in the same manner as in the synthesis of Intermediate [1-E], except that Intermediate [99-D] was used instead of Intermediate [1-D].


6) Synthesis of Compound BD99

Compound BD99 (yield: 27%) was obtained in the same manner as in the synthesis of Compound BD1, except that Intermediate [99-E] was used instead of Intermediate [1-E].



1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 4 are shown in Table 1. Synthesis methods of compounds other than the compounds of Synthesis Examples 1 to 4 may be readily recognized by those skilled in the art by referring to the synthesis paths and source materials.





TABLE 1







Compound

1H NMR (CDCl3, 500 MHz)

MS/FAB


found
calc.




BD1
8.74(d, 1H), 8.39(d, 1H), 8.19(d, 1H), 7.58(d, 1H), 7.49(t, 1H), 7.41 (d, 1H), 7.40(s, 1H), 7.20-7.12(m, 12H), 6.95-6.91(m,
1024.33
1025.13



4H), 6.90(d, 1H), 6.69(d, 1H), 6.66(d, 1H), 1.69(s, 12H), 1.32(s, 9H)




BD36
8.74(d, 1H), 8.39(d, 1H), 8.19(d, 1H), 7.58(d, 1H), 7.50(t, 1H), 7.41(d, 1H), 7.40(s, 1H), 7.20-7.11(m, 14H), 6.96-6.94(m, 4H), 6.70(s, 1H), 6.69(d, 1H), 1.70(s, 6H), 1.32(s, 18H)
1040.37
1041.18


BD62
8.74(d, 1H), 8.39(d, 1H), 8.00(d, 1H), 7.89(s, 1H), 7.77(d, 1H), 7.41(d, 1H), 7.40(s, 1H), 7.17-7.14(m, 3H), 7.13(s, 2H), 6.95-9.83(m, 9H), 6.69(d, 1H), 6.66(d, 1H), 1.69(s, 12H), 1.33(s, 9H)
1119.38
1120.24


BD99
8.74(d, 1H), 8.39(d, 1H), 8.36(s, 1H), 7.62(d, 1H), 7.50(d, 1H), 7.41(d, 1H), 7.40(s, 1H), 7.21-7.14(m, 9H), 6.97-6.95(m, 5H), 6.90(d, 1H), 6.69(d, 1H), 6.67(s, 1H), 6.66(d, 1H), 6.59(s, 1H), 1.69(s, 6H), 1.43(s, 9H), 1.32(s, 9H)
1070.33
1071.22






Example 1

As an anode, a glass substrate with 15 Ω/cm2 (1,200 Å) ITO (manufactured by Corning. Inc.,) formed thereon was cut to a size of 50 mm×50 mm×0.7 mm, and sonicated with isopropyl alcohol and pure water, each for 5 minutes. Ultraviolet light was irradiated for 30 minutes thereto, and ozone was exposed thereto for cleaning. The resultant glass substrate was mounted on a vacuum deposition apparatus.


2-TNATA was vacuum-deposited on the anode to form a hole injection layer having a thickness of 600 Å, and 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (hereinafter, referred as NPB) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å.


Compound BD1 (first compound), Compound ETH66 (second compound), and Compound HTH29 (third compound) were vacuum-deposited on the hole transport layer to form an emission layer having a thickness of 400 Å. Here, an amount of Compound BD1 was 10 wt% based on a total weight (100 wt%) of the emission layer, and a weight ratio of Compound ETH66 to Compound HTH29 was adjusted to 3:7.


Compound ETH2 was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å, Alq3 was vacuum-deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, LiF was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and AI was vacuum-deposited thereon to form a cathode having a thickness of 3,000 Å, thereby completing manufacture of an organic light-emitting device.




embedded image




embedded image




embedded image




embedded image


Examples 2 to 4 and Comparative Examples 1 and 2

Organic light-emitting devices were manufactured in the same manner as in Example 1, except that compounds shown in Table 2 were each used as the first compound in forming the emission layer.


Evaluation Example 2

The luminance (cd/m2), driving voltage (v), luminescence efficiency (cd/A), maximum emission wavelength (nm), and lifespan (T95) of the organic light-emitting devices manufactured in Examples 1 to 4 at 1,000 cd/m2 were measured by using Keithley MU 236 and luminance meter PR650, and results thereof are shown in Table 2. In Table 2, the lifespan (T95) is a measure of the time (hr) taken until the luminance declines to 95% of the initial luminance.





TABLE 2













Dopant
Host
Luminance (cd/m2)
Driving voltage (V)
Luminescence efficiency (cd/A)
Maximum emission wavelength (nm)
T95 (hr)


First compound
Second compound
Third compound




Example 1
BD1
ETH66
HTH29
1000
4.1
24.4
458
64


Example 2
BD36
ETH66
HTH29
1000
4.1
22.5
460
52


Example 3
BD62
ETH66
HTH29
1000
4.3
28.7
460
60


Example 4
BD99
ETH66
HTH29
1000
4.2
25.2
459
49


Comparative Example 1
A
ETH66
HTH29
1000
4.5
17.6
454
9


Comparative Example 2
B
ETH66
HTH29
1000
4.4
18.1
455
31








embedded image - BD1




embedded image - BD36




embedded image - BD62




embedded image - BD99




embedded image - A




embedded image - B


Referring to Table 2, it was confirmed that the organic light-emitting devices of Examples 1 to 4 had excellent driving voltage, color purity, luminescence efficiency, and lifespan characteristics while emitting deep blue light, as compared with the organic light-emitting devices of Comparative Examples 1 and 2.


According to embodiments, a light-emitting device including an organometallic compound may have low driving voltage, high efficiency, and a long lifespan, and thus, may be used to manufacture a high-quality electronic apparatus having excellent light efficiency and a long lifespan.


Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode;an interlayer between the first electrode and the second electrode and comprising an emission layer; andan organometallic compound represented by Formula 1: wherein in Formula 1, M is platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au),X1 to X4 are each independently C or N,Y1 to Y3 are each independently O, S, C(Z11)(Z12), or Si(Z11)(Z12),c1 to c3 are each independently 0 or 1,at least one of c1 to c3 is 1,A1 to A3 and A51 to A53 are each independently a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,L1 to L3 are each independently a single bond, a double bond, *—N(Z21)—*′, *—B(Z21)—*′, *—P(Z21)—*′, *—C(Z21)(Z22)—*′, *—Si(Z21)(Z22)—*′, *—Ge(Z21)(Z22)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(Z21)═*′, *═C(Z21)—*′, *—C(Z21)═C(Z22)—*′, *—C(═S)—*′, or *—C═C—*′,* and *′ each indicate a binding site to a neighboring atom,a1 to a3 are each independently an integer from 0 to 3,R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2),b1 to b4 are each independently an integer from 0 to 10,b51 to b53 are each independently an integer from 0 to 6,two of R1(s) in the number of b1; two of R2(s) in the number of b2; two of R3(s) in the number of b3; two of R4(s) in the number of b4; two of R51(s) in the number of b51; two of R52(s) in the number of b52; two of R53(s) in the number of b53; Z11 and Z12; or Z21 and Z22, are each optionally bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,R10a is: deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —P(Q11)(Q12), —C(═O)(Q11), —S(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), —P(═S)(Q11)(Q12), or a combination thereof;a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —P(Q21)(Q22), —C(═O)(Q21), —S(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), —P(═S)(Q21)(Q22), or a combination thereof; or—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or —P(═S)(Q31)(Q32), andQ1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 are each independently: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or a combination thereof.
  • 2. The light-emitting device claim 1, wherein the first electrode is an anode,the second electrode is a cathode,the interlayer further comprises: a hole transport region between the first electrode and the emission layer; andan electron transport region between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or a combination thereof, andthe electron transport region comprises a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 3. The light-emitting device claim 1, wherein the emission layer comprises the organometallic compound.
  • 4. The light-emitting device claim 1, wherein the emission layer comprises a host and a dopant, andthe dopant comprises the organometallic compound.
  • 5. The light-emitting device of claim 4, wherein the host comprises at least one compound comprising Si, P(═O), or a combination thereof.
  • 6. The light-emitting device of claim 2, wherein the electron transport region comprises a hole blocking layer,the hole blocking layer directly contacts the emission layer, andthe hole blocking layer comprises at least one compound comprising Si, P(═O), or a combination thereof.
  • 7. The light-emitting device claim 1, wherein the interlayer comprises: a first compound which is the organometallic compound represented by Formula 1; anda second compound comprising at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound comprising a group represented by Formula 3, or a combination thereof, and the first compound, the second compound, and the third compound are different from each other: wherein in Formula 3, ring CY71 and ring CY72 are each independently a π electron-rich C3-C60 cyclic group or a pyridine group,X71 is a single bond or a linking group including O, S, N, B, C, Si, or a combination thereof, and* indicates a binding site to a neighboring atom in the third compound.
  • 8. An electronic apparatus comprising: the light-emitting device of claim 1; anda thin-film transistor, wherein the thin-film transistor comprises a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected to the source electrode or the drain electrode.
  • 9. The electronic apparatus of claim 8, further comprising a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof.
  • 10. An organometallic compound represented by Formula 1: wherein in Formula 1, M is platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au),X1 to X4 are each independently C or N,Y1 to Y3 are each independently O, S, C(Z11)(Z12), or Si(Z11)(Z12),c1 to c3 are each independently 0 or 1,at least one of c1 to c3 is 1,A1 to A3 and A51 to A53 are each independently a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,L1 to L3 are each independently a single bond, a double bond, *—N(Z21)—*′, *—B(Z21)—*’, *—P(Z21)—*’, *—C(Z21)(Z22)—*’, *—Si(Z21)(Z22)—*’, *—Ge(Z21)(Z22)—*’, *—S—*’, *—Se—*’, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(Z21)═*′, *═C(Z21)—*′ *—C(Z21)═C(Z22)—*′ *—C(═S)—*′, or *—C═C—*′,* and *′ each indicate a binding site to a neighboring atom,a1 to a3 are each independently an integer from 0 to 3,R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), or —P(═S)(Q1)(Q2),b1 to b4 are each independently an integer from 0 to 10,b51 to b53 are each independently an integer from 0 to 6,two of R1(s) in the number of b1; two of R2(s) in the number of b2; two of R3(s) in the number of b3; two of R4(s) in the number of b4; two of R51(s) in the number of b51; two of R52(s) in the number of b52; two of R53(s) in the number of b53; Z11 and Z12; or Z21 and Z22, are each optionally bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,R10a is: deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —P(Q11)(Q12), —C(═O)(Q11), —S(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), —P(═S)(Q11)(Q12), or a combination thereof;a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —P(Q21)(Q22), —C(═O)(Q21), —S(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), —P(═S)(Q21)(Q22), or a combination thereof; or—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or —P(═S)(Q31)(Q32), andQ1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 are each independently: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or a combination thereof.
  • 11. The organometallic compound of claim 10, wherein a bond between X1 and M and a bond between X4 and M are each a coordinate bond, anda bond between X2 and M and a bond between X3 and M are each a covalent bond.
  • 12. The organometallic compound of claim 10, wherein at least one of Y1, Y2, and Y3 is C(Z11)(Z12).
  • 13. The organometallic compound of claim 10, wherein A1 is an X1-containing 6-membered ring,A2 is an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring, andA3 is an X3-containing 6-membered ring.
  • 14. The organometallic compound of claim 10, wherein A1 to A3 and A51 to A53 are each independently a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, or a carbazole group.
  • 15. The organometallic compound of claim 10, wherein in Formula 1, a moiety represented by is a moiety represented by one of Formulae A4(1) and A4(2):wherein in Formulae A4(1) and A4(2), X4 and R4 are each as defined in Formula 1,b42 is an integer from 0 to 2,b44 is an integer from 0 to 4,two of R4(s) in the number of b42; or two R4(s) in the number of b44, are each optionally bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,R10a is the same as defined in Formula 1, and*, *′, and *″ each indicate a binding site to a neighboring atom.
  • 16. The organometallic compound of claim 10, wherein in Formula 1, a moiety represented by is a moiety represented by one of Formulae A5(1) to A5(3): wherein in Formulae A5(1) to A5(3), Y1 to Y3, c1 to c3, and R51 to R53 are each as defined in Formula 1,b51 and b53 are each independently an integer from 0 to 3,b52 is an integer from 0 to 2,two of R51(s) in the number of b51; two of R52(s) in the number of b52; or two of R53(s) in the number of b53, are each optionally bonded together to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,R10a is the same as defined in Formula 1, and*″ indicates a binding site to a neighboring atom.
  • 17. The organometallic compound of claim 10, wherein R1 to R4, R51 to R53, Z11, Z12, Z21, and Z22 are each independently: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a naphthyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or a combination thereof;a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, or a dibenzocarbazolyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or a combination thereof; or—P(Q1)(Q2) or —C(═O)(Q1), andQ1, Q2, and Q31 to Q33 are each the same as defined in Formula 1.
  • 18. The organometallic compound of claim 10, wherein Z11, Z12, Z21, and Z22 are each independently: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group; ora C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or a combination thereof, andQ31 to Q33 are each the same as defined in Formula 1.
  • 19. The organometallic compound of claim 10, wherein the organometallic compound is selected from Compounds BD1 to BD120: wherein in Compounds BD1 to BD120, D5 represents substitution with five deuterium atoms.
  • 20. The organometallic compound of claim 10, wherein the organometallic compound emits blue light having a maximum emission wavelength in a range of about 400 nm to about 490 nm.
Priority Claims (1)
Number Date Country Kind
10-2022-0026302 Feb 2022 KR national