ORGANOMETALLIC COMPOUND AND LIGHT-EMITTING DEVICE INCLUDING THE SAME

Information

  • Patent Application
  • 20230329086
  • Publication Number
    20230329086
  • Date Filed
    January 11, 2023
    a year ago
  • Date Published
    October 12, 2023
    a year ago
Abstract
Embodiments provide an organometallic compound, a light-emitting device including the organometallic compound, and an electronic apparatus including the light-emitting device. The light-emitting device includes a first electrode, a second electrode facing the first electrode, and an interlayer between the first electrode and the second electrode, wherein the interlayer includes an emission layer, and the emission layer include the organometallic compound, which is represented by Formula 1 and is explained in the specification:
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0043639 under 35 U.S.C. § 119, filed on Apr. 7, 2022, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

Embodiments relate to an organometallic compound and a light-emitting device including the organometallic compound.


2. Description of the Related Art

From among light-emitting devices, organic light-emitting devices are self-emissive devices that, as compared with conventional devices, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed.


Organic light-emitting devices may include a first electrode located on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially stacked on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. The excitons may transition from an excited state to a ground state, thus generating light.


It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.


SUMMARY

Embodiments include an organometallic compound having excellent luminescence efficiency and long lifespan, and a light-emitting device using the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.


According to embodiments, an organometallic compound may be represented by Formula 1:




embedded image


In Formula 1,

    • M may be platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au),
    • D represents a deuterium atom,
    • X2 to X4 may each independently be C or N,
    • A2 to A4 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • L1 to L3 may each independently be a single bond, a double bond, *—N(Z11)—*′, *—B(Z11)—*′, *—P(Z11)—*′, *—C(Z11)(Z12)—*′, *—Si(Z11)(Z12)—*′, *—Ge(Z11)(Z12)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(Z11)═*′, *═C(Z12)—*′, *—C(Z11)═C(Z12)—*′, *—C(═S)—*′, or *—C≡C—*′, and * and *′ may each be a binding site to a neighboring atom,
    • a1 to a3 may each independently be an integer from 0 to 3,
    • L1(s) in the number of a1 may be identical to or different from each other, L2(s) in the number of a2 may be identical to or different from each other, and L3(s) in the number of a3 may be identical to or different from each other,
    • R1, R12, R2 to R4, Z11, and Z12 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • except that at least one of Ru and R12 may not include deuterium,
    • b2 to b4 may each independently be an integer from 0 to 10,
    • R2(s) in the number of b2 may be identical to or different from each other, R3(s) in the number of b3 may be identical to or different from each other, and R4(s) in the number of b4 may be identical to or different from each other,
    • two of R2 among R2(s) in the number of b2 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • two of R3 among R3(s) in the number of b3 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • two of R4 among R4(s) in the number of b4 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),
    • wherein Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, a bond between X4 and M may be a coordinate bond; and a bond between X2 and M and a bond between X3 and M may each be a covalent bond.


In an embodiment, A2 may be an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring; A3 may be an X3-containing 6-membered ring; and A4 may be an X4-containing 5-membered ring or an X4-containing 5-membered ring condensed with at least one 6-membered ring.


In an embodiment, A2 to A4 may each independently be a benzene group, a naphthalene group, a carbazole group, an imidazole group, or a benzoimidazole group.


In an embodiment, the organometallic compound may satisfy Condition 1, Condition 2, Condition 3, or any combination thereof, wherein Conditions 1, 2, and 3 are explained below.


In an embodiment, L1 to L3 may each independently be a single bond, *—N(Z11)—*′, *—C(Z11)(Z12)—*′, *—S—*′, or *—O—*′.


In an embodiment, R11, R12, R2 to R4, Z11, and Z12 may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, or a naphthyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
    • except that at least one of R11 and R12 may not include deuterium.


In an embodiment, R11 may include at least one deuterium, and R12 may not include deuterium; or R11 may not include deuterium and R12 may include at least one deuterium; or R11 and R12 each may not include deuterium.


In an embodiment, at least one of R11 and R12 may each independently be hydrogen, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkenyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkynyl group unsubstituted or substituted with at least one R100b, a C1-C60 alkoxy group unsubstituted or substituted with at least one R100b, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R100b, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R100b, a C6-C60 aryloxy group unsubstituted or substituted with at least one R100b, a C6-C60 arylthio group unsubstituted or substituted with at least one R100b, —Si(Q1b)(Q2b)(Q3b), —N(Q1b)(Q2b), —B(Q1b)(Q2b), —P(Q1b)(Q2b), —C(═O)(Q1b), —S(═O)2(Q1b), or —P(═O)(Q1b)(Q2b), and

    • R100b may be:
    • —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11b)(Q12b)(Q13b), —N(Q11b)(Q12b), —B(Q11b)(Q12b), —C(═O)(Q11b), —S(═O)2(Q11b), —P(═O)(Q11b)(Q12b), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21b)(Q22b)(Q23b), —N(Q21b)(Q22b), —B(Q21b)(Q22b), —C(═O)(Q21b), —S(═O)2(Q21b), —P(═O)(Q21b)(Q22b), or any combination thereof; or
    • —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), or —P(═O)(Q31b)(Q32b),
    • wherein Q1b to Q3b, Q11b to Q13b, Q21b to Q23b, and Q31b to Q33b may each independently be: hydrogen; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A1(1) to A1(3), which are explained below.


In an embodiment, the organometallic compound represented by Formula 1 may be represented by one of Formulae 1-1 to 1-4, which are explained below.


In an embodiment, the organometallic compound may be selected from Compounds 1 to 65, which are explained below.


In an embodiment, the organometallic compound may emit blue light having a maximum emission wavelength in a range of about 440 nm to about 490 nm.


According to embodiments, a light-emitting device may include a first electrode, a second electrode facing the first electrode, and an interlayer between the first electrode and the second electrode, wherein the interlayer may include an emission layer, and the emission layer may include the organometallic compound represented by Formula 1.


In an embodiment, the first electrode may be an anode; the second electrode may be a cathode; the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode; the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof; and the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the emission layer may include: a first compound that is the organometallic compound represented by Formula 1; and a second compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound including a group represented by Formula 3, a fourth compound which emits delayed fluorescence, or any combination thereof, wherein Formula 3 is explained below, and the first compound, the second compound, the third compound, and the fourth compound may be different from each other.


In an embodiment, the second compound may include a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or any combination thereof.


In an embodiment, the emission layer may include the first compound, the second compound, and the third compound; or the emission layer may include the first compound, the second compound, the third compound, and the fourth compound.


According to embodiments, an electronic apparatus may include: the light-emitting device; a thin-film transistor; and a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.


According to embodiments, an electronic device may include the light-emitting device, wherein the electronic device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, an indoor light, an outdoor light, a signal light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a portable phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall with multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a signboard.


It is to be understood that the embodiments above are described in a generic and explanatory sense only and not for the purpose of limitation, and the disclosure is not limited to the embodiments described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the disclosure will be more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of a light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view showing an electronic apparatus according to an embodiment;



FIG. 3 is a schematic cross-sectional view showing an electronic apparatus according to another embodiment;



FIG. 4 is a schematic perspective view illustrating an electronic device including a light-emitting device according to an embodiment;



FIG. 5 is a schematic perspective view of the exterior of a vehicle as an electronic device including a light-emitting device according to an embodiment; and



FIGS. 6A to 6C are each a schematic diagram illustrating the interior of a vehicle according to an embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.


In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.


In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.


As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.


In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group of” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.” When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.


Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.


The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.


In the specification, the x-axis, y-axis, and z-axis are not limited to three axes in an orthogonal coordinate system, and may be interpreted in a broad sense including these axes. For example, the x-axis, y-axis, and z-axis may refer to axes which are orthogonal to each other, or may refer to axes which are in different directions that are not orthogonal to each other.


The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within +20%, 10%, or ±5% of the stated value.


It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.


Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.


According to embodiments, an organometallic compound may be represented by Formula 1:




embedded image


In Formula 1, M may be platinum (Pt), palladium (Pd), nickel (Ni), copper (Cu), silver (Ag), or gold (Au). For example, M may be Pt.


In Formula 1, D represents a deuterium atom.


In Formula 1, X2 to X4 may each independently be C or N. For example, X2 to X4 may each be C.


In embodiments, a bond between X2 and M, a bond between X3 and M, and a bond between X4 and M may each independently be a covalent bond or a coordinate bond. For example, in an embodiment, a bond between X4 and M may be a coordinate bond, and a bond between X2 and M and a bond between X3 and M may each be a covalent bond.


In Formula 1, A2 to A4 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.


In embodiments, A2 may be an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring, A3 may be an X3-containing 6-membered ring, and A4 may be an X4-containing 5-membered ring or an X4-containing 5-membered ring condensed with at least one 6-membered ring.


For example, an X2-containing 6-membered ring and an X2-containing 6-membered ring to which at least one 5-membered ring is condensed, which are examples of A2, and a X3-containing 6-membered ring, which is an example of A3, may each independently be a benzene group, a pyridine group, or a pyrimidine group.


In an embodiment, A2 to A4 may each independently be a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, an indenoanthracene group, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an iso-indole group, a benzoiso-indole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, or an azadibenzofuran group.


For example, in an embodiment, A2 to A4 may each independently be a benzene group, a naphthalene group, a carbazole group, an imidazole group, or a benzoimidazole group.


In an embodiment, the organometallic compound represented Formula 1 may satisfy Condition 1:


[Condition 1]


In Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A2(1) to A2(7):




embedded image


In Formulae A2(1) to A2(7),


X2 and R2 are each the same as described in Formula 1,


b26 may be an integer from 0 to 6,


b25 may be an integer from 0 to 5, and


*, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, the organometallic compound represented Formula 1 may satisfy Condition 2:


[Condition 2]


In Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A3(1) to A3(8):




embedded image


embedded image


In Formulae A3(1) to A3(8),

    • X3 is the same as described in Formula 1,
    • R31 to R33 are each independently the same as described in connection with R3 of Formula 1, wherein R31 to R33 may each not be hydrogen, and
    • *, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, the organometallic compound represented Formula 1 may satisfy Condition 3:


[Condition 3]


In Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A4(1) to A4(12):




embedded image


In Formulae A4(1) to A4(12),

    • X2 and R4 are each the same as described in Formula 1,
    • b43 may be an integer from 0 to 3,
    • b44 may be an integer from 0 to 4,
    • b45 may be an integer from 0 to 5,
    • two of R4 among R4(s) in the number of b43; two of R4 among R4(s) in the number of b44; or two of R4 among R4(s) of the number of b45 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and
    • *, *′, and *″ each indicate a binding site to a neighboring atom.


In an embodiment, the organometallic compound represented Formula 1 may satisfy Condition 1, Condition 2, Condition 3, or any combination thereof.


In Formula 1, L1 to L3 may each independently be a single bond, a double bond, *—N(Z11)—*′, *—B(Z11)—*′, *—P(Z11)—*′, *—C(Z11)(Z12)—*′, *—Si(Z11)(Z12)—*′, *—Ge(Z11)(Z12)—*, *—S—*, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(Z11)═*′, *═C(Z12)—*′, *—C(Z11)═C(Z12)—*′, *—C(═S)—*′, or *—C≡C—*′, and * and *′ each indicate a binding site to an adjacent atom.


For example, in an embodiment, L1 to L3 may each independently be a single bond, *—N(Z11)—*′, *—C(Z11)(Z12)—*′, *—S—*′, or *—O—*′.


In embodiments, L1 and L3 may each be a single bond, and L2 may be *—S—*′ or *—O—*′.


In Formula 1, a1 to a3 may each independently be an integer from 0 to 3. For example, a1 to a3 may each independently be 1 or 2. In Formula 1, a1 indicates the number of L1(s), a2 indicates the number of L2(s), and a3 indicates the number of L3(s). In Formula 1, L1(s) in the number of a1 may be identical to or different from each other, L2(s) in the number of a2 may be identical to or different from each other, and L3(s) in the number of a3 may be identical to or different from each other.


In Formula 1, R11, R12, R2 to R4, Z11, and Z12 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), except that at least one of R11 and R12 may not include deuterium.


In an embodiment, R10a and Q1 to Q3 may each be the same as described in the specification.


In embodiments, R11, R12, R2 to R4, Z11, and Z12 may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
    • —B(Q1)(Q2), —P(Q1)(Q2), or —C(═O)(Q1), except that at least one of R11 and R12 may not include deuterium. Q31 to Q33 may each be the same as described herein.


In embodiments, R11, R12, R2 to R4, Z11, and Z12 may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, or a naphthyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof, except that at least one of R11 and R12 may not include deuterium.


In Formula 1, at least one of R11 and R12 may not include deuterium.


In embodiments, R11 may include at least one deuterium, and R12 may not include deuterium; or R11 may not include deuterium, and R12 may include at least one deuterium; or R11 and R12 each may not include deuterium.


In an embodiment, at least one of R11 and R12 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkenyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkynyl group unsubstituted or substituted with at least one R100b, a C1-C60 alkoxy group unsubstituted or substituted with at least one R100b, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R100b, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R100b, a C6-C60 aryloxy group unsubstituted or substituted with at least one R100b, a C6-C60 arylthio group unsubstituted or substituted with at least one R100b, —Si(Q1b)(Q2b)(Q3b), —N(Q1b)(Q2b), —B(Q1b)(Q2b), —P(Q1b)(Q2b), —C(═O)(Q1b), —S(═O)2(Q1b), or —P(═O)(Q1b)(Q2b). R100b and Q1b to Q3b are each the same as described in the specification.


In embodiments, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae A1(1) to A1(3):




embedded image


In Formulae A1(1) to A1(3),

    • R11 and R12 are each the same as described in Formula 1,
    • R11b and R12b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkenyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkynyl group unsubstituted or substituted with at least one R100b, a C1-C60 alkoxy group unsubstituted or substituted with at least one R100b, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R100b, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R100b, a C6-C60 aryloxy group unsubstituted or substituted with at least one R100b, a C6-C60 arylthio group unsubstituted or substituted with at least one R100b, —Si(Q1b)(Q2b)(Q3b), —N(Q1b)(Q2b), —B(Q1b)(Q2b), —P(Q1b)(Q2b), —C(═O)(Q1b), —S(═O)2(Q1b), or —P(═O)(Q1b)(Q2b), and
    • R100b and Q1b to Q3b are each the same as described herein, and * and *′ each indicate a binding site to a neighboring atom.


For example, at least one of R11 and R12 in Formula 1; and R11b and R12b in Formulas A1(1) to A1(3) may each independently be:

    • hydrogen, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with —F, —Cl, —Br, —I, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), —P(═O)(Q31b)(Q32b), or any combination thereof;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each unsubstituted or substituted with —F, —Cl, —Br, —I, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), —P(═O)(Q31b)(Q32b), or any combination thereof; or
    • —B(Q1b)(Q2b), —P(Q1b)(Q2b) or —C(═O)(Q1b).


For example, at least one of R11 and R12 in Formula 1; and R11b and R12b in Formulas A1(1) to A1(3) may each independently be:

    • hydrogen, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with —F, —Cl, —Br, —I, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), —P(═O)(Q31b)(Q32b), or any combination thereof; or
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, or a naphthyl group, each unsubstituted or substituted with hydrogen, —F, —Cl, —Br, —I, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), —P(═O)(Q31b)(Q32b), or any combination thereof.


In Formula 1, b2 to b4 may each independently be an integer from 0 to 10. For example, b2 to b4 may each independently be an integer from 0 to 6. In Formula 1, b2 indicates the number of R2(s), b3 indicates the number of R3(s), and b4 indicates the number of R4(s).


In Formula 1, R2(s) in the number of b2 may be identical to or different from each other, R3(s) in the number of b3 may be identical to or different from each other, and R4(s) in the number of b4 may be identical to or different from each other.


In Formula 1, two of R2 among R2(s) in the number of b2 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a; two of R3 among R3(s) in the number of b3 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a; and two of R4 among R4(s) in the number of b4 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, the organometallic compound represented by Formula 1 may be represented by any one of Formulae 1-1 to 1-4:




embedded image


In Formulae 1-1 to 1-4,


M, X2, X3, L1 to L3, a1 to a3, R11, R12, and R2 to R4 are each the same as described in Formula 1,

    • R41 to R43 are each independently the same as described in connection with R4 of Formula 1,
    • b26 may be an integer from 0 to 6,
    • b33 may be an integer from 0 to 3,
    • b43 may be an integer from 0 to 3, and
    • b44 may be an integer from 0 to 4.


In an embodiment, the organometallic compound may be selected from Compounds 1 to 65:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the organometallic compound may emit blue light having a maximum emission wavelength in a range of about 440 nm to about 490 nm.


In the organometallic compound represented by Formula 1, deuterium is substituted at each carbon at the 2-position and 5-position of the pyridine ring corresponding to the “light emitting portion” of the ligand, and accordingly, during emission, vibration frequency is reduced, and accordingly, the non-radiative decay rate (knr) is also reduced. Thus, the luminescence efficiency of a light-emitting device including the organometallic compound is improved. In the organometallic compound represented by Formula 1, at least one of R1 and R12 (i.e., at least one of the remaining substituents of the pyridine ring) does not include deuterium, and thus, distortion of the ligand is increased by steric hindrance due to the substituent and thus, a maximum emission wavelength of the dopant can be shortened. In the organometallic compound represented by Formula 1, the formation of an excimer due to a dopant-dopant interaction or a dopant-host interaction is prevented, and thus, the efficiency of a light-emitting device including the organometallic compound is increased. Accordingly, the light-emitting device including the organometallic compound can be used to manufacture a high-quality electronic apparatus.


Synthesis methods of the organometallic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to Synthesis Examples and/or Examples provided below.


At least one organometallic compound represented by Formula 1 may be used in a light-emitting device (for example, an organic light-emitting device). Accordingly, provided is a light-emitting device which may include a first electrode, a second electrode facing the first electrode, and an interlayer between the first electrode and the second electrode, wherein the interlayer includes an emission layer, and the organometallic compound represented by Formula 1.


In embodiments,

    • the first electrode may be an anode,
    • the second electrode may be a cathode,
    • the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode,
    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the organometallic compound may be included between the first electrode and the second electrode of the light-emitting device. Accordingly, the interlayer of the light-emitting device may include the organometallic compound.


For example, in an embodiment, the emission layer of the interlayer may include the organometallic compound.


In an embodiment, the emission layer of the light-emitting device may include a dopant and a host, and the dopant may include the organometallic compound. For example, the organometallic compound may serve as a dopant. For example, the organometallic compound included in the emission layer may be a phosphorescent dopant, and phosphorescent light may be emitted from the emission layer. As another example, the organometallic compound included in the emission layer may be a delayed fluorescence dopant, and delayed fluorescent light may be emitted from the emission layer. In an embodiment, the emission layer may further include a dopant that is different from the organometallic compound, wherein the organometallic compound is a metal auxiliary delayed fluorescence dopant. The emission layer may emit red light, green light, blue light, and/or white light. For example, the emission layer may emit blue light. The emission layer may emit blue light having a maximum emission wavelength in a range of about 440 nanometers (nm) to about 490 nm.


In an embodiment, the interlayer of the light-emitting device may include:

    • a first compound that is the organometallic compound represented by Formula 1; and
    • a second compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound including a group represented by Formula 3, a fourth compound capable of emitting delayed fluorescence, or any combination thereof,
    • wherein the first compound, the second compound, the third compound, and the fourth compound may be different from each other:




embedded image


In Formula 3,

    • ring CY71 and ring CY72 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
    • X71 may be: a single bond; or a linking group including O, S, N, B, C, Si, or any combination thereof, and
    • * indicates a binding site to a neighboring atom in Formula 3.


Descriptions of second compound, third compound, and fourth compound


In an embodiment, the second compound may include a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or any combination thereof.


In embodiments, the light-emitting device may further include at least one of the second compound and the third compound, in addition to the first compound.


In embodiments, the light-emitting device may further include the fourth compound, in addition to the first compound.


In embodiments, the light-emitting device may include the first compound, the second compound, the third compound, and the fourth compound.


In embodiments, the interlayer (for example, an emission layer) may include the second compound. The interlayer (for example, an emission layer) may further include the third compound, the fourth compound, or a combination thereof, in addition to the first compound and the second compound. For example, in an embodiment, the interlayer (for example, an emission layer) may include the first compound, the second compound, and the third compound; or the interlayer (for example, an emission layer) may include the first compound, the second compound, the third compound, and the fourth compound.


In embodiments, a difference between a triplet energy level (electron Volts, eV) of the fourth compound and a singlet energy level (eV) of the fourth compound may be in a range of about 0 eV to about 0.5 eV. For example, a difference between a triplet energy level (eV) of the fourth compound and a singlet energy level (eV) of the fourth compound may be in a range of about 0 eV to about 0.3 eV.


In embodiments, the fourth compound may be a compound including at least one cyclic group including boron (B) and nitrogen (N) as ring-forming atoms.


In embodiments, the fourth compound may be a C8-C60 polycyclic group-containing compound including at least two condensed cyclic groups that share a boron atom (B).


In embodiments, the fourth compound may include a condensed ring in which at least one third ring may be condensed with at least one fourth ring,

    • wherein the third ring may be a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclopentene group, a cyclohexene group, a cycloheptene group, a cyclooctene group, an adamantane group, a norbornene group, a norbornane group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, a benzene group, a pyridine group, a pyrimidine group, a pyridazine group, a pyrazine group, or a triazine group, and
    • the fourth ring may be a 1,2-azaborinine group, a 1,3-azaborinine group, a 1,4-azaborinine group, a 1,2-dihydro-1,2-azaborinine group, a 1,4-oxaborinine group, a 1,4-thiaborinine group, or a 1,4-dihydroborinine group.


In embodiments, the interlayer may include the fourth compound. The interlayer may include, in addition to the first compound and the fourth compound, the second compound, the third compound, or any combination thereof.


In embodiments, the interlayer may include the third compound.


In embodiments, the emission layer in the interlayer may include: the first compound; and the second compound, the third compound, the fourth compound, or any combination thereof.


The emission layer may emit phosphorescence or fluorescence emitted from the first compound. In embodiments, phosphorescence or fluorescence emitted from the first compound may be blue light.


In embodiments, the emission layer in the light-emitting device may include the first compound and the second compound, and the first compound and the second compound may form an exciplex.


In embodiments, the emission layer in the light-emitting device may include the first compound, the second compound, and the third compound, and the second compound and the third compound may form an exciplex.


In embodiments, the emission layer in the light-emitting device may include the first compound and the fourth compound, and the fourth compound may serve to improve color purity, luminescence efficiency, and lifespan characteristics of the light-emitting device.


In embodiments, the second compound may include a compound represented by Formula 2:




embedded image


In Formula 2,

    • L51 to L53 may each independently be a single bond, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • b51 to b53 may each independently be an integer from 1 to 5,
    • X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one of X54 to X56 may each be N,
    • R51 to R56 are respectively the same as described in the specification, and
    • R10a is the same as described herein.


In embodiments, the third compound may include a compound represented by Formula 3-1, a compound represented by Formula 3-2, a compound represented by Formula 3-3, a compound represented by Formula 3-4, a compound represented by Formula 3-5, or any combination thereof:




embedded image


embedded image


In Formulae 3-1 to 3-5,

    • ring CY71 to ring CY74 may each independently be a π electron-rich C3-C60 cyclic group or a pyridine group,
    • X82 may be a single bond, O, S, N-[(L82)b82-R82], C(R82a)(R82b), or Si(R82a)(R82b),
    • X83 may be a single bond, O, S, N-[(L83)b83-R83], C(R83a)(R83b), or Si(R83a)(R83b),
    • X84 may be O, S, N-[(L84)b84-R84], C(R84a)(R84b), or Si(R84a)(R84b),
    • X85 may be C or Si,
    • L81 to L85 may each independently be a single bond, *—C(Q4)(Q5)-*′, *—Si(Q4)(Q5)-*′, a π electron-rich C3-C60 cyclic group unsubstituted or substituted with at least one R10a, or a pyridine group unsubstituted or substituted with at least one R10a, wherein Q4 and Q5 are each independently the same as described in connection with Q1 in the specification,
    • b81 to b85 may each independently be an integer from 1 to 5,
    • R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, and R84b are respectively the same as described herein,
    • a71 to a74 may each independently be an integer from 0 to 20, and
    • R10a is the same as described herein.


In embodiments, the fourth compound may be a compound represented by Formula 502, a compound represented by Formula 503, or any combination thereof:




embedded image


In Formulae 502 and 503,

    • ring A501 to ring A504 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • Y505 may be O, S, N(R505), B(R505), C(R505a)(R505b), or Si(R505a)(R505b),
    • Y506 may be O, S, N(R506), B(R506), C(R506a)(R506b), or Si(R506a)(R506b),
    • Y507 may be O, S, N(R507), B(R507), C(R507a)(R507b), or Si(R507a)(R507b),
    • Y508 may be O, S, N(R508), B(R508), C(R508a)(R508b), or Si(R508a)(R508b),
    • Y51 and Y52 may each independently be B, P(═O), or S(═O),
    • R500a, R500b, R501 to R508, R505a, R505b, R506a, R506b, R507a, R507b, R508a, and R508b are respectively the same as described herein,
    • a501 to a504 may each independently be an integer from 0 to 20, and
    • R10a is the same as described herein.


Descriptions of Formulae 2, 3-1 to 3-5, 502, and 503


In Formula 2, b51 to b53 indicate numbers of L51 to L53, respectively, and b51 to b53 may each be an integer from 1 to 5. When b51 is 2 or more, two or more of L51(s) may be identical to or different from each other, when b52 is 2 or more, two or more of L52(s) may be identical to or different from each other, and when b53 is 2 or more, two or more of L53(s) may be identical to or different from each other. In an embodiment, b51 to b53 may each independently be 1 or 2.


In an embodiment, in Formula 2, L51 to L53 may each independently be:

    • a single bond; or
    • a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a dibenzooxasiline group, a dibenzothiasiline group, a dibenzodihydroazasiline group, a dibenzodihydrodihydrodisiline group, a dibenzodihydrosiline group, a dibenzodioxine group, a dibenzooxathiine group, a dibenzooxazine group, a dibenzopyran group, a dibenzodithiine group, a dibenzothiazine group, a dibenzothiopyran group, a dibenzocyclohexadiene group, a dibenzodihydropyridine group, or a dibenzodihydropyrazine group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O (Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
    • wherein Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.


In an embodiment, in Formula 2, a bond between L51 and R51, a bond between L52 and R52, a bond between L53 and R53, a bond between two or more L51(s), a bond between two or more L52(s), a bond between two or more L53(s), a bond between L51 and carbon between X54 and X55 in Formula 2, a bond between L52 and carbon between X54 and X56 in Formula 2, and a bond between L53 and carbon between X55 and X56 in Formula 2 may each be a carbon-carbon single bond.


In Formula 2, X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), and at least one of X54 to X56 may each be N. R54 to R56 are each the same as described herein. In an embodiment, two or three of X54 to X56 may each be N.


In the specification, R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, R84b, R500a, R500b, R501 to R508, R505a, R505b, R506a, R506b, R507a, R507b, R508a, and R508b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2). Q1 to Q3 are each the same as described in the specification.


In an embodiment, R11, R12, R2 to R4, Z11, and Z12 in Formula 1; R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a and R84b, R500a, R500b, R501 to R508, R505a, R505b, R506a, R506b, R507a, R507b, R508a, and R508b in Formulae 2, 3-1 to 3-5, 502, and 503; and R10a may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
    • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C1 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or any combination thereof;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C1 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
    • —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • wherein Q1 to Q3 and Q31 to Q33 may each independently be:
    • —CH3, -CD3, -CD2H, -CDH2, —CH2CH3, -CH2CD3, -CH2CD2H, -CH2CDH2, -CHDCH3, -CHDCD2H, -CHDCDH2, -CHDCD3, -CD2CD3, -CD2CD2H, or -CD2CDH2; or
    • an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof:




embedded image


In Formula 91,

    • ring CY91 and ring CY92 may each independently be a C5-C30 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group unsubstituted or substituted with at least one R10a,
    • X91 may be a single bond, O, S, N(R91), B(R91), C(R91a)(R11b), or Si(R91a)(R11b),
    • R91, R11a, and R91b may respectively be the same as R82, R82a, and R82b as described herein,
    • R10a is the same as described herein, and
    • * indicates a binding site to an adjacent atom.


For example, in Formula 91,

    • ring CY91 and ring CY92 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, or a triazine group, each unsubstituted or substituted with at least one R10a,
    • R11, R91a, and R91b may each independently be:
    • hydrogen or a C1-C1 alkyl group; or
    • a phenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C1 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof.


In an embodiment, R11, R12, R2 to R4, Z11, and Z12 in Formula 1; R51 to R56, R71 to R74, R81 to R85, R82a, R82b, R83a, R83b, R84a, R84b, R500a, R500b, R501 to R508, R505a, R505b, R506a, R506b, R507a, R507b, R508a, and R508b Formulae 2, 3-1 to 3-5, 502, and 503; and R10a may each independently be:

    • hydrogen, deuterium, —F, a cyano group, a nitro group, —CH3, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a group represented by one of Formulae 9-1 to 9-20 in the specification, a group represented by one of Formulae 10-1 to 10-254 in the specification, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), or —P(═O)(Q1)(Q2), wherein Q1 to Q3 are respectively the same as described in the specification.


In Formulae 3-1 to 3-5, 502, and 503, a71 to a74 and a501 to a504 may respectively indicate the number of R71(s) to R74(s) and R501(s) to R504(s), and a71 to a74 and a501 to a504 may each independently be an integer from 0 to 20. When a71 is 2 or greater, at least two R71 (s) may be identical to or different from each other; when a72 is 2 or greater, at least two R72(s) may be identical to or different from each other; when a73 is 2 or greater, at least two R73(s) may be identical to or different from each other; when a74 is 2 or greater, at least two R74(s) may be identical to or different from each other; when a501 is 2 or greater, at least two R501(s) may be identical to or different from each other; when a502 is 2 or greater, at least two R502(s) may be identical to or different from each other; when a503 is 2 or greater, at least two R503(s) may be identical to or different from each other; and when a504 is 2 or greater, at least two R504(s) may be identical to or different from each other. In an embodiment, in Formulae 3-1 to 3-5, 502, and 503, a71 to a74 and a501 to a504 may each independently be an integer from 0 to 8.


In an embodiment, in Formula 2, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may each not be a phenyl group.


In an embodiment, in Formula 2, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may be identical to each other.


In an embodiment, in Formula 2, a group represented by *-(L51)b51-R51 and a group represented by *-(L52)b52-R52 may be different from each other.


In an embodiment, in Formula 2, b51 and b52 may each independently be 1, 2, or 3; and L51 and L52 may each independently be a benzene group, a pyridine group, a pyrimidine group, a pyridazine group, a pyrazine group, or a triazine group, each unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 2, R51 and R52 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3),

    • wherein Q1 to Q3 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In embodiments, in Formula 2,

    • a group represented by *-(L51)b51-R51 may be a group represented by one of Formulae CY51-1 to CY51-26, and/or
    • a group represented by *-(L52)b52-R52 may be a group represented by one of Formulae CY52-1 to CY52-26, and/or
    • a group represented by *-(L53)b53-R53 may be a group represented by one of Formulae CY53-1 to CY53-27, —C(Q1)(Q2)(Q3), or —Si(Q1)(Q2)(Q3), wherein Q1 to Q3 may respectively be the same as described herein:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae CY51-1 to CY51-26, CY52-1 to CY52-26, and CY53-1 to CY53-27,

    • Y63 may be a single bond, O, S, N(R63), B(R63), C(R63a)(R63b), or Si(R63a)(R63b),
    • Y64 may be a single bond, O, S, N(R64), B(R64), C(R64a)(R64b), or Si(R64a)(R64b),
    • Y67 may be a single bond, O, S, N(R67), B(R67), C(R67a)(R67b), or Si(R67a)(R67b),
    • Y68 may be a single bond, O, S, N(R68), B(R68), C(R68a)(R68b), or Si(R68a)(R68b),
    • Y63 and Y64 in Formulae CY51-16 and CY51-17 may not each be a single bond at the same time,
    • Y67 and Y68 in Formulae CY52-16 and CY52-17 may not each be a single bond at the same time,
    • R51a to R51e, R61 to R64, R63a, R63b, R64a, and R64b may each independently be the same as described in connection with R51 as described herein, wherein R51a to R51e may not each be hydrogen,
    • R52a to R52e, R65 to R68, R67a, R67b, R68a, and R68b may each independently be the same as described in connection with R52 as described herein, wherein R52a to R52e may not each be hydrogen,
    • R53a to R53e, R69a, and R69b may each independently be the same as described in connection with R53 as described herein, wherein R53a to R53e may not each be hydrogen, and
    • * indicates a binding site to an adjacent atom.


In embodiments,

    • in Formulae CY51-1 to CY51-26 and Formulae CY52-1 to 52-26, R51a to R51e and R52a to R52e may each independently be:
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azafluorenyl group, an azadibenzosilolyl group, or a group represented by Formula 91, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C1 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or any combination thereof; or
    • —C(Q1)(Q2)(Q3) or —Si(Q1)(Q2)(Q3),
    • wherein Q1 to Q3 may each independently be a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C1 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof,
    • in Formulae CY51-16 and CY51-17, Y63 may be O or S and Y64 may be Si(R64a)(R64b); or Y63 may be Si(R63a)(R63b) and Y64 may be O or S, and
    • in Formulae CY52-16 and CY52-17, Y67 may be O or S, and Yes may be Si(R68a)(R68b); or Y67 may be Si(R67a)(R67b), and Yes may be O or S.


In embodiments, in Formulae 3-1 to 3-5, L81 to L85 may each independently be:

    • a single bond; or
    • *—C(Q4)(Q5)-*′ or *—Si(Q4)(Q5)-*′; or
    • a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, or a benzothiadiazole group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a fluorenyl group, a dimethylfluorenyl group, a diphenylfluorenyl group, a carbazolyl group, a phenylcarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a dimethyldibenzosilolyl group, a diphenyldibenzosilolyl group, —O(Q31), —S(Q31), —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof,
    • wherein Q4, Q5, and Q31 to Q33 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group.


In embodiments,

    • in Formulae 3-1 and 3-2, a group represented by




embedded image


may be a group represented by one of Formulae CY71-1(1) to CY71-1(8), and/or

    • in Formulae 3-1 and 3-3, a group represented by




embedded image


may be a group represented by one of Formulae CY71-2(1) to CY71-2(8), and/or

    • in Formulae 3-2 and 3-4, a group represented by




embedded image


may be a group represented by one of Formulae CY71-3(1) to CY71-3(32), and/or

    • in Formulae 3-3 to 3-5, a group represented by




embedded image


may be a group represented by one of Formulae CY71-4(1) to CY71-4(32), and/or

    • in Formula 3-5, a group represented by




embedded image


may be a group represented by one of Formulae CY71-5(1) to CY71-5(8):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae CY71-1(1) to CY71-1(8), CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), CY71-4(1) to CY71-4(32), and CY71-5(1) to CY71-5(8),

    • X82 to X85, L81, b81, R81, and R85 may each be the same as described herein,
    • X86 may be a single bond, O, S, N(R86), B(R86), C(R86a)(R86b), or Si(R86a)(R86b),
    • X87 may be a single bond, O, S, N(R87), B(R87), C(R87a)(R7b), or Si(R87a)(R87b),
    • in Formulae CY71-1(1) to CY71-1(8) and CY71-4(1) to CY71-4(32), X (and X87 may not each be a single bond at the same time,
    • X88 may be a single bond, O, S, N(R88), B(R88), C(R88a)(R88b), or Si(R88a)(R88b),
    • X89 may be a single bond, O, S, N(R89), B(R89), C(R89a)(R89b), or Si(R89a)(R89b),
    • in Formulae CY71-2(1) to CY71-2(8), CY71-3(1) to CY71-3(32), and CY71-5(1) to CY71-5(8), X88 and X89 may not each be a single bond at the same time, and
    • R86 to R89, R86a, R86b, R87a, R87b, R88a, R88b, R89a, and R89b may each independently be the same as described in connection with R81 as described herein.


Examples of Second Compound, Third Compound, and Fourth Compound

In embodiments, the second compound may include at least one of Compounds ETH1 to ETH84:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In embodiments, the third compound may include at least one of Compounds HTH1 to HTH52:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the fourth compound may include at least one of Compounds DFD1 to DFD14:




embedded image


embedded image


embedded image


embedded image


In Compounds ETH1 to ETH84, HTH1 to HTH52, and DFD1 to DFD14, Ph represents a phenyl group, D5 represents substitution with five deuterium atoms, and D4 represents substitution with four deuterium atoms. For example, a group represented by




embedded image


may be identical to a group represented by




embedded image


In an embodiment, the light-emitting device may satisfy at least one of Condition A to Condition D:


[Condition A]


Lowest unoccupied molecular orbital (LUMO) energy level (eV) of the third compound>LUMO energy level (eV) of the first compound;


[Condition B]


LUMO energy level (eV) of the first compound>LUMO energy level (eV) of the second compound;


[Condition C]


Highest occupied molecular orbital (HOMO) energy level (eV) of the first compound>HOMO energy level (eV) of the third compound;


[Condition D]


HOMO energy level (eV) of the third compound>HOMO energy level (eV) of the second compound.


In Condition A to Condition D, the HOMO energy level and the LUMO energy level of each of the first compound, the second compound, and the third compound may each be a negative value, and may be measured according to a method of the related art, for example, a method described in Evaluation Example 1 in the specification.


In embodiments, an absolute value of a difference between the LUMO energy level of the first compound and the LUMO energy level of the second compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the LUMO energy level of the first compound and the LUMO energy level of the third compound may be in a range of about 0.1 eV to about 1.0 eV, an absolute value of a difference between the HOMO energy level of the first compound and the HOMO energy level of the second compound may be equal to or less than about 1.25 eV (e.g., in a range of about 0.2 eV to about 1.25 eV), and an absolute value of a difference between the HOMO energy level of the first compound and the HOMO energy level of the third compound may be equal to or less than about 1.25 eV (e.g., in a range of about 0.2 eV to about 1.25 eV).


When the relationships between LUMO energy levels and HOMO energy levels of the first compound, the second compound, and the third compound satisfy the conditions as described above, balance between holes and electrons injected into the emission layer can be achieved.


The light-emitting device may have a structure of a first embodiment or a second embodiment:


Description of First Embodiment

According to a first embodiment, the first compound may be included in an emission layer in an interlayer of a light-emitting device, wherein the emission layer may further include a host, the first compound may be different from the host, and the emission layer may emit phosphorescence or fluorescence from the first compound.


For example, according to the first embodiment, the first compound may be a dopant or an emitter. In embodiments, the first compound may be a phosphorescent dopant or a phosphorescence emitter.


Phosphorescence or fluorescence emitted from the first compound may be blue light.


The emission layer may further include an ancillary dopant. The ancillary dopant may serve to improve luminescence efficiency from the first compound by effectively transferring energy to a dopant or to the first compound as an emitter.


The ancillary dopant may be different from the first compound and the host.


In embodiments, the ancillary dopant may be a delayed fluorescence-emitting compound.


In embodiments, the ancillary dopant may be a compound including at least one cyclic group including boron (B) and nitrogen (N) as ring-forming atoms.


Description of Second Embodiment

According to a second embodiment, the first compound may be included in an emission layer in an interlayer of a light-emitting device, wherein the emission layer may further include a host and a dopant, the first compound may be different from the host and the dopant, and the emission layer may emit phosphorescence or fluorescence (e.g., delayed fluorescence) from the dopant.


For example, the first compound in the second embodiment may serve as an ancillary dopant that transfers energy to a dopant (or an emitter), and may not serve as a dopant.


In embodiments, the first compound in the second embodiment may serve as an emitter and may serve as an ancillary dopant that transfers energy to a dopant (or to an emitter).


For example, phosphorescence or fluorescence emitted from the dopant (or the emitter) in the second embodiment may be blue phosphorescence or blue fluorescence (e.g., blue delayed fluorescence).


The dopant (or the emitter) in the second embodiment may be a phosphorescent dopant material (e.g., the organometallic compound represented by Formula 1, an organometallic compound represented by Formula 401, or any combination thereof) or any fluorescent dopant material (e.g., a compound represented by Formula 501, a compound represented by Formula 502, a compound represented by Formula 503, or any combination thereof).


In the first embodiment and in the second embodiment, the blue light may have a maximum emission wavelength in a range of about 390 nm to about 500 nm. For example, the blue light may have a maximum emission wavelength in a range of about 410 nm to about 490 nm. For example, the blue light may have a maximum emission wavelength in a range of about 430 nm to about 480 nm. For example, the blue light may have a maximum emission wavelength in a range of about 440 nm to about 490 nm. For example, the blue light may have a maximum emission wavelength in a range of about 440 nm to about 475 nm. For example, the blue light may have a maximum emission wavelength in a range of about 455 nm to about 470 nm.


The ancillary dopant in the first embodiment may include, e.g., the fourth compound represented by Formula 502 or Formula 503.


The host in the first embodiment and in the second embodiment may be any host material (e.g., a compound represented by Formula 301, a compound represented by 301-1, a compound represented by Formula 301-2, or any combination thereof).


In embodiments, the host in the first embodiment and in the second embodiment may be the second compound, the third compound, or any combination thereof.


In an embodiment, the light-emitting device may include a capping layer located outside the first electrode or outside the second electrode.


In an embodiment, the light-emitting device may further include at least one of a first capping layer located outside the first electrode and a second capping layer located outside the second electrode, and the organometallic compound represented by Formula 1 may be included in at least one of the first capping layer and the second capping layer. Further details on the first capping layer and/or the second capping layer are the same as described in the specification.


In an embodiment, the light-emitting device may include: a first capping layer including the first compound represented by Formula 1 outside the first electrode; a second capping layer including the first compound represented by Formula 1 outside the second electrode; or the first capping layer and the second capping layer.


The term “(interlayer and/or capping layer) includes an organometallic compound” as used herein may be understood as “(interlayer and/or capping layer) may include one kind of organometallic compound represented by Formula 1 or may include two or more different kinds of organometallic compounds, each independently represented by Formula 1.”


For example, the interlayer and/or the capping layer may include Compound 1 only as the organometallic compound. In this regard, Compound 1 may be present in the emission layer of the light-emitting device. In embodiments, the interlayer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in a same layer (for example, Compound 1 and Compound 2 may each be present in the emission layer), or may be present in different layers (for example, Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).


The term “interlayer” as used herein refers to a single layer and/or multiple layers located between the first electrode and the second electrode of the light-emitting device.


Another embodiment provides an electronic apparatus which may including the light-emitting device. The electronic apparatus may further include a thin-film transistor. For example, in an embodiment, the electronic apparatus may include the light-emitting device, and a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.


In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. Further details on the electronic apparatus may be found in the related descriptions provided herein.


[Description of FIG. 1]



FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment. The light-emitting device 10 includes a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described with reference to FIG. 1.


[First Electrode 110]


In FIG. 1, a substrate may be further included under the first electrode 110 or on the second electrode 150. The substrate may be a glass substrate or a plastic substrate. In embodiments, the substrate may be a flexible substrate, and may include plastics with excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a structure consisting of a single layer or a structure including multiple layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


[Interlayer 130]


The interlayer 130 may be located on the first electrode 110. The interlayer 130 may include an emission layer.


The interlayer 130 may further include a hole transport region located between the first electrode 110 and the emission layer, and an electron transport region located between the emission layer and the second electrode 150.


The interlayer 130 may further include, in addition to various organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, or the like.


In embodiments, the interlayer 130 may include two or more emitting units stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer located between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.


[Hole Transport Region in Interlayer 130]


The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


In embodiments, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 its respective stated order, but the structure of the hole transport region is not limited thereto.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


In Formulae 201 and 202,

    • L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xa1 to xa4 may each independently be an integer from 0 to 5,
    • xa5 may be an integer from 1 to 10,
    • R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R201 and R202 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group (for example, a carbazole group or the like) unsubstituted or substituted with at least one R10a (for example, Compound HT16),
    • R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and
    • na1 may be an integer from 1 to 4.


In embodiments, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY217:




embedded image


In Formulae CY201 to CY217, R10b and R10c may each independently be the same as described with respect to R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a as described herein.


In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In embodiments, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY203.


In embodiments, a compound represented by Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.


In embodiments, in Formula 201, xa1 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY203.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY203, and may include at least one of groups represented by Formulae CY204 to CY217.


In embodiments, Formulae 201 and 202 may each not include groups represented by Formulae CY201 to CY217.


In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), p-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to a wavelength of light emitted by an emission layer, and the electron blocking layer may block the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


[p-Dopant]


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant.


In embodiments, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be equal to or less than about −3.5 eV.


In embodiments, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, etc.


Examples of the cyano group-containing compound may include HAT-CN, and a compound represented by Formula 221.




embedded image


In Formula 221,

    • R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and
    • at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound including element EL1 and element EL2, element EL1 may be a metal, a metalloid, or any combination thereof, and element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of the metal may include an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).


Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).


Examples of the non-metal may include oxygen (O) and a halogen (for example, F, Cl, Br, I, etc.).


Examples of the compound including element EL1 and element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, or a metal iodide), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, or a metalloid iodide), a metal telluride, or any combination thereof.


Examples of the metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and rhenium oxide (for example, ReO3, etc.).


Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.


Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and CsI.


Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, Mg12, CaI2, SrI2, and BaI2.


Examples of the transition metal halide may include a titanium halide (for example, TiF4, TiCl4, TiBr4, Til4, etc.), a zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), a hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), a vanadium halide (for example, VF3, VCI3, VBr3, VI3, etc.), a niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), a tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), a chromium halide (for example, CrF3, CrO3, CrBr3, CrI3, etc.), a molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), a tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), a manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), a technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), a rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), an iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), a ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), an osmium halide (for example, OsF2, OSCl2, OsBr2, OSI2, etc.), a cobalt halide (for example, CoF2, COCl2, CoBr2, CoI2, etc.), a rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), an iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), a nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), a palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), a platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), a copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), a silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and a gold halide (for example, AuF, AuCl, AuBr, AuI, etc.).


Examples of the post-transition metal halide may include a zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), an indium halide (for example, InI3, etc.), and a tin halide (for example, SnI2, etc.).


Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, SmI3, and the like.


Examples of the metalloid halide may include an antimony halide (for example, SbCl5, etc.).


Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), and a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).


[Emission Layer in Interlayer 130]


When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In embodiments, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other to emit white light. In embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials may be mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


An amount of the dopant in the emission layer may be in a range of about 0.01 parts by weight to about 15 parts by weight, based on 100 parts by weight of the host.


In embodiments, the emission layer may include a quantum dot.


In embodiments, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may serve as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


[Host]


The host in the emission layer may include the second compound as described herein, the third compound as described herein, or any combination thereof.


In embodiments, the host may include a compound represented by Formula 301:





[Ar301]xb11-[(L301)xb1-R301]xb21.  [Formula 301]


In Formula 301,

    • Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xb11 may be 1, 2, or 3,
    • xb1 may be an integer from 0 to 5,
    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),
    • xb21 may be an integer from 1 to 5, and
    • Q301 to Q303 are each independently the same as described herein with respect to Q1.


In an embodiment, in Formula 301, when xb11 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.


In embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image


In Formula 301-1 and Formula 301-2,

    • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),
    • xb22 and xb23 may each independently be 0, 1, or 2,
    • L301, xb1, and R301 may each be the same as described herein,
    • L302 to L304 may each independently be the same as described herein with respect to with L301,
    • xb2 to xb4 may each independently be the same as described herein with respect to xb1, and
    • R302 to R305 and R311 to R314 may each independently be the same as described herein with respect to R301.


In embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or any combination thereof. For example, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or any combination thereof.


In embodiments, the host may include one of Compounds H1 to H128, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Phosphorescent Dopant]


The emission layer may include the first compound as described in the specification, as a phosphorescent dopant.


In an embodiment, when the emission layer includes the first compound as described in the specification and the first compound serves as an auxiliary dopant, the emission layer may include a phosphorescent dopant.


In embodiments, the phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In embodiments, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


In Formulae 401 and 402,

    • M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
    • L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is two or more, two or more of L401 (s) may be identical to or different from each other,
    • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,
    • X401 and X402 may each independently be nitrogen or carbon,
    • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)═C(Q412)-*′, *—C(Q411)=*′, or *=C═*′,
    • X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordination bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
    • Q411 to Q414 may each independently be the same as described herein with respect to Q1,
    • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
    • Q401 to Q403 may each independently be the same as described herein with respect to Q1,
    • xc11 and xc12 may each independently be an integer from 0 to 10, and
    • * and *′ in Formula 402 each indicate a binding site to M in Formula 401.


In embodiments, in Formula 402, X401 may be nitrogen, and X402 may be carbon, or X401 and X402 may each be nitrogen.


In an embodiment, in Formula 401, when xc1 is 2 or more, two ring A401(s) among two or more of L401 may optionally be bonded to each other via T402, which is a linking group, and two ring A402(s) among two or more of L401 may optionally be bonded to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described herein with respect to T401.


In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Fluorescent Dopant]


When the emission layer includes the first compound as described in the specification and the first compound serves as an auxiliary dopant, the emission layer may further include a fluorescent dopant.


In an embodiment, when the emission layer includes the first compound as described in the specification and the first compound serves as a phosphorescent dopant, the emission layer may further include an auxiliary dopant.


The fluorescent dopant and the auxiliary dopant may each independently include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant and the auxiliary dopant may each independently include a compound represented by Formula 501:




embedded image


In Formula 501,

    • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xd1 to xd3 may each independently be 0, 1, 2, or 3, and
    • xd4 may be 1, 2, 3, 4, 5, or 6.


In embodiments, in Formula 501, Ar501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.


In embodiments, in Formula 501, xd4 may be 2.


In an embodiment, the fluorescent dopant and the auxiliary dopant may each independently include one of Compounds FD1 to FD37, DPVBi, DPAVBi, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the fluorescent dopant and the auxiliary dopant may each independently include the fourth compound represented by Formula 502 or Formula 503 as described in the specification.


[Delayed Fluorescence Material]


The emission layer may include the fourth compound as described in the specification, as a delayed fluorescence material.


In an embodiment, the emission layer may include the fourth compound, and may further include a delayed fluorescence material.


In the specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescent light based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may serve as a host or as a dopant, depending on the type of other materials included in the emission layer.


In embodiments, a difference between a triplet energy level (eV) of the delayed fluorescence material and a singlet energy level (eV) of the delayed fluorescence material may be in a range of about 0 eV to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence material may effectively occur, and thus, the luminescence efficiency of the light-emitting device 10 may be improved.


In an embodiment, the delayed fluorescence material may include a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a π electron-deficient nitrogen-containing C1-C60 cyclic group); or the delayed fluorescence material may include a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed to each other while sharing boron (B).


Examples of the delayed fluorescence material may include at least one of Compounds DF1 to DF14:




embedded image


embedded image


embedded image


embedded image


[Quantum Dot]


The emission layer may include a quantum dot.


The term “quantum dot” as used herein may be a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths according to a size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.


The wet chemical process is a method including mixing a precursor material with an organic solvent and growing a quantum dot particle crystal. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which costs lower, and may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE),


The quantum dot may include Group II-VI semiconductor compounds, Group Ill-V semiconductor compounds, Group III-VI semiconductor compounds, Group I-Ill-VI semiconductor compounds, Group IV-VI semiconductor compounds, a Group IV element or compound, or any combination thereof.


Examples of the Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.


Examples of the Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, or InPSb; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, or InAlPSb; or any combination thereof. In an embodiment, the Group Ill-V semiconductor compound may further include a Group II element. Examples of the Group III-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, InAIZnP, etc.


Examples of the Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, or InTe; a ternary compound, such as InGaS3, or InGaSe3; or any combination thereof.


Examples of the Group I—III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CuInS, CulnS2, CuGaO2, AgGaO2, or AgAlO2; or any combination thereof.


Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, or PbTe; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, or SnPbTe; a quaternary compound, such as SnPbSSe, SnPbSeTe, or SnPbSTe; or any combination thereof.


Examples of the Group IV element or compound may include: a single element material, such as Si or Ge; a binary compound, such as SiC or SiGe; or any combination thereof.


Each element included in a multi-element compound such as a binary compound, a ternary compound, or a quaternary compound may be present in a particle at a uniform concentration or at a non-uniform concentration.


In embodiments, the quantum dot may have a single structure in which the concentration of each element in the quantum dot is uniform, or the quantum dot may have a core-shell structure. In an embodiment, in case that the quantum dot has a core-shell structure, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer that prevents chemical degeneration of the core to maintain semiconductor characteristics, and/or may serve as a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. An interface between the core and the shell may have a concentration gradient in which the concentration of a material in the shell decreases toward the core.


Examples of the shell of the quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, or any combination thereof. Examples of the metal oxide, the metalloid oxide, or the non-metal oxide may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or any combination thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. Examples of the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


The quantum dot may have a full width at half maximum (FWHM) of an emission wavelength spectrum equal to or less than about 45 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum equal to or less than about 40 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum equal to or less than about 30 nm. When the FWHM of the quantum dot is within any of these ranges, color purity or color reproducibility may be increased. Light emitted through the quantum dot may be emitted in all directions, so that a wide viewing angle may be improved.


In embodiments, the quantum dot may be in the form of a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle.


Since the energy band gap may be adjusted by controlling the size of the quantum dot, light having various wavelength bands may be obtained from the quantum dot emission layer. Accordingly, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In embodiments, the size of the quantum dot may be selected to emit red light, green light, and/or blue light. For example, the size of the quantum dot may be configured to emit white light by the combination of light of various colors.


[Electron Transport Region in Interlayer 130]


The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In embodiments, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers of each structure may be stacked from an emission layer in its respective stated order, but the structure of the electron transport region is not limited thereto.


In an embodiment, the electron transport region (for example, the buffer layer, the hole blocking layer, the electron control layer, or the electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


For example, the electron transport region may include a compound represented by Formula 601:





[Ar601]xe11-[(L601)xe1-R601]xe21  [Formula 601]


In Formula 601,

    • Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xe11 may be 1, 2, or 3,
    • xe1 may be 0, 1, 2, 3, 4, or 5,
    • R601 may be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
    • Q601 to Q603 may each independently be the same as described herein with respect to Q1,
    • xe21 may be 1, 2, 3, 4, or 5,
    • at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 601, when xe11 is 2 or more, two or more of Ar601 (s) may be linked to each other via a single bond.


In embodiments, in Formula 601, Ar601 may be an anthracene group unsubstituted or substituted with at least one R10a.


In embodiments, the electron transport region may include a compound represented by Formula 601-1:




embedded image


In Formula 601-1,

    • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may each be N,
    • L611 to L613 may each independently be the same as described herein with respect to L601,
    • xe611 to xe613 may each independently be the same as described herein with respect to xe1,
    • R611 to R613 may each independently be the same as described herein with respect to R601, and
    • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In embodiments, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


In embodiments, the electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAIq, TAZ, NTAZ, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (for example, an electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of an alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of an alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion.


A ligand coordinated with the metal ion of the alkali metal complex or with the metal ion of the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image


The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.


The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include: alkali metal oxides, such as Li2O, Cs2O, or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal oxide, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In embodiments, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion, and a ligand bonded to the metal ion (for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof).


In embodiments, the electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In embodiments, the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, a LiF:Yb co-deposited layer, or the like.


When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be uniformly or non-uniformly dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


[Second Electrode 150]


The second electrode 150 may be located on the interlayer 130 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode. A material for forming the second electrode 150 may be a material having a low work function, for example, a metal, an alloy, an electrically conductive compound, or any combination thereof.


The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layered structure or a multi-layered structure.


[Capping Layer]


The light-emitting device 10 may include a first capping layer located outside the first electrode 110, and/or a second capping layer located outside the second electrode 150. For example, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.


Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and through the first capping layer. Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and through the second capping layer.


The first capping layer and the second capping layer may each increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


The first capping layer and the second capping layer may each include a material having a refractive index equal to or greater than about 1.6 (with respect to a wavelength of about 589 nm).


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphine derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


For example, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, p-NPB, or any combination thereof:




embedded image


embedded image


[Film]


The organometallic compound represented by Formula 1 may be included in various films. According to embodiments, a film including an organometallic compound represented by Formula 1 may be provided. The film may be, for example, an optical member (or a light control means) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, or like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, or the like), or a protective member (for example, an insulating layer, a dielectric layer, or the like).


[Electronic Apparatus]


The light-emitting device may be included in various electronic apparatuses. For example, an electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.


The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one direction in which light emitted from the light-emitting device travels. In embodiments, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be a light-emitting device as described herein. In embodiments, the color conversion layer may include a quantum dot. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.


A pixel-defining film may be located between the subpixels to define each subpixel.


The color filter may further include color filter areas and light-shielding patterns located between the color filter areas, and the color conversion layer may further include color conversion areas and light-shielding patterns located between the color conversion areas.


The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In embodiments, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot may be a quantum dot as described herein. The first area, the second area, and/or the third area may each include a scatterer.


In an embodiment, the light-emitting device may emit first light, the first area may absorb the first light to emit first-first color light, the second area may absorb the first light to emit second-first color light, and the third area may absorb the first light to emit third-first color light. The first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths. For example, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described herein. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, or the like.


The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be located between the color filter and/or the color conversion layer, and the light-emitting device. The sealing portion may allow light from the light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including an organic layer and/or an inorganic layer. When the sealing portion is a thin-film encapsulation layer, the electronic apparatus may be flexible.


Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, an authentication apparatus, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device as described herein, a biometric information collector.


The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.


[Electronic Device]


The light-emitting device may be included in various electronic devices.


In embodiments, the electronic device including the light-emitting device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a TV, a billboard, an indoor light, an outdoor light, a signal light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a portable phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a 3D display, a virtual reality display, an augmented reality display, a vehicle, a video wall with multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a signboard.


The light-emitting device has excellent luminescence efficiency and a long lifespan, such that electronic devices including the light-emitting device may have characteristics such as high luminance, high resolution, and low power consumption.


[Description of FIGS. 2 and 3]



FIG. 2 is a schematic cross-sectional view showing an electronic apparatus according to an embodiment.


The electronic apparatus of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be located on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be located on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.


A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be located on the active layer 220, and the gate electrode 240 may be located on the gate insulating film 230.


An interlayer insulating film 250 may be located on the gate electrode 240. The interlayer insulating film 250 may be located between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may respectively contact the exposed portions of the source region and the drain region of the active layer 220.


The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and is covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. A light-emitting device is provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be located on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270, and the first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.


A pixel defining layer 290 including an insulating material may be located on the first electrode 110. The pixel defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide or polyacrylic organic film. Although not shown in FIG. 2, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 to be provided in the form of a common layer.


The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be further included on the second electrode 150. The capping layer 170 may cover the second electrode 150.


The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or any combination thereof; or any combination of the inorganic films and the organic films.



FIG. 3 is a schematic cross-sectional view showing an electronic apparatus according to an embodiment.


The electronic apparatus of FIG. 3 may differ from the electronic apparatus of FIG. 2, at least in that a light-shielding pattern 500 and a functional region 400 are further included on the encapsulation portion 300. The functional region 400 may be a color filter area, a color conversion area, or a combination of the color filter area and the color conversion area. In an embodiment, the light-emitting device included in the electronic apparatus of FIG. 3 may be a tandem light-emitting device.


[Description of FIG. 4]



FIG. 4 is a schematic perspective view illustrating an electronic device 1 including a light-emitting device according to an embodiment. The electronic device 1 may be a device that displays a moving image or a still image, and examples of the electronic device 1 may include: a portable electronic device, such as a mobile phone, a smart phone, a tablet personal computer (PC), a mobile communication terminal, an electronic notebook, an electronic book, a portable multimedia player (PMP), a navigation device, or ultra-mobile PC (UMPC); various products such as a TV, a laptop, a monitor, a billboard, or an Internet of things (IOT). The electronic device 1 may be any such device as described above, or a part thereof. In an embodiment, the electronic device 1 may be a wearable device such as a smart watch, a watch phone, a glasses display, or a head mounted display (HMD), or a part thereof. However, embodiments are not limited thereto. For example, the electronic device 1 may be a center information display (CID) disposed on a dashboard or on a center fascia of a vehicle, a room mirror replacing a side mirror of a vehicle, an entertainment system for the rear seat of a vehicle, or a display disposed on the back of a front seat. FIG. 4 illustrates an embodiment in which the electronic device 1 is a smart phone, for convenience of explanation.


The electronic device 1 may include a display area DA and a non-display area NDA outside the display area DA. The electronic device 1 may implement an image through an array of pixels that are two-dimensionally arranged in the display area DA.


The non-display area NDA is an area that does not display an image, and may completely surround the display area DA. A driver for providing an electric signal or power to the display elements (for example, pixels) located in the display area DA may be located in the non-display area NDA. A pad, which is an area where electronic elements or printed circuit substrates can be electrically connected, may be located in the non-display area NDA.


In the electronic device 1, a length in an x-axis direction may be different from a length in a y-axis direction. For example, as illustrated in FIG. 4, the length in the x-axis direction may be shorter than the length in the y-axis direction. In another embodiment, the length in the x-axis direction and the length in the y-axis direction may be identical to each other. In still another embodiment, the length in the x-axis direction may be longer than the length in the y-axis direction.


[Description of FIGS. 5 and 6A to 6C]



FIG. 5 is a schematic perspective view of the exterior of a vehicle 1000 as an electronic device including a light-emitting device according to an embodiment. FIGS. 6A to 6C are each a schematic diagram illustrating the interior of the vehicle 1000 according to an embodiment.


Referring to FIGS. 5, 6A, 6B, and 6C, the vehicle 1000 may refer to various devices for moving a subject to be transported, such as a human, an object, or an animal, from a departure point to a destination. The vehicle 1000 may be a vehicle traveling on a road or track, a vessel moving over a sea or a river, an airplane flying in the sky using the action of air, or the like.


The vehicle 1000 may travel on roads or tracks. The vehicle 1000 may move in a direction according to the rotation of at least one wheel. For example, the vehicle 1000 may be a three-wheeled or four-wheeled vehicle, construction machinery, a two-wheeled vehicle, a motorized a bicycle, and a train running on tracks.


The vehicle 1000 may include a body having an interior and exterior, and a chassis which comprises the remaining parts except for the body and in which mechanical devices necessary for driving are installed. The exterior of the body may include the front panel, the bonnet, the roof panel, the rear panel, the trunk, and pillars provided at the boundaries between the doors and the aforementioned components.


The chassis of vehicle 1000 may include a power generating device, a power transmitting device, a driving device, a steering device, a braking device, a suspension device, a transmission device, a fuel device, front and rear wheels, and left and right wheels.


The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display apparatus 2.


The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar located between the side window glass 1100 and the front window glass 1200.


The side window glass 1100 may be provided on the side of the vehicle 1000. In an embodiment, the side window glass 1100 may be provided on a door of vehicle 1000. Multiple side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be located adjacent to the cluster 1400. The second side window glass 1120 may be located adjacent to the passenger seat dashboard 1600.


In an embodiment, the side window glasses 1100 may be spaced apart from each other in an x-direction or a −x-direction. For example, the first side window glass 1110 and the second side window glass 1120 may be spaced apart from each other in the x direction or the −x direction. An imaginary straight line L connecting the side window glasses 1100 may extend in the x direction or the −x direction. For example, an imaginary straight line L connecting the first side window glass 1110 and the second side window glass 1120 to each other may extend in the x direction or the −x direction.


The front window glass 1200 may be provided on the front of the vehicle 1000. The front window glass 1200 may be located between the side window glasses 1100 facing each other.


A side mirror 1300 may provide a view of the rear of the vehicle 1000. The side mirror 1300 may be provided on the exterior of the body. In an embodiment, multiple side mirrors 1300 may be provided. One of the side mirrors 1300 may be located outside the first side window glass 1110. Another of the side mirrors 1300 may be located outside the second side window glass 1120.


The cluster 1400 may be located in front of the steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge turn indicator, a high beam indicator lamp, a warning lamp, a seat belt warning lamp, an odometer, an instrument for recording the traveling by a vehicle, an automatic shift selection lever indicator lamp, a door open warning lamp, an engine oil warning lamp, and/or a low fuel warning light.


The center fascia 1500 may include a control panel on which buttons may be provided for adjusting an audio unit, an air conditioning unit, and a seat heater. The center fascia 1500 may be located on one side of the cluster 1400.


The passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 therebetween. In an embodiment, the cluster 1400 may be located to correspond to a driver's seat (not shown), and the passenger seat dashboard 1600 may be located to correspond to a passenger seat (not shown). In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.


In an embodiment, the display apparatus 2 may include a display panel 3, and the display panel 3 may display an image. The display apparatus 2 may be located inside the vehicle 1000. In an embodiment, the display apparatus 2 may be located between the side window glasses 1100 facing each other. The display apparatus 2 may be located in at least one of the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.


The display apparatus 2 may include an organic light-emitting display apparatus, an inorganic light-emitting display apparatus, a quantum dot display apparatus, etc. Hereinafter, as the display apparatus 2 according to an embodiment, an organic light-emitting display apparatus including a light-emitting device according to an embodiment will be described as an example, but various types of display apparatuses as described above can be used in embodiments.


Referring to FIG. 6A, the display apparatus 2 may be located on the center fascia 1500. In an embodiment, the display apparatus 2 may display navigation information. In an embodiment, the display apparatus 2 may display audio, video, or information about vehicle settings.


Referring to FIG. 6B, the display apparatus 2 may be located on the cluster 1400. When the display apparatus 2 is located on the cluster 1400, the cluster 1400 may display driving information and the like through the display apparatus 2. For example, cluster 1400 may be implement driving information in a digital manner. Thus, the cluster 1400 may display vehicle information and driving information as images. For example, the needle and gauge of a tachometer, as well as various warning light icons may be displayed by digital signals.


Referring to FIG. 6C, the display apparatus 2 may be located on the passenger seat dashboard 1600. The display apparatus 2 may be embedded in the passenger seat dashboard 1600 or may be located on the passenger seat dashboard 1600. In an embodiment, the display apparatus 2 located on the passenger seat dashboard 1600 may display images related to information displayed on the cluster 1400 and/or to information displayed on the center fascia 1500. In an embodiment, the display apparatus 2 located on the passenger seat dashboard 1600 may display information that is different from information displayed on the cluster 1400 and/or information displayed on the center fascia 1500.


[Manufacturing Method]


The layers included in the hole transport region, the emission layer, and the layers included in the electron transport region may be formed in a certain region by using various methods such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, laser-induced thermal imaging, and the like.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


Definitions of Terms

The term “C3-C60 carbocyclic group” as used herein may be a cyclic group consisting of carbon as the only ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein may be a cyclic group that has one to sixty carbon atoms and further has, in addition to carbon, at least one heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. For example, the C1-C60 heterocyclic group may have 3 to 61 ring-forming atoms.


The term “cyclic group” as used herein may include the C3-C60 carbocyclic group or the C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as used herein may be a cyclic group that has three to sixty carbon atoms and may not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may be a heterocyclic group that has one to sixty carbon atoms and may include *—N═*′ as a ring-forming moiety.


In embodiments,

    • the C3-C60 carbocyclic group may be a T1 group, or a group in which two or more T1 groups are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
    • the C1-C60 heterocyclic group may be a T2 group, a group in which two or more T2 groups are condensed with each other, or a group in which at least one T2 group and at least one T1 group are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • the π electron-rich C3-C60 cyclic group may be a T1 group, a group in which two or more T1 groups are condensed with each other, a T3 group, a group in which two or more T3 groups are condensed with each other, or a group in which at least one T3 group and at least one T1 group are condensed with each other (for example, a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.),
    • the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a group in which two or more T4 groups are condensed with each other, a group in which at least one T4 group and at least one T1 group are condensed with each other, a group in which at least one T4 group and at least one T3 group are condensed with each other, or a group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • wherein the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
    • the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
    • the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
    • the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may each be a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is used. For example, a “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


In embodiments, examples of a monovalent C3-C60 carbocyclic group and a monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


In embodiments, examples of a divalent C3-C60 carbocyclic group and a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C1 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C0 alkyl group” as used herein may be a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein may be a divalent group having a same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein may be a monovalent group represented by —O(A101) (wherein A101 may be a C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as used herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as used herein may be a divalent group having a same structure as the C3-C1 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C1 heterocycloalkylene group” as used herein may be a divalent group having a same structure as the C1-C1 heterocycloalkyl group.


The term “C3-C1 cycloalkenyl group” as used herein may be a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein may be a divalent group having a same structure as the C3-C1 cycloalkenyl group.


The term “C1-C1 heterocycloalkenyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C1 heterocycloalkenylene group” as used herein may be a divalent group having a same structure as the C1-C1 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein may be a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein may be a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of the C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as used herein may be a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as used herein may be a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Examples of the C1-C6a heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as used herein may be a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein may be a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphtho indolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C6-C60 aryloxy group” as used herein may be a group represented by —O(A102) (wherein A102 may be a C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein may be a group represented by —S(A103) (wherein A103 may be a C6-C60 aryl group).


The term “C7-C60 aryl alkyl group” as used herein may be a group represented by -(A104)(A105) (wherein A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroaryl alkyl group” as used herein may be a group represented by -(A106)(A107) (wherein A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


The group “R10a” as used herein may be:

    • deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).


In the specification, Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


The group “R100b” as used herein may be:

    • —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11b)(Q12b)(Q13b), —N(Q11b)(Q12b), —B(Q11b)(Q12b), —C(═O)(Q11b), —S(═O)2(Q11b), —P(═O)(Q11b)(Q12b), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, Si(Q21b)(Q22b)(Q23b), —N(Q21b)(Q22b), —B(Q21b)(Q22b), —C(═O)(Q21b), —S(═O)2(Q21b), —P(═O)(Q21b)(Q22b), or any combination thereof; or
    • —Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), or —P(═O)(Q31b)(Q32b).


In the specification, Q1b to Q3b, Q11b to Q13b, Q21b to Q23b, and Q31b to Q33b may each independently be: hydrogen; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


The term “heteroatom” as used herein may be any atom other than a carbon atom or a hydrogen atom. Examples of the heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “third-row transition metal” as used herein may include hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.


The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the term “tert-Bu” or “But” as used herein each refer to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.


The term “biphenyl group” as used herein may be a “phenyl group substituted with a phenyl group.” For example, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein may be a “phenyl group substituted with a biphenyl group”. For example, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


The symbols * *, and *″ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


In the specification, D represents a deuterium atom in a corresponding formula or moiety.


Hereinafter, compounds according to embodiments and light-emitting devices according to embodiments will be described in detail with reference to the Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.


EXAMPLES
Synthesis Example 1: Synthesis Example of Compound 5



embedded image


Synthesis of Intermediate Compound 5-A

2-bromo-4-(tert-butyl)pyridine-3,5,6-d3 (1.0 eq), 2-methoxy-9H-carbazole (1.2 eq), copper(I)iodide (10 mol %), picolinic acid (20 mol %), and cesium carbonate (2.0 eq) were dissolved in dimethylsulfoxide (1.0M) and stirred at a temperature of 100° C. for 12 hours. The reaction mixture was cooled at room temperature, and subjected to an extraction process three times using water to obtain an organic layer. The obtained organic layer was dried using magnesium sulfate and concentrated, and subjected to column chromatography to synthesize Intermediate Compound 5-A (yield of 88%).


Synthesis of Intermediate Compound 5-B

Intermediate Compound 5-A (1.0 eq) was dissolved in dichloromethane (0.1 M), and while being stirred at a temperature of 0° C., boron tribromide (2.0 eq) was slowly added thereto, and reactants were stirred at room temperature for 2 hours. The reaction mixture was diluted with distilled water, and neutralized with a 30 w-% sodium hydroxide aqueous solution. The resultant product was subjected to an extraction process three times by using dichloromethane and water. The obtained organic layer was dried by using magnesium sulfate, and concentrated to synthesize Intermediate Compound 5-B (yield of 92%).


Synthesis of Intermediate Compound 5-C

Intermediate Compound 5-B (1.0 eq), 1,3-dibromobenzene (2.0 eq), Copper(I) iodide (0.01 eq), K2CO3 (2.0 eq), and L-Proline (0.02 eq) were dissolved in DMSO (0.1 M), and stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled at room temperature, and an extraction process was performed thereon three times by using dichloromethane and water, to thereby obtain an organic layer. The organic layer thus obtained was dried by using magnesium sulfate, concentrated, and subjected to column chromatography to synthesize Intermediate Compound 5-C(yield of 67%).


Synthesis of Intermediate Compound 5-E

Intermediate Compound 5-C(1.0 eq), 5-D (1.0 eq), Pd2(dba)3 (5.0 mol %), Sphos (0.1 eq), and potassium phosphate (2.0 eq) were dissolved in toluene (0.5 M), and stirred at a temperature of 120° C. for 12 hours. The reaction mixture was cooled at room temperature, and subjected to an extraction process three times using water to obtain an organic layer. The obtained organic layer was dried using magnesium sulfate and concentrated, and subjected to column chromatography to synthesize Intermediate Compound 5-E (yield of 75%).


Synthesis of Intermediate Compound 5-F

Intermediate Compound 5-E (1.0 eq), triethylorthoformate (50 eq), and hydrogen chloride (aq., 12M, 3.0 eq) were stirred at a temperature of 80° C. for 12 hours. The reaction mixture was cooled at room temperature, and subjected to an extraction process three times using water to obtain an organic layer. The obtained organic layer was dried using magnesium sulfate and concentrated, and subjected to column chromatography to synthesize Intermediate Compound 5-F (yield of 73%).


Synthesis of Compound 5

Intermediate Compound 5-F (1.0 eq), Pt(COD)Cl2 (1.2 eq), and sodium acetate (2.0 eq) were dissolved in 1,4-dioxane (0.5 M), and stirred at a temperature of 120° C. for 48 hours. The reaction mixture was cooled at room temperature, and subjected to an extraction process three times using water to obtain an organic layer. The organic layer thus obtained was dried by using magnesium sulfate, concentrated, and subjected to column chromatography to synthesize Compound 5 (yield: 23%).


Synthesis Example 2: Synthesis of Compound 25



embedded image


Synthesis of Intermediate Compound 25-A

Intermediate Compound 25-A (yield of 84%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-A, except that 2-methoxy-6-phenyl-9H-carbazole was used instead of 2-methoxy-9H-carbazole.


Synthesis of Intermediate Compound 25-B

Intermediate Compound 25-B (yield of 89%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-B, except that Intermediate Compound 25-A was used instead of Intermediate Compound 5-A (1.0 eq).


Synthesis of Intermediate Compound 25-C

Intermediate Compound 25-C(yield of 66%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-C, except that Intermediate Compound 25-B was used instead of Intermediate Compound 5-B (1.0 eq).


Synthesis of Intermediate Compound 25-E

Intermediate Compound 25-E (yield of 76%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-E, except that Intermediate Compound 25-C was used instead of Intermediate Compound 5-C(1.0 eq).


Synthesis of Intermediate Compound 25-F

Intermediate Compound 25-F (yield of 76%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-F, except that Intermediate Compound 25-E was used instead of Intermediate Compound 5-E (1.0 eq).


Synthesis of Compound 25

Compound 25 (yield of 21%) was synthesized in the same manner as used to synthesize Compound 1, except that Intermediate Compound 25-F was used instead of Intermediate Compound 5-F (1.0 eq).


Synthesis Example 3: Synthesis of Compound 38



embedded image


Synthesis of Intermediate Compound 38-A

Intermediate Compound 38-A (yield of 82%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-A, except that 2-bromo-5-(4-(tert-butyl)phenyl)-4-methylpyridine-3,6-d2 was used instead of 2-bromo-4-(tert-butyl)pyridine-3,5,6-d3.


Synthesis of Intermediate Compound 38-B

Intermediate Compound 38-B (yield of 90%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-B, except that Intermediate Compound 38-A was used instead of Intermediate Compound 5-A (1.0 eq).


Synthesis of Intermediate Compound 38-C

Intermediate Compound 38-C(yield of 63%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-C, except that Intermediate Compound 38-B was used instead of Intermediate Compound 5-B (1.0 eq).


Synthesis of Intermediate Compound 38-E

Intermediate Compound 38-E (yield of 78%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-E, except that Intermediate Compound 38-C was used instead of Intermediate Compound 5-C(1.0 eq).


Synthesis of Intermediate Compound 38-F

Intermediate Compound 38-F (yield of 81%) was synthesized in the same manner as used to synthesize Intermediate Compound 5-F, except that Intermediate Compound 38-E was used instead of Intermediate Compound 5-E (1.0 eq).


Synthesis of Compound 38

Compound 38 (yield of 27%) was synthesized in the same manner as used to synthesize Compound 1, except that Intermediate Compound 38-F was used instead of Intermediate Compound 5-F (1.0 eq).



1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 3 are shown in Table 1. Synthesis methods of compounds other than the compounds of Synthesis Examples 1 to 3 may be readily recognized by those skilled in the art by referring to the synthesis paths and source materials.











TABLE 1









MS/FAB










Compound

1H NMR (CDCl3, 500 MHz)

found
calc.













5
8.38(d, 1H), 8.20(d, 2H), 7.58(d, 1H),
932.29
932.29



7.50-7.39(m, 8H), 7.20-7.08(m, 8H),



6.94-6.90(m, 3H), 6.69(d, 1H), 6.66(d,



1H), 1.35(s, 9H)


25
8.38(d, 1H), 8.20(d, 2H), 7.98(d, 1H),
1008.31
1008.32



7.87(s, 1H), 7.77-7.75(m, 3H), 7.79-



7.39(m, 10H), 7.17-7.08(m, 7H), 6.95-



6.90(m, 3H), 6.68(d, 1H), 6.66(d, 1H),



1.35(s, 9H)


38
8.39-8.20(m, 3H), 7.99(d, 2H), 7.89(s,
1097.36
1097.36



1H), 7.77-7.74(m, 3H), 7.49-7.38(m,



12H), 7.30(d, 2H), 7.17-7.08(m, 7H),



6.96-6.90(m, 3H), 6.69(d, 1H), 6.65(d,



1H), 2.44(s, 3H), 1.33(s, 9H)









Evaluation Example 1

The HOMO energy level and the LUMO energy level (unit: electron volt (eV)) of Compounds 5, 25, and 38 and Compounds A to E as comparative compounds were respectively measured by differential pulse voltammetry. Results thereof are shown in Table 2.











TABLE 2





Compound
HOMO (eV)
LUMO (eV)

















5
−5.31
−2.20


25
−5.29
−1.98


38
−5.28
−1.97


A
−5.28
−2.10


B
−5.29
−2.05


C
−5.33
−1.98


D
−5.30
−2.18


E
−5.29
−1.96











embedded image


embedded image


embedded image


Example 1

As an anode, a 15 Ohms per square centimeter (Ω/cm2) (1,200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 millimeters (mm)×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, cleaned with ultraviolet rays for 30 minutes, and cleaned with ozone, and was mounted on a vacuum deposition apparatus.


2-TNATA was vacuum-deposited on the anode to form a hole injection layer having a thickness of 600 Å, and 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (hereinafter, referred as “NPB”) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å.


ETH2 (second compound) and HTH29 (third compound) were used as mixed hosts on the hole transport layer, and Compound 5 (first compound) was used as a phosphorescent dopant, and these compounds were co-deposited to form an emission layer having a thickness of 400 Å. The amount of Compound 5 was 10 wt % based on the total weight (100 wt %) of the emission layer, and the weight ratio of ETH2 to HTH29 was adjusted to be 3:7.


ETH2 was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å, Alq3 was vacuum-deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, LiF was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was vacuum-deposited thereon to form a cathode having a thickness of 3,000 Å, thereby completing the manufacture of an organic light-emitting device.




embedded image


Example 2

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH66 and HTH41 as a mixed host were co-deposited at a weight ratio of 3:7 to form an emission layer having a thickness of 400 Å.


Example 3

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH2 and HTH41 as a mixed host were co-deposited at a weight ratio of 3:7 to form an emission layer having a thickness of 400 Å.


Example 4

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH66 and HTH29 as a mixed host were co-deposited at a weight ratio of 3:7 to form an emission layer having a thickness of 400 Å.


Example 5

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound 25 (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Example 6

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound 38 (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Example 7

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH2 and HTH41 as a mixed host were used at the weight ratio of 3:7, Compound 5 (10 wt % based on the total weight of the emission layer) was used as a phosphorescent dopant, and DFD1 (0.5 wt % based on the total weight of the emission layer) was used as a delayed fluorescence dopant, and these compounds were co-deposited to form an emission layer having the thickness of 400 Å.


Example 8

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH2 and HTH66 as a mixed host were used at the weight ratio of 3:7, Compound 5 (10 wt % based on the total weight of the emission layer) was used as a phosphorescent dopant, and DFD1 (0.5 wt % based on the total weight of the emission layer) was used as a delayed fluorescence dopant, and these compounds were co-deposited to form an emission layer having the thickness of 400 Å.


Example 9

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH2 and HTH41 as a mixed host were used at the weight ratio of 3:7, Compound 47 (10 wt % based on the total weight of the emission layer) was used as a phosphorescent dopant, and DFD2 (0.5 wt % based on the total weight of the emission layer) was used as a delayed fluorescence dopant, and these compounds were co-deposited to form an emission layer having the thickness of 400 Å.


Comparative Example 1

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, ETH2 as a single host and Compound 5 as a dopant at the ratio of 10% thereof were co-deposited to form an emission layer having a thickness of 300 Å.


Comparative Example 2

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound A (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Comparative Example 3

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound B (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Comparative Example 4

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound C (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Comparative Example 5

An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound D (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Comparative Example 6

D An organic light-emitting device was manufactured in the same manner as in Example 1, except that, in forming the blue emission layer, Compound E (10 wt %) as a phosphorescent dopant was co-deposited to form an emission layer having a thickness of 400 Å.


Evaluation Example 2

The performance of the organic light-emitting devices manufactured according to Compounds 5, 25, and 38 of Synthesis Examples and Comparative Compounds A to E were evaluated using the methods of Examples 1 to 9 and Comparative Examples 1 to 6. The driving voltage at the current density of 10 mA/cm, luminescence efficiency (cd/A), maximum emission wavelength (λmax, unit: nm), and lifespan (195, unit: hours (h)) of each of Compounds 5, 25, and 38 of Synthesis Examples and Comparative Compounds A to E were measured using Keithley MU 236 and luminance meter PR650. Results thereof are shown in Table 3. In Table 3, the lifespan (T95) refers to a time (hr) for the luminance to reach 95% of the initial luminance of 1000 cd/m2.
















TABLE 3











Driving

Maximum




Dopant
Host
Voltage
Luminescence
emission
















First
Fourth
Second
Third
Voltage
efficiency
wavelength
Lifespan


No.
compound
compound
compound
compound
(V)
(cd/A)
(nm)
(T95, h)


















Example 1
5

ETH2
HTH29
4.1
28.5
463
86


Example 2
5

ETH66
HTH41
4.2
26.8
463
79


Example 3
5

ETH2
HTH41
4.2
25.7
462
73


Example 4
5

ETH66
HTH29
4.1
27.1
463
88


Example 5
25

ETH2
HTH29
4.2
27.2
463
102


Example 6
38

ETH2
HTH29
4.2
25.9
462
88


Example 7
5
DFD1
ETH2
HTH29
4.3
31.5
461
63


Example 8
5
DFD1
ETH66
HTH41
4.4
29.4
461
52


Example 9
5
DFD2
ETH2
HTH29
4.3
30.6
461
58


Comparative
5

ETH2

4.2
13.4
464
23


Example 1


Comparative
A

ETH2
HTH29
4.5
20.1
465
27


Example 2


Comparative
B

ETH2
HTH29
4.8
20.7
467
52


Example 3


Comparative
C

ETH2
HTH29
4.1
24.5
465
71


Example 4


Comparative
D

ETH2
HTH29
4.5
23.8
463
62


Example 5


Comparative
E

ETH2
HTH29
4.6
23.7
464
80


Example 6











embedded image


embedded image


From Table 3, it was confirmed that the organic light-emitting devices of Examples 1 to 9 have excellent luminescence efficiency and lifespan characteristics while emitting deep blue light, compared to the organic light-emitting devices of Comparative Examples 1 to 6.


A light-emitting device including the organometallic compound may have low driving voltage, high efficiency, and long lifespan, and thus, may be used to manufacture a high-quality electronic apparatus having excellent light efficiency and long lifespan.


Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode; andan interlayer between the first electrode and the second electrode, whereinthe interlayer includes an emission layer, andthe emission layer comprises an organometallic compound represented by Formula 1:
  • 2. The light-emitting device of claim 1, wherein the first electrode is an anode,the second electrode is a cathode,the interlayer further includes: a hole transport region between the first electrode and the emission layer; andan electron transport region between the emission layer and the second electrode,the hole transport region includes a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or a combination thereof, andthe electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 3. The light-emitting device of claim 1, wherein the emission layer includes: a first compound that is the organometallic compound represented by Formula 1; anda second compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group, a third compound including a group represented by Formula 3, a fourth compound which emits delayed fluorescence, or a combination thereof, andthe first compound, the second compound, the third compound, and the fourth compound are different from each other:
  • 4. The light-emitting device of claim 3, wherein the second compound comprises a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a combination thereof.
  • 5. The light-emitting device of claim 3, wherein the emission layer comprises the first compound, the second compound, and the third compound; orthe emission layer comprises the first compound, the second compound, the third compound, and the fourth compound.
  • 6. An electronic apparatus comprising: the light-emitting device of claim 1;a thin-film transistor; anda color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof, whereinthe thin-film transistor includes a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected to the source electrode or the drain electrode.
  • 7. An electronic device comprising the light-emitting device of claim 1, wherein the electronic device is a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, an indoor light, an outdoor light, a signal light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a portable phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall with multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a signboard.
  • 8. An organometallic compound represented by Formula 1:
  • 9. The organometallic compound of claim 8, wherein a bond between X4 and M is a coordinate bond, anda bond between X2 and M and a bond between X3 and M are each a covalent bond.
  • 10. The organometallic compound of claim 8, wherein A2 is an X2-containing 6-membered ring or an X2-containing 6-membered ring condensed with at least one 5-membered ring,A3 is an X3-containing 6-membered ring, andA4 is an X4-containing 5-membered ring or an X4-containing 5-membered ring condensed with at least one 6-membered ring.
  • 11. The organometallic compound of claim 8, wherein A2 to A4 are each independently a benzene group, a naphthalene group, a carbazole group, an imidazole group, or a benzoimidazole group.
  • 12. The organometallic compound of claim 10, wherein the organometallic compound satisfies Condition 1, Condition 2, Condition 3, or a combination thereof:[Condition 1]In Formula 1, a moiety represented by
  • 13. The organometallic compound of claim 8, wherein L1 to L3 are each independently a single bond, *—N(Z11)—*′, *—C(Z)(Z12)—*′, *—S—*′, or *—O—*′.
  • 14. The organometallic compound of claim 8, wherein R11, R12, R2 to R4, Z11, and Z12 are each independently:hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a C1-C20 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or a combination thereof; ora cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, or a naphthyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, -CD3, -CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or a combination thereof, except that at least one of R11 and R12 does not include deuterium.
  • 15. The organometallic compound of claim 8, wherein R11 includes at least one deuterium, and R12 does not include deuterium;R11 does not include deuterium and R12 includes at least one deuterium; orR11 and R12 each do not include deuterium.
  • 16. The organometallic compound of claim 8, wherein at least one of R11 and R12 is each independently hydrogen, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkenyl group unsubstituted or substituted with at least one R100b, a C2-C60 alkynyl group unsubstituted or substituted with at least one R100b, a C1-C60 alkoxy group unsubstituted or substituted with at least one R100b, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R100b, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R100b, a C6-C60 aryloxy group unsubstituted or substituted with at least one R100b, a C6-C60 arylthio group unsubstituted or substituted with at least one R100b, —Si(Q1b)(Q2b)(Q3b), —N(Q1b)(Q2b), —B(Q1b)(Q2b), —P(Q1b)(Q2b), —C(═O)(Q1b), —S(═O)2(Q1b), or —P(═O)(Q1b)(Q2b), andR100b is:—F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11b)(Q12b)(Q13b), —N(Q11b)(Q12b), —B(Q11b)(Q12b), —C(═O)(Q11b), —S(═O)2(Q11b), —P(═O)(Q11b)(Q12b), or a combination thereof;a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21b)(Q22b)(Q23b), —N(Q21b)(Q22b), —B(Q21b)(Q22b), —C(═O)(Q21b), —S(═O)2(Q21b), —P(═O)(Q21b)(Q22b), or a combination thereof; or—Si(Q31b)(Q32b)(Q33b), —N(Q31b)(Q32b), —B(Q31b)(Q32b), —C(═O)(Q31b), —S(═O)2(Q31b), or —P(═O)(Q31b)(Q32b),wherein Q1b to Q3b, Q11b to Q13b, Q21b to Q23b, and Q31b to Q33b are each independently: hydrogen; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or a combination thereof.
  • 17. The organometallic compound of claim 8, wherein in Formula 1, a moiety represented by
  • 18. The organometallic compound of claim 8, wherein the organometallic compound represented by Formula 1 is represented by one of Formulae 1-1 to 1-4:
  • 19. The organometallic compound of claim 8, wherein the organometallic compound is selected from Compounds 1 to 65:
  • 20. The organometallic compound of claim 8, wherein the organometallic compound emits blue light having a maximum emission wavelength in a range of about 440 nm to about 490 nm.
Priority Claims (1)
Number Date Country Kind
10-2022-0043639 Apr 2022 KR national