ORGANOMETALLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

Abstract
An organometallic compound represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to Korean Patent Application No. 10-2014-0012791, filed on Feb. 4, 2014, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which is incorporated herein in its entirety by reference.


BACKGROUND

1. Field


One or more embodiments relate to an organometallic compound and an organic light-emitting device including the organometallic compound.


2. Description of the Related Art


Organic light-emitting devices (OLEDs) are self-emitting devices that can provide multicolored images and have advantages such as wide viewing angle, excellent contrast ratios, and quick response times. In addition, the OLEDs exhibit excellent brightness, low driving voltage, and excellent response speed characteristics.


A typical OLED has a structure including an anode, a cathode, and an organic layer disposed between the anode and the cathode and including an emission layer. A hole transporting region may be disposed between the anode and the cathode, and an electron transporting region may be formed between the emission layer (EML) and the cathode. Holes injected from the anode move to the EML via the hole transport region, and electrons injected from the cathode move to the EML via the electron transport region. Excitons are generated when carriers such as holes and electrons recombine in the EML. When the excitons drop from an excited state to a ground state, light is emitted.


Various types of organic light emitting devices are known. However, there still remains a need in OLEDs having low driving voltage, high efficiency, high brightness, and long lifespan.


SUMMARY

One or more embodiments include a novel organometallic compound and an organic light-emitting device including the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.


According to one or more embodiments, provided is an organometallic compound represented by Formula 1 below:





M(L1)n1(L2)n2  Formula 1


In Formula 1,


L1 is a ligand represented by Formula 2 and


L2 is a ligand represented by Formula 3;




embedded image


In Formulae 2 and 3 above,


M is Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, and Tm;


Y1 to Y4 may be each independently C or N;


Y1 and Y2 may be connected by a single bond or a double bond and Y3 and Y4 may be connected by a single bond or a double bond;


CY1 and CY2 may be each independently selected from a C5-C60 cyclic group and a C2-C60 heterocyclic group and CY1 and CY2 may be optionally connected by a single bond or through a first linking group;


CY3 and CY4 may be each independently a C2-C60 heterocyclic group including at least one N;


N and C of CY3 may be connected by a single bond or a double bond and N and C of CY4 may be connected by a single bond or a double bond;


Z1 to Z4 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C2-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic hetero-condensed polycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), and —B(Q6)(Q7);


a1 to a4 may be each independently selected from integers of 1 to 5;


n1 and n2 may be each independently 1 or 2;


in Formulae 2 and 3, * and *′ each indicates a binding site to M in Formula 1;


the organometallic compound represented by Formula 1 may be neutral;


Formula 2 excludes a case in which Z1 and Z2 are both a hydrogen;


Formula 2 excludes a case in which Z1 is a hydrogen,


a2 is 1, and


Z2 is a hydrogen, a methyl group, or a diethylamino group;


in a ligand represented by Formula 2, when the ligand is represented by Formula 2A,

    • i) a2 is 2 and Z2 is —F in Formula 2A; or
    • ii) a2 is 0 or 1 in Formula 2A;




embedded image


at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C2-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group and the substituted monovalent non-aromatic hetero-condensed polycyclic group may be selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group;


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25) and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35) and —B(Q36)(Q37);


Q1 to Q7, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group.


According to one or more embodiments, an organic light-emitting device includes:


a first electrode;


a second electrode; and


an organic layer disposed between the first electrode and the second electrode,


wherein the organic layer includes an emission layer and at least one organometallic compound represented by Formula 1.


The organometallic compound may be included in the emission layer, the organometallic compound may act as a dopant, and the emission layer may further include a host.





BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:



FIG. 1 is a schematic cross-sectional view showing an organic light-emitting device according to an embodiment; and



FIGS. 2 to 8 are graphs of emission intensity (arbitrary unit, a. u.) versus wavelength (nanometer, nm) showing photoluminescent (PL) spectra of Compounds 1, 2, 3, 5, 11, 12, and 15.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.


It will be understood that when an element is referred to as being “on” another element, it can be directly in contact with the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.


It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


The term “or” means “and/or.” It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this general inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.


The organometallic compound may be represented by Formula 1:





M(L1)n1(L2)n2  Formula 1


In Formula 1,


L1 is a ligand represented by Formula 2 and


L2 is a ligand represented by Formula 3;




embedded image


In Formulae 2 and 3, * and *′ each indicates a binding site to M of Formula 1.


In Formula 1, M is selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm).


For example, in Formula 1, M may be Ir or Pt.


In Formula 2, Y1 to Y4 may be each independently carbon (C) or nitrogen (N).


In Formula 2, Y1 and Y2 are connected by a single bond or a double bond and Y3 and Y4 are connected by a single bond or a double bond;


for example, in Formula 2, Y1 may be N and Y4 may be C.


In another example, in Formula 2, Y3 may be C, but it is not limited thereto.


In another example, in Formulae 2 and 3, Y1 and Y4 may all be C or Y1 and Y4 may all be N.


In Formula 2, CY1 and CY2 may be each independently selected from a C5-C60 cyclic group and a C2-C60 heterocyclic group.


For example, in Formula 2, CY1 and CY2 may be each independently selected from a benzene, a naphthalene, a fluorene, a spiro-fluorene, an indene, a pyrrole, a thiophene, a furan, an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isooxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, a quinoline, an isoquinoline, a benzoquinoline, a quinoxaline, a quinazoline, a carbazole, a benzoimidazole, a benzofuran, a benzothiopene, an isobenzothiopene, a benzooxazole, an isobenzooxazole, a triazole, a tetrazole, an oxadiazole, a triazine, a dibenzofuran, and a dibenzothiophene.


In another example, CY1 in Formula 2 may be selected from a pyridine, a pyrimidine, a pyrazine, a triazine, a triazole, an imidazole, and a pyrazole, CY2 may be selected from a benzene, a pyridine, a pyrimidine, a pyrazine, a triazine, a carbazole, a dibenzofuran, and a dibenzothiopene, but they are not limited thereto.


In another example, CY1 in Formula 2 may be selected from a pyridine, a triazole, an imidazole, and a pyrazole and CY2 may be selected from a benzene, a pyridine, a dibenzofuran, and a dibenzothiopene, but they are not limited thereto.


In Formula 2, CY1 and CY2 may be optionally connected by a single bond or through a first linking group.


The first linking group may be represented by Formula 6 below:





*—(Z31)b1—*′  Formula 6


In Formula 6, Z31 may be selected from *—O—*′, *—S—*′, *—N(Q41)-*′, *—C(Q42)(Q43)-*′, *—C(Q44)═C(Q45)-*′, and




embedded image




    • Q41 to Q49 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;

    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C3-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group;





a C3-C10 cycloalkyl group, a C3-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group; and


a C3-C10 cycloalkyl group, a C3-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group;


b1 may be selected from integers 1 to 10 and when b1 is 2 or higher, groups Z31 may be the same or different.


For example, in Formula 6, Q41 to Q49 may be each independently selected from


a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group, and a C1-C20 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and


a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, but they are not limited thereto.


For example, in Formula 2, CY1 and CY2 may be connected by a single bond or through a first linking group, wherein the first linking group is represented by * —C(Q44)═C(Q45)-*′ or




embedded image


(hence, b1=1 in Formula 6) and Q44 to Q49 may be each independently a hydrogen, a C1-C10 alkyl group, or a C1-C10 alkoxy group, but they are not limited thereto.


In Formula 3, CY3 and CY4 may be each independently a C2-C60 heterocyclic group including at least one N.


For example, CY3 and CY4 may be each independently selected from a pyrrole, an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isooxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, a quinoline, an isoquinoline, a benzoquinoline, a quinoxaline, a quinazoline, a benzoimidazole, a benzooxazole, an isobenzooxazole, a triazole, a tetrazole, an oxadiazole, and a triazine.


In another example, CY3 and CY4 may be each independently selected from a pyridine, a pyrazine, a pyrimidine, a pyridazine, a quinoline, an isoquinoline, a benzoquinoline, a quinoxaline, a quinazoline, and a triazine, but they are not limited thereto.


According to an embodiment, CY3 and CY4 in Formula 3 may be each independently selected from a pyridine, a pyrazine, a pyrimidine, a pyridazine, and a triazine, but they are not limited thereto.


In Formula 3, CY3 and CY4 may be the same or different. According to an embodiment, in Formula 3, CY3 and CY4 may be the same.


In CY3, N and C may be connected by a single bond or a double bond and in CY4, N and C may be connected by a single bond or a double bond.


In Formulae 3 and 4, Z1 to Z4 may be each independently selected from a hydrogen, a deuterium, —F (a fluoro group), —Cl (a chloro group), —Br (a bromo group), —I (an iodo group), a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C2-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic hetero-condensed polycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), and —B(Q6)(Q7).


Formula 2 excludes a case in which Z1 and Z2 are both hydrogens. Hence, a ligand represented by Formula 2 necessarily includes a substituent that is not a hydrogen.


Also, Formula 2 excludes a case in which Z1 is a hydrogen, a2 is 1, and Z2 is a hydrogen, a methyl group, or a diethylamino group.


Meanwhile, in the ligand represented by Formula 2, when the ligand is represented by Formula 2A,

    • i) a2 is 2 and Z2 is —F in Formula 2A or
    • ii) a2 is 0 or 1 in Formula 2A.




embedded image


For example, in Formulae 2 and 3, Z1 to Z4 may be each independently selected from


a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37); and


—N(Q1)(Q2), —Si(Q3)(Q4)(Q5) and —B(Q6)(Q7); wherein


Q1 to Q7 and Q31 to Q37 may be each independently selected from a hydrogen, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinazolinyl group, and a quinoxalinyl group.


According to an embodiment, in Formulae 2 and 3, Z1 to Z4 may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a C1-C20 alkyl group, and a C1-C20 alkoxy group;

    • a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.


According to another embodiment, in Formulae 2 and 3, Z1 to Z4 may be each independently selected from


a hydrogen, —F, a cyano group, a nitro group, —SF5, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one of —F, a cyano group, and a nitro group, but they are not limited thereto.


In Formula 2, a1 represents the number of groups Z1, which may be selected from integers of 1 to 5. For example, a1 may be 1, 2, or 3. When a1 is 2 or greater, two or more groups Z1 may be the same or different.


In Formula 2, a2 represents the number of groups Z2, which may be selected from integers of 1 to 5. For example, a2 may be 1, 2, or 3. When a2 is 2 or greater, two or more groups Z2 may be the same or different.


In Formula 3, a3 represents the number of groups Z3, which may be selected from integers of 1 to 5. For example, a3 may be 1, 2, or 3. When a3 is 2 or greater, two or more groups Z3 may be the same or different.


In Formula 3, a4 represents the number of groups Z4, which may be selected from integers of 1 to 5. For example, a4 may be 1, 2, or 3. When a4 is 2 or greater, two or more groups Z4 may be the same or different.


According to an embodiment, in Formula 1, L1 may be selected from Formulae 2-1 to 2-111:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 2-1 to 2-111,


Z1 and Z2 have the same definitions as above,


Z1a and Z1b are the same or different, and each has the same definition as Z1,


Z2a, Z2b, and Z2c are the same or different, and each has the same definition as Z2,


aa2 and ab2 are each independently, 1 or 2,


aa3 and ab3 are each independently selected from integers of 1 to 3,


aa4 and ab4 are each independently selected from integers of 1 to 4, and


* and *′ each indicates a binding site to M.


Formulae 2-1 to 2-111 exclude a case in which all of Z1 (or Z1a and Z1b), and Z2 (or Z2a, Z2b, and Z2c) are a hydrogen.


Also, Formulae 2-1 to 2-111 exclude a case in which Z1 (or Z1a and Z1b) is a hydrogen, ab2, ab3, and ab4 are 1, and Z2 (or Z2a, Z2b, and Z2c) is a hydrogen, an ethyl group, or a diethylamino group.


According to another embodiment, in Formula 1, L1 may be selected from Formulae 2-1A, 2-2A, 2-61A, 2-62A, 2-70A, 2-81A and 2-87A, but it is not limited thereto:




embedded image


embedded image


In Formulae 2-1A, 2-2A, 2-61A, 2-62A, 2-70A, 2-81A, and 2-87A,


Z1 and Z2 are the same as defined above,


Z1a and Z1b are the same or different, and each has the same definition as Z1,


Z2a, Z2b, and Z2c are the same or different, and each has the same definition as Z2, and


* and *′ each indicates a binding site to M.


Formula 2-1A excludes a case in which all of Z1, Z2a, Z2b, and Z2c are a hydrogen.


Also, Formula 2-1A excludes a case in which Z1 is a hydrogen, at least one of Z1, Z2a, Z2b, and Z2c is a hydrogen, an ethyl group, or a diethylamino group, and others are a hydrogen.


Formulae 2-61A, 2-62A, and 2-81A exclude a case in which all of Z1a, Z1b, and Z2 are all hydrogen. Also, Formulae 2-61A, 2-62A, and 2-81A exclude a case in which Z1a and Z1b are a hydrogen and Z2 is a hydrogen, an ethyl group, or a diethylamino group.


In Formula 2-87A, Z1 is not a hydrogen.


According to another embodiment, L2 may be selected from Formulae 3-1 to 3-25.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 3-1 to 3-25,


Z3 and Z4 are the same as defined above,


ac4 and ad4 may be each independently selected from integers of 1 to 4,


ac3 and ad3 may be each independently selected from integers of 1 to 3,


ac2 and ad2 may be each independently 1 or 2, and


* and *′ each indicates a binding site to M.


For example, in Formulae 3-1 to 3-25, Z3 and Z4 may be each independently selected from


a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.


In Formula 1, n1 and n2 may be each independently 1 or 2. When n1 is 2, two or more groups L1 may be the same or different. When n2 is 2, two or more groups L2 may be the same or different. According to an embodiment, in Formula 1, n1 may be 2 and n1 may be 1.


An organometallic compound represented by Formula 1 is “neutral”. In other words, the organometallic compound represented by Formula 1 is not a salt in which a positive ion and a negative ion form a pair.


For example, in the organometallic compound represented by Formula 1, L1 may be a ligand represented by one of Formulae 2-1 to 2-111 (for example, Formulae 2-1A, 2-2A, 2-61A, 2-62A, 2-70A, 2-81A, and 2-87A) and L2 may be a ligand represented by Formulae 3-1 to 3-25 (for example, Formula 3-1). In this regard, in Formulae 2-1 to 2-111 (for example, Formulae 2-1A, 2-2A, 2-61A, 2-62A, 2-70A, 2-81A, and 2-87A) and Formulae 3-1 to 3-25, Z1 (or Z1a and Z1b), Z2 (or Zea, Z2b, and Z2c), and Z3 and Z4 may be each independently selected from


a hydrogen, —F, a cyano group, a nitro group, —SF5, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one of —F, a cyano group, and a nitro group.


The organometallic compound represented by Formula 1 may be one of Compounds 1 to 15:




embedded image


embedded image


embedded image


The organometallic compound represented by Formula 1 is “neutral”. In other words, the organometallic compound represented by Formula 1 is not a salt in which a positive ion and a negative ion form a pair, and thus, a layer including the organometallic compound represented by Formula 1 can be formed by a deposition method. For example, the organometallic compound represented by Formula 1 may be formed under conditions of a temperature range of about 100° C. to about 500° C., in a vacuum degree range of about 10−8 torr to about 10−3 torr and a deposition speed range of about 0.01 Angstrom per second (Å/sec) to about 100 Å/sec. Accordingly, producibility of a device including the organometallic compound represented by Formula 1 may be improved.


Also, the organometallic compound represented by Formula 1 necessarily includes a ligand represented by Formula 2 and a ligand represented by Formula 3, but Formula 2 excludes a case in which all of Z1 and Z2 are a hydrogen. In other words, at least one of CY1 and CY2 in the ligand represented by Formula 2 necessarily includes a substituent that is not a hydrogen. Also, Formula 2 excludes a case in which Z1 is a hydrogen, a2 is 1, and Z2 is a hydrogen, a methyl group, or a diethylamino group.


The ligand represented by Formula 2 has excellent hypsochromic effects that contribute to emission of deep blue light. Also, the ligand represented by Formula 3 contributes to improving the synthetic yield and purity of the organometallic compound. Accordingly, the organometallic compound represented by Formula 1 may emit deep blue light and improve efficiency and lifespan of an organic light emitting device comprising the organometallic compound.


For example, the organometallic compound represented by Formula 1 may emit deep blue light having a maximum spectrum wavelength in a range of about 420 nanometers (nm) to about 500 nm, x color coordinates in a range of about 0.15 to about 0.22, and y color coordinates in range of about 0.10 to about 0.34.


A synthesis method for the organometallic compound represented by Formula 1 may be easily understood by one of ordinary skill in the art based on the synthesis examples described below.


Accordingly, the organometallic compound represented by Formula 1 may be suitable to be used as a dopant in an organic layer of an organic light-emitting device, for example, in an emission layer of the organic layer. According to another embodiment, an organic light-emitting device includes


a first electrode;

    • a second electrode; and


an organic layer including at least one organometallic compound represented by Formula 1, which is disposed between the first electrode and the second electrode, wherein the organic layer also includes an emission layer.


The organic light-emitting device includes the organic layer including the organometallic compound represented by Formula 1 to have low driving voltage, high efficiency, high brightness, and a long lifespan. Also, the organic light-emitting device including the organometallic compound represented by Formula 1 may emit deep blue light having a maximum spectrum wavelength in a range of about 420 nm to about 500 nm, x color coordinates in a range of about 0.15 to about 0.22, and y coordinates in range of about 0.10 to about 0.34.


The organometallic compound represented by Formula 1 may be used in a pair of electrodes in an organic light-emitting device. For example, the organometallic compound represented by Formula 1 may be included in the emission layer. In this regard, the organometallic compound acts as a dopant and the emission layer may further include a host (in other words, an amount of the organometallic compound represented by Formula 1 may be smaller than that of the host).


As used herein, the expression the “(organic layer) includes at least one organometallic compound” may be construed as meaning the “(organic layer) may include one organometallic compound in a range of Formula 1 or two different organometallic compounds in a range of Formula 1”.


For example, the organic layer may include only Compound 1 as the organometallic compound. In this regard, Compound 1 may be included in the emission layer of the organic light-emitting device. Alternatively, the organic layer may include Compound 1 and Compound 2 as the organometallic compounds. In this regard, Compound 1 and Compound 2 may be included in the same layer (for example, Compound 1 and Compound 2 may all be included in the emission layer).


The first electrode is anode, which is a hole injection electrode, and the second electrode is a cathode, which is an electron injection electrode. Alternatively, the first electrode is a cathode, which is an electron injection electrode, and the second electrode is an anode, which is a hole injection electrode.


For example,


the first electrode may be an anode,


the second electrode may be a cathode, and


the organic layer may include

    • i) a hole-transport region disposed between the first electrode and the emission layer and including at least one of a hole injection layer, a hole-transport layer, and an electron blocking layer; and
    • ii) an electron transport region disposed between the emission layer and the second electrode and including at least one of a hole blocking layer, an electron transport layer, and an electron injection layer.


As used herein, the term the “organic layer” refers to a single and/or a plurality of layers disposed between the first electrode and the second electrode organic light-emitting device. The “organic layer” may include not only organic compounds but also organometallic complexes including metals.



FIG. 1 is a schematic view of an organic light-emitting device 10 according to an embodiment. Hereinafter, a structure and a method of manufacturing the organic light-emitting device according to an embodiment will be described with reference to FIG. 1. The organic light-emitting device 10 includes a first electrode 11, an organic layer 15, and a second electrode 19, which are sequentially layered in the stated order.


A substrate may be additionally disposed under the first electrode 11 or on the second electrode 19. The substrate may be a conventional glass substrate or a transparent plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water repellency.


The first electrode 11 may be formed by depositing or sputtering a material for forming the first electrode 11 on the substrate. The first electrode 11 may be an anode. The material for the first electrode 11 may be selected from materials with a high work function for an easy hole injection. The first electrode 11 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The material for the first electrode 110 may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). Alternatively, a metal such as magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag).


The first electrode 11 may have a single layer structure or a multi-layer structure including two or more layers. For example, the first electrode 11 may have a triple-layer structure of ITO/Ag/ITO, but it is not limited thereto.


The organic layer 15 is disposed on the first electrode 11.


The organic layer 15 may include a hole transport region, an emission layer (EML), and an electron transport region.


The hole transport region may be disposed between the first electrode 11 and the EML.


The hole transport region may include at least one of the hole-injection layer (HIL), hole-transport layer (HTL), electron-blocking layer (EBL), and buffer layer.


The hole transport region may only include a HIL or a HTL. Alternatively, the hole transport region may include a structure in which HIL/HTL or HIL/HTL/EBL are sequentially layered on the first electrode 11.


When the hole transport region includes the HIL, the HIL may be formed on the first electrode 11 by using various methods such as vacuum deposition, spin coating, casting, and Langmuir-Blodgett (LB) method.


When an HIL is formed by vacuum deposition, for example, the vacuum deposition may be performed at a deposition temperature of about 100 to about 500° C., at a vacuum degree of about 10−8 to about 10−3 torr, and at a deposition rate of about 0.01 Å/sec to about 100 Å/sec, though the conditions may vary depending on a compound that is used as a hole injection material and a structure and thermal properties of a desired HIL.


When an HIL is formed by spin coating, the spin coating may be performed at a coating rate of about 2,000 revolutions per minute (rpm) to about 5,000 rpm, and at a temperature of about 80° C. to 200° C. for removing a solvent after the spin coating, though the conditions may vary depending on a compound that is used as a hole injection material and a structure and thermal properties of a desired HIL.


The conditions for forming the HTL and EBL may be inferred based on the conditions for forming the HIL.


The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, a spiro-TPD, a spiro-NPB, α-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (Pani/CSA), (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201 below, and a compound represented by Formula 202 below:




embedded image


embedded image


embedded image


In Formula 201, Ar101 and Ar102 may be each independently selected from a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenyl group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenyl group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group.


In Formula 201, xa and xb may be each independently an integer from 0 to 5, or 0, 1, or 2. For example, xa may be 1 and xb may be 0, but they are not limited thereto.


In Formulae 201 and 202, R101 to R108, R111 to R119 and R121 to R124 may be each independently one of


a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group) and a C1-C10 alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group);


a C1-C10 alkyl group and a C1-C10 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a pyrenyl group; and


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a pyrenyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, and a C1-C10 alkoxy group, but they are not limited thereto.


In Formula 201, R109 may be one of a phenyl group, a naphthyl group, an anthracenyl group and a pyridinyl group; and


a phenyl group, a naphthyl group, an anthracenyl group and a pyridinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group.


According to an embodiment, the compound represented by Formula 201 may be represented by Formula 201A, but it is not limited thereto:




embedded image


In Formula 201A, descriptions of R101, R111, R112, and R109 may be as described above.


For example, the compound represented by Formula 201 and the compound represented by Formula 202 may include Compounds HT1 to HT20, but they are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes the HIL and the HTL, a thickness of the HIL may be about 50 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å, a thickness of the HTL may be about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the HIL, and the HTL are within the ranges described above, satisfactory hole transporting properties may be obtained without a substantial increase in a driving voltage.


The hole transport region may further include, in addition to the abovementioned materials, a charge-generating material for the improvement of conductive properties. The charge-generating material may be homogeneously or non-homogeneously dispersed throughout the hole transport region.


The charge-generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but it is not limited thereto. For example, non-limiting examples of the p-dopant are a quinone derivative, such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ); a metal oxide, such as a tungsten oxide or a molybdenum oxide; and Compound HT-D1 illustrated below, but it is not limited thereto.




embedded image


The hole transport region may further include a buffer layer.


The buffer layer may compensate for an optical resonance distance according to a wavelength of light emitted from the EML to improve the efficiency of an organic light-emitting device.


An EML may be formed on the hole transport region by using various methods, such as vacuum deposition, spin coating, casting, or an LB method. When the EML is formed by vacuum deposition or spin coating, deposition and coating conditions for the EML may be similar to the conditions for forming the HIL, though the conditions may vary depending on the compound used.


The EML may include a host and a dopant and the dopant may include the organometallic compound represented by Formula 1.


The host may include at least one of TPBi, TBADN, AND (also known as “DNA”), CBP, CDBP, and TCP:




embedded image


embedded image


Alternatively, the host may further include a compound represented by Formula 301:




embedded image


In Formula 301, Ar111 and Ar112 may be each independently


a phenylene group, a naphthylene group, a phenanthrenylene group, a fluorenyl group and a pyrenylene group;


a phenylene group, a naphthylene group, a phenanthrenylene group, a fluorenyl group and a pyrenylene group, each substituted with at least one of a phenyl group, a naphthyl group, and an anthracenyl group.


In Formula 301, Ar113 to Ar116 may be each independently selected from


a C1-C10 alkyl group;

    • a phenyl group, a naphthyl group, a phenanthrenyl group, and a pyrenyl group; and


a phenyl group, a naphthyl group, a phenanthrenyl group, and a fluorenyl group, each substituted with at least one of a phenyl group, a naphthyl group, and an anthracenyl group.


In Formula 301, g, h, i, and j may be each independently an integer from 0 to 4, for example, 0, 1, or 2.


In Formula 301, Ar113 to Ar116 may be each independently selected from


a C1-C10 alkyl group substituted with at least one of a phenyl group, a naphthyl group, and an anthracenyl group;


a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group;


a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group; and




embedded image


but they are not limited thereto.


Alternatively, the host may include a compound represented by Formula 302:




embedded image


In Formula 302, descriptions of Ar122 to Ar125 are as described in the description of Ar113 in Formula 301.


In Formula 302, Ar126 and Ar127 may be each independently a C1-C10 alkyl group (for example, a methyl group, an ethyl group, or a propyl group).


In Formula 302, k and l may be each independently an integer from 0 to 4. For example, k and l may be 0, 1, or 2.


The compound represented by Formula 301 and the compound represented by Formula 302 may include Compounds H1 to H42, but they are not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


When the organic light-emitting device is a full color organic light-emitting device, the EML may be patterned into a red EML, a green EML, and a blue EML. Alternatively, the EML may have a structure in which the red EML, the green EML, and/or the blue EML are layered to emit white light or other various embodiments are possible.


When the EML includes the host and the dopant, an amount of the dopant may be selected from a range of about 0.01 parts by weight to about 15 parts by weight based on 100 parts by weight of the host, but the amount is not limited thereto.


A thickness of the EML may be about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the EML is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


Then, an electron transport region may be disposed on the EML.


The electron transport region may include at least one selected from a HBL, an ETL, and an EIL, but is not limited thereto.


For example, the electron transport region may have a structure of HBL/ETL/EIL or ETL/EIL, but it is not limited thereto. The ETL may have a single layer structure or a multi-layer structure including two or more different materials.


Conditions for forming the HBL, ETL, and EIL of the electron transport region are as described in the conditions for forming the HIL.


When the electron transport region includes an HBL, the HBL may, for example, include at least one of BCP and Bphen, but it is not limited thereto.




embedded image


A thickness of the HBL may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thickness of the HBL is within the range described above, the HBL may have excellent hole blocking characteristics without a substantial increase in driving voltage.


The ETL may include at least one of BCP and Bphen, and may further include at least one of Alq3, Balq, TAZ, and NTAZ.




embedded image


Alternatively, the ETL may include at least one of Compounds ET1 and ET2, but it is not limited thereto.




embedded image


A thickness of the ETL may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the ETL is within the range described above, the ETL may have satisfactory electron transportation characteristics without a substantial increase in driving voltage.


Also, the ETL may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2.




embedded image


The electron transport region may include an EIL that facilitates electron injection from the second electrode 19.


The EIL may include at least one selected from, LiF, NaCl, CsF, Li2O, and BaO.


A thickness of the EIL may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the EIL is within the range described above, the EIL may have satisfactory electron transportation characteristics without a substantial increase in driving voltage.


The second electrode 19 is disposed on the organic layer 15 having the structure described above. The second electrode 19 may be a cathode. A material for the second electrode 19 may be a material having a low work function, and such a material may be a metal, an alloy, an electrically conductive compound, or a mixture thereof. Detailed examples of the material for forming second electrode 19 are lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). Alternatively, ITO or IZO may be used to form a transmissive second electrode 19 to manufacture a top emission light-emitting device.


Hereinbefore, the organic light-emitting device has been described with reference to FIG. 1.


A C1-C60 alkyl group as used herein refers to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms. Detailed examples thereof are a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C1-C60 alkylene as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


A C1-C60 alkoxy group as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group). Detailed examples thereof are a methoxy group, an ethoxy group, and an isopropyloxy group.


A C2-C60 alkenyl group as used herein refers to a hydrocarbon group formed by substituting at least one carbon double bond in the middle or at the terminal of the C2-C60 alkyl group. Detailed examples thereof are an ethenyl group, a propenyl group, and a butenyl group. A C2-C60 as alkenylene group used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


A C2-C60 alkynyl group as used herein refers to a hydrocarbon group formed by substituting at least one carbon triple bond in the middle or terminal of the C2-C60 alkyl group. Detailed examples thereof are an ethynyl group and a propynyl group. A C2-C60 alkynylene group as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


A C3-C10 cycloalkyl group as used herein refers to a monovalent hydrocarbon monocyclic group having 3 to 10 carbon atoms. Detailed examples thereof are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C3-C10 cycloalkylene group as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


A C3-C10 heterocycloalkyl group as used herein refers to a monovalent monocyclic group having at least one heteroatom selected from N, O, P, and S as a ring-forming atom and 3 to 10 carbon atoms. Detailed examples thereof are tetrahydrofuranyl and tetrahydrothiophenyl. A C3-C10 heterocycloalkylene group as used herein refers to a divalent group having the same structure as the C3-C10 heterocycloalkyl group.


A C3-C10 cycloalkenyl group as used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one double bond in the ring thereof and is not aromatic. Detailed examples thereof are a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C3-C10 cycloalkenylene group as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


A C2-C10 heterocycloalkenyl group as used herein refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, P, and S as a ring-forming atom, 2 to 10 carbon atoms, and at least one double bond in its ring.


Detailed examples of the C2-C10 heterocycloalkenyl group are a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. A C2-C10 heterocycloalkenylene group as used herein refers to a divalent group having the same structure as the C2-C10 heterocycloalkenyl group.


A C2-C10 heterocycloalkenyl group as used herein refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, P, and S as a ring-forming atom, 2 to 10 carbon atoms, and at least one double bond in its ring. Detailed examples of the C2-C10 heterocycloalkenyl group are a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. A C2-C10 heterocycloalkenylene group as used herein refers to a divalent group having the same structure as the C2-C10 heterocycloalkenyl group.


A C6-C60 aryl group as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Detailed examples of the C6-C60 aryl group are a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be fused to each other.


A C2-C60 heteroaryl group as used herein refers to a monovalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, P, and S as a ring-forming atom, and 2 to 60 carbon atoms. A C2-C60 heteroarylene group used herein refers to a divalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, P, and S as a ring-forming atom, and 2 to 60 carbon atoms. Detailed examples of the C2-C60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. If the C2-C60 heteroaryl group and the C2-C60 heteroarylene group each include two or more rings, the rings may be fused to each other.


A C6-C60 aryloxy group as used herein indicates —OA102 (wherein A102 is the C6-C60 aryl) and a C6-C60 arylthio group used herein indicates —SA103 (wherein A103 is the C6-C60 aryl group).


A monovalent non-aromatic condensed polycyclic group (for example, having 8 to 60 carbon atoms) as used herein refers to a monovalent group that has two or more rings condensed to each other, only carbon atoms as ring-forming atoms, wherein the entire molecule is non-aromatic. A detailed example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. A divalent non-aromatic condensed polycyclic group as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


A monovalent non-aromatic condensed heteropolycyclic group (for example, having 2 to 60 carbon atoms) as used herein refers to a monovalent group that has two or more rings condensed to each other, has a heteroatom selected from N, O P, and S, other than carbon atoms, as a ring forming atom, and is non-aromatic in the entire molecular structure. Detailed examples of the monovalent non-aromatic condensed heteropolycyclic group are a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


As used herein, at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C2-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic hetero-condensed polycyclic group may be selected from


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group;


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic hetero-condensed polycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35) and —B(Q36)(Q37); wherein,


Q1 to Q7, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently a hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic hetero-condensed polycyclic group.


According to an embodiment, as used herein, at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C2-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group and the substituted monovalent non-aromatic hetero-condensed polycyclic group may be selected from


a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, C1-C60 alkyl group, C2-C60 alkenyl group, C2-C60 alkynyl group and C1-C60 alkoxy group;


a C1-C60 alkyl, a C2-C60 alkenyl, a C2-C60 alkynyl, and a C1-C60 alkoxy, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl, a dibenzocarbazolyl, an imidazopyridinyl group, an imidazopyrimidinyl group, N(Q11)(Q12), —Si(Q13)(Q14)(Q15), and —B(Q16)(Q17);


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl, a dibenzocarbazolyl, an imidazopyridinyl group, and an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl, a dibenzocarbazolyl, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl, a C2-C60 alkenyl, a C2-C60 alkynyl, a C1-C60 alkoxy, phenyl, naphthyl, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), and —B(Q26)(Q27); and


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37); wherein,


Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently a hydrogen, a C1-C60 alkyl, a C2-C60 alkenyl, a C2-C60 alkynyl, a C1-C60 alkoxy, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl, a dibenzocarbazolyl, an imidazopyridinyl group, and an imidazopyrimidinyl group.


Hereinafter, an organic light-emitting device according to an embodiment will be described in detail with reference to Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an amount of B used was identical to an amount of A used based on molar equivalence.


EXAMPLE
Synthesis Example 1
Synthesis of Compound 1



embedded image


2,2′-dipyridylamine (68.5 mg, 0.4 mmol) and 2.6 M n-BuLi were reacted in hexane (0.15 mL) to obtain Intermediate A.


Thereafter, in a 50 mL flask, Intermediate A was added in a drop-wise manner to Intermediate 1 [{(Methyl-F2CF3ppy)2Ir(μ-Cl)}2] (314 mg, 0.2 mmol) in THF (15 mL), stirred at a temperature of 80° C. for 16 hours in a nitrogen atmosphere, cooled to room temperature, and a solvent was removed therefrom in vacuum. To completely remove THF from the products obtained therefrom, the products were dissolved in toluene, a solvent was removed therefrom at a reduced pressure, the products were re-dissolved in toluene, filtered to remove lithium chloride, and then washed with Et2O, thereby obtain Compound 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 7.76 (d, J=8.50 Hz, 2H), 7.52 (m, 4H), 7.36 (m, 2H), 7.27-7.31 (m, 2H), 6.86-6.94 (m, 2H), 5.97 (d, J=7.50, 2 H), 5.87 (d, J=7.52 Hz, 2H), 2.52 (s, 6H).


MS=908.1


Synthesis Example 2
Synthesis of Compound 2



embedded image


Compound 2 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 2 [{(F2CNppy)2Ir(μ-Cl)}2] (263 mg, 0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 9.70 (d, J=8.34 Hz, 2H), 8.27-8.18 (m, 4H), 7.53-7.45 (m, 2H), 6.77 (d, J=8.50 Hz, 2H), 5.82-5.73 (m, 4H), 5.58-5.69 (m, 2H)


MS=794.1


Synthesis Example 3
Synthesis of Compound 3



embedded image


Compound 3 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 3 [{(tert-butyl-F2PyPy)2Ir(μ-Cl)}2] (288 mg, 0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 8.86 (d, J=8.40 Hz, 2H), 8.46 (d, J=5.30 Hz, 2H), 8.22 (d, J=7.30 Hz, 2H), 8.15-7.82 (m, 4H), 7.85-7.76 (m, 4H), 7.35-7.43 (m, 2H), 1.34 (s, 18H).


MS=857.8


Synthesis Example 4
Synthesis of Compound 5



embedded image


Compound 5 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 5 [{(F2PyPy)2Ir(μ-Cl)}2] (245 mg, 0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 8.82 (d, J=8.40 Hz, 2H), 8.53 (d, J=5.50 Hz, 2H), 8.22 (d, J=7.28, 2 H), 8.05-7.93 (m, 4H), 7.85-7.75 (m, 4H), 7.37-7.31 (m, 2H).


MS=746.16


Synthesis Example 5
Synthesis of Compound 11



embedded image


Compound 11 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 11 [{(Trifluoromethyl-N-methyl-phenylimidazole)2Ir(μ-Cl)}2] (271 mg, 0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 8.32 (d, J=8.08 Hz, 2H), 7.56-7.67 (m, 6H), 7.13 (s, 2H), 6.96-7.02 (m, 2H), 6.85-6.91 (m, 2H), 6.56-6.61 (m, 2H), 6.28 (d, J=7.55 Hz, 2H), 4.18 (s, 6H).


MS=813


Synthesis Example 6
Synthesis of Compound 12



embedded image


Compound 12 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 12 (288 mg, 0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 7.94 (d, J=7.80 Hz, 2H), 7.54 (m, 2H), 7.38 (d, J=5.45 2 H), 7.20-7.11 (m, 4H), 7.08 (d, J=8.50 Hz, 2H), 6.80 (m, 2H), 6.28 (d, J=7.55 Hz, 2H), 4.29 (s, 3H), 4.03 (s, 3H).


MS=857


Synthesis Example 7
Synthesis of Compound 15



embedded image


Compound 15 was obtained in the same manner as in Synthesis Example 1, except that Intermediate 15 [{(N-methyl-phenylimidazole)2Ir(μ-Cl)}2] (0.2 mmol) was used instead of Intermediate 1.



1H NMR (300 MHz, CD2Cl2, rt): δ 8.30 (d, J=8.05 Hz, 2H), 7.5-7.65 (m, 6H), 7.13 (s, 2H), 6.92-7.05 (m, 2H), 6.81-6.97 (m, 2H), 6.5-6.63 (m, 2H), 6.20-6.35 (m, 4H), 4.18 (s, 6H).


Evaluation Example

Compound 1 was dissolved in toluene to a concentration of 10 mM and then an ISC PC1 spectrofluorometer in which a Xenon lamp was mounted was used to measure an in-solution photoluminescence spectrum of Compound 1. The same process was repeated for Compounds 2, 3, 5, 11, 12, and 15 and PL spectra of Compound 1, 2, 3, 5, 11, 12, and 15 are shown in FIGS. 2 to 8, respectively.


Meanwhile, a CH2Cl2 solution of PMMA and 8 percent by weight (wt %) of Compound 1 were mixed, and a mixture obtained therefrom was coated on a quarts substrate by using a spin coater, which was heat-treated in an oven at a temperature of 80° C. and then cooled to room temperature to obtain a film, and the film was used to evaluate luminescence quantum efficiency and color purity of Compound 1. A luminescence quantum yield in film and color coordination in film of Compound 1 were evaluated by using a Hamamatsu Photonics absolute PL quantum yield measurement system in which a xenon light source, a monochromator, a photonic multichannel analyzer, and an integrating sphere were mounted, and PLQY measurement software (Hamamatsu Photonics, Ltd., Shizuoka, Japan) was used. The same process was repeated for Compounds 2, 3, 5, 11, 12, and 15 and Compounds A and B to evaluate luminescence quantum yields in film with respect to Compound 1, 2, 3, 5, 11, 12, and 15 and luminescence quantum yields in film with respect to Compounds A and B and color purity data and the results obtained therefrom are shown in Table 1.




embedded image


embedded image













TABLE 1






Maximum






emission
Luminescence




Compound
wavelength
quantum
X color
Y color


No.
(nm)
yield (%)
coordinates
coordinates



















1
484
66
0.19
0.34


2
480
65
0.16
0.24


3
446, 472
78
0.16
0.14


5
442, 472
85
0.17
0.15


11
492
88
0.18
0.31


12
425
55
0.15
0.10


15
492
89
0.18
0.21


A
530
87
0.32
0.6


B
504
35
0.28
0.56









According to FIGS. 2 to 8 and Table 1, Compounds 1, 2, 3, 5, 11, 12, and 15 are capable of emitting blue light having better purity than Compounds A and B, and have excellent efficiency.


As described above, according to the one or more of the above embodiments, the organometallic compound has excellent electrical properties and thermal stability, such that an organic light-emitting device including the organometallic compound may have low driving voltage, high efficiency, high brightness, and long lifespan properties.


It should be understood that the exemplary embodiments described therein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.


While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims.

Claims
  • 1. An organometallic compound represented by Formula 1: M(L1)n1(L2)n2  Formula 1whereinL1 is a ligand represented by Formula 2 andL2 is a ligand represented by Formula 3;
  • 2. The organometallic compound of claim 1, wherein CY1 and CY2 are each independently selected from a benzene, a naphthalene, a fluorene, a spiro-fluorene, an indene, a pyrrole, a thiopene, a furan, an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isooxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, a quinoline, an isoquinoline, a benzoquinoline, a quinoxaline, a quinazoline, a carbazole, a benzoimidazole, a benzofuran, a benzothiopene, an isobenzothiopene, a benzooxazole, an isobenzooxazole, a triazole, a tetrazole, an oxadiazole, a triazine, a dibenzofuran, and a dibenzothiopene.
  • 3. The organometallic compound of claim 1, wherein CY1 is selected from a pyridine, a pyrimidine, a pyrazine, a triazine, a triazole, an imidazole, and a pyrazole andCY2 is selected from a benzene, a pyridine, a pyrimidine, a pyrazine, a triazine, a carbazole, a dibenzofuran, and a dibenzothiopene.
  • 4. The organometallic compound of claim 1, wherein CY1 is selected from a pyridine, a triazole, an imidazole, and a pyrazole andCY2 is selected from a benzene, a pyridine, a dibenzofuran, and a dibenzothiopene.
  • 5. The organometallic compound of claim 1, wherein CY1 and CY2 are connected by a single bond or through a first linking group, wherein the first linking group is selected from connectors represented by Formula 6: *—(Z31)b1—*′  Formula 6wherein Z31 is selected from *—O—*′, *—S—*′, *—N(Q41)-*′, *—C(Q42)(Q43)-*′, *—C(Q44)═C(Q45)-*′ and
  • 6. The organometallic compound of claim 1, wherein CY3 and CY4 are each independently selected from a pyrrole, an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isooxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, a quinoline, an isoquinoline, a benzoquinoline, a quinoxaline, a quinazoline, a benzoimidazole, a benzooxazole, an isobenzooxazole, a triazole, a tetrazole, an oxadiazole, and a triazine.
  • 7. The organometallic compound of claim 1, wherein CY3 and CY4 are each independently selected from a pyridine, a pyrazine, a pyrimidine, a pyridazine, and a triazine.
  • 8. The organometallic compound of claim 1, wherein Z1 to Z4 are each independently,a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —N(Q31)(Q32), —Si(Q33)(Q34)(Q35), and —B(Q36)(Q37); and—N(Q1)(Q2), —Si(Q3)(Q4)(Q5) and —B(Q6)(Q7); whereinQ1 to Q7 and Q31 to Q37 are each independently, a hydrogen, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a chrysenyl group, a carbazolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinazolinyl group, and a quinoxalinyl group.
  • 9. The organometallic compound of claim 1, wherein Z1 to Z4 are each independently,a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, —SF5, a C1-C20 alkyl group, and a C1-C20 alkoxy group;a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; anda phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzooxazolyl group, an isobenzooxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.
  • 10. The organometallic compound of claim 1, wherein Z1 to Z4 are each independently selected froma hydrogen, —F, a cyano group, a nitro group, —SF5, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; anda methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one of —F, a cyano group, and a nitro group.
  • 11. The organometallic compound of claim 1, wherein in Formula 1, L1 is selected from Formulae 2-1 to 2-111:
  • 12. The organometallic compound of Formula 1, wherein L1 is selected from Formulae 2-1A, 2-2A, 2-61A, 2-62A, 2-70A, 2-81A, and 2-87A:
  • 13. The organometallic compound of claim 1, wherein L2 is selected from Formulae 3-1 to 3-25 below:
  • 14. The organometallic compound of claim 13, wherein Z3 and Z4 are each independently selected froma hydrogen, —F, a cyano group, a nitro group, —SF5, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; anda methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one of —F, a cyano group, and a nitro group.
  • 15. The organometallic compound of claim 1, wherein n1 is 2 and n2 is 1.
  • 16. The organometallic compound of claim 1, wherein the compound is selected from Compounds 1 to 15:
  • 17. An organic light-emitting device comprising: a first electrode;a second electrode; andan organic layer disposed between the first electrode and the second electrode,wherein the organic layer comprises an emission layer and at least one organometallic compound according to claim 1.
  • 18. The organic light-emitting device of claim 17, wherein the first electrode is an anode,the second electrode is a cathode, andthe organic layer comprisesi) a hole transport region disposed between the first electrode and the emission layer and comprising at least one of a hole injection layer, a hole-transport layer, and an electron blocking layer; andii) an electron transport region disposed between the emission layer and the second electrode and comprising at least one of a hole blocking layer, an electron transport layer, and an electron injection layer.
  • 19. The organic light-emitting device of claim 17, wherein the emission layer comprises the organometallic compound,the emission layer further comprises a host, andan amount of the organometallic compound is smaller than an amount of the host.
  • 20. The organic light-emitting device of claim 17, wherein the organic light-emitting device emits deep blue light having a maximum emission wavelength in a range of about 420 nanometers to about 500 nanometers, x color coordinates in a range of about 0.15 to about 0.22, and y color coordinates in a range of about 0.10 to about 0.34.
Priority Claims (1)
Number Date Country Kind
10-2014-0012791 Feb 2014 KR national