ORGANOMETALLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

Abstract
An organometallic compound represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is based on and claims priority to Korean Patent Application No. 10-2021-0164867, filed on Nov. 25, 2021, in the Korean Intellectual Property Office, and all the benefits accruing therefrom under 35 U.S.C. § 119, the entire content of which is incorporated by reference herein.


BACKGROUND
1. Field

One or more embodiments relate to an organometallic compound and an organic light-emitting device including the same.


2. Description of the Related Art

Organic light-emitting devices (OLEDs) are self-emissive devices, which have improved characteristics in terms of viewing angles, response time, brightness, driving voltage, and response speed. OLEDs may also produce full-color images.


For example, an organic light-emitting device includes an anode, a cathode, and an organic layer located between the anode and the cathode, wherein the organic layer includes an emission layer. A hole transport region may be located between the anode and the emission layer, and an electron transport region may be located between the emission layer and the cathode. Holes provided from the anode may move toward the emission layer through the hole transport region, and electrons provided from the cathode may move toward the emission layer through the electron transport region. The holes and the electrons recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state, thereby generating light.


SUMMARY

One or more embodiments include an organometallic compound and an organic light-emitting device using the same.


Additional aspects will be set forth in part in the detailed description which follows and, in part, will be apparent from the detailed description, or may be learned by practice of the presented exemplary embodiments herein.


According to an aspect, provided is an organometallic compound represented by Formula 1:





M1(L11)n11(L12)n12   Formula 1


wherein, in Formula 1,


M1 is a first-row transition metal of the Periodic Table of Elements, a second-row transition metal of the Periodic Table of Elements, or a third-row transition metal of the Periodic Table of Elements,


L11 is a ligand represented by Formula 1-1,


L12 is a monodentate ligand or a bidentate ligand,


n11 is 1,


n12 is 0, 1, or 2,




embedded image


wherein, in Formula 1-1,


*1 to *4 each indicates a binding site to M1,


ring A20, ring A30, and ring A40 are each independently a C5-C30 carbocyclic group or a C1-C30 heterocyclic group,


T1 is a single bond, *—N(R1)—*′, *—B(R1)—*′, *—P(R1)—*′, *—C(R1)(R2)—*′, *—Si(R1)(R2)—*′, *—Ge(R1)(R2)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(R1)═C(R2)—*′, *—C(═S)—*′, or *—C≡C—*′,


T2 is a single bond, *—N(R3)—*′, *—B(R3)—*′, *—P(R3)—*′, *—C(R3)(R4)—*′, *—Si(R3)(R4)—*′, *—Ge(R3)(R4)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(R3)═C(R4)—*′, *—C(═S)—*′, or *—CEC—*′,


X11 is C(R11) or N, X12 is C(R12) or N, X13 is C(R13) or N, and X14 is C(R14) or N,


X20 is C or N, X21 is C or N, and X22 is C or N,


X30 is C or N, X31 is C or N, and X32 is C or N,


X40 is C or N, and X41 is C or N, and


Ar1 is a group represented by Formula 2,




embedded image


wherein, in Formula 2,


E1 is a C1-C60 alkyl group substituted with deuterium, or a substituted or unsubstituted C1-C60 aryl group,


E2 to E5 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Q8)(Q9), or —P(═O)(Q8)(Q9), at least one of E2 to E5 is not hydrogen, with the proviso that when E1 is a C1-C60 alkyl group substituted with deuterium and E5 is a C1-C60 alkyl group substituted with deuterium, at least one of E2 to E4 is not hydrogen,


with the proviso that when E1 is a substituted or unsubstituted C1-C60 aryl group, Ar1 has an asymmetric structure,


* and *′ each indicates a binding site to a neighboring atom,


R1 to R4, R11 to R14, R20, R30, and R40 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted CI-Coo alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Qs)(Q9), or —P(═O)(Qs)(Q9),


neighboring two or more of R1 to R4, R11 to R14, R20, R30, or R40 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


two or more of R20 in the number of b20 are optionally be linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


two or more of R30 in the number of b30 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


two or more of R40 in the number of b40 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


b20, b30, and b40 are each independently 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10,


when b20 is 2 or greater, two or more of R20 are identical to or different from each other, when b30 is 2 or greater, two or more of R30 are identical to or different from each other, and when b40 is 2 or greater, two or more of R40 are identical to or different from each other.


at least one substituent of the substituted C5-C30 carbocyclic group, the substituted C1-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C1-C60 alkylthio group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C7-C60 alkyl aryl group, the substituted C7-C60 aryl alkyl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted C2-C60 alkyl heteroaryl group, the substituted C2-C60 heteroaryl alkyl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is:


deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, or a C1-C60 alkylthio group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, or a C1-C60 alkylthio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q11)(Q12), —Si(Q13)(Q14)(Q15), —B(Q16)(Q17), —P(Q18)(Q19), —P(═O)(Q18)(Q19), or a combination thereof;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one of deuterium, —F, —Cl, —Br, —SF5, —CD3, —CD2H, -CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a Ce-C60 aryloxy group, a Ce-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), —B(Q26)(Q27), —P(Q28)(Q29), —P(═O)(Q28)(Q29), or a combination thereof; or


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), —B(Q36)(Q37), —P(Q38)(Q39), or —P(═O)(Q38)(Q39), and


Q1 to Q9, Q11 to Q19, Q21 to Q29, and Q31 to Q39 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group.


According to another aspect, provided is an organic light-emitting device including: a first electrode; a second electrode; and an organic layer located between the first electrode and the second electrode, wherein the organic layer includes an emission layer, and wherein the organic layer further inlcudes at least one of the organometallic compound.


The organometallic compound may be included in the emission layer of the organic layer, and the organometallic compound included in the emission layer may act as a dopant.





BRIEF DESCRIPTION OF THE DRAWING

The above and other aspects, features, and advantages of one or more exemplary embodiments will be more apparent from the following detailed description taken in conjunction with the FIGURE, which is a schematic cross-sectional view showing an organic light-emitting device according to one or more embodiments.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.


The terminology used herein is for the purpose of describing one or more exemplary embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “or” means “and/or.” It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.


Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.


It will be understood that when an element is referred to as being “on” another element, it can be directly in contact with the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this general inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±30%, 20%, 10%, 5% of the stated value.


Hereinafter, a work function or a highest occupied molecular orbital (HOMO) energy level is expressed as an absolute value from a vacuum level. In addition, when the work function or the HOMO energy level is referred to be “deep,” “high” or “large,” the work function or the HOMO energy level has a large absolute value based on “0 eV” of the vacuum level, while when the work function or the HOMO energy level is referred to be “shallow,” “low,” or “small,” the work function or HOMO energy level has a small absolute value based on “0 eV” of the vacuum level.


An aspect provides an organometallic compound represented by Formula 1:





M1(L11)n11(L12)n12   Formula 1


wherein, in Formula 1, M1 may be a first-row transition metal of the Periodic Table of Elements, a second-row transition metal of the Periodic Table of Elements, or a third-row transition metal of the Periodic Table of Elements.


In one or more embodiments, M1 in Formula 1 may be beryllium (Be), magnesium (Mg), aluminum (Al), calcium (Ca), titanium (Ti), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), zirconium (Zr), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), rhenium (Re), platinum (Pt), or gold (Au).


In one or more embodiments, M1 may be Pd, Pt, or Au.


In one or more embodiments, M1 in Formula 1 may be Pt or Pd.


In one or more embodiments, M1 in Formula 1 may be Pt.


L11 in Formula 1 is a ligand represented by Formula 1-1:




embedded image


wherein, in Formula 1-1, *1 to *4 are each independently a binding site to M1.


Ring A20 and ring A30 in Formula 1 are each independently a C5-C30 carbocyclic group or a C1-C30 heterocyclic group.


In one or more embodiments, ring A20 and ring A30 may each independently be:


a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, an indazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a benzotriazole group, a diazaindene group, a triazaindene group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In one or more embodiments, A40 may be a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a fluorene group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a triazaindene group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In one or more embodiments, A40 may be a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In one or more embodiments, ring A20 may be a group represented by one of Formulae A20-1 to A20-13:




embedded image


embedded image


wherein, in Formulae A20-1 to A20-13,


X20 is as described in the present specification,


Y21 may be a single bond, O, S, N(R26), C(R26)(R27), or Si(R26)(R27),


R21 to R29 are each independently as described in connection with R20, and


* indicates a binding site to Mi, and is the as described in connection with *2,


*′ and *″ each indicates a binding site to a neighboring atom.


In one or more embodiments, A30 may be a group represented by one of Formulae A30-1 to A30-12:




embedded image


embedded image


embedded image


wherein, in Formulae A30-1 to A30-12,


X30 is as described in the present specification,


Y31 may be a single bond, O, S, N(R37), C(R37)(R38), or Si(R37)(R38),


R31 to R38 are each independently as described in connection with R30, and


* indicates a binding site to M1, and is as described in connection with *3, and


*′ and *″ each indicates a binding site to a neighboring atom.


In one or more embodiments, A40 may be a group represented by one of Formulae A40-1 to A40-16:




embedded image


embedded image


embedded image


wherein, in Formulae A40-1 to A40-16,


X40 and R40 are each as described in the present specification,


Y41 may be a single bond, O, S, N(R46), C(R46)(R47), or Si(R46)(R47),


R41 to R49 are each independently as described in connection with R40, and


* indicates a binding site to M1, as described in connection with *4, and



*1 indicates a binding site to a neighboring atom.


Ar1 in Formula 1-1 is a group represented by Formula 2:




embedded image


wherein, in Formula 2, E1 is a C1-C60 alkyl group substituted with deuterium, or a substituted or unsubstituted C1-C60 aryl group.


* in Formula 2 indicates a binding site to a neighboring atom.


E2 to E5 in Formula 2 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Q8)(Q9), or —P(═O)(Q8)(Q9), and


at least one of E2 to E5 is not hydrogen.


In Formula 2, when E1 is a C1-C60 alkyl group substituted with deuterium and E5 is a C1-C60 alkyl group substituted with deuterium, at least one of E2 to E4 is not hydrogen.


In Formula 2, when E1 is a substituted or unsubstituted C1-C60 aryl group, Ar1 has an asymmetric structure.


In one or more embodiments, E1 may be:


a C1-C30 alkyl group substituted with deuterium;


a C1-C60 aryl group; or


a C1-C60 aryl group substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof.


In one or more embodiments, E1 may be:


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a neo-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, or a tert-decyl group, each substituted with at least one deuterium;


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group; or


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, or a chrysenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosporic acid grouop or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclohepteny group, a phenyl group, a napthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof.


hydrogen, deuterium, —F, —Cl, —Br, —I, or —SF5;


a C1-C30 alkyl group;


a C1-C30 alkyl group substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a sald thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkythio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl, a phenyl group, a napthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a napthyl group, a a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a napthyl group, a fluorenyl group, a phenanthreny group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group,a furanyl group, an imidazolyl group, an pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl groupo, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group; or


a phenyl group, a napthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl groupk, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group,k a thiopheyl group, a furanyl group, a imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl groupk, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl groupm a quiinoxalinyl group, a quiinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl grouop, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopoyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkythio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a napthyl group, a pyridinyl grouop, a pyrimidinyl group, or a combination thereof.


In one or more embodiments, E2 to E5 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5a cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl grouip, a neo-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl grouop, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a cyclopentyl group, a cyclohexyl group, a cyclohetyl group, a cyclooctyl goup, an adamanrtanyl group, a norbornanyl group, a norbornenyl group, a cyuclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinylo groupm, a quinoxalinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopoyridinyl group, or an imidazopyrimidinyl group; or


a methyl grouop, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a neo-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an issoctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, a n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl grooup, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or a combination thereof.


In one or more embodiments, An may be a group represented by one of Formulae Ar1-1 to Ar1-14:




embedded image


embedded image


wherein, in Formulae Ar1-1 to Ar1-14,


E11 may be a C1-C60 alkyl group substituted with deuterium, or a substituted or unsubstituted C1-C60 aryl group,


E21 may be a C1-C60 alkyl group substituted with deuterium, or a substituted or unsubstituted C1-C60 aryl group,


E21 and E25 may be different from each other,


E31 and E35 may each independently be a C1-C60 alkyl group substituted with deuterium,


E12 to E15, E22 to E25, and E32 to E34 may each independently be deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Q8)(Q9), or —P(═O)(Qs)(Q9), and


* indicates a binding site to a neighboring atom.


In one or more embodiments, E11, E21, and E31 in Formulae Ar1-1 to Ar1-14 are each independently as described in connection with E1 in Formula 2.


In one or more embodiments, E12 to E15, E22 to E25, and E32 to E35 in Formulae Ar1-1 to Ar1-14 are each independently as described in connection with E2 to E5 in Formula 2.


In one or more embodiments, An may be a group represented by one of Formulae Ar1(1) to Ar1(104):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein, in Formulae Ar1 (1) to Ar1(104),


* indicates a binding site to a neighboring atom.


In one or more embodiments, Ar1 may be a group having an asymmetric structure. As used herein, the term “asymmetric structure” means that the group Ar1 includes substituent groups that are arranged in an asymmetric manner to provide asymmetry to the Ar1 group.


R1 to R4, R11 to R14, R20, R30, and R40 in Formula 1-1 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Qs)(Q9), or —P(═O)(Qs)(Q9), and


neighboring two or more of R1 to R4, R11 to R14, R20, R30, or R40 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group.


two or more of R20 in the number of b20 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


two or more of R30 in the number of b30 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


two or more of R40 in the number of b40 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group,


b20, b30, and b40 in Formula 1-1 are each independently 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, and


when b20 is 2 or greater, two or more of R20 are identical to or different from each other, when b30 is 2 or greater, two or more of R30 are identical to or different from each other, and when b40 is 2 or greater, two or more of R40 are identical to or different from each other.


In one or more embodiments, R1 to R4, R11 to R14, R20, R30, and R40 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C2o alkylthio group;


a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkylthio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CF H2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or a combination thereof; or


—N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Q8)(Q9), or —P(═O)(Q8)(Q9), and Q1 to Q9 may each independently be:


—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;


an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; or


an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with deuterium, a C1-C10 alkyl group, a phenyl group, or a combination thereof.


In one or more embodiments, R1 to R4, R10, R20, R30, and R40 may each independently be hydrogen, deuterium, —F, a cyano group, a nitro group, —SF5, —CH3, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a group represented by one of Formulae 9-1 to 9-61, or a group represented by one of Formulae 10-1 to 10-359:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein, in Formulae 9-1 to 9-61 and 10-1 to 10-359, * indicates a binding site to a neighboring atom, “Ph” indicates a phenyl group, “TMS” indicates a trimethylsilyl group, and “TMG” indicates a trimethylgermyl group.


When b10 is 2, two of Rio may be identical to or different from each other, and when b20 is 2 or more, two or more of R20 may be identical to each other or different from each other.


In Formula 1-1, two or more of a plurality of R10; two or more of a plurality of R2o; or neighboring two or more of R10, R20 to R22, or R31 to R37 are optionally linked together to form a substituted or unsubstituted C5-C30 carbocyclic group or a substituted or unsubstituted C1-C30 heterocyclic group.


In one or more embodiments, two or more of a plurality of Rio; two or more of a plurality of R20; or neighboring two or more of R10, R20 to R22, or R31 to R37 may optionally be linked together via a single bond, a double bond, or a first linking group to form a C5-C30 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C30 heterocyclic group unsubstituted or substituted with at least one R10a (for example, a fluorene group, a xanthene group, or an acridine group, each unsubstituted or substituted with at least one R10a). R10a is as described in connection with R10.


The first linking group may be *—N(R8)—*′, *—B(R8)—*′, *—P(R8)—*′, *—C(R8)(R9)—*′, *—Si(R8)(R9)—*′, *—Ge(R8)(R9)—*′, *—Se—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2-*I, *—C(R8)═*′, *═C(R8)—*′, *—C(R8)═C(R9)—*′, *—C(═S)—*′, or *—C□C—*′, R8 and R9 are each as described in connection with R10, and each of * and *′ indicates a binding site to a neighboring atom.


In one or more embodiments, Q1 to Q9, Q11 to Q19, Q21 to Q29 and Q31 to Q39 described herein may each independently be:


deuterium, —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;


an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; or


an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a neo-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with at least one of deuterium, a C1-C10 alkyl group, a phenyl group, or a combination thereof.


In one or more embodiments, the organometallic compound represented by Formula 1 may be represented by Formula 11:




embedded image


wherein, in Formula 11,


M1, Ar1, T1, and R11 to R14 are respectively as those described in the present specification,


R21 to R23 are each independently as described in connection with R20,


R31 to R36 are each independently as described in connection with R30, and


R41 to R44 are each independently as described in connection with R40.


In Formula 1-1, X20 is C or N, X21 is C or N, and X22 is C or N.


In Formula 1-1, X30 is C or N, X31 is C or N, and X32 is C or N.


In Formula 1-1, X40 is C or N, and X41 is C or N.


For example, X20 may be C. In one or more embodiments, X20 may be N.


For example, X30 may be C. In one or more embodiments, X30 may be N.


For example, X40 may be C. In one or more embodiments, X40 may be N.


In Formula 1-1, X20 is C or N, X21 is C or N, X22 is C or N, X31 is C or N, X32 is C or N, and X41 is C or N.


For example, X21 may be C. In one or more embodiments, X21 may be N.


For example, X22 may be C. In one or more embodiments, X22 may be N.


For example, X31 may be C. In one or more embodiments, X31 may be N.


For example, X32 may be C. In one or more embodiments, X32 may be N.


For example, X41 may be C. In one or more embodiments, X41 may be N.


In Formula 1-1, a bond between M1 and a moiety represented by




embedded image


a bond between M1 and ring A20,


a bond between M1 and ring A30, and


a bond between M1 and ring A40 may each independently be a covalent bond or a coordinate bond.


In one or more embodiments, two bonds of


a bond between M1 and




embedded image


a bond between M1 and ring A20,


a bond between M1 and ring A30, and


a bond between M1 and ring A40 may each be a covalent bond, and the other two bonds may each be a coordinate bond.


In one or more embodiments,


a bond between M1 and may be a coordinate bond,




embedded image


a bond between M1 and ring A20 may be a covalent bond,


a bond between M1 and ring A30 may be a covalent bond, and


a bond between M1 and ring A40 may be a coordinate bond.


In one or more embodiments, the organometallic compound may be electrically neutral.


L12 in Formula 1 may be a monodentate ligand or a bidentate ligand.


For example, L12 in Formula 1 may be a ligand represented by one of Formulae 7-1 to 7-11, but embodiments are not limited thereto:




embedded image


embedded image


wherein, in Formulae 7-1 to 7-11,


ring A71 and ring A72 may each independently be a C5-C20 carbocyclic group or a C1-C20 heterocyclic group,


X71 and X72 may each independently be C or N,


X73 may be N or C(Q73), X74 may be N or C(Q74), X75 may be N or C(Q75), X76 may be N or C(Q76), and X77 may be N or C(Q77),


X78 may be O, S, or N(Q78), and X79 may be O, S, or N(Q79),


Y71 and Y72 may each independently be a single bond, a double bond, a substituted or unsubstituted C1-C5 alkylene group, a substituted or unsubstituted C2-C5 alkenylene group, or a substituted or unsubstituted C6-C10 arylene group,


Z71 and Z72 may each independently be N, O, N(R74), P(R75)(R76), or AS(R75)(R76),


Z73 may be P or As,


Z74 may be CO or CH2,


R71 to R80 and Q73 to Q79 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C2-C60 heteroaryl alkyl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, wherein R71 and R72 may optionally be linked together to form a ring, R77 and R78 may optionally be linked together to form a ring, R78 and R79 may optionally be linked together to form a ring, and R79 and R80 may optionally be linked together to form a ring,


b71 and b72 may each independently be 1, 2, or 3, and


* and *′ each indicate a binding site to Mi.


For example, A71 and A72 in Formula 7-1 may each independently be a phenyl group, a naphthalene group, an imidazole group, a benzimidazole group, a pyridine group, a pyrimidine group, a triazine group, a quinoline group, or an isoquinoline group, but embodiments are not limited thereto.


For example, X72 and X79 in Formula 7-1 may each be N, but embodiments are not limited thereto.


For example, in Formula 7-7, X73 may be C(Q73), X74 may be C(Q74), X75 may be C(Q75), X76 may be C(Q76), and X77 may be C(Q77), but embodiments are not limited thereto.


For example, in Formula 7-8, X78 may be N(Q78), and X79 may be N(Q79), but embodiments are not limited thereto.


For example, Y71 and Y72 in Formulae 7-2, 7-3, and 7-8 may each independently be a substituted or unsubstituted methylene group or a substituted or unsubstituted phenylene group, but embodiments are not limited thereto.


For example, Z71 and Z72 in Formulae 7-1 and 7-2 may each be 0, but embodiments are not limited thereto.


For example, Z73 in Formula 7-4 may be P, but embodiments are not limited thereto.


For example, R71 to Rgo and Q73 to Q79 in Formulae 7-1 to 7-11 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —Sb5, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkylthio group;


a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkylthio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a (C1-C20 alkyl)phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C20 alkylphenyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl groouop, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopoyridinyl group, or an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, an anthracenyl group, a fluoranthenyl group, a fluorenyl group, a phenznthrenlyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q11)(Q12)(Q13), —B(Q11)(Q12), —N(Q11)(Q12), or a combination thereof; or


—Si(Q1)(Q2)(Q3), —B(Q1)(Q2), or —N(Q1)(Q2), and


Q1 to Q3 and Q11 to Q13 may each independently be:


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a 2-methylbutyl group, a sec-pentyl group, a tert-pentyl group, a neo-pentyl group, a 3-pentyl group, a 3-methyl-2-butyl group, a phenyl group, a biphenyl group, a C1-C20 alkylphenyl group, or a naphthyl group; or


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a 2-methylbutyl group, a sec-pentyl group, a tert-pentyl group, a neo-pentyl group, a 3-pentyl group, a 3-methyl-2-butyl group, a phenyl group, or a naphthyl group, each substituted with deuterium, a phenyl group, or a combination thereof, but embodiments are not limited thereto.


L12 in Formula 1 may be a ligand represented by one of Formulae 5-1 to 5-116 or Formulae 8-1 to 8-23, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein, in Formulae 5-1 to 5-116 and 8-1 to 8-23,


R51 to R53 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —Sb5, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkythio group;


a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkythio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an aminidino group, a hydrazine group, a hydrazone group, a carboxylic acid groupo or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a biphenyl group, a C1-C20 alkylphenyl group, a napthyl group, a pyridinyl a phenyl group, a biphenyl group, a C1-C20 alkylphenyl group, a napthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof.


a cyclopentyl group, a cyclohexyl grouop, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl grouop, a cycloheptenyl group, a phenyl group, a biphenyl group, a (C1-C20 alkyl)phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, a chrysenyl group, a pyrrolyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, a oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzofuranyl group, isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, s dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a (C1-C20 alkyl)phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl groupo, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, an benzoquinolinyl group, a quinoxalinyl group, a quinazolingl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl grooup, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substitued with at least one of deuterium, —F, —Cl, —Br, —Im —SF5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkythio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclo[2.2.1]heptanyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a (C1-C20 alkyl)phenyl group, a napthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluorantheyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl gropu, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoisothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q11)(Q12)(Q13), —B(Q11)(Q12), —N(Q11)(Q12), or a combination thereof; or


—Si(Q1)(Q2)(Q3), —B(Q1)(Q2), or —N(Q1)(Q2),


Q1 to Q3 and Q11 to Q13 may each independently be:


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a 2-methylbutyl group, a sec-pentyl group, a tert-pentyl group, a neo-pentyl group, a 3-pentyl group, a 3-methyl-2-butyl group, a phenyl group, a biphenyl group, a C1-C20 alkylphenyl group, or a naphthyl group; or


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a 2-methylbutyl group, a sec-pentyl group, a tert-pentyl group, a neo-pentyl group, a 3-pentyl group, a 3-methyl-2-butyl group, a phenyl group, or a naphthyl group, each substituted with at least one of deuterium, a phenyl group, or a combination thereof,


b51 and b54 may each independently be 1 or 2,


b53 and b55 may each independently be 1, 2, or 3,


b52 may be 1, 2, 3, or 4,


“Ph” represents a phenyl group,


“Ph-d5” represents a phenyl group wherein five hydrogen atoms on the phenyl group are substituted with deuterium, and


* and *′ each indicate a binding site to M1.


In Formula 1, n11 is 1, and n12 is 0, 1, or 2.


In one or more embodiments, in Formula 1, M1 may be Pt, n11 may be 1, and n12 may be 0, but embodiments are not limited thereto.


In one or more embodiments, the organometallic compound may be represented by one of Compounds 1 to 229:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The organometallic compound represented by Formula 1 may satisfy the structure of Formula 1 described above, and a moiety represented by




embedded image


in the Lii ligand represented by Formula 1-1 may include Ari which is a phenyl group substituted with a specific substituent. Without wishing to be bound to theory, due to such a structure, the organometallic compound may have improved photochemical stability, and may be suitable for deep blue light emission. Accordingly, an electronic device, for example, an organic light-emitting device, using the organometallic compound represented by Formula 1 may exhibit excellent luminescence efficiency, lifespan, and color purity.


Although not limited by a specific theory, the electron donating characteristics of Lii ligand may be enhanced by Ari, and thus, the charge transfer may be improved, thereby improving the structural stability of the organometallic compound. Accordingly, by using the organometallic compound, the efficiency and lifespan of an organic light-emitting device may be improved.


The highest occupied molecular orbital (HOMO) energy level, lowest unoccupied molecular orbital (LUMO) energy level, energy gap, the lowest excitation triplet (T1) energy level, and the lowest excitation singlet (S1) energy levels of the organometallic compound represented by Formula 1 were evaluated using a density functional theory (DFT) method of the Gaussian 09 program with the molecular structure optimization obtained at the B3LYP level, and results thereof are shown in Table 1. The energy levels are expressed in electron volts (eV).












TABLE 1





Compound
HOMO (eV)
LUMO (eV)
T1 (eV)


















Compound 1
−4.69
−1.23
2.68


Compound 2
−4.64
−1.19
2.65


Compound 3
−4.80
−1.33
2.67









Referring to Table 1, it was confirmed that the organometallic compound represented by Formula 1 has suitable electrical characteristics for use as a dopant in an electronic device, for example, an organic light-emitting device.


In one or more embodiments, the full width at half maximum (FWHM) of an emission peak of an emission spectrum or an electroluminescence (EL) spectrum of the organometallic compound may be about 75 nanometers (nm) or less. For example, the FWHM of the emission peak of the emission spectrum or the EL spectrum of the organometallic compound may be in a range of about 30 nm to about 75 nm, about 40 nm to about 70 nm, or about 45 nm to about 60 nm.


In one or more embodiments, a maximum emission wavelength (also referred to as an emission peak wavelength, Amax) of the emission peak of the emission spectrum or the EL spectrum of the organometallic compound may be in a range of about 410 nm to about 490 nm.


Synthesis methods of the organometallic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art and by referring to Synthesis Examples described herein.


Accordingly, the organometallic compound represented by Formula 1 may be suitable for use as a dopant in an organic layer, for example, an emission layer, of an organic light-emitting device. Thus, another aspect provides an organic light-emitting device including: a first electrode; a second electrode; and an organic layer that is located between the first electrode and the second electrode, wherein the organic layer includes an emission layer, and wherein the organic layer further includes at least one organometallic compound represented by Formula 1.


Since the organic light-emitting device includes the organic layer including the organometallic compound represented by Formula 1 as described above, excellent characteristics in terms of driving voltage, current efficiency, external quantum efficiency, roll-off ratio, and lifespan, and relatively narrow FWHM of the emission peak of the EL spectrum may be exhibited.


The organometallic compound represented by Formula 1 may be used between a pair of electrodes of an organic light-emitting device. For example, the organometallic compound represented by Formula 1 may be included in the emission layer. In this regard, the organometallic compound may act as a dopant, and the emission layer may further include a host (that is, an amount of the organometallic compound represented by Formula 1 in the emission layer is smaller than an amount of the host).


In one or more embodiments, the emission layer may emit blue light. For example, the emission layer may emit blue light having a maximum emission wavelength in a range of about 410 nm to about 490 nm.


The expression “(an organic layer) includes at least one of organometallic compounds” used herein may include a case in which “(an organic layer) includes identical organometallic compounds represented by Formula 1” and a case in which “(an organic layer) includes two or more different organometallic compounds represented by Formula 1.”


For example, the organic layer may include, as the organometallic compound, only Compound 1. In this regard, Compound 1 may be included in the emission layer of the organic light-emitting device. In one or more embodiments, the organic layer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in an identical layer (for example, both Compound 1 and Compound 2 may be present in the same emission layer).


The first electrode may be an anode, which is a hole injection electrode, and the second electrode may be a cathode, which is an electron injection electrode. Alternatively, the first electrode may be a cathode, which is an electron injection electrode, and the second electrode may be an anode, which is a hole injection electrode.


For example, in the organic light-emitting device, the first electrode may be an anode, the second electrode may be a cathode, and the organic layer may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode, wherein the hole transport region may include a hole injection layer, a hole transport layer, an electron blocking layer, a buffer layer, or a combination thereof, and the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof.


The term “organic layer” used herein refers to a single layer and/or a plurality of layers located between the first electrode and the second electrode of the organic light-emitting device. The “organic layer” may include, in addition to an organic compound, an organometallic complex including a metal.


The FIGURE is a schematic cross-sectional view of an organic light-emitting device 10 according to one or more embodiments. Hereinafter, the structure and manufacturing method of the organic light-emitting device 10 according to one or more embodiments will be described in connection with the FIGURE. The organic light-emitting device 10 includes a first electrode 11, an organic layer 15, and a second electrode 19, which are sequentially stacked.


A substrate may be additionally located under the first electrode 11 or on the second electrode 19. For use as the substrate, any substrate that is used in organic light-emitting devices and including those available in the art may be used, and for example, a glass substrate or a transparent plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and/or water resistance, may be used.


The first electrode 11 may be produced by depositing or sputtering, onto the substrate, a material for forming the first electrode 11. The first electrode 11 may be an anode. The material for forming the first electrode 11 may be selected from materials with a high work function for easy hole injection. The first electrode 11 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The material for forming the first electrode 11 may be at least one of indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), or zinc oxide (ZnO). In one or more embodiments, the material for forming the first electrode 11 may be metal, such as at least one of magnesium (Mg), aluminum (Al), silver (Ag), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag).


The first electrode 11 may have a single-layered structure or a multi-layered structure including a plurality of layers. For example, the first electrode 11 may have a three-layered structure of ITO/Ag/ITO, but embodiments are not limited thereto.


The organic layer 15 may be located on the first electrode 11.


The organic layer 15 may include a hole transport region, an emission layer, and an electron transport region.


The hole transport region may be located between the first electrode 11 and the emission layer.


The hole transport region may include a hole injection layer, a hole transport layer, an electron blocking layer, a buffer layer, or a combination thereof.


The hole transport region may include only either a hole injection layer or a hole transport layer. In one or more embodiments, the hole transport region may have a hole injection layer/hole transport layer structure or a hole injection layer/hole transport layer/electron blocking layer structure, wherein, for each structure, respective layers are sequentially stacked in this stated order from the first electrode 11.


When the hole transport region includes a hole injection layer, the hole injection layer may be formed on the first electrode 11 by using one or more suitable methods, for example, vacuum deposition, spin coating, casting, and/or Langmuir-Blodgett (LB) deposition.


When a hole injection layer is formed by vacuum deposition, the deposition conditions may vary according to a material that is used to form the hole injection layer, and the structure and thermal characteristics of the hole injection layer. For example, the deposition conditions may include a deposition temperature of about 100° C. to about 500° C., a vacuum pressure of about 10−8 torr to about 10−3 torr, and a deposition rate of about 0.01 angstroms per second (Å/sec) to about 100 Å/sec, but embodiments are not limited thereto.


When the hole injection layer is formed using spin coating, coating conditions may vary according to the material used to form the hole injection layer, and the structure and thermal properties of the hole injection layer. For example, a coating speed may be from about 2,000 revolutions per minute (rpm) to about 5,000 rpm, and a temperature at which a heat treatment is performed to remove a solvent after coating may be from about 80° C. to about 200° C., but embodiments are not limited thereto.


Conditions for forming the hole transport layer and the electron blocking layer may respectively be as the conditions for forming the hole injection layer.


The hole transport region may include at least one of 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA), 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris{N-(2-naphthyl)-N-phenylamino}-triphenylamine (2-TNATA) N,N′-di(1-naphthyl)-N,N′-diphenyibenzidine (NPB), β-NPB, N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1-biphenyl]-4,4′-diamine (TPD), spiro-TPD, spiro-NPB, methylated NPB, 4,4′-cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine] (TAPC), 4,4′-bis[N, N′-(3-tolyl)amino]-3,3′-dimethylbiphenyl (HMTPD), 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, or a compound represented by Formula 202:




embedded image


embedded image


embedded image




embedded image


wherein, in Formula 201, Ar101 and Ar102 may each independently be:


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, or a pentacenylene group; or


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, or a pentacenylene group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkyl group, a C1-C10 heterocycloalkenyl group, a C6-C69 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group.


In Formula 201, xa and xb may each independently be an integer from 0 to 5, or may each independently be 0, 1, or 2. For example, xa may be 1, and xb may be 0, but embodiments are not limited thereto.


R101 to R108, R111 to R119, and R121 to R124 in Formulae 201 and 202 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, pentyl group, a hexyl group, etc.), a C1-C10 alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, etc.), or a C1-C10 alkylthio group;


a C1-C10 alkyl group, a C1-C10 alkoxy group, or a C1-C10 alkylthio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof; or a combination thereof,


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, or a pyrenyl group; or


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, or a pyrenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C1-C10 alkylthio group, or a combination thereof,


but embodiments are not limited thereto.


R109 in Formula 201 may be:


a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group; or


a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group.


In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201A, but embodiments are not limited thereto:




embedded image


wherein, in Formula 201A, R101, R111, R112, and R109 are respectively as those described herein.


For example, the compounds represented by Formulae 201 and 202 may include one or more of Compounds HT1 to HT20, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 100 angstroms (Å) to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one of a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The hole transport region may further include, in addition to the materials as described above, a charge-generation material for improving conductive properties. The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.


The charge-generation material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, or a cyano group-containing compound, but embodiments are not limited thereto. For example, non-limiting examples of the p-dopant include: a quinone derivative, such as tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ), or F6-TCNNQ; a etal oxide, such as a tungsten oxide or a molybdenum oxide; or a compound containing a cyano group, such as Compound HT-D1 or Compound F12, but embodiments are not limited thereto:




embedded image


The hole transport region may further include a buffer layer.


The buffer layer may compensate for an optical resonance distance according to a wavelength of light emitted from the emission layer, and thus, efficiency of the light-emitting device may be improved.


An emission layer may be formed on the hole transport region by using one or more suitable methods, such as vacuum deposition, spin coating, casting, or LB deposition. When the emission layer is formed by vacuum deposition or spin coating, the deposition or coating conditions may be similar to those applied in forming the hole injection layer, though the deposition or coating conditions may vary according to a material that is used.


Meanwhile, when the hole transport region includes an electron blocking layer, a material for forming the electron blocking layer may be selected from materials for the hole transport region described above and host materials to be described below, but embodiments are not limited thereto. For example, when the hole transport region includes an electron blocking layer, the material for forming the electron blocking layer may be mCP, which will be described below.


The emission layer may include a host and a dopant, and the dopant may include the organometallic compound represented by Formula 1.


The host may include at least one selected from 1,3,5-tri(1-phenyl-1H-benzo[d]im idazol-2-yl)phenyl (TPBi), 3-tert-butyl-9,10-di(naphth-2-yl)anthracene (TBADN), 9,10-di(naphthalene-2-yl)anthracene (ADN) (also referred to as “DNA”), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 4,4′-bis(9-carbazolyl)-2,2′-dimethyl-biphenyl (CDBP), 1,3,5-tris(carbazole-9-yl)benzene (TCP), 1,3-bis(N-carbazolyl)benzene (mCP), Compound H50, or Compound H51:




embedded image


In one or more embodiments, the host may include a compound represented by Formula 301:




embedded image


wherein, in Formula 301, Ar111 and Ar112 may each independently be:


a phenylene group, a naphthylene group, a phenanthrenylene group, or a pyrenylene group; or


a phenylene group, a naphthylene group, a phenanthrenylene group, or a pyrenylene group, each substituted with at least one of a phenyl group, a naphthyl group, an anthracenyl group, or a combination thereof.


Ar113 to Ar116 in Formula 301 may each independently be:


a C1-C10 alkyl group, a phenyl group, a naphthyl group, a phenanthrenyl group, or a pyrenyl group; or


a phenyl group, a naphthyl group, a phenanthrenyl group, or a pyrenyl group, each substituted with at least one of a phenyl group, a naphthyl group, an anthracenyl group, or a combination thereof.


g, h, i, and j in Formula 301 may each independently be an integer from 0 to 4, and may be, for example, 0, 1, or 2.


Ar113 and Ar116 in Formula 301 may each independently be:


a C1-C10 alkyl group substituted with at least one of a phenyl group, a naphthyl group, an anthracenyl group, or a combination thereof;


a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, or a fluorenyl group;


a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, or a fluorenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, or a combination thereof; or a group represented by formula:




embedded image


but embodiments are not limited thereto.


In one or more embodiments, the host may include a compound represented by Formula 302:




embedded image


wherein, in Formula 302, Ar122 to Ar125 are each as described in connection with Ar113 in Formula 301.


Ar126 and Ar127 in Formula 302 may each independently be a C1-C10 alkyl group (for example, a methyl group, an ethyl group, or a propyl group).


k and l in Formula 302 may each independently be an integer from 0 to 4. For example, k and l may each be 0, 1, or 2.


When the organic light-emitting device 10 is a full-color organic light-emitting device 10, the emission layer may be patterned into a red emission layer, a green emission layer, and a blue emission layer. In one or more embodiments, due to a stacked structure including a red emission layer, a green emission layer, and/or a blue emission layer, the emission layer may emit white light, and various modifications are possible.


When the emission layer includes a host and a dopant, an amount of the dopant may be in a range of about 0.01 part by weight to about 15 parts by weight based on 100 parts by weight of the host, but embodiments are not limited thereto.


In one or more embodiments, the organic layer in organic light-emitting device may further include, in addition to the organometallic compound represented by Formula 1, a fluorescent dopant.


For example, the fluorescent dopant may be a condensed polycyclic compound, a styryl-based compound, or a combination thereof.


For example, the fluorescent dopant may include a naphthalene-containing core, a fluorene-containing core, a spiro-bifluorene-containing core, a benzofluorene-containing core, a dibenzofluorene-containing core, a phenanthrene-containing core, an anthracene-containing core, a fluoranthene-containing core, a triphenylene-containing core, a pyrene-containing core, a chrysene-containing core, a naphthacene-containing core, a picene-containing core, a perylene-containing core, a pentaphene-containing core, an indenoanthracene-containing core, a tetracene-containing core, a bisanthracene-containing core, or one of cores represented by Formulae 501-1 to 501-18, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


In one or more embodiments, the fluorescent dopant may be a styryl-amine-containing compound, a styryl-carbazole-containing compound, or a combination thereof, but embodiments are not limited thereto.


In one or more embodiments, the fluorescent dopant may be a compound represented by Formula 501:




embedded image


wherein, in Formula 501,


Ar501 may be:


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a tetracene group, a bisanthracene group, or a group represented by one of Formulae 501-1 to 501-18; or


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a tetracene group, a bisanthracene group, or a group represented by one of Formulae 501-1 to 501-18, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, or -Si(Q5oi)(Q502)(Q503),


wherein Q501 to Q503 may each independently be hydrogen, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, or a combination thereof,


L501 to L503 may each independently be a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


R501 and R502 may each independently be:


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group; or


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a combination thereof,


xd1 to xd3 may each independently be 0, 1, 2, or 3, and


xd4 may be 0, 1, 2, 3, 4, 5, or 6.


For example, in Formula 501,


Ar501 may be:


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a tetracene group, a bisanthracene group, or a group represented by one of Formulae 501-1 to 501-18; or


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a tetracene group, a bisanthracene group, or a group represented by one of Formulae 501-1 to 501-18, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, or —Si(Q501)(Q502)(Q503),


wherein Q501 to Q503 may each independently be hydrogen, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group or a naphthyl group, or a combination thereof,


L501 to L503 are each as described in connection with L21,


xd1 to xd3 may be each independently 0, 1, or 2, and


xd4 may be 0, 1, 2, or 3, but embodiments are not limited thereto.


In one or more embodiments, the fluorescent dopant may include a compound represented by one of Formulae 502-1 to 502-5:




embedded image


wherein, in Formulae 502-1 to 502-5,


X51 may be N or C-[(L501)xd1-R501], X52 may be N or C-[(L502)xd2-R502], X53 may be N or C-[(L503)xd3-R503], X54 may be N or C-[(L504)xd4-R504], X55 may be N or C-[(L505)xd5-R505], X56 may be N or C-[(L506)xd6-R506], X57 may be N or C-[(L507)xd7-R507], and X58 may be N or C-[(L508)xd8-R508],


L501 to L508 are each as described in connection with L501 in Formula 501,


xd1 to xd8 are each as described in connection with xd1 in Formula 501,


R501 to R508 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C20 alkylthio group;


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group; or


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a combination thereof,


xd11 and xd12 may each independently be 0, 1, 2, 3, 4, or 5,


two of R501 to R504 may optionally be linked together to form a saturated or unsaturated ring, and


two of R505 to R508 may optionally be linked together to form a saturated or unsaturated ring.


In one or more embodiments, the fluorescent dopant may be a delayed fluorescence dopant that emits delayed fluorescence based on a delayed fluorescence emission mechanism.


For example, the delayed fluorescence dopant may be (i) a compound having a D-A structure (wherein D indicates an electron donor group, and A indicates an electron acceptor group) or (ii) a condensed cyclic compound containing boron (B).


In one or more embodiments, the delayed fluorescence dopant may include a compound represented by Formula 503-1 or 503-2:




embedded image


wherein, in Formulae 503-1 and 503-2,


Y51 to Y54 may each independently be a single bond, O, S, N[(L506)xd6-R506], C[(L506)xd6-R506][(L507)xd7-R507], or Si[(L506)xd6-R506][(L507)xd7-R507],


m31 may be 0 or 1,


L501 to L507 are each as described in connection with L501 in Formula 501,


xd1 to xd7 are each as described in connection with xd1 in Formula 501,


R501 to R507 may each independently be:


hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, or a C1-C2o alkylthio group;


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazole group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group; or


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkylthio group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a combination thereof,


xd21 and xd23 may each independently be 0, 1, 2, 3, or 4,


xd22 and xd24 may each independently be 0, 1, 2, or 3,


xd25 may be 0, 1, or 2, and


two of R501 to R507 may optionally be linked together to form a saturated ring or an unsaturated ring.


The fluorescent dopant may include, for example, Compounds FD(1) to FD(16), or Compounds FD1 to FD14, or a combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


Next, the electron transport region may be located on the emission layer.


The electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof.


For example, the electron transport region may have a hole blocking layer/an electron transport layer/an electron injection layer structure or an electron transport layer/an electron injection layer structure, but embodiments are not limited thereto. The electron transport layer may have a single-layered structure or a multi-layered structure including two or more different materials.


Conditions for forming the hole blocking layer, the electron transport layer, and the electron injection layer which constitute the electron transport region may be similar to or the same as the conditions for forming the hole injection layer.


When the electron transport region includes a hole blocking layer, the hole blocking layer may include, for example, at least one of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), or bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-4-olato)aluminum (BAlq), but embodiments are not limited thereto:




embedded image


A thickness of the hole blocking layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thickness of the hole blocking layer is within these ranges, excellent hole blocking characteristics may be obtained without a substantial increase in driving voltage.


The electron transport layer may further include at least one of BCP, Bphen, tris(8-hydroxy-quinolinato)aluminum (Alq3), BAlq, 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ), or 4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole (NTAZ):




embedded image


In one or more embodiments, the electron transport layer may include at least one of Compounds ET1 to ET25, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within these ranges, excellent electron transport characteristics may be obtained without a substantial increase in driving voltage.


The electron transport layer may include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2:




embedded image


The electron transport region may include an electron injection layer that facilitates electron injection from the second electrode 19.


The electron injection layer may include at least one of LiF, NaCl, CsF, Li2O, or BaO.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within these ranges, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


The second electrode 19 may be located on the organic layer 15. The second electrode 19 may be a cathode. A material for forming the second electrode 19 may be metal, an alloy, an electrically conductive compound, or a combination thereof, which has a relatively low work function. Examples of the material for forming the second electrode 19 may include one or more of lithium (Li), magnesium (Mg), aluminum (Al), silver (Ag), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag). In one or more embodiments, to manufacture a top-emission type light-emitting device, a transmissive electrode formed using ITO or IZO may be used as the second electrode 19.


Hereinbefore, the organic light-emitting device has been described with reference to the FIGURE, but the exemplary embodiments are not limited thereto.


Another aspect provides a diagnostic composition including at least one organometallic compound represented by Formula 1.


The organometallic compound represented by Formula 1 provides high luminescence efficiency. Accordingly, a diagnostic composition including the organometallic compound may have high diagnostic efficiency.


The diagnostic composition may be applied in various ways, such as in a diagnostic kit, a diagnostic reagent, a biosensor, or a biomarker.


The term “C1-C60 alkyl group” as used herein refers to a linear or branched saturated aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms. Examples thereof include a methyl group, an ethyl group, a propyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by -OA101 (wherein A101 is a C1-C60 alkyl group). Examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C1-C60 alkylthio group” used herein refers to a monovalent group represented by -SA101′ (wherein A101′ is the C1-C60 alkyl group).


The term “C2-C60 alkenyl group” as used herein refers to a group formed by including at least one carbon-carbon double bond in the middle or at the terminus of the C2-C60 alkyl group. Examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein refers to a group formed by including at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group. Examples thereof include an ethenyl group and a propenyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent monocyclic saturated hydrocarbon group including 3 to 10 carbon atoms. Examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent monocyclic group including at least one heteroatom selected from N, O, P, Ge, Se, Si, and S as a ring-forming atom and 1 to 10 carbon atoms. Examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent monocyclic group including 3 to 10 carbon atoms and at least one carbon-carbon double bond in its ring, wherein the molecular structure as a whole is non-aromatic. Examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent monocyclic group including at least one heteroatom selected from N, O, P, Ge, Se, Si, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Examples of the C1-C10 heterocycloalkenyl group include a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. The term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the two or more rings may be fused to each other.


The term “C7-C60 alkyl aryl group” as used herein refers to a C6-C60 aryl group substituted with at least one C1-C60 alkyl group. The term “C7-C60 aryl alkyl group” as used herein refers to a C1-C60 alkyl group substituted with at least one C6-C60 aryl group.


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a heterocyclic aromatic system having at least one heteroatom selected from N, O, P, Ge, Se, Si, and S as a ring-forming atom and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a heterocyclic aromatic system having at least one heteroatom selected from N, O, P, Ge, Se, Si, and S as a ring-forming atom and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C6-C60 heteroaryl group and the C6-C60 heteroarylene group each include two or more rings, the two or more rings may be fused to each other.


The term “C2-C60 alkylheteroaryl group” as used herein refers to a C1-C60 heteroaryl group substituted with at least one C1-C60 alkyl group. The term “C2-C60 heteroaryl alkyl group” as used herein refers to a C1-C60 alkyl group substituted with at least one C1-C60 heteroaryl group.


The term “C6-C60 aryloxy group” as used herein refers to -0A102 (wherein Aio2 is the C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein refers to SA103 (wherein A103 is the C6-C60 aryl group).


The term “C1-C60 heteroaryloxy group” as used herein indicates -0A104 (wherein A104 is a C1-C60 heteroaryl group), and the term “C1-C60 heteroarylthio group” as used herein indicates -SA105 (wherein A105 is the C1-C60 heteroaryl group).


The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed polycyclic group include a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 2 to 60 carbon atoms) having two or more rings condensed with each other, at least one heteroatom selected from N, O, P, Ge, Se, Si, and S, other than carbon atoms, as a ring-forming atom, and no aromaticity in its entire molecular structure. Examples of the monovalent non-aromatic condensed heteropolycyclic group include a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C5-C30 carbocyclic group” as used herein refers to a saturated or unsaturated cyclic group including 5 to 30 carbon atoms only as ring-forming atoms. The C5-C30 carbocyclic group may be a monocyclic group or a polycyclic group.


The term “C1-C30 heterocyclic group” as used herein refers to saturated or unsaturated cyclic group including 1 to 30 carbon atoms and at least one heteroatom selected from N, O P, Ge, Se, Si, and S as ring-forming atoms. The C1-C30 heterocyclic group may be a monocyclic group or a polycyclic group.


At least one substituent of the substituted C5-C30 carbocyclic group, the substituted C1-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C1-C60 alkylthio group, the substituted C7-C60 aryl alkyl group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C7-C60 alkyl aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted C2-C60 alkyl heteroaryl group, the substituted C2-C60 heteroaryl alkyl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be:


deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, or a C1-C60 alkylthio group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, or a C1-C60 alkylthio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a Ce-C60 aryl group, a C7-C60 alkyl aryl group, a Ce-C60 aryloxy group, a Ce-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q11)(Q12), —Si(C213)(Q14)(Q15), —B(Q16)(Q17), —P(Q18)(Q19), —P(═O)(Q18)(Q19), or a combination thereof;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a Ce-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a Ce-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —Sb5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C1-C60 alkylthio group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C7-C60 aryl alkyl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C2-C60 heteroaryl alkyl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q21)(Q22), —Si(Q23)(Q24)(Q25), —B(Q26)(Q27), —P(═O)(Q28)(Q29), or a combination thereof; or


—N(Q31)(Q32), —Si(Q33)(Q34)(Q35), —B(Q36)(Q37), —P(Q38)(Q39), or —P(═O)(Q38)(Q39), and


Q1 to Q9, Q11 to Q19, Q21 to Q29, and Q31 to Q39 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, —SF5, a hydroxyl group, a cyano group, a nitro group, an am idino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C1-C60 alkylthio group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C7-C60 aryl alkyl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


Hereinafter, a compound and an organic light-emitting device according to one or more exemplary embodiments will be described in further detail with reference to Synthesis Examples and Examples. However, the exemplary embodiments are not limited thereto. The wording “‘B’ was used instead of ‘A’” as used in describing Synthesis Examples means that an amount of ‘A’ used was identical to an amount of ‘B’ used, in terms of a molar equivalent.


EXAMPLES
Synthesis Example 1
Synthesis of Compound 1
(1) Synthesis of Intermediate 1(1)



embedded image


10 grams (g) (36.6 millimoles (mmol)) of 1-(3-bromophenyl)-1H-benzo[d]imidazole and 18.7 g (47.6 mmol) of 9-(4-(tert-butyl)pyridin-2-yl)-6-phenyl-9H-carbazol-2-ol were dissolved in 360 milliliters (mL) of dimethyl sulfoxide (DMSO). Then, 2.1 g (11.0 mmol) of CuI, 31.1 g (146.4 mmol) of potassium phosphate (K3PO4), and 6.8 g (54.9 mmol) of picolinic acid were added thereto, followed by heating at reflux at a temperature of 100° C. for 12 hours. After completion of the reaction, the resultant was allowed to cool to room temperature, and an organic layer was extracted therefrom using a mixture of ethyl acetate and deionized (DI) water, the extracted organic layer was washed three times with DI water, the organic layer was then isolate dried using magnesium sulfate. Then, a solvent was removed therefrom under a reduced pressure to obtain a crude product. The crude product was purified by silica gel column flash chromatography (eluent: ethyl acetate and hexane) to obtain Intermediate 1(1) in a yield of 73%.


High performance liquid chromatograph-mass spectrometry (HPLC-MS): 585.24 [M+H]+.


(2) Synthesis of Intermediate 1(2)



embedded image


7.0 g (12.0 mmol) of Intermediate 1(1), 16.4 g (30.0 mmol) of (bis(4-(t-butyl)-2,6-bis(methyl-d3)phenyl)iodonium tetrafluoroborane, and 1.1 g (6.0 mmol) of copper acetate (Cu(OAc)2) were added to 50 mL of DMF, followed by heating at reflux at a temperature of 130° C. for 12 hours. The reaction was allowed to cool to room temperature and then a crude product was obtained by removing a solvent therefrom under a reduced pressure. The crude product was purified by silica gel flash column chromatography (eluent: dichloromethane and acetone) to obtain Intermediate 1(2) in a yield of 14%.


HPLC-MS: 751.41 [M-BE4]+.


(3) Synthesis of Compound 1



embedded image


0.6 g (1.7 mmol) of dichloro(1,5-cyclooctadiene)platinum(II) (Pt(COD)Cl2), 1.4 g (1.7 mmol) of Intermediate 1(2), and 0.4 g (5.0 mmol) of sodium acetate (NaOAc) were added to 30 mL of benzonitrile, followed by heating at reflux at a temperature of 180° C. for 12 hours. After completion of the reaction, the resultant was allowed to cool to room temperature, and a solvent was removed therefrom under a reduced pressure to obtain a crude product. The crude product was purified by silica gel flash column chromatography (eluent: dichloromethane and hexane) to obtain Compound 1 in a yield of 30%.


HPLC-MS: 944.35 [M+H]+.


Synthesis Example 2: Synthesis of Compound 2


(1) Synthesis of Intermediate 2(1)



embedded image


4.0 g (6.8 mmol) of Intermediate 1(1), 6.8 g (10.3 mmol) of (4,4′-di-t-butyl- [1,1′-biphenyl]-2-yl)(mesitypiodonium trifluoromethane sulfonate, and 0.13 g (0.7 mmol) of copper acetate (Cu(OAc)2) were added to 35 mL of DMF, followed by heating at reflux at a temperature of 130° C. for 12 hours. A crude product was obtained by removing a solvent therefrom under a reduced pressure. The crude product was purified by silica gel flash column chromatography (eluent: dichloromethane and acetone) to obtain Intermediate 2(1) in a yield of 51%.


HPLC-MS: 849.43 [M-OTf]+.


(2) Synthesis of Compound 2



embedded image


3.5 g (3.5 mmol) of Pt(COD)Cl2, 1.3 g (3.5 mmol) of Intermediate 2(1), and 0.9 g 5.0 mmol) of NaOAc were added to 60 mL of benzonitrile, followed by heating at reflux at a temperature of 180° C. for 12 hours. After completion of the reaction, the resultant was allowed to cool to room temperature, and a solvent was removed therefrom under a reduced pressure to obtain a crude product. The crude product was subjected to silica gel column chromatography (eluent: dichloromethane and hexane) to obtain Compound 2 in a yield of 38%.


HPLC-MS: 1042.37 [M+H]+.


Synthesis Example 3
Synthesis of Compound 3
(1) Synthesis of Intermediate 3(1)



embedded image


5.0 g (9.2 mmol) of 2-(3-(1H-benzo[d]imidazole-1-yl)phenoxy)-9-(4-(t-butyl)pyridine-2-yl)-6-chloro-9H-carbazole and 1.8 g (11.0 mmol) of 9H-carbazole were dissolved in 45 mL of xylene. Then, 0.5 g (0.9 mmol) of bis(dibenzylideneacetone)palladium(0) (Pd(dba)2), 1.8 g (18.4 mmol) of sodium tert-butoxide (NaOtBu), and 0.4 g (1.0 mmol) of 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos) were added thereto, followed by heating at reflux at a temperature of 110° C. for 12 hours. After completion of the reaction, the resultant was allowed to cool to room temperature, and an organic layer was extracted therefrom using a mixture of ethyl acetate and water. The organic layer was washed three times with DI water, isolated, and then dried using magnesium sulfate. Then, a solvent was removed therefrom under a reduced pressure to obtain a crude product. The crude product was purified by silica gel flash column chromatography (eluent: ethyl acetate and hexane) to obtain Intermediate 3(1) in a yield of 60%.


HPLC-MS: 674.28 [M+H]+.


(2) Synthesis of Intermediate 3(2)




embedded image


Intermediate 3(2) (yield of 30%) was synthesized in a similar manner as was used to synthesize Intermediate 1(2) in Synthesis Example 1, except that Intermediate 3(1) was used instead of Intermediate 1(1), and bis(5-(t-butyl)-2-(methyl-d3)phenyl)iodonium tetrafluoro-borane was used instead of bis(4-(t-butyl)-2,6-bis(methyl-d3)phenyl)iodonium tetrafluoro-borane.


HPLC-MS: 823.34 [M-BE4]+.


(3) Synthesis of Compound 3



embedded image


Compound 3 (yield of 26%) was synthesized in a similar manner as was used to synthesize Compound 1 in Synthesis Example 1, except that Intermediate 3(2) was used instead of Intermediate 1(2).


HPLC-MS: 1015.42 [M+H]+.


Example 1

An ITO glass substrate was cut to a size of 50 millimeters (mm)×50 mm×0.5 mm, sonicated in acetone, isopropyl alcohol, and DI water, each for 15 minutes, and then exposed to UV irradiation and ozone for 30 minutes.


Then, a layer of m-MTDATA was deposited on an ITO electrode (anode) on the glass substrate at a deposition rate of 1 Å/sec to form a hole injection layer having a thickness of 600 Å, and then, a layer of α-NPD was deposited on the hole injection layer at a deposition speed of 1 Å/sec to form a hole transport layer having a thickness of 250 Å.


A layer of 10 wt % of Compound 1 (dopant) and CBP (host) were co-deposited on the hole transport layer at a deposition rate of 0.1 Å/sec and a deposition rate of 1 Å/sec, respectively, to form an emission layer having a thickness of 400 Å.


A layer of BAlq was deposited on the emission layer at a deposition rate of 1 Å/sec to form a hole blocking layer having a thickness of 50 Å, a layer of Alq3 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, a layer of LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and then, a layer of Al was vacuum deposited on the electron injection layer to form a second electrode (cathode) having a thickness of 1,200 Å, thereby completing the manufacture of an organic light-emitting device having a structure of ITO/m-MTDATA (600 Å)/α-NPD (250 Å)/CBP+Compound 1 (10 wt %) (400 Å)/BAlq (50 Å)/Alq3 (300 Å)/LiF (10 Å)/Al (1,200 Å).




embedded image


Examples 2 and 3 and Comparative Examples 1 and 2

Organic light-emitting devices were manufactured in a similar manner as in Example 1, except that Compounds shown in Table 2 were each used instead of Compound 1 as a dopant in forming an emission layer.


Evaluation Example 1
Evaluation of Characteristics of Organic Light-emitting Devices

For each of the organic light-emitting devices manufactured according to Examples 1 to 3 and Comparative Examples 1 and 2, the maximum emission wavelength (λmax, nm), luminescence quantum efficiency (PLQY), and external quantum efficiency (EQE, %) were evaluated. The results are shown in Table 2. As evaluation apparatuses, a current-voltage meter (Keithley 2400) and a luminance meter (Minolta CS-1000A) were used.















TABLE 2








Dopant in emission
λmax

EQE




layer
(nm)
PLQY
(%)









Example 1
Compound 1
461
0.622
15.6



Example 2
Compound 2
462
0.671
16.6



Example 3
Compound 3
461
0.671
16.7



Comparative
Compound A
462
0.653
14.8



Example 1







Comparative
Compound B
462
0.609
14.5



Example 2









embedded image


embedded image


embedded image


embedded image


embedded image








From Table 2, it was confirmed that the organic light-emitting devices of Examples 1 to 3 had excellent luminescence quantum efficiency and external quantum efficiency, and were suitable for deep blue light emission. In particular, the organic light-emitting devices of Examples 1 to 3 had significantly greater external quantum efficiency compared to the organic light-emitting devices of Comparative Examples 1 and 2.


Example 4

An organic light-emitting device was manufactured in a similar manner as in Example 1, except that, in forming an emission layer, Compound CBP was used as a host at a weight ratio of 88.5 wt %, and Compound 3 and Compound FD14 were used as dopants at weight ratios of 10 wt % and1.5 wt %, respectively, each based on the total weight of the emission layer.


Comparative Example 3

An organic light-emitting device was manufactured in a similar manner as in Example 1, except that Compound FD14 was used as a dopant in forming an emission layer.


Evaluation Example 2
Evaluation of Characteristics of Organic Light-emitting Devices

For each of the organic light-emitting devices manufactured according to Example 4 and Comparative Example 3, the maximum emission wavelength (λmax, nm), external quantum efficiency (EQE, %, relative value), and lifespan characteristics (T95, %, relative value) were evaluated. The results are shown in Table 3. As evaluation apparatuses, a current-voltage meter (Keithley 2400) and a luminance meter (Minolta Cs-1000A) were used. The EQE are expressed as relative values based on Comparative Example 5 as 100%. The lifespan characteristics (T95) were evaluated by measuring the amount of time that elapsed until luminance was reduced to 95% of the initial luminance of 100% (the initial luminance was 1,000 candela per square meter (cd/m2), or nits), and the results are expressed as relative values based on Comparative Example 5 as 100%.













TABLE 3









Lifespan





EQE
(T95)



Dopant
λmax
(relative
(relative


No.
compound
(nm)
values)
values)







Example 4
Compound 3 +
462
182%
741%



Compound FD14





Comparative
Compound FD14
462
100%
100%


Example 5









From Table 3, it was confirmed that the organic light-emitting device of Example 4 had significantly improved external quantum efficiency and lifespan characteristics compared to the organic light-emitting device of Comparative Example 3.


The organometallic compound has excellent photochemically stability, and an organic light-emitting device using the organometallic compound may have improved efficiency and lifespan. Accordingly, by using the organometallic compound, a high-quality organic light-emitting device may be realized.


It should be understood that the exemplary embodiments described herein should be considered in a descriptive sense and not for purposes of limitation. Descriptions of exemplary features or aspects within each exemplary embodiment should typically be considered as available for other similar features or aspects in other exemplary embodiments. While one or more exemplary embodiments have been described with reference to the figure, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.

Claims
  • 1. An organometallic compound represented by Formula 1: M1(L11)n11(L12)n12   Formula 1
  • 2. The organometallic compound of claim 1, wherein M1 is beryllium (Be), magnesium (Mg), aluminum (Al), calcium (Ca), titanium (Ti), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), zirconium (Zr), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), rhenium (Re), platinum (Pt), or gold (Au).
  • 3. The organometallic compound of claim 1, wherein ring A20 and ring A30 are each independently a phenyl group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, an indole group, a carbazole group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, an indazole group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a benzotriazole group, a diazaindene group, a triazaindene group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group, and A40 is a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, an azafluorene group, an azacarbazole group, an azadibenzofuran group, an azadibenzothiophene group, an azadibenzosilole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.
  • 4. The organometallic compound of claim 1, wherein ring A20 is a group represented by one of Formulae A20-1 to A20-13:
  • 5. The organometallic compound of claim 1, wherein A30 is a group represented by one of Formulae A30-1 to A30-12:
  • 6. The organometallic compound of claim 1, wherein A40 is a group represented by one of Formulae A40-1 to A40-16:
  • 7. The organometallic compound of claim 1, wherein Ar1 is a group represented by one of Formulae Ar1-1 to Ar1-14:
  • 8. The organometallic compound of claim 1, wherein Ar1 is a group represented by one of Formulae Ar1(1) to Ar1(104):
  • 9. The organometallic compound of claim 1, wherein Ar1 has an asymmetric structure.
  • 10. The organometallic compound of claim 1, wherein R1 to R4, R11 to R14, R20, R30, and R40 are each independently: hydrogen, deuterium, —F, —Cl, —Br, —I, —Sb5, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF5, a C1-C20 alkyl group, a C1-C20 alkoxy group, or alkylthio group;a C1-C20 alkyl group, a C1-C20 alkoxy group, or C1-C20 alkythio group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyol group, a nornornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a napthyl group, a pyridinyl group, a pyrimidinyl group, or a combination thereof.a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthoracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrrolyl group, a thiolphenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a triazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinollinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —SF5, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C1-C20 alkythio group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl grouop, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, a cinnolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl, group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzoarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, or a combination thereof; or—N(Q1)(Q2), —Si(Q3)(Q4)(Q5), —B(Q6)(Q7), —P(Q8)(Q9), or —P(═O)(Q8)(Q9), and Q1 to Q9 are each independently:—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; oran n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with at least one of deuterium, a C1-C10 alkyl group, a phenyl group, or a combination thereof.
  • 11. The organometallic compound of claim 1, wherein the organometallic compound represented by Formula 1 is represented by Formula 11:
  • 12. The organometallic compound of claim 1, wherein the organometallic compound is electrically neutral.
  • 13. The organometallic compound of claim 1, wherein the organometallic compound is one of Compounds 1 to 229:
  • 14. An organic light-emitting device comprising: a first electrode;a second electrode; andan organic layer located between the first electrode and the second electrode,wherein the organic layer comprises an emission layer, andwherein the organic layer further comprises at least one of the organometallic compound of claim 1.
  • 15. The organic light-emitting device of claim 14, wherein the first electrode is an anode,the second electrode is a cathode,the organic layer further comprises a hole transport region located between the first electrode and the emission layer, and an electron transport region located between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an electron blocking layer, or a combination thereof, andthe electron transport region comprises a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 16. The organic light-emitting device of claim 14, wherein the emission layer comprises the at least one of the organometallic compound.
  • 17. The organic light-emitting device of claim 16, wherein the emission layer emits blue light having a maximum emission wavelength of about 410 nanometers to about 490 nanometers.
  • 18. The organic light-emitting device of claim 16, wherein the emission layer further comprises a host, wherein an amount of the host in the emission layer is greater than an amount of the organometallic compound in the emission layer.
  • 19. The organic light-emitting device of claim 16, wherein a proportion of luminescent components emitted from the organometallic compound with respect to total luminescent components emitted from the emission layer is about 80% or greater.
  • 20. The organic light-emitting device of claim 16, wherein the emission layer further comprises a fluorescent dopant,the fluorescent dopant is different from the organometallic compound, anda proportion of luminescent components emitted from the fluorescent dopant with respect to total luminescent components emitted from the emission layer is about 80% or more.
Priority Claims (1)
Number Date Country Kind
10-2021-0164867 Nov 2021 KR national