ORGANOMETALLIC COMPOUND, LIGHT-EMITTING DEVICE INCLUDING THE SAME, AND ELECTRONIC APPARATUS INCLUDING THE LIGHT-EMITTING DEVICE

Information

  • Patent Application
  • 20230270000
  • Publication Number
    20230270000
  • Date Filed
    January 05, 2023
    a year ago
  • Date Published
    August 24, 2023
    9 months ago
Abstract
Embodiments provide an organometallic compound, a light-emitting device that includes the organometallic compound, and an electronic apparatus that includes the light-emitting device. The light-emitting device includes a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer; and at least one of the organometallic compound, which is represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0024575 under 35 U.S.C. § 119, filed on Feb. 24, 2022, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

Embodiments relate to an organometallic compound, a light-emitting device including the same, and an electronic apparatus including the light-emitting device.


2. Description of the Related Art

Light-emitting devices are self-emissive devices that, as compared with devices of the related art, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, and produce full-color images.


In an example, a light-emitting device may have a structure in which a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state, thereby generating light.


It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.


SUMMARY

Provided are an organometallic compound having high efficiency and a long lifespan, a light-emitting device including the same, and an electronic apparatus including the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.


According to embodiments, an organometallic compound may be represented by Formula 1:




embedded image


In Formula 1,

    • M may be a transition metal,
    • CY1 to CY5 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • Y1 to Y4 may each independently be C or N,
    • A1 to A4 may each independently be a chemical bond, O, or S,
    • T1 to T3 may each independently be a single bond, a double bond, *—N[(L1)b1-(R1a)]—*′, *—B(R1a)—*′, *—P(R1a)—*′, *—C(R1a)(R1b)—*′, *—Si(R1a)(R1b)—*′, *—Ge(R1a)(R1b)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(R1a)=*′, *═C(R1a)—*′, *—C(R1a)═C(R1b)—*′, *—C(═S)—*′, or *—C≡C—*′,
    • a1 to a3 may each independently be an integer from 1 to 3,
    • * and *′ may each indicate a binding site to a neighboring atom,
    • L1 may be a single bond, a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • b1 may be an integer from 1 to 3,
    • R1 to R7, R1a, and R1b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group that is unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group that is unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • d1 to d5 may each independently be an integer from 0 to 10,
    • two or more groups of R1 to R7, R1a, and R1b may optionally be bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, CY1 to CY4 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzotriazole, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In an embodiment, in Formula 1, CY1 may be a group represented by one of Formulae CY1-1 to CY1-70, CY2 may be a group represented by one of Formulae CY2-1 to CY2-14, and CY4 may be a group represented by one of Formulae CY4-1 to CY4-70, wherein Formulae CY1-1 to CY1-70, CY2-1 to CY2-14, and CY4-1 to CY4-70 are explained below.


In an embodiment, in Formula 1, CY5 may be a C3-C10cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a non-aromatic condensed polycyclic group, or a non-aromatic condensed heteropolycyclic group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY3-1 to CY3-5, which are explained below.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY3-1(1), CY3-3(1) to CY3-3(4), CY3-4(1), and CY3-4(2), which are explained below.


In an embodiment, in Formula 1: R6 and R7 may be bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a; or R6 and R7 may not be bonded to each other.


In an embodiment, in Formula 1, Y1 may be C, and A1 may be a coordinate bond.


In an embodiment, in Formula 1, Y2 and Y3 may each be C, and Y4 may be N.


In an embodiment, the organometallic compound may be one of Compounds 1 to 100, which are explained below.


According to embodiments, provided is a light-emitting device which may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and at least one organometallic compound represented by Formula 1.


In an embodiment, the first electrode may be an anode; the second electrode may be a cathode; the interlayer may further include the at least one organometallic compound, a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode; the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof; and the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the emission layer may include the at least one organometallic compound.


In an embodiment, the emission layer may further include a host, and an amount of the at least one organometallic compound may be in a range of about 0.01 wt % to about 49.99 wt %, based on 100 wt % of the emission layer.


In an embodiment, the emission layer may further include a first compound and a second compound, and the first compound and the second compound may be different from each other.


In an embodiment, the first compound may be an electron transporting compound including at least one electron-donating group, and the second compound may be a hole transporting compound including at least one electron-withdrawing group.


In an embodiment, the emission layer may emit light having a maximum emission wavelength in a range of about 400 nm to about 500 nm.


According to embodiments, provided is an electronic apparatus which may include the light-emitting device.


In an embodiment, the electronic apparatus may further include a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode.


In an embodiment, electronic apparatus may further include a color filter, a color conversion layer, a quantum dot color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.


It is to be understood that the embodiments above are described in a generic and explanatory sense only and not for the purpose of limitation, and the disclosure is not limited to the embodiments described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the disclosure will be more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which



FIG. 1 is a schematic cross-sectional view of a light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment; and



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.


In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.


In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.


As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.


In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group of” for the purpose of its meaning and interpretation. For example, “at least one of A and B” may be understood to mean “A, B, or A and B.” When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.


Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.


The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.


The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within +20%, 10%, or ±5% of the stated value.


It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.


Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.


An organometallic compound according to an embodiment may be represented by Formula 1:




embedded image


In Formula 1, M may be a transition metal.


In an embodiment, M may be platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), rhodium (Rh), iridium (Ir), ruthenium (Ru), or osmium (Os).


In Formula 1, CY1 to CY5 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group.


In an embodiment, in Formula 1, CY1 to CY4 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzotriazole, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In an embodiment, in Formula 1, CY1 may be a group represented by one of Formulae CY1-1 to CY1-70, CY2 may be a group represented by one of Formulae CY2-1 to CY2-14, and CY4 may be a group represented by one of Formulae CY4-1 to CY4-70:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae CY1-1 to CY1-70, CY2-1 to CY2-14, and CY4-1 to CY4-70,

    • Y1, Y2, and Y4 may each be the same as described herein,
    • X11 may be C(R11) or N, X12 may be C(R12) or N, X13 may be C(R13) or N, X14 may be C(R14) or N, X15 may be C(R15) or N, X16 may be C(R16) or N, X17 may be C(R17) or N, and X18 may be C(R18) or N,
    • X19 may be C(R19a)(R19b), Si(R19a)(R19b), N(R19), O, or S,
    • X20 may be C(R20a)(R20b), Si(R20a)(R20b), N(R20), O, or S,
    • X21 may be C(R21) or N, X22 may be C(R22) or N, X23 may be C(R23) or N, X24 may be C(R24) or N, X25 may be C(R25) or N, X26 may be C(R26) or N, and X27 may be C(R27) or N,
    • X28 may be C(R28a)(R28b), Si(R28a)(R28b), N(R28), O, or S, wherein in Formula 2-18, X28 may be C(R28a), Si(R28a), or N,
    • X41 may be C(R41) or N, X42 may be C(R42) or N, X43 may be C(R43) or N, X44 may be C(R44) or N, X45 may be C(R45) or N, X46 may be C(R46) or N, X47 may be C(R47) or N, and X48 may be C(R48) or N,
    • X49 may be C(R49a)(R49b), Si(R49a)(R49b), N(R49), O, or S,
    • X50 may be C(R50a)(R50b), Si(R50a)(R50b), N(R50), O, or S,
    • R10 to R20, R12a, R13a, R15a to R20a, R12b, R13b, and R15b to R20b may each independently be the same as described in connection with R1 in Formula 1,
    • R21 to R28, R21a, R22a, R24a to R28a, R21b, R22b, and R24b to R28b may each independently be the same as described in connection with R2 in Formula 1,
    • R40 to R50, R42a, R43a, R45a to R50a, R42b, R43b, and R45b to R50b may each independently be the same as described in connection with R4 in Formula 1,
    • b10, b11, b40, and b41 may each independently be an integer from 1 to 4,
    • * may indicate a binding site to M, and
    • *′ in Formulae CY1-1 to CY1-70 may indicate a binding site to T1, *′ in Formulae CY2-1 to CY2-14 may indicate a binding site to T1, *″ may indicate a binding site to T2, and *′ in Formulae CY4-1 to CY4-70 may indicate a binding site to T3.


In an embodiment, in Formula 1, CY5 may be a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a non-aromatic condensed polycyclic group, or a non-aromatic condensed heteropolycyclic group.


In an embodiment, in Formula 1, CY5 may be a 3-membered group, a 4-membered group, a 5-membered group, a 6-membered group, or a 7-membered group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY3-1 to CY3-5:




embedded image


In Formulae CY3-1 to CY3-5,

    • X51 may be C, C(R51), or N,
    • X52 may be C, C(R52), or N,
    • X53 may be C(R53a), C(R53a)(R53b), Si(R53a)(R53b), N(R53a), N, O, or S,
    • X54 may be C(R54a), C(R54a)(R54b), Si(R54a)(R54b), N(R54a), N, O, or S,
    • X55 may be C(R55a), C(R55a)(R55b), Si(R55a)(R55b), N(R55a), N, O, or S,
    • X56 may be C(R56a), C(R56a)(R56b), Si(R56a)(R56b), N(R56a), N, O, or S,
    • X57 may be C(R57a), C(R57a)(R57b), Si(R56a)(R57b), N(R57a), N, O, or S,
    • Y3, CY3, R3, d3, R6, and R7 may each be the same as described herein,
    • R51, R52, R53a to R57a, and R53b to R57b may each independently be the same as described in connection with R5 in Formula 1,
    • * may indicate a binding site to M in Formula 1,
    • *′ may indicate a binding site to T2 in Formula 1, and
    • *″ may indicate a binding site to T3 in Formula 1.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY3-1(1), CY3-3(1) to CY3-3(4), CY3-4(1), and CY3-4(2):




embedded image


In Formula CY3-1(1), CY3-3(1) to CY3-3(4), CY3-4(1), and CY3-4(2),

    • X51 may be C(R51),
    • X52 may be C(R52),
    • X53 may be C(R53a) or N,
    • X54 may be C(R54a) or N,
    • X55 may be C(R55a) or N,
    • X56 may be C(R56a) or N,
    • X60 may be C(R60a)(R60b), Si(R60a)(R60b), N(R60a), O, or S,
    • X61 may be C(R11a)(R16b), Si(R11a)(R16b), N(R61a), O, or S,
    • X62 may be C(R62a)(R62b), Si(R62a)(R62b), N(R62a), O, or S,
    • X63 may be C(R63a)(R63b), Si(R63a)(R63b), N(R63a), O, or S,
    • X64 may be C(R64a)(R64b), Si(R64a)(R64b), N(R64a), O, or S,
    • Y3, CY3, R3, d3, R6, and R7 may each be the same as described herein,
    • R51, R52, R53a to R56a, R60a to R64a, and R60b to R64b may each independently be the same as described in connection with R5 in Formula 1,
    • * may indicate a binding site to M in Formula 1,
    • *′ may indicate a binding site to T2 in Formula 1, and
    • *″ may indicate a binding site to T3 in Formula 1.


In an embodiment, in Formulae CY3-1(1), CY3-3(1), and CY3-4(1),

    • X61 may be C(R61a)(R61b) or N(R61a),
    • X62 may be C(R62a)(R62b) or N(R62a),
    • X63 may be C(R63a)(R63b) or N(R63a), and
    • X64 may be C(R64a)(R64b) or N(R64a), wherein
    • R61a to R64a and R61b to R64b may each independently be the same as described in connection with R5 in Formula 1.


In an embodiment, in Formula CY3-4(1),

    • X61 may be C(R11a)(R16b), X62 may be C(R62a)(R62b), X63 may be N(R63a), and X64 may be C(R64a)(R64b); or
    • X61 may be C(R11a)(R16b), X62 may be N(R62a), X63 may be C(R63a)(R63b), and X64 may be C(R64a)(R64b).


In Formula 1, Y1 to Y4 may each independently be C or N.


In Formula 1, A1 to A4 may each independently be a chemical bond, O, or S.


The term “chemical bond” as used herein may include all types of bonds that may appear between atoms, and may be a covalent bond, a metal bond, or a coordinate bond.


In an embodiment, in Formula 1, Y1 may be C, and A1 may be a coordinate bond.


In an embodiment, in Formula 1, Y2 and Y3 may each be C, and Y4 may be N.


In Formula 1, T1 to T3 may each independently be a single bond, a double bond, *—N[(L1)b1-(R1a)]—*′, *—B(R1a)—*′, *—P(R1a)—*′, *—C(R1a)(R1b)—*′, *—Si(R1a)(R1b)—*′, *—Ge(R1a)(R1b)—*′, *—S—*′, *—Se—*′, *—O—*′, *—C(═O)—*′, *—S(═O)—*′, *—S(═O)2—*′, *—C(R1a)=*′, *═C(R1a)—*′, *—C(R1a)═C(R1b)—*′, *—C(═S)—*′, or *—C≡C—*′;

    • a1 to a3 may each independently be an integer from 1 to 3; and
    • * and *′ may each indicate a binding site to a neighboring atom.


In an embodiment, in Formula 1, T2 may be *—S—*′, *—Se—*′, or *—O—*′, and a2 may be 1.


In an embodiment, in Formula 1, T3 may be a single bond, and a3 may be 1.


In Formula 1, L1 may be a single bond, a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a.


In Formula 1, b1 may be an integer from 1 to 3.


In Formula 1, R1 to R7, R1a, and R1b may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group that is unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group that is unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In Formula 1, d1 to d5 may each independently be an integer from 0 to 10.


In Formula 1, two or more groups of R1 to R7, R1a, and R1b may optionally be bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 1: R6 and R7 may be bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a; or


R6 and R7 may not be bonded to each other.


In an embodiment, in Formula 1, R6 and R7 may each independently be a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, and


R6 and R7 may be bonded to each other to form a C3-C10 cycloalkyl group that is unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 1, at least one of R1(s) in the number of d1, R2(s) in the number of d2, R3(s) in the number of d3, R4(s) in the number of d4, or R5(s) in the number of d5 may be:

    • a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, in the organometallic compound represented by Formula 1, at least one hydrogen may be substituted with deuterium.


In an embodiment, the organometallic compound represented by Formula 1 may be represented by Formula 1-1:




embedded image


In Formula 1-1,


Y41 may be C or N, and


M, CY1 to CY5, Y1 to Y4, A1 to A4, T1 to T3, a1 to a3, R1 to R7, and d1 to d5 may each be the same as described herein.


The group “R10a” as utilized herein may be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, the organometallic compound represented by Formula 1 may be one of Compounds 1 to 100, but is not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Compounds 1 to 100, CD3 is a methyl group substituted with three deuterium atoms, and D5 indicates substitution with five deuterium atoms.


The organometallic compound represented by Formula 1 has a structure of a tetradentate organometallic compound including a moiety that include both an aromatic ring and an alkyl ring, for example, a condensed ring in which a cyclic group is additionally condensed to a tetrahydroquinoline-based group. Because the organometallic compound includes the condensed cyclic moiety, structural stability of the compound may be increased. Therefore, a light-emitting device including the organometallic compound may have improved lifespan.


Because the organometallic compound includes the condensed cyclic moiety, horizontal orientation is improved, and thus, a light-emitting device including the organometallic compound may have a low driving voltage and improved luminescence efficiency.


Therefore, an electronic device, for example, a light-emitting device, including the organometallic compound represented by Formula 1 may have low driving voltage, high efficiency, and long lifespan.


Methods of synthesizing the organometallic compound represented by Formula 1 may be readily understood by those of ordinary skill in the art by referring to Synthesis Examples and Examples described herein.


At least one organometallic compound represented by Formula 1 may be utilized in a light-emitting device (for example, an organic light-emitting device).


Therefore, provided is a light-emitting device which may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and at least one of the organometallic compound represented by Formula 1 as described in the specification.


In an embodiment,

    • the first electrode of the light-emitting device may be an anode,
    • the second electrode of the light-emitting device may be a cathode,
    • the interlayer may further include the at least one organometallic compound, a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode,
    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the organometallic compound may be included between a pair of electrodes of the light-emitting device. Therefore, the organometallic compound may be included in the interlayer of the light-emitting device. For example, the emission layer of the interlayer may include the organometallic compound. In an embodiment, the emission layer may include at least one of the organometallic compound represented by Formula 1.


In an embodiment, the emission layer may further include a host, and an amount of the organometallic compound may be in a range of about 0.01 wt % to about 49.99 wt %, based on 100 wt % of the emission layer. For example, an amount of the organometallic compound may be in a range of about 0.01 wt % to about 33.33 wt %, based on 100 wt % of the emission layer.


In an embodiment, the emission layer may emit blue light or blue-green light.


In an embodiment, the emission layer may emit light having a maximum emission wavelength in a range of about 400 nm to about 500 nm.


In an embodiment, the emission layer may further include a first compound and a second compound, and the first compound and the second compound may be different from each other.


In an embodiment, the first compound may be an electron transporting compound including at least one electron donating group, and the second compound may be a hole transporting compound including at least one electron withdrawing group.


In an embodiment, the first compound may be represented by Formula 301-1 or 301-2.




embedded image


In Formulae 301-1 and 301-2,

    • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),
    • xb22 and xb23 may each independently be 0, 1, or 2,
    • L301 to L304 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xb1 to xb4 may each independently be an integer from 0 to 5, and
    • R301 to R305 and R311 to R314 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302).


In an embodiment, the second compound may be represented by Formula 302:




embedded image


In Formula 302,

    • X311 may be C(R311) or N,
    • X312 may be C(R312) or N,
    • X313 may be C(R313) or N,
    • at least one of X311 to X313 may be N,
    • L314 to L316 may each independently be a single bond, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —C(Q311)(Q312)-, —Si(Q311)(Q312)-, —B(Q311)-, or —N(Q311)-,
    • n314 to n316 may each independently be an integer from 1 to 5,
    • R311 to R316 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q313)(Q314)(Q315), —N(Q313)(Q314), —B(Q313)(Q314), —C(═O)(Q313), —S(═O)2(Q313), or —P(═O)(Q313)(Q314),
    • two or more groups of Q311 to Q315 and R311 to R316 may optionally be bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • R10a may be the same as described herein, and
    • Q11 to Q13, Q21 to Q23 and Q31 to Q33, Q301 to Q303, and Q311 to Q315 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, the first compound may be selected from Group I, but is not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an embodiment, the second compound may be selected from Group II, but is not limited thereto.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The expression “(interlayer) includes an organometallic compound” as utilized herein may be to mean that the (interlayer) may include one kind of organometallic compound represented by Formula 1 or two or more different kinds of organometallic compounds, each independently represented by Formula 1.


In an embodiment, the interlayer may include Compound 1 only as the organometallic compound. In this regard, Compound 1 may be present in the emission layer of the light-emitting device. In an embodiment, the interlayer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in the same layer (for example, all of Compound 1 and Compound 2 may be present in the emission layer), or may be present in different layers (for example, Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).


The term “interlayer” as used herein may be a single layer and/or multiple layers between the first electrode and the second electrode of the light-emitting device.


According to embodiments, provided is an electronic apparatus which may include the light-emitting device as described herein. The electronic apparatus may further include a thin-film transistor. In an embodiment, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a quantum dot color conversion layer, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.


The electronic apparatus may be the same as described herein.


[Description of FIG. 1]



FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment. The light-emitting device 10 includes a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, a structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described in connection with FIG. 1.


[First Electrode 110]


In FIG. 1, a substrate may be further included under the first electrode 110 or above the second electrode 150. In an embodiment, the substrate may be a glass substrate or a plastic substrate. In an embodiment, the substrate may be a flexible substrate, and may include plastics with excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high work function material to facilitate injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In an embodiment, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a structure consisting of a single layer, or a structure including multiple layers. In an embodiment, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


[Interlayer 130]


The interlayer 130 is located on the first electrode 110. The interlayer 130 includes an emission layer.


The interlayer 130 may further include a hole transport region located between the first electrode 110 and the emission layer, and an electron transport region located between the emission layer and the second electrode 150.


The interlayer 130 may further include a metal-containing compound such as an organometallic compound, an inorganic material such as a quantum dot, or the like, in addition to various organic materials.


In an embodiment, the interlayer 130 may include two or more emitting units stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer as described above, the light-emitting device 10 may be a tandem light-emitting device.


[Hole Transport Region in Interlayer 130]


The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


In an embodiment, the hole transport region may have a multilayer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 its respective stated order, but the structure of the hole transport region is not limited thereto.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


In Formulae 201 and 202,

    • L201 to L204 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group that is unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xa1 to xa4 may each independently be an integer from 0 to 5,
    • xa5 may be an integer from 1 to 10,
    • R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • R201 and R202 may optionally be linked to each other via a single bond, a C1-C5 alkylene group that is unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group that is unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group (for example, a carbazole group) that is unsubstituted or substituted with at least one R10a (for example, see Compound HT16),
    • R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group that is unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group that is unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group that is unsubstituted or substituted with at least one R10a, and
    • na1 may be an integer from 1 to 4.


In an embodiment, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY217:




embedded image


embedded image


embedded image


In Formulae CY201 to CY217, R10b and R10c may each independently be the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.


In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In an embodiment, Formulae 201 and 202 may each include at least one of groups represented by Formulae CY201 to CY203.


In an embodiment, a compound represented by Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.


In an embodiment, in Formula 201, xa1 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY203, and may include at least one of groups represented by Formulae CY204 to CY217.


In an embodiment, each of Formulae 201 and 202 may not include groups represented by Formulae CY201 to CY217.


In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzene sulfonic acid (PANI/DBSA), poly(3,4-ethylene dioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrene sulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole-transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance of a wavelength of light emitted by an emission layer, and the electron blocking layer may block the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


[p-Dopant]


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant.


In an embodiment, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be equal to or less than about −3.5 eV.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including an element EL1 and an element EL2, or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.


Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and the like.




embedded image




embedded image


In Formula 221,

    • R221 to R223 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, and
    • at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group that is substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound including element EL1 and element EL2, element EL1 may be a metal, a metalloid, or any combination thereof, and element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of the metal may include: an alkali metal (for example, lithium (L1), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); and a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.).


Examples of the metalloid may include silicon (Si), antimony (Sb), and tellurium (Te).


Examples of the non-metal may include oxygen (O) and a halogen (for example, F, Cl, Br, I, etc.).


In an embodiment, examples of the compound containing element EL1 and element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, or a metal iodide), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, or a metalloid iodide), a metal telluride, or any combination thereof.


Examples of the metal oxide may include a tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), a vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), a molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), and a rhenium oxide (for example, ReO3, etc.).


Examples of the metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, and a lanthanide metal halide.


Examples of the alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, and CsI.


Examples of the alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, and BaI2.


Examples of the transition metal halide may include a titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), a zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), a hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), a vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), a niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), a tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), a chromium halide (for example, CrF3, CrCl3, CrBr3, CrI3, etc.), a molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), a tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), a manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), a technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), a rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), an iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), a ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), an osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), a cobalt halide (for example, CoF2, COCl2, CoBr2, CoI2, etc.), a rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), an iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), a nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), a palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), a platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), a copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), a silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), and a gold halide (for example, AuF, AuCl, AuBr, AuI, etc.).


Examples of the post-transition metal halide may include a zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), an indium halide (for example, InI3, etc.), and a tin halide (for example, SnI2, etc.).


Examples of the lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, and SmI3.


Examples of the metalloid halide may include an antimony halide (for example, SbCl5, etc.).


Examples of the metal telluride may include an alkali metal telluride (for example, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), and a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.).


[Emission Layer in Interlayer 130]


When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other. In an embodiment, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials may be mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


An amount of the dopant in the emission layer may be in a range of about 0.01 wt % to about 15 wt %, based on 100 wt % of the host.


In an embodiment, the emission layer may include a quantum dot.


In an embodiment, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may serve as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


[Host]


The host may include a compound represented by Formula 301:





[Ar301]xb11-[(L301)xb1-R301]xb21  [Formula 301]


In Formula 301,

    • Ar301 and L301 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xb11 may be 1, 2, or 3,
    • xb1 may be an integer from 0 to 5,
    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),
    • xb21 may be an integer from 1 to 5, and
    • Q301 to Q303 may each independently be the same as described in connection with Q1.


In an embodiment, in Formula 301, when xb11 is 2 or more, two or more Ar301(s) may be linked to each other via a single bond.


In an embodiment, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image


Formulae 301-1 and 301-2 may each be the same as described herein.


In an embodiment, the host may include a compound represented by Formula 302:




embedded image


Formula 302 may be the same as described herein.


In an embodiment, the host may include an alkali earth metal complex, a post-transition metal complex, or a combination thereof. For example, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or a combination thereof.


In an embodiment, the host may include one of Compounds H1 to H124, one of Compounds HTH1 to HTH52, one of Compounds ETH1 to ETH84, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Phosphorescent Dopant]


The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In an embodiment, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


In Formulae 401 and 402,

    • M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
    • L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is two or more, two or more L401(s) may be identical to or different from each other,
    • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more L402(s) may be identical to or different from each other,
    • X401 and X402 may each independently be nitrogen or carbon,
    • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)═C(Q412)-*′, *—C(Q411)=*′, or *═C═*′,
    • X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
    • Q411 to Q414 may each independently be the same as described in connection with Q1,
    • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group that is unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
    • Q401 to Q403 may each independently be the same as described in connection with Q1,
    • xc11 and xc12 may each independently be an integer from 0 to 10, and
    • * and *′ in Formula 402 may each indicate a binding site to M in Formula 401.


In an embodiment, in Formula 402, X401 may be nitrogen and X402 may be carbon, or each of X401 and X402 may be nitrogen.


In an embodiment, in Formula 401, when xc1 is 2 or more, two ring A401(s) in two or more L401(s) may be optionally linked to each other via T402, which is a linking group, and two ring A402(s) may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described in connection with T401.


In Formula 401, L402 may be an organic ligand. In an embodiment, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Fluorescent Dopant]


The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,

    • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xd1 to xd3 may each independently be 0, 1, 2, or 3, and
    • xd4 may be 1, 2, 3, 4, 5, or 6.


In an embodiment, in Formula 501, Ar501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.


In an embodiment, in Formula 501, xd4 may be 2.


In an embodiment, the fluorescent dopant may include one of Compounds FD1 to FD36, DPVBi, DPAVBi, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Delayed Fluorescence Material]


The emission layer may include a delayed fluorescence material.


In the specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescence, based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may serve as a host or as a dopant, depending on the type of other materials included in the emission layer.


In an embodiment, a difference between a triplet energy level (eV) of the delayed fluorescence material and a singlet energy level (eV) of the delayed fluorescence material may be greater than or equal to about 0 eV and less than or equal to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the luminescence efficiency of the light-emitting device 10 may be improved.


In an embodiment, the delayed fluorescence material may include a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a π electron-deficient nitrogen-containing C1-C60 cyclic group); or a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed while sharing boron (B).


Examples of the delayed fluorescence material may include at least one of Compounds DF1 to DF9:




embedded image


embedded image


embedded image


[Quantum Dot]


The emission layer may include a quantum dot.


In the specification, a quantum dot may be a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths according to a size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.


According to the wet chemical process, a precursor material is mixed with an organic solvent to grow a quantum dot particle crystal. As the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles may be controlled through a process which may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), and which has a lower cost.


The quantum dot may include a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, a Group IV element or compound, or any combination thereof.


Examples of the Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.


Examples of the Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, or InPSb; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GalnNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, or InAlPSb; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include Group II elements. Examples of the Group III-V semiconductor compound further including Group II elements may include InZnP, InGaZnP, InAlZnP, and the like.


Examples of the Group III-VI semiconductor compound may include: a binary compound, such GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, or InTe; a ternary compound, such as InGaS3, or InGaSe3; or any combination thereof.


Examples of the Group I-III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, or AgAlO2; or any combination thereof.


Examples of the Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, or the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, or the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, or the like; or any combination thereof.


Examples of the Group IV element or compound may include: a single element material, such as Si or Ge; a binary compound, such as SiC or SiGe; or any combination thereof.


Each element included in a multi-element compound such as a binary compound, a ternary compound, or a quaternary compound, may exist in a particle at a uniform concentration or at a non-uniform concentration.


In an embodiment, the quantum dot may have a single structure or a core-shell structure. In case that the quantum dot has a single structure, the concentration of each element included in the quantum dot may be uniform. In an embodiment, in case that the quantum dot has a core-shell structure, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer to prevent chemical degeneration of the core to maintain semiconductor characteristics and/or may serve as a charging layer to impart electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. A material that is present at an interface between the core and the shell of the quantum dot may have a concentration gradient that decreases toward the core.


Examples of the shell of the quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, or any combination thereof. Examples of the metal oxide, the metalloid oxide, or the non-metal oxide may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, or CoMn2O4; or any combination thereof. Examples of the semiconductor compound may include, as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. In embodiment, the semiconductor compound may be CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be equal to or less than about 45 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 40 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 30 nm. Within these ranges, color purity or color reproducibility may be increased. Light emitted through the quantum dot may be emitted in all directions, so that a wide viewing angle may be improved.


In embodiment, the quantum dot may be a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle.


Because the energy band gap may be adjusted by controlling the size of the quantum dot, light having various wavelength bands may be obtained from the quantum dot emission layer. Therefore, by utilizing quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red, green, and/or blue light. For example, the size of the quantum dot may be configured to emit white light by combining light of various colors.


[Electron Transport Region in Interlayer 130]


The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers of each structure may be stacked from an emission layer in its respective stated order, but the structure of the electron transport region is not limited thereto.


In an embodiment, the electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


In an embodiment, the electron transport region may include a compound represented by Formula 601:





[Ar601]xe11-[(L601)xe1-R601]xe21  [Formula 601]


In Formula 601,

    • Ar601 and L601 may each independently be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a,
    • xe11 may be 1, 2, or 3,
    • xe1 may be 0, 1, 2, 3, 4, or 5,
    • R601 may be a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
    • Q601 to Q603 may each independently be the same as described in connection with Q1,
    • xe21 may be 1, 2, 3, 4, or 5, and
    • at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 601, when xe11 is 2 or more, two or more Ar601(s) may be linked to each other via a single bond.


In an embodiment, in Formula 601, Ar601 may be a substituted or unsubstituted anthracene group.


In an embodiment, the electron transport region may include a compound represented by Formula 601-1:




embedded image


In Formula 601-1,

    • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may be N,
    • L611 to L613 may each independently be the same as described in connection with L601,
    • xe611 to xe613 may each independently be the same as described in connection with xe1,
    • R611 to R613 may each independently be the same as described in connection with R601, and
    • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a.


In an embodiment, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


The electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thicknesses of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron-transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (for example, an electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or with the metal ion of the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


In an embodiment, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image


The electron transport region may include an electron injection layer to facilitate the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.


The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof.


The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include: alkali metal oxides, such as Li2O, Cs2O, or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, and Lu2Te3.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include one of an ion of an alkali metal, an ion of an alkaline earth metal, and an ion of a rare earth metal, and a ligand bonded to the metal ion (for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof).


The electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In an embodiment, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In an embodiment, the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, a RbI:Yb co-deposited layer, a LiF:Yb co-deposited layer, or the like.


When the electron injection layer further includes an organic material, the alkali metal, the alkaline earth metal, the rare earth metal, the alkali metal-containing compound, the alkaline earth metal-containing compound, the rare earth metal-containing compound, the alkali metal complex, the alkaline earth-metal complex, the rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


[Second Electrode 150]


The second electrode 150 may be located on the interlayer 130 having such a structure. The second electrode 150 may be a cathode, which is an electron injection electrode. When the second electrode 150 is a cathode, a material for forming the second electrode 150 may be a material having a low work function, for example, a metal, an alloy, an electrically conductive compound, or any combination thereof.


In an embodiment, the second electrode 150 may include lithium (L1), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layered structure or a multilayer structure.


[Capping Layer]


The light-emitting device 10 may include a first capping layer located outside the first electrode 110, and/or a second capping layer located outside the second electrode 150. For example, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.


Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and through the first capping layer. Light generated in an emission layer of the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and through the second capping layer.


The first capping layer and the second capping layer may each increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


The first capping layer and second capping layer may each include a material having a refractive index equal to or greater than about 1.6 (with respect to a wavelength of about 589 nm).


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include carbocyclic compounds, heterocyclic compounds, amine group-containing compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may be optionally substituted with a substituent containing O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image


embedded image


[Film]


The organometallic compound represented by Formula 1 may be included in various films. According to embodiments, a film including the organometallic compound represented by Formula 1 may be provided. The film may be, for example, an optical member (or a light control member) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, or like), a light-blocking member (for example, a light reflective layer, a light absorbing layer, or the like), or a protective member (for example, an insulating layer, a dielectric layer, or the like).


[Electronic Apparatus]


The light-emitting device may be included in various electronic apparatuses.


In an embodiment, the electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.


The electronic apparatus (for example, light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one traveling direction of light emitted from the light-emitting device. In an embodiment, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described herein. In an embodiment, the color conversion layer may include quantum dots. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.


A pixel-defining layer may be located between the subpixels to define each subpixel.


The color filter may further include color filter areas and light-shielding patterns located between the color filter areas, and the color conversion layer may include color conversion areas and light-shielding patterns located between the color conversion areas.


The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. In an embodiment, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot may be the same as described herein. The first area, the second area, and/or the third area may each further include a scatterer.


In an embodiment, the light-emitting device may emit a first light, the first area may absorb the first light to emit a first-first color light, the second area may absorb the first light to emit a second-first color light, and the third area may absorb the first light to emit a third-first color light. The first-first color light, the second-first color light, and the third-first color light may each have different maximum emission wavelengths. For example, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described herein. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, etc.


The active layer may include crystalline silicon, amorphous silicon, organic semiconductor, oxide semiconductor, or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be located between the color filter and/or the color-conversion layer, and the light-emitting device. The sealing portion may allow light from the light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including an organic layer and/or an inorganic layer. When the sealing portion is a thin film encapsulation layer, the electronic apparatus may be flexible.


Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the intended use of the electronic apparatus. Examples of functional layers may include a touch screen layer, a polarizing layer, an authentication apparatus, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by utilizing biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device, a biometric information collector.


The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic diaries, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.


[Description of FIGS. 2 and 3]



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment.


The electronic apparatus of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be formed on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be located on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.


A gate insulating film 230 for insulating the active layer 220 and the gate electrode 240 may be located on the active layer 220, and the gate electrode 240 may be located on the gate insulating film 230.


An interlayer insulating film 250 is located on the gate electrode 240. The interlayer insulating film 250 may be placed between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be located on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may be in contact with the exposed portions of the source region and the drain region of the active layer 220.


The TFT is electrically connected to a light-emitting device to drive the light-emitting device, and is covered by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or a combination thereof. A light-emitting device is provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be formed on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270, and the first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.


A pixel-defining layer 290 containing an insulating material may be located on the first electrode 110. The pixel-defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel-defining layer 290 may be a polyimide or polyacrylic organic film. Although not shown in FIG. 2, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel-defining layer 290 to be provided in the form of a common layer.


The second electrode 150 may be located on the interlayer 130, and a capping layer 170 may be further included on the second electrode 150. The capping layer 170 may cover the second electrode 150.


The encapsulation portion 300 may be located on the capping layer 170. The encapsulation portion 300 may be located on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or a combination thereof; or a combination of the inorganic film and the organic film.



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment.


The electronic apparatus of FIG. 3 may differ from the electronic apparatus of FIG. 2, at least in that a light-shielding pattern 500 and a functional region 400 are further included on the encapsulation portion 300. The functional region 400 may be a color filter area, a color conversion area, or a combination of the color filter area and the color conversion area. In an embodiment, the light-emitting device included in the electronic apparatus of FIG. 3 may be a tandem light-emitting device.


[Manufacture Method]


Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a region by utilizing one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


[Definitions of Terms]


The term “C3-C60 carbocyclic group” as utilized herein may be a cyclic group consisting of carbon as the only ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as utilized herein may be a cyclic group that has one to sixty carbon atoms and further has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. In an embodiment, the C1-C60 heterocyclic group may have 3 to 61 ring-forming atoms.


The term “cyclic group” as utilized herein may include the C3-C60 carbocyclic group or the C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as utilized herein may be a cyclic group that has three to sixty carbon atoms and may not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein may be a heterocyclic group that has one to sixty carbon atoms and may include *—N═*′ as a ring-forming moiety.


In embodiments,


the C3-C60 carbocyclic group may be a T1 group or a group in which two or more T1 groups are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),


the C1-C60 heterocyclic group may be a T2 group, a group in which two or more T2 groups are condensed with each other, or a group in which at least one T2 group and at least one T1 group are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),


the π electron-rich C3-C60 cyclic group may be a T1 group, a group in which two or more T1 groups are condensed with each other, a T3 group, a group in which two or more T3 groups are condensed with each other, or a group in which at least one T3 group and at least one T1 group are condensed with each other (for example, a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.), and


the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a group in which two or more T4 groups are condensed with each other, a group in which at least one T4 group and at least one T1 group are condensed with each other, a group in which at least one T4 group and at least one T3 group are condensed with each other, or a group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),


wherein the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,


the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,


the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and


the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as utilized herein may each be a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are utilized. For example, a “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


Examples, of a monovalent C3-C60 carbocyclic group and a monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Examples of a divalent C3-C60 carbocyclic group and a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as utilized herein may be a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as utilized herein may be a divalent group having a same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as utilized herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as utilized herein may be a divalent group having a same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as utilized herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as utilized herein may be a divalent group having a same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as utilized herein may be a monovalent group represented by —O(A101) (wherein A101 may be a C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as utilized herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C10 cycloalkylene group” as utilized herein may be a divalent group having a same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as utilized herein may be a monovalent cyclic group that further includes, in addition to a carbon atom, at least one heteroatom as a ring-forming atom and has 1 to 10 carbon atoms, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as utilized herein may be a divalent group having a same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as utilized herein may be a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C1 cycloalkenylene group” as utilized herein may be a divalent group having a same structure as the C3-C10 cycloalkenyl group.


The term “C-C10 heterocycloalkenyl group” as utilized herein may be a monovalent cyclic group that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, 1 to 10 carbon atoms, and at least one carbon-carbon double bond in the cyclic structure thereof. Examples of the C1-C10 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C1a heterocycloalkenylene group” as utilized herein may be a divalent group having a same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as utilized herein may be a monovalent group having a carbocyclic aromatic system having six to sixty carbon atoms, and the term “C6-C60 arylene group” as utilized herein may be a divalent group having a carbocyclic aromatic system having six to sixty carbon atoms. Examples of the C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as utilized herein may be a monovalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as utilized herein may be a divalent group having a heterocyclic aromatic system that has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each independently include two or more rings, the respective rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as utilized herein may be a monovalent group having two or more rings condensed to each other, only carbon atoms (for example, having 8 to 60 carbon atoms) as ring-forming atoms, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as utilized herein may be a divalent group having a same structure as a monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as utilized herein may be a monovalent group having two or more rings condensed to each other, at least one heteroatom other than carbon atoms (for example, having 1 to 60 carbon atoms) as a ring-forming atom, and non-aromaticity in its molecular structure when considered as a whole. Examples of the monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphtho indolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as utilized herein may be to a divalent group having a same structure as a monovalent non-aromatic condensed heteropolycyclic group.


The term “C6-C60 aryloxy group” as utilized herein may be a group represented by —O(A102) (wherein A102 may be a C6-C60 aryl group), and the term “C6-C60 arylthio group” as utilized herein may be a group represented by —S(A103) (wherein A103 may be a C6-C60 aryl group).


The term “C7-C60 aryl alkyl group” as utilized herein may be a group represented by -(A104)(A105) (wherein A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroaryl alkyl group” as utilized herein may be a group represented by -(A106)(A107) (wherein A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


The group R10a as utilized herein may be:

    • deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 aryl alkyl group, a C2-C60 heteroaryl alkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 aryl alkyl group, or a C2-C60 heteroaryl alkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


The term “heteroatom” as utilized herein may be any atom other than a carbon atom or a hydrogen atom. Examples of the heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “the third-row transition metal” as utilized herein may include hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), and the like.


The term “Ph” as utilized herein refers to a phenyl group, the term “Me” as utilized herein refers to a methyl group, the term “Et” as utilized herein refers to an ethyl group, the terms “ter-Bu” or “But” as utilized herein refers to a tert-butyl group, and the term “OMe” as utilized herein refers to a methoxy group.


The term “biphenyl group” as utilized herein may be a “phenyl group substituted with a phenyl group.” For example, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as utilized herein may be a “phenyl group substituted with a biphenyl group”. For example, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


The symbols *, *′, and *″ as utilized herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


Hereinafter, a compound and light-emitting device according to embodiments will be described in detail with reference to the Synthesis Examples and the Examples. The wording “B was utilized instead of A,” utilized in describing Synthesis Examples, indicates that an identical molar equivalent of B was utilized in place of A.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 22



embedded image


embedded image


Synthesis of Intermediate [22-A]

8-chloro-3-methoxy-5,6-dihydrophenanthridine (CAS No. 1624348-51-1) (1.0 eq), phenyl-d5 boronic acid (1.5 eq), Pd2(dba)3 (0.05 eq), PPh3 (0.075 eq), and K3PO4 (2.0 eq) were placed in a reaction vessel and suspended in dioxane:H2O (a volume ratio of 7:1) (0.5 M). The reaction mixture was heated and stirred at 120° C. for 12 hours.


After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and dichloromethane. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [22-A] (yield: 85%).


Synthesis of Intermediate [22-B]

Intermediate [22-A] (1.0 eq), 2-bromo-4-(tert-butyl)pyridine (1.5 eq), CuI (0.3 eq), trans-1,2-diaminocyclohexane (0.3 eq), and K3PO4 (2.0 eq) were placed in a reaction vessel and suspended in dioxane (0.1 M). The reaction mixture was heated and stirred at 120° C. for 12 hours. After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and dichloromethane. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [22-B] (yield: 82%).


Synthesis of Intermediate [22-C]

Intermediate [22-B] (1.0 eq) was placed in a reaction vessel and suspended in dichloromethane (0.15 M). 1.0M BBr3 in dichloromethane (2.0 eq) was slowly added dropwise to the reaction vessel at 0° C. After the dropwise addition, the mixture was stirred at room temperature for 12 hours. After an excess amount of distilled water was poured to terminate the reaction, the aqueous layer was neutralized by utilizing NaOH, and an organic layer was extracted by utilizing distilled water and dichloromethane. The organic layer was dried by utilizing magnesium sulfate, and the residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [22-C] (yield: 74%).


Synthesis of Intermediate [22-D]

Intermediate [22-C] (1.0 eq), 1-(3-bromophenyl)-1H-benzo[d]imidazole (1.2 eq), CuI (0.1 eq), 2-picolinic acid (0.2 eq), and K3PO4 (2.0 eq) were placed in a reaction vessel and suspended in DMSO (0.15 M). The reaction mixture was heated and stirred at 100° C. for 12 hours. After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and dichloromethane. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [22-D] (yield: 72%).


Synthesis of Intermediate [22-E]

Intermediate [22-D] (1.0 eq) and iodomethane-d3 (10.0 eq) were placed in a reaction vessel and suspended in toluene (0.1 M). The reaction mixture was heated and stirred at 110° C. for 12 hours. After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and ethyl acetate. The extracted organic layer was dried by utilizing magnesium sulfate, and the solvent was removed therefrom to thereby obtain Intermediate [22-E](yield: 88%).


Synthesis of Intermediate [22-F]

Intermediate [22-E] (1.0 eq) was placed in a reaction vessel and suspended in a mixed solution of methanol and distilled water (at a volume ratio of 2:1). The mixture was sufficiently dissolved, and ammonium hexafluorophosphate (3.0 eq) was slowly added thereto, followed by stirring the reaction solution at room temperature for 12 hours. After the reaction was terminated, the thus produced solid was filtered. The obtained solid was dissolved in dichloromethane and dried by utilizing magnesium sulfate, and the solvent was removed therefrom to thereby obtain Intermediate [22-F](yield: 97%).


Synthesis of Compound 22

Intermediate [22-F] (1.0 eq), dichloro(1,5-cyclooctadiene)platinum (Pt(COD)C2, 1.1 eq), and sodium acetate (NaOAc, 3.0 eq) were suspended in 1,4-dioxane (0.1 M). The reaction mixture was heated and stirred at 120° C. for 72 hours. After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and ethyl acetate. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Compound 22 (yield: 38%).


Synthesis Example 2: Synthesis of Compound 48



embedded image


Synthesis of Intermediate [48-A]

Intermediate [48-A] (yield: 70%) was obtained in the same manner as in Synthesis Example of Intermediate [22-B], except that 3-methoxy-5,6,6a,7,8,9,10,10a-octahydrophenanthridine was utilized instead of Intermediate [22-A].


Synthesis of Intermediate [48-B]

Intermediate [48-B] (yield: 73%) was obtained in the same manner as in Synthesis Example of Intermediate [22-C], except that Intermediate [48-A] was utilized instead of Intermediate [22-B].


Synthesis of Intermediate [48-C]

Intermediate [48-C] (yield: 78%) was obtained in the same manner as in Synthesis Example of Intermediate [22-D], except that Intermediate [48-B] was utilized instead of Intermediate [22-C].


Synthesis of Intermediate [48-D]

Intermediate [48-C] (1.0 eq), compound of CAS No. 2567560-14-7




embedded image


and Cu(OAc)2(0.2 eq) were placed in a reaction vessel and suspended in DMF (0.25 M). The reaction mixture was heated and stirred at 100° C. for 2 hours. After the reaction was terminated, the mixture was cooled to room temperature, and an organic layer was extracted by utilizing distilled water and MC. The extracted organic layer was dried by utilizing magnesium sulfate, and the solvent was removed therefrom to thereby obtain Intermediate [48-D] (yield: 88%).


Synthesis of Compound 48

Compound 48 (yield: 31%) was obtained in the same manner as in Synthesis Example of Compound 22, except that Intermediate [48-D] was utilized instead of Intermediate [22-F].


Synthesis Example 3: Synthesis of Compound 61



embedded image


embedded image


embedded image


Synthesis of Intermediate [61-A]

Intermediate [61-A] (yield: 75%) was obtained in the same manner as in Synthesis Example of Intermediate [22-B], except that 3-methoxy-5,6-dihydrophenanthridine was utilized instead of Intermediate [22-A].


Synthesis of Intermediate [61-B]

Intermediate [61-B] (yield: 75%) was obtained in the same manner as in Synthesis Example of Intermediate [22-C], except that Intermediate [61-A] was utilized instead of Intermediate [22-B].


Synthesis of Intermediate [61-C]

Intermediate [61-C] (yield: 67%) was obtained in the same manner as in Synthesis Example of Intermediate [22-D], except that Intermediate [61-B] was utilized instead of Intermediate [22-C], and 1,3-dibromobenzene was utilized instead of 1-(3-bromophenyl)-1H-benzo[d]imidazole(1.2 eq).


Synthesis of Intermediate [61-D]

Intermediate [61-C] (1.2 eq), N1-([1,1′:3′,1″-terphenyl]-2′-yl-2,2″,3,3″,4,4″,5,5″,6,6″-d10)benzene-1,2-diamine (1.0 eq), SPhos (0.07 eq), Pd2(dba)3 (0.05 eq), and sodium tert-butoxide (2.0 eq) were suspended in toluene (0.1 M). The reaction mixture was heated and stirred at 110° C. for 12 hours. After the reaction was terminated, the solvent was removed therefrom under reduced pressure, and an organic layer was extracted by utilizing distilled water and methylene chloride. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [61-D] (yield: 73%).


Synthesis of Intermediate [61-E]

Intermediate [61-D] (1.0 eq), triethylorthoformate (50 eq), and HCl (1.2 eq) were dissolved, and the reaction mixture was heated and stirred at 80° C. for 12 hours. After the reaction was terminated, the solvent was removed therefrom under reduced pressure, and an organic layer was extracted by utilizing distilled water and methylene chloride. The extracted organic layer was washed by utilizing a saturated NaCl aqueous solution and dried by utilizing magnesium sulfate. The residue from which the solvent was removed was separated by utilizing column chromatography to thereby obtain Intermediate [61-E] (yield: 81%).


Synthesis of Intermediate [61-F]

Intermediate [61-E] (1.0 eq) was placed in a reaction vessel and suspended in a mixed solution of methanol and distilled water at a ratio of 2:1. The mixture was sufficiently dissolved, and ammonium hexafluorophosphate (3.0 eq) was slowly added thereto, followed by stirring the reaction solution at room temperature for 12 hours. After the reaction was terminated, the thus produced solid was filtered. The obtained solid was dissolved in dichloromethane and dried by utilizing magnesium sulfate, and the solvent was removed therefrom to thereby obtain Intermediate [61-F] (yield: 94%).


Synthesis of Compound 61

Compound 61 (yield: 29%) was obtained in the same manner as in Synthesis Example of Compound 22, except that Intermediate [61-F] was utilized instead of Intermediate [22-F].


Synthesis Example 4: Synthesis of Compound 93



embedded image


embedded image


embedded image


Synthesis of Intermediate [93-A]

Intermediate [93-A] (yield: 72%) was obtained in the same manner as in Synthesis Example of Intermediate [22-A], except that 3,5-di-tert-butylphenyl)boronic acid was utilized instead of phenyl-d5 boronic acid.


Synthesis of Intermediate [93-B]

Intermediate [93-B] (yield: 75%) was obtained in the same manner as in Synthesis Example of Intermediate [22-B], except that Intermediate [93-A] was utilized instead of Intermediate [22-A], and 2-fluoro-4-methyl-5-(phenyl-d5)pyridine was utilized instead of 2-bromo-4-(tert-butyl)pyridine, XPhos was utilized instead of PPh3, and Cs2CO3 was utilized instead of K3PO4.


Synthesis of Intermediate [93-C]

Intermediate [93-C] (yield: 72%) was obtained in the same manner as in Synthesis Example of Intermediate [22-C], except that Intermediate [93-B] was utilized instead of Intermediate [22-B].


Synthesis of Intermediate [93-D]

Intermediate [93-D] (yield: 70%) was obtained in the same manner as in Synthesis Example of Intermediate [61-C], except that Intermediate [93-C] was utilized instead of Intermediate [61-B].


Synthesis of Intermediate [93-E]

Intermediate [93-E] (yield: 77%) was obtained in the same manner as in Synthesis Example of Intermediate [61-D], except that Intermediate [93-D] was utilized instead of Intermediate [61-C], and N1-(5′-(tert-butyl)-2-methyl-[1,1′:3′,1″-terphenyl]-2′-yl-2″,3,3″,4,4″,5,5″, 6-d8)benzene-1,2-diamine was utilized instead of N1-(5′-(tert-butyl)-[1,1′:3′,1″-terphenyl]-2′-yl-2″,3,3″,4,4″,5,5″, 6-d10)benzene-1,2-diamine.


Synthesis of Intermediate [93-F]

Intermediate [93-F] (yield: 84%) was obtained in the same manner as in Synthesis Example of Intermediate [61-E], except that Intermediate [93-E] was utilized instead of Intermediate [61-D].


Synthesis of Intermediate [93-G]

Intermediate [93-G] (yield: 96%) was obtained in the same manner as in Synthesis Example of Intermediate [61-F], except that Intermediate [93-F] was utilized instead of Intermediate [61-E].


Synthesis of Compound 93

Compound 93 (yield: 29%) was obtained in the same manner as in Synthesis Example of Compound 22, except that Intermediate [93-G] was utilized instead of Intermediate [22-F].



1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 4 are shown in Table 1. Synthesis methods of other compounds in addition to the compounds shown in Table 1 may be readily recognized by those skilled in the art by referring to the synthesis paths and source materials.











TABLE 1









MS/FAB










Compound
H NMR (δ)
Calc
Found













22
8.12(d, 1H), 8.09(s, 1H), 7.99(d, 1H), 7.70(d, 1H), 7.44(m,
813.89
813.29



2H), 7.22(d, 1H), 7.18(t, 1H), 7.08(d, 1H), 6.90(d, 1H),



6.85(d, 1H), 6.71(t, 1H), 6.67-6.65(m, 2H), 6.52(s, 1H),



4.32(s, 2H), 1.32(s, 9H)


48
8.12(d, 1H), 7.24(d, 1H), 7.20-7.11(m, 6H), 6.95(m, 2H),
910.08
909.39



6.90(d, 1H), 6.68-6.66(m, 3H), 6.52(s, 1H), 3.10(m, 1H),



2.85(m, 1H), 2.62(m, 1H), 1.85(m, 1H), 1.78(m, 1H), 1.60-



1.42(m, 6H), 1.41(s, 18H), 1.39(m, 1H), 1.32(s, 9H)


61
8.20(d, 2H), 8.12(d, 1H), 7.80(d, 1H), 7.69(d, 1H), 7.47-
954.08
953.35



7.43(m, 3H), 7.38(t, 1H), 7.17(t, 1H), 7.13(m, 2H), 6.95(m,



2H), 6.90(d, 1H), 6.86(d, 1H), 6.67-6.65(m, 2H), 6.52(s,



1H), 4.32(s, 2H), 1.32(s, 9H)


93
8.46(s, 1H), 8.09(s, 1H), 8.00(m, 2H), 7.99(s, 1H), 7.73(m,
1237.54
1236.59



2H), 7.70(d, 1H), 7.55(s, 1H), 7.22-7.14(m, 4H), 6.95-



6.90(m, 3H), 6.84(d, 1H), 6.71(s, 1H), 6.66(d, 1H), 4.33(s,



2H), 2.68(s, 3H), 1.32(s, 27H)









Example 1

As an anode, a 15 Ω/cm2 (1,200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, and cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and the glass substrate was loaded onto a vacuum deposition apparatus.


2-TNATA was vacuum-deposited on the ITO anode formed on the glass substrate to form a hole injection layer having a thickness of 600 Å, and NPB was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å.


Compound 22 (10 wt %) as a dopant and Compound HTH29, which is a first compound, and Compound ETH66, which is a second compound, as hosts were co-deposited on the hole transport layer (at a weight ratio of 7:3) to form an emission layer having a thickness of 300 Å.


Compound ETH2 was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å. Alq3 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, and LiF which is a halogenated alkali metal was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was vacuum-deposited thereon to form a cathode having a thickness of 3,000 Å, to thereby form an LiF/Al electrode, thereby completing the manufacture of a light-emitting device.




embedded image


embedded image


Examples 2 to 4 and Comparative Examples 1 to 3

Light-emitting devices were manufactured in the same manner as in Example 1, except that compounds shown in Table 2 were respectively utilized instead of Compound 22 in forming the emission layer.


Evaluation Example 1

Driving voltage at a luminance of 1,000 cd/m2, luminance, luminescence efficiency, maximum emission wavelength, and device lifespan were measured in order to evaluate characteristics of the light-emitting devices manufactured in Examples 1 to 4 and Comparative Examples 1 to 3. The driving voltages of the light-emitting devices were measured by utilizing a source meter (Keithley Instrument Inc., 2400 series). The luminescence efficiencies were measured by utilizing a quantum efficiency measurement device C9920-2-12 manufactured by Hamamatsu Photonics Inc. For the luminescence efficiency evaluation, a luminance meter after wavelength-sensitivity calibration was utilized to measure the luminance/current density, and the lifespans of the light-emitting devices were measured as the time taken to reach 95% based on the maximum luminance. Table 2 shows the evaluation results of the characteristics of the light-emitting devices.















TABLE 2










Maximum






Driving
Luminescence
emission
Device




Luminance
voltage
efficiency
wavelength
lifespan



Dopant
(cd/m2)
(V)
(cd/A)
(nm)
(T95, h)







Example 1
Compound 22
1,000
4.1
22.8
460
57


Example 2
Compound 48
1,000
4.1
24.3
460
63


Example 3
Compound 61
1,000
4.2
23.4
461
81


Example 4
Compound 93
1,000
4.3
25.7
462
74


Comparative
A
1,000
4.5
17.6
464
 9


Example 1








Comparative
B
1,000
4.4
13.3
460
18


Example 2








Comparative
C
1,000
4.3
10.8
459
 7


Example 3







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image








From Table 2, it may be confirmed that the light-emitting devices of Examples 1 to 4 have lower driving voltages, excellent luminescence efficiencies, and excellent lifespans, as compared to those of the light-emitting devices of Comparative Examples 1 to 3.


The organometallic compound may be utilized in manufacturing a light-emitting device having high efficiency and long lifespan, and the light-emitting device may be utilized in manufacturing a high-quality electronic apparatus having high efficiency and long lifespan.


Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode;an interlayer between the first electrode and the second electrode and comprising an emission layer; andat least one organometallic compound represented by Formula 1:
  • 2. The light-emitting device of claim 1, wherein the first electrode is an anode,the second electrode is a cathode,the interlayer further comprises: the at least one organometallic compound;a hole transport region between the first electrode and the emission layer; andan electron transport region between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or a combination thereof, andthe electron transport region comprises a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 3. The light-emitting device of claim 1, wherein the emission layer comprises the at least one organometallic compound represented by Formula 1.
  • 4. The light-emitting device of claim 3, wherein the emission layer further comprises a host, andan amount of the at least one organometallic compound is in a range of about 0.01 wt % to about 49.99 wt %, based on 100 wt % of the emission layer.
  • 5. The light-emitting device of claim 3, wherein the emission layer further comprises a first compound and a second compound, andthe first compound and the second compound are different from each other.
  • 6. The light-emitting device of claim 5, wherein the first compound is an electron transporting compound including at least one electron-donating group, andthe second compound is a hole transporting compound including at least one electron-withdrawing group.
  • 7. The light-emitting device of claim 3, wherein the emission layer emits light having a maximum emission wavelength in a range of about 400 nm to about 500 nm.
  • 8. An electronic apparatus comprising the light-emitting device of claim 1.
  • 9. The electronic apparatus of claim 8, further comprising a thin-film transistor, wherein the thin-film transistor comprises a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected to the source electrode or the drain electrode.
  • 10. The electronic apparatus of claim 8, further comprising a color filter, a color conversion layer, a quantum dot color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof.
  • 11. An organometallic compound represented by Formula 1:
  • 12. The organometallic compound of claim 11, wherein CY1 to CY4 are each independently a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzotriazole, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.
  • 13. The organometallic compound of claim 11, wherein in Formula 1, CY1 is a group represented by one of Formulae CY1-1 to CY1-70,CY2 is a group represented by one of Formulae CY2-1 to CY2-14, andCY4 is a group represented by one of Formulae CY4-1 to CY4-70:
  • 14. The organometallic compound of claim 11, wherein in Formula 1, CY5 is a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a non-aromatic condensed polycyclic group, or a non-aromatic condensed heteropolycyclic group.
  • 15. The organometallic compound of claim 11, wherein Formula 1, a moiety represented by
  • 16. The organometallic compound of claim 11, wherein Formula 1, a moiety represented by
  • 17. The organometallic compound of claim 11, wherein in Formula 1: R6 and R7 are bonded to each other to form a C5-C30 carbocyclic group that is unsubstituted or substituted with at least one R10a or a C2-C30 heterocyclic group that is unsubstituted or substituted with at least one R10a; orR6 and R7 are not bonded to each other.
  • 18. The organometallic compound of claim 11, wherein in Formula 1, Y1 is C, andA1 is a coordinate bond.
  • 19. The organometallic compound of claim 11, wherein in Formula 1, Y2 and Y3 are each C, andY4 is N.
  • 20. The organometallic compound of claim 11, wherein the organometallic compound is one of Compounds 1 to 100:
Priority Claims (1)
Number Date Country Kind
10-2022-0024575 Feb 2022 KR national