ORGANOMETALLIC COMPOUND, LIGHT-EMITTING DEVICE INCLUDING THE SAME, AND ELECTRONIC APPARATUS INCLUDING THE LIGHT-EMITTING DEVICE

Information

  • Patent Application
  • 20240023425
  • Publication Number
    20240023425
  • Date Filed
    March 06, 2023
    a year ago
  • Date Published
    January 18, 2024
    4 months ago
Abstract
Embodiments provide an organometallic compound, a light-emitting device including the organometallic compound, and an electronic apparatus including the light-emitting device. The organometallic compound is represented by Formula 1, which is explained in the specification:
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0081497 under 35 U.S.C. § 119, filed on Jul. 1, 2022, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

Embodiments relate to an organometallic compound, a light-emitting device including the same, and an electronic apparatus including the light-emitting device.


2. Description of the Related Art

Among light-emitting devices, organic light-emitting devices are self-emissive devices that have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, compared to devices in the art.


In an example, an organic light-emitting device may have a structure in which a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. The excitons may transition from an excited state to a ground state, thus generating light.


It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.


SUMMARY

Embodiments include an organometallic compound having low driving voltage and excellent luminance and luminescence efficiency, a light-emitting device using the organometallic compound, and an electronic apparatus including the light-emitting device.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.


According to embodiments, a light-emitting device may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and an organometallic compound represented by Formula 1:




embedded image


In Formula 1,

    • M may be platinum (Pt), palladium (Pd), copper(Cu), silver (Ag), gold (Au), rhodium (Rh), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), or thulium (Tm),
    • ring CY1, ring CY2, ring CY4, ring CY32, and ring CY33 may each independently be a C5-C30 carbocyclic group or a C1-C30 heterocyclic group,
    • X1, X2, and X4 may each independently be carbon (C) or nitrogen (N),
    • X31 and X32 may each independently be C or N,
    • X33 may be C(Z3) or N,
    • X34 may be C(Z4) or N,
    • L1 and L3 may each independently be a single bond, *—C(R1a)(R1b)—*′, *—C(R1a)═*′, *═C(R1a)—*′, *—C(R1a)═C(R1b)—*′, *—C(═O)—*′, *—C(═S)—*′, *—C≡C—*′, *—B(R1a)—*′, *—N(R1a)—*′, *—O—*′, *—P(R1a)—*′, *—Si(R1a)(R1b)—*′, *—P(═O)(R1a)—*′, *—S—*′, *—S(═O)—*′, *—S(═O)2—*′, or *—Ge(R1a)(R1b)—*′, and L2 may be *—N(R2a)—*′, wherein * and *′ each indicate a binding site to a neighboring atom,
    • n1 to n3 may each independently be an integer from 1 to 5,
    • R1, R2, R4, R32, R33, Z3, Z4, R1a, R1b, and R2a may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • a1, a2, a4, a32, and a33 may each independently be an integer from 0 to 10,
    • if X1 is C, a1 is 1, and a bond between X1 and M is a coordinate bond, then R1 may not be a methyl group,
    • two or more of R1 in the number of a1 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • two or more of R2 in the number of a2 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • two or more of R4 in the number of a4 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • two or more of R1, R2, R4, R32, R33, Z3, Z4, R1a, R1b, and R2a may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —CI; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, the first electrode may be an anode; the second electrode may be a cathode; the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode; the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof; and the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the emission layer may include the organometallic compound.


In an embodiment, the emission layer may emit light having a maximum emission wavelength in a range of about 490 nm to about 550 nm.


In an embodiment, the emission layer may include a host and a dopant, and the dopant may include the organometallic compound.


According to embodiments, an electronic apparatus may include the light-emitting device.


In an embodiment, the electronic apparatus may further include a thin-film transistor, wherein the thin-film transistor may include a source electrode and a drain electrode, and the first electrode of the light-emitting device may be electrically connected to at least one of the source electrode and the drain electrode.


In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof.


According to embodiments, an electronic equipment may include the light-emitting device, wherein the electronic equipment may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, an advertisement board, an indoor light, an outdoor light, a signaling light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall including multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a sign.


According to embodiments, an organometallic compound may be represented by Formula 1, which is explained herein.


In an embodiment, ring CY1 may be an X1-containing 5-membered ring, or an X1-containing 5-membered ring in which at least one 6-membered ring is condensed; the X1-containing 5-membered ring may be a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, or a thiadiazole group, and the 6-membered ring may be a benzene group, a pyridine group, a pyrazine group, or a pyrimidine group.


In an embodiment, ring CY2 may be a benzene group, a pyridine group, a pyrimidine group, or a naphthalene group; and ring CY4 may be a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, a benzopyrazole group, a benzimidazole group, or a benzothiazole group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY1(1) to CY1(21), which are explained below.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY2(1) to CY2(20), which are explained below.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY4(1) to CY4(16), which are explained below.


In an embodiment, CY32 and CY33 may each independently be a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, or a quinoxaline group.


In an embodiment, L1 and L3 may each be a single bond.


In an embodiment, a2 may be an integer from 1 to 10, and at least one of R2 in the number of a2 may not be hydrogen.


In an embodiment, R1, R2, R4, R32, R33, and R2a may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
    • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a cyclohexyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; or
    • a cyclohexyl group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, or a carbazolyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclohexyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, and a carbazolyl group.


In an embodiment, the organometallic compound may be represented by Formula 1-1, which is explained below.


It is to be understood that the embodiments above are described in a generic and explanatory sense only and not for the purpose of limitation, and the disclosure is not limited to the embodiments described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the disclosure will be more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of a light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment;



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment;



FIG. 4 is a schematic perspective view of an electronic equipment including a light-emitting device according to an embodiment;



FIG. 5 is a schematic perspective view of the exterior of a vehicle as electronic equipment including a light-emitting device according to an embodiment; and



FIG. 6A to FIG. 6C are each a schematic diagram of the interior of a vehicle, according to embodiments.





DETAILED DESCRIPTION OF THE EMBODIMENTS

“The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.


In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.


In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.


As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.


In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group consisting of” for the purpose of its meaning and interpretation. For example, “at least one of A, B, and C” may be understood to mean A only, B only, C only, or any combination of two or more of A, B, and C, such as ABC, ACC, BC, or CC. When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.


The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.


The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within +20%, 10%, or ±5% of the stated value.


It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.


Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.


An embodiment provides an organometallic compound which may be represented by Formula 1:




embedded image


In Formula 1, M may be platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), rhodium (Rh), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), or thulium (Tm).


In an embodiment, M may be Pt or Pd.


In Formula 1, ring CY1, ring CY2, ring CY4, ring CY32, and ring CY33 may each independently be a C5-C30 carbocyclic group or a C1-C30 heterocyclic group.


In an embodiment, ring CY1, ring CY2, ring CY4, ring CY31, and ring CY32 may each independently be a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a cyclopentadiene group, a 1,2,3,4-tetrahydronaphthalene group, a thiophene group, a furan group, a silole group, an indole group, a benzoborole group, a benzophosphole group, an indene group, a benzosilole group, a benzogermole group, a benzothiophene group, a benzoselenophene group, a benzofuran group, a carbazole group, a dibenzoborole group, a dibenzophosphole group, a fluorene group, a dibenzosilole group, a dibenzogermole group, a dibenzothiophene group, a dibenzoselenophene group, a dibenzofuran group, a dibenzothiophene 5-oxide group, a 9H-fluorene-9-one group, a dibenzothiophene 5,5-dioxide group, an azaindole group, an azabenzoborole group, an azabenzophosphole group, an azaindene group, an azabenzosilole group, an azabenzogermole group, an azabenzothiophene group, an azabenzoselenophene group, an azabenzofuran group, an azacarbazole group, an azadibenzoborole group, an azadibenzophosphole group, an azafluorene group, an azadibenzosilole group, an azadibenzogermole group, an azadibenzothiophene group, an azadibenzoselenophene group, an azadibenzofuran group, an azadibenzothiophene 5-oxide group, an aza-9H-fluorene-9-one group, an azadibenzothiophene 5,5-dioxide group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, an imidazopyridine group, a 2,3-dihydroimidazopyridine group, a furoimidazole group, a thienoimidazole group, an imidazopyrimidine group, a 2,3-dihydroimidazopyrimidine group, an imidazopyrazine group, an imidazopyridazine group, a 2,3-dihydroimidazopyrazine group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, a benzothiadiazole group, a 5,6,7,8-tetrahydroisoquinoline group, or a 5,6,7,8-tetrahydroquinoline group.


In an embodiment, ring CY1 may be a C1-C30 heterocyclic group.


In embodiments, ring CY1 may be a C1-C30 heterocyclic group containing two or more nitrogen atoms.


In embodiments, ring CY1 may be: a X1-containing 5-membered ring; or a X1-containing 5-membered ring in which at least one 6-membered ring is condensed,

    • the X1-containing 5-membered ring may be a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, or a thiadiazole group, and
    • the 6-membered ring which is optionally condensed to the X1-containing 5-membered ring may be a benzene group, a pyridine group, a pyrazine group, or a pyrimidine group.


In embodiments, ring CY1 may be an imidazole group, a benzimidazole group, an imidazopyridine group, an imidazopyrazine group, or an imidazopyrimidine group.


In an embodiment, ring CY2 may be a C5-C30 carbocyclic group.


In embodiments, ring CY2 may be a benzene group, a pyridine group, a pyrimidine group, or a naphthalene group.


In an embodiment, ring CY4 may be a C1-C30 heterocyclic group.


In embodiments, ring CY4 may be a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, a benzopyrazole group, a benzimidazole group, or a benzothiazole group.


In embodiments, ring CY4 may be pyridine.


In an embodiment, ring CY32 and ring CY33 may each independently be a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, or a quinoxaline group.


In embodiments, ring CY32 may be a benzene group or a naphthalene group, and ring CY33 may be a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a quinoline group, or an isoquinoline group.


In Formula 1, X1, X2, and X4 may each independently be carbon (C) or nitrogen (N).


In embodiments, X1 and X2 may each be C, and X4 may be N.


In Formula 1, X31 and X32 may each independently be C or N. In an embodiment, X31 and X32 may each be C.


In Formula 1, X33 may be C(Z3) or N. In an embodiment, X33 may be C(Z3).


In Formula 1, X34 may be C(Z4) or N. In an embodiment, X34 may be C(Z4).


In an embodiment, in Formula 1:

    • a bond between X1 and M may be a coordinate bond; and
    • one of a bond between X2 and M, a bond between X31 and M, and a bond between X4 and M may be a coordinate bond, and the other two bonds may each be a covalent bond.


In embodiments, a bond between X1 and M may be a coordinate bond, a bond between X2 and M and a bond between X31 and M may each be a covalent bond, and a bond between X4 and M may be a coordinate bond.


In Formula 1, L1 and L3 may each independently be a single bond, *—C(R1a)(R1b)—*′, *—C(R1a)═*′, *═C(R1a)—*′, *—C(R1a)═C(R1b)—*′, *—C(═O)—*′, *—C(═S)—*′, *—C≡C—*′, *—B(R1a)—*′, *—N(R1a)—*′, *—O—*′, *—P(R1a)—*′, *—Si(R1a)(R1b)—*′, *—P(═O)(R1a)—*′, *—S—*—S(═O)—*′, *—S(═O)2—*′, or *—Ge(R1a)(R1b)—*′, and L2 may be *—N(R2a)—*′, wherein * and each indicate a binding site to a neighboring atom.


In embodiments, L1 and L3 may each be a single bond.


In Formula 1, n1 to n3 may each independently be an integer from 1 to 5. In Formula 1, n1 to n3 respectively indicate the number of L1(s), the number of L2(s), and the number of L(s).


In Formula 1, R1, R2, R4, R32, R33, Z3, Z4, R1a, R1b, and R2a may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In an embodiment, R1, R2, R4, R32, R33, Z3, Z4, R1a, R1b, and R2a may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
    • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, or any combination thereof;
    • a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indenyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzofluorenyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azafluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, or an azadibenzosilolyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, hydroxyl group, cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C20 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indenyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzofluorenyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofuranocarbazolyl group, a benzothienocarbazolyl group, a benzosilolecarbazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), or any combination thereof; or
    • —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
    • Q1 to Q3 and Q31 to Q33 may each independently be:
    • —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2; or
    • an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, or a triazinyl group, each unsubstituted or substituted with deuterium, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a pyrazinyl group, a triazinyl group, or any combination thereof.


In an embodiment, R1, R2, R4, R32, R33, and R2a may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
    • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a cyclohexyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; or
    • a cyclohexyl group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclohexyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, and a carbazolyl group.


In embodiments, R1, R2, R4, R32, and R33 may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, or a C1-C20 alkyl group;
    • a C1-C20 alkyl group substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; or
    • a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, and a naphthyl group.


In an embodiment, R2a may be a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, or a naphthyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, and a naphthyl group.


In Formula 1, a1, a2, a4, a32, and a33 may each independently be an integer from 0 to 10. In Formula 1, a1, a2, a4, a32, and a33 respectively indicate the number of R1(s), the number of R2(s), the number of R4(s), the number of R32(s), and the number of R33(s).


For example, a1, a2, a4, a32, and a33 may each independently be an integer from 0 to 5.


In Formula 1, two or more of R1 in the number of a1 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In Formula 1, two or more of R2 in the number of a2 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In Formula 1, two or more of R4 in the number of a4 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In Formula 1, two or more of R1, R2, R4, R32, R33, Z3, Z4, R1a, R1b, and R2a may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, a2 may be an integer from 1 to 10, and at least one of R2(s) in the number of a2 may not be hydrogen. Accordingly, a maximum emission wavelength of the organometallic compound may be shifted to a longer wavelength, and an additional lifespan improvement effect of a light-emitting device including the organometallic compound may be provided. However, the disclosure is not limited thereto.


In Formula 1, if X1 is C, a bond between X1 and M is a coordinate bond, and a1 is 1, then R1 may not be a methyl group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may not be a moiety represented by Formula CY1(1)-1, CY1(5)-1, CY1(6)-1, or CY1(9)-1:




embedded image


In an embodiment, in Formula 1, when X1 is C and a bond between X1 and M is a coordinate bond, X1 may be carbon of a carbene moiety, and thus ring CY1 may be a carbene-containing cyclic group having 1 to 30 carbon atoms (e.g., an imidazole group, a triazole group, a benzimidazole group, or an imidazopyridine group). In case that a1 is 1 and R1 is a methyl group, the steric hindrance effect of R1 may be degraded and the shielding for M in Formula 1 may be reduced. Accordingly, the structural stability of the compound may be degraded, and a decrease in the color purity caused by exciplex formation with an adjacent compound (e.g., a host, etc.) may occur.


In embodiments, in Formula 1, when X1 is C, a bond between X1 and M is a coordinate bond, and a1 is 1, then R1 may be a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, or a pyrimidinyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY1(1) to CY1(21):




embedded image


embedded image


embedded image


In Formulae CY1(1) to CY1(21),

    • R11 to R18 may each independently be as defined in connection with R1, except that R11 to R14 may each not be hydrogen,
    • X1 may be C,
    • a14 may be an integer from 0 to 4,
    • a15 may be an integer from 0 to 3,
    • a16 may be an integer from 0 to 2,
    • a17 may be an integer from 0 to 6,
    • a18 may be an integer from 0 to 5,
    • in Formula CY1(1), R11 may not be a methyl group (—CH3),
    • in Formulae CY1(5) to CY1(21), when a14 to a18 are each 0, R11 may not be a methyl group, and
    • *′ indicates a binding site to M in Formula 1, and * indicates a binding site to (L1)n1 in Formula 1.


For example, R11 may not be a methyl group when a14 is 0 in Formula CY1(5), R11 may not be a methyl group when a15 in Formulae CY1(6) to CY1(9) is 0, R11 may not be a methyl group when a16 in Formulae CY1(10) to CY1(12) is 0, R11 may not be a methyl group when a17 in Formulae CY1(13), CY1(16), and CY1(19) is 0, and R11 may not be a methyl group when a18 in Formulae CY1(14), CY1(15), CY1(17), CY1(18), CY1(20), and CY1(21) is 0.


In embodiments, R11 in Formulae CY1(1) to CY1(21) may not be a methyl group.


In embodiments, in Formulae CY1(1) to CY1(21), R11 may be a group represented by CY1A:




embedded image


In Formula CY1A,

    • Z11 may be as defined in connection with R10a,
    • d5 may be an integer from 0 to 5, and
    • * indicates a binding site to a neighboring atom.
    • For example, in Formula CY1A, Z11 may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;
    • a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; or
    • a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, or a pyrimidinyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, and a chrysenyl group.


When ring CY1 in Formula 1 is substituted with a bulky cyclic group, such as a group represented by Formula CY1A, the steric hindrance effect of the bulky cyclic group may be improved and the shielding for M in Formula 1 may be improved. Accordingly, the structural stability of the compound may be improved, and a decrease in color purity caused by exciplex formation with an adjacent compound (e.g., a host, etc.) may be inhibited.


In embodiments, in Formulae CY1(1) to CY1(21), R12 to R17 may each independently be:

    • deuterium, —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;
    • an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group, each unsubstituted or substituted with deuterium; or
    • a phenyl group or a biphenyl group, each unsubstituted or substituted with at least one of deuterium, —F, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, and a naphthyl group.


In an embodiment, in Formula 2, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY2(1) to CY2(20):




embedded image


embedded image


embedded image


In Formulae CY2(1) to CY2(20),

    • X2 may be C or N,
    • R21 to R23 may each independently be as defined in connection with R2, except that R21 to R23 may each not be hydrogen,
    • *′ indicates a binding site to M in Formula 1, *″ indicates a binding site to (L1)n1 in Formula 1, and * indicates a binding site to L2 in Formula 1.


For example, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY2(2) to CY2(8), CY2(10) to CY2(12), CY2(14) to CY2(16), and CY2(18) to CY2(20).


In an embodiment, in Formula CY2(1) to CY2(20), R21 to R23 may each independently be:

    • deuterium, —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;
    • an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl, isopentyl group, a sec-pentyl group, a tert-pentyl group, or a neo-pentyl group, each unsubstituted or substituted with deuterium; or
    • a cyclohexyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each unsubstituted or substituted with at least one of deuterium, —F, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, and a naphthyl group.


In an embodiment, in Formula 1, a moiety represented by




embedded image


may be a moiety represented by one of Formulae CY4(1) to CY4(16):




embedded image


embedded image


In Formulae CY4(1) to CY4(16),

    • R41 to R44 may each independently be as defined in connection with R4, except that R41 to R44 may each not be hydrogen, and
    • *′ indicates a binding site to M in Formula 1, and * indicates a binding site to (L3)n3 in Formula 1.


In an embodiment, in Formula CY4(1) to CY4(16), R41 to R44 may each independently be:

    • deuterium, —CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;
    • an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl, isopentyl group, a sec-pentyl group, a tert-pentyl group, or a neo-pentyl group, each unsubstituted or substituted with deuterium; or
    • a cyclohexyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each unsubstituted or substituted with at least one of deuterium, —F, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, and a naphthyl group.


In embodiments, the organometallic compound may be represented by Formula 1-1:




embedded image


In Formula 1-1,

    • Y31 may be C(Z31) or N,
    • Y32 may be C(Z32) or N,
    • Y33 may be C(Z33) or N,
    • Y34 may be C(Z34) or N,
    • Y35 may be C(Z35) or N,
    • Y36 may be C(Z36) or N,
    • Y37 may be C(Z37) or N,
    • Y38 may be C(Z38) or N,
    • Z31 to Z38 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group that is unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group that is unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group that is unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group that is unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group that is unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group that is unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group that is unsubstituted or substituted with at least one R10a, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • if X1 is C, a bond between X1 and M is a coordinate bond, and a1 is 1, then R1 may not be a methyl group, and
    • M, ring CY1, ring CY2, ring CY4, X1, X2, X4, X31 to X34, L2, R1, R2, R4, a1, a2, a4, R10a, and Q1 to Q3 may each be as defined herein.


In an embodiment, in Formula 1-1:

    • Y31 may be C(Z31), Y32 may be C(Z32), Y33 may be C(Z33), and Y34 may be C(Z34);
    • Y31 may be C(Z31), Y32 may be C(Z32), Y33 may be C(Z33), and Y34 may be N;
    • Y31 may be C(Z31), Y32 may be C(Z32), Y33 may be N, and Y34 may be C(Z34);
    • Y31 may be C(Z31), Y32 may be N, Y33 may be C(Z33), and Y34 may be C(Z34); or
    • Y31 may be N, Y32 may be C(Z32), Y33 may be C(Z33), and Y34 may be C(Z34).


In an embodiment, in Formula 1-1:

    • Y35 may be C(Z35), Y36 may be C(Z36), Y37 may be C(Z37), and Y38 may be C(Z38);
    • Y35 may be C(Z35), Y36 may be C(Z36), Y37 may be C(Z37), and Y38 may be N;
    • Y35 may be C(Z35), Y36 may be C(Z36), Y37 may be N, and Y38 may be C(Z38);
    • Y35 may be C(Z35), Y36 may be N, Y37 may be C(Z37), and Y38 may be C(Z38); or
    • Y35 may be N, Y36 may be C(Z36), Y37 may be C(Z37), and Y38 may be C(Z38).


In the specification, R10a may be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, or a C6-C60 arylthio group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —CI; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


In an embodiment, the organometallic compound represented by Formula 1 may be one of Compounds 1 to 125:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Compounds 1 to 125, Ph indicates a phenyl group, and DN indicates a substitution with deuterium(s) in the number of N. For example, a group represented by




embedded image


may be identical to a group represented by




embedded image


The organometallic compound represented by Formula 1 may include a nitrogen-containing 7-membered ring (e.g., an azepine group, etc.) condensed with each of ring CY31, ring CY32, and ring CY33, and an amine group (wherein L2 is *—N(R2a)—*′) as a linker. When the organometallic compound represented by Formula 1 is applied to a light-emitting device, luminescence efficiency characteristics and device stability may be improved. Accordingly, due to the use of the organometallic compound, an electronic apparatus (for example, an organic light-emitting device) having low driving voltage, high efficiency, and long lifespan characteristics may be implemented.


Synthesis methods of the organometallic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to the Synthesis Examples and/or the Examples provided below.


At least one organometallic compound represented by Formula 1 may be used in a light-emitting device (for example, an organic light-emitting device). Accordingly, an embodiment provides a light-emitting device which may include a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and including an emission layer, and an organometallic compound represented by Formula 1.


In an embodiment,

    • the first electrode may be an anode,
    • the second electrode may be a cathode,
    • the interlayer may further include a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode,
    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In embodiments, the organometallic compound may be included between the first electrode and the second electrode of the light-emitting device.


In embodiments, the interlayer of the light-emitting device may include the organometallic compound. For example, the emission layer of the interlayer may include the organometallic compound.


In embodiments, the emission layer of the light-emitting device may include a dopant and a host, and the dopant may include the organometallic compound represented by Formula 1. For example, the organometallic compound may serve as a dopant. The emission layer may emit red light, green light, blue light, and/or white light. For example, the emission layer may emit green light.


In embodiments, the green light may have a maximum emission wavelength in a range of about 490 nm to about 600 nm. For example, the green light may have a maximum emission wavelength in a range of about 490 nm to about 580 nm. For example, the green light may have a maximum emission wavelength in a range of about 490 nm to about 560 nm. For example, the green light may have a maximum emission wavelength in a range of about 490 nm to about 550 nm. For example, the green light may have a maximum emission wavelength in a range of about 500 nm to about 540 nm. For example, the green light may have a maximum emission wavelength in a range of about 500 nm to about 530 nm.


In an embodiment, the light-emitting device may further include a capping layer outside the first electrode or outside the second electrode.


In an embodiment, the light-emitting device may further include at least one of a first capping layer outside the first electrode and a second capping layer outside the second electrode, and at least one of the first capping layer and the second capping layer may include the organometallic compound represented by Formula 1. The first capping layer and/or the second capping layer may each be the same as described herein.


In an embodiment, the light-emitting device may further include:

    • a first capping layer outside the first electrode and including the condensed cyclic compound represented by Formula 1;
    • a second capping layer outside the second electrode and including the condensed cyclic compound represented by Formula 1; or
    • the first capping layer and the second capping layer.


The wording “(interlayer and/or capping layer) includes an organometallic compound” as used herein may be understood as “(interlayer and/or capping layer) may include one kind of organometallic compound represented by Formula 1 or two or more different kinds of organometallic compounds, each independently represented by Formula 1.”


In an embodiment, the interlayer and/or the capping layer may include Compound 1 only as the organometallic compound. In this regard, Compound 1 may be present in the emission layer of the light-emitting device. In embodiments, the interlayer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in a same layer (for example, Compound 1 and Compound 2 may both be present in the emission layer), or may be present in different layers (for example, Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).


The term “interlayer” as used herein refers to a single layer and/or all layers located between the first electrode and the second electrode of the light-emitting device.


Another embodiment provides an electronic apparatus which may include the light-emitting device.


In an embodiment, the electronic apparatus may further include a thin-film transistor. For example, in an embodiment, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, wherein the first electrode of the light-emitting device may be electrically connected to the source electrode or the drain electrode. In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. More details on the electronic apparatus may be referred to the descriptions provided herein.


[Description of FIG. 1]



FIG. 1 is a schematic cross-sectional view of a light-emitting device 10 according to an embodiment. The light-emitting device 10 includes a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, the structure of the light-emitting device 10 according to an embodiment and a method of manufacturing the light-emitting device 10 will be described with reference to FIG. 1.


[First Electrode 110]


In FIG. 1, a substrate may be further included under the first electrode 110 or on the second electrode 150. In an embodiment, the substrate may be a glass substrate or a plastic substrate. In an embodiment, the substrate may be a flexible substrate, and may include plastics with excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an embodiment, when the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a structure consisting of a single layer or a structure including multiple layers. For example, the first electrode 110 may have a three-layer structure of ITO/Ag/ITO.


[Interlayer 130]


The interlayer 130 is arranged on the first electrode 110. The interlayer 130 may include an emission layer.


The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 150.


The interlayer 130 may further include, in addition to various organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as quantum dots, or the like.


In an embodiment, the interlayer 130 may include two or more emitting units stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer as described herein, the light-emitting device 10 may be a tandem light-emitting device.


[Hole Transport Region in Interlayer 130]


The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof.


For example, the hole transport region may have a multi-layer structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 in its respective stated order, but the structure of the hole transport region is not limited thereto.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


In Formulae 201 and 202,

    • L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xa1 to xa4 may each independently be an integer from 0 to 5,
    • xa5 may be an integer from 1 to 10,
    • R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R201 and R202 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group (for example, a carbazole group or the like) unsubstituted or substituted with at least one R10a (for example, Compound HT16),
    • R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a, to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and
    • na1 may be an integer from 1 to 4.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each independently include at least one of groups represented by Formulae CY201 to CY217:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae CY201 to CY217, R10b and R10c may each independently be the same as described in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a.


In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each independently include at least one of groups represented by Formulae CY201 to CY203.


In embodiments, the compound represented by Formula 201 may include at least one of the groups represented by Formulae CY201 to CY203 and at least one of the groups represented by Formulae CY204 to CY217.


In embodiments, in Formula 201, xa1 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY203.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY203, and may each independently include at least one of the groups represented by Formulae CY204 to CY217.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY217.


In an embodiment, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), p-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to a wavelength of light emitted by an emission layer, and the electron blocking layer may block the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron blocking layer.


[p-Dopant]


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (for example, in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant.


For example, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be less than or equal to about −3.5 eV.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound including element EL1 and element EL2, or any combination thereof.


Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.


Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and the like:




embedded image


In Formula 221,

    • R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and
    • at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound including element EL1 and element EL2, element EL1 may be a metal, a metalloid, or any combination thereof, and element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of a metal may include: an alkali metal (for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); alkaline earth metal (for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (for example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (for example, zinc (Zn), indium (In), tin (Sn), etc.); a lanthanide metal (for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.); and the like.


Examples of a metalloid may include silicon (Si), antimony (Sb), tellurium (Te), and the like.


Examples of a non-metal may include oxygen (O), a halogen (for example, F, Cl, Br, I, etc.), and the like.


Examples of a compound including element EL1 and element EL2 may include a metal oxide, a metal halide (for example, a metal fluoride, a metal chloride, a metal bromide, a metal iodide, etc.), a metalloid halide (for example, a metalloid fluoride, a metalloid chloride, a metalloid bromide, a metalloid iodide, etc.), a metal telluride, or any combination thereof.


Examples of a metal oxide may include tungsten oxide (for example, WO, W2O3, WO2, WO3, W2O5, etc.), vanadium oxide (for example, VO, V2O3, VO2, V2O5, etc.), molybdenum oxide (MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), rhenium oxide (for example, ReO3, etc.), and the like.


Examples of a metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, a lanthanide metal halide, and the like.


Examples of an alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI, and the like.


Examples of an alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, BaI2, and the like.


Examples of a transition metal halide may include a titanium halide (for example, TiF4, TiCl4, TiBr4, TiI4, etc.), a zirconium halide (for example, ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), a hafnium halide (for example, HfF4, HfCl4, HfBr4, HfI4, etc.), a vanadium halide (for example, VF3, VCl3, VBr3, VI3, etc.), a niobium halide (for example, NbF3, NbCl3, NbBr3, NbI3, etc.), a tantalum halide (for example, TaF3, TaCl3, TaBr3, TaI3, etc.), a chromium halide (for example, CrF3, CrO3, CrBr3, CrI3, etc.), a molybdenum halide (for example, MoF3, MoCl3, MoBr3, MoI3, etc.), a tungsten halide (for example, WF3, WCl3, WBr3, WI3, etc.), a manganese halide (for example, MnF2, MnCl2, MnBr2, MnI2, etc.), a technetium halide (for example, TcF2, TcCl2, TcBr2, TcI2, etc.), a rhenium halide (for example, ReF2, ReCl2, ReBr2, ReI2, etc.), an iron halide (for example, FeF2, FeCl2, FeBr2, FeI2, etc.), a ruthenium halide (for example, RuF2, RuCl2, RuBr2, RuI2, etc.), an osmium halide (for example, OsF2, OsCl2, OsBr2, OsI2, etc.), a cobalt halide (for example, CoF2, COCl2, CoBr2, COI2, etc.), a rhodium halide (for example, RhF2, RhCl2, RhBr2, RhI2, etc.), an iridium halide (for example, IrF2, IrCl2, IrBr2, IrI2, etc.), a nickel halide (for example, NiF2, NiCl2, NiBr2, NiI2, etc.), a palladium halide (for example, PdF2, PdCl2, PdBr2, PdI2, etc.), a platinum halide (for example, PtF2, PtCl2, PtBr2, PtI2, etc.), a copper halide (for example, CuF, CuCl, CuBr, CuI, etc.), a silver halide (for example, AgF, AgCl, AgBr, AgI, etc.), a gold halide (for example, AuF, AuCl, AuBr, AuI, etc.), and the like.


Examples of a post-transition metal halide may include a zinc halide (for example, ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), an indium halide (for example, InI3, etc.), a tin halide (for example, SnI2, etc.), and the like.


Examples of a lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, SmI3, and the like.


Examples of a metalloid halide may include an antimony halide (for example, SbCl5, etc.) and the like.


Examples of a metal telluride may include an alkali metal telluride (for example, Li2Te, a na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (for example, BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (for example, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (for example, ZnTe, etc.), a lanthanide metal telluride (for example, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.), and the like.


[Emission Layer in Interlayer 130]


When the light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other to emit white light. In embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials may be mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include a phosphorescent dopant, a fluorescent dopant, or any combination thereof.


An amount of the dopant in the emission layer may be in a range of about 0.01 parts by weight to about 15 parts by weight, based on 100 parts by weight of the host.


In embodiments, the emission layer may include a quantum dot.


In embodiments, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may serve as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


[Host]


In an embodiment, the host may include a compound represented by Formula 301:





[Ar301]xb11-[(L301)xb1-R301]xb21  [Formula 301]


In Formula 301,

    • Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xb11 may be 1, 2, or 3,
    • xb1 may be an integer from 0 to 5,


R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),

    • xb21 may be an integer from 1 to 5, and
    • Q301 to Q303 may each independently be the same as described in connection with Q1.


In an embodiment, in Formula 301, when xb11 is 2 or more, two or more of Ar301 may be linked to each other via a single bond.


In embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image


In Formulae 301-1 and 301-2,

    • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),
    • xb22 and xb23 may each independently be 0, 1, or 2,
    • L301, xb1, and R301 may each be the same as described herein,
    • L302 to L304 may each independently be the same as described in the specification in connection with L301,
    • xb2 to xb4 may each independently be the same as described in the specification in connection with xb1, and
    • R302 to R305 and R311 to R314 may each independently be the same as described in the specification in connection with R301.


In embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or any combination thereof. In embodiments, the host may include a Be complex (for example, Compound H55), an Mg complex, a Zn complex, or any combination thereof.


In embodiments, the host may include one of Compounds H1 to H128, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Phosphorescent Dopant]


The phosphorescent dopant may be an organometallic compound represented by Formula 1.


The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In embodiments, the phosphorescent dopant may include an organometallic compound represented by Formula 401:




embedded image


In Formulae 401 and 402,

    • M may be a transition metal (for example, iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
    • L401 may be a ligand represented by Formula 402, and xc1 is 1, 2, or 3, wherein when xc1 is 2 or more, two or more of L401 may be identical to or different from each other,
    • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402 may be identical to or different from each other,
    • X401 and X402 may each independently be N or C,
    • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *═C═*′,
    • X403 and X404 may each independently be a chemical bond (for example, a covalent bond or a coordination bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
    • Q411 to Q414 may each independently be the same as described in connection with Q1,
    • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
    • Q401 to Q403 may each independently be the same as described in connection with Q1,
    • xc11 and xc12 may each independently be an integer from 0 to 10, and
    • * and *′ in Formula 402 each indicate a binding site to M in Formula 401.


In an embodiment, in Formula 402, X401 may be nitrogen and X402 may be carbon, or X401 and X402 may each be nitrogen.


In an embodiment, in Formula 401, when xc1 is 2 or more, two ring A401(s) among two or more of L401 may optionally be linked to each other via T402, which is a linking group, and two ring A402(s) among two or more of L401 may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be the same as described in the specification in connection with T401.


In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (for example, an acetylacetonate group), a carboxylic acid group (for example, a picolinate group), —C(═O), an isonitrile group, —CN group, a phosphorus group (for example, a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Fluorescent Dopant]


The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,

    • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xd1 to xd3 may each independently be 0, 1, 2, or 3, and
    • xd4 may be 1, 2, 3, 4, 5, or 6.


In an embodiment, in Formula 501, Ar501 may be a condensed cyclic group (for example, an anthracene group, a chrysene group, or a pyrene group) in which three or more monocyclic groups are condensed together.


In embodiments, in Formula 501, xd4 may be 2.


In an embodiment, the fluorescent dopant may include one of Compounds FD1 to FD37, DPVBi, DPAVBi, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Delayed Fluorescence Material]


The emission layer may include a delayed fluorescence material.


In the specification, the delayed fluorescence material may be selected from compounds capable of emitting delayed fluorescent light based on a delayed fluorescence emission mechanism.


The delayed fluorescence material included in the emission layer may serve as a host or as a dopant, depending on the types of other materials included in the emission layer.


In an embodiment, a difference between a triplet energy level (eV) of the delayed fluorescence material and a singlet energy level (eV) of the delayed fluorescence material may be in a range of about 0 eV to about 0.5 eV. When the difference between the triplet energy level (eV) of the delayed fluorescence material and the singlet energy level (eV) of the delayed fluorescence material satisfies the above-described range, up-conversion from the triplet state to the singlet state of the delayed fluorescence materials may effectively occur, and thus, the luminescence efficiency of the light-emitting device 10 may be improved.


In embodiments, the delayed fluorescence material may include: a material including at least one electron donor (for example, a π electron-rich C3-C60 cyclic group, such as a carbazole group) and at least one electron acceptor (for example, a sulfoxide group, a cyano group, or a π electron-deficient nitrogen-containing C1-C60 cyclic group); or a material including a C8-C60 polycyclic group in which two or more cyclic groups are condensed together while sharing boron (B).


Examples of the delayed fluorescence material may include at least one of Compounds DF1 to DF14:




embedded image


embedded image


embedded image


embedded image


[Quantum Dot]


The emission layer may include a quantum dot.


In the specification, a quantum dot may be a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths according to a size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, or any process similar thereto.


The wet chemical process is a method including mixing a precursor material with an organic solvent and growing a quantum dot particle crystal. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which costs less, and may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE),


The quantum dot may include a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, a Group IV element or compound, or any combination thereof.


Examples of a Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe; or any combination thereof.


Examples of a Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and the like; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb, and the like; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and the like; or any combination thereof. In an embodiment, the Group III-V semiconductor compound may further include a Group II element. Examples of the Group Ill-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, InAIZnP, and the like.


Examples of a Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, InTe, and the like; a ternary compound, such as InGaS3, InGaSes, and the like; or any combination thereof.


Examples of a Group I-III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, AgAlO2, and the like; or any combination thereof.


Examples of a Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, and the like; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and the like; a quaternary compound, such as SnPbSSe, SnPbSeTe, SnPbSTe, and the like; or any combination thereof.


Examples of a Group IV element or compound may include: a single element material, such as Si, Ge, and the like; a binary compound, such as SiC, SiGe, and the like; or any combination thereof.


Each element included in a multi-element compound, such as a binary compound, a ternary compound, or a quaternary compound, may be present in a particle at a uniform concentration or at a non-uniform concentration.


In embodiments, the quantum dot may have a single structure in which the concentration of each element in the quantum dot is uniform, or the quantum dot may have a core-shell structure. In an embodiment, in case that the quantum dot has a core-shell structure, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer that prevents chemical degeneration of the core to maintain semiconductor characteristics, and/or may serve as a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. An interface between the core and the shell may have a concentration gradient in which the concentration of a material that is present in the shell decreases toward the core.


Examples of the shell of the quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, or any combination thereof. Examples of the metal oxide, the metalloid oxide, or the non-metal oxide may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, NiO, and the like; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, CoMn2O4, and the like; or any combination thereof.


Examples of the semiconductor compound may include as described herein, a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, or any combination thereof. Examples of the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.


The quantum dot may have a full width at half maximum (FWHM) of an emission wavelength spectrum less than or equal to about 45 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum less than or equal to about 40 nm. For example, the quantum dot may have a FWHM of an emission wavelength spectrum less than or equal to about 30 nm. When the FWHM of the quantum dot is within these ranges, the quantum dot may have improved color purity or improved color reproducibility. Light emitted through the quantum dot may be emitted in all directions, so that a wide viewing angle may be improved.


In embodiments, the quantum dot may be in the form of a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube particle, a nanowire particle, a nanofiber particle, or a nanoplate particle.


Since the energy band gap may be adjusted by controlling the size of the quantum dot, light having various wavelength bands may be obtained from a quantum dot emission layer. Accordingly, by using quantum dots of different sizes, a light-emitting device that emits light of various wavelengths may be implemented. In an embodiment, the size of the quantum dots 100 may be selected to emit red light, green light, and/or blue light. In an embodiment, the size of the quantum dot may be configured to emit white light by combination of light of various colors.


[Electron Transport Region in Interlayer 130]


The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In embodiments, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers of each structure may be stacked from the emission layer in its respective stated order, but the structure of the electron transport region is not limited thereto.


In an embodiment, the electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


In embodiments, the electron transport region may include a compound represented by Formula 601:





[Ar601]xe11-[(L601)xe1-R601]xe21  [Formula 601]


In Formula 601,

    • Ar601 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xe11 may be 1, 2, or 3,
    • xe1 may be 0, 1, 2, 3, 4, or 5,
    • R601 may be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
    • Q601 to Q603 may each independently be the same as described in connection with Q1,
    • xe21 may be 1, 2, 3, 4, or 5, and
    • at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 601, when xe11 is 2 or more, two or more of Ar601 may be linked to each other via a single bond.


In embodiments, in Formula 601, Ar601 may be an anthracene group unsubstituted or substituted with at least one R10a.


In embodiments, the electron transport region may include a compound represented by Formula 601-1:




embedded image


In Formula 601-1,

    • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may each be N,
    • L611 to L613 may each independently be the same as described in connection with L601,
    • xe611 to xe613 may each independently be the same as described in connection with xe1,
    • R611 to R613 may each independently be the same as described in connection with R601, and
    • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In embodiments, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


In an embodiment, the electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, TSPO1, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport region may be in a range of about 100 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 160 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (for example, an electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of an alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of an alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion.


A ligand coordinated with the metal ion of the alkali metal complex or with the metal ion of the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


For example, the metal-containing material may include a lithium (Li) complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image


The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.


The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may be oxides, halides (for example, fluorides, chlorides, bromides, or iodides), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include: alkali metal oxides, such as Li2O, Cs2O, or K2O; alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (wherein x is a real number satisfying the condition of 0<x<1), BaxCa1-xO (wherein x is a real number satisfying the condition of 0<x<1), or the like. The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In an embodiment, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of the lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3, and the like.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion, and a ligand bonded to the metal ion (for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof).


In an embodiment, the electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In embodiments, the electron injection layer may further include an organic material (for example, a compound represented by Formula 601).


In an embodiment, the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (for example, an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, a LiF:Yb co-deposited layer, or the like.


When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be uniformly or non-uniformly dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the ranges described above, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


[Second Electrode 150]


The second electrode 150 may be arranged on the interlayer 130 having a structure as described above. The second electrode 150 may be a cathode, which is an electron injection electrode. A material for forming the second electrode 150 may be a material having a low work function, such as a metal, an alloy, an electrically conductive compound, or any combination thereof.


The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (AI), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layer structure or a multi-layer structure.


[Capping Layer]


The light-emitting device 10 may include a first capping layer outside the first electrode 110, and/or a second capping layer outside the second electrode 150. For example, the light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.


Light generated in an emission layer in the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and through the first capping layer. Light generated in an emission layer in the interlayer 130 of the light-emitting device 10 may be extracted toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and through the second capping layer.


The first capping layer and the second capping layer may each increase external emission efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the light-emitting device 10 is increased, so that the luminescence efficiency of the light-emitting device 10 may be improved.


The first capping layer and the second capping layer may each include a material having a refractive index greater than or equal to about 1.6 (with respect to a wavelength of about 589 nm).


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth metal complex, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image


[Film]


The organometallic compound represented by Formula 1 may be included in various films. Accordingly, another embodiment provides a film that includes an organometallic compound represented by Formula 1. The film may be, for example, an optical member (or a light control means) (for example, a color filter, a color conversion member, a capping layer, a light extraction efficiency enhancement layer, a selective light absorbing layer, a polarizing layer, a quantum dot-containing layer, or like), a light blocking member (for example, a light reflective layer, a light absorbing layer, or the like), or a protective member (for example, an insulating layer, a dielectric layer, or the like).


[Electronic Apparatus]


The light-emitting device may be included in various electronic apparatuses. In embodiments, an electronic apparatus including the light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.


The electronic apparatus (for example, a light-emitting apparatus) may further include, in addition to the light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be located in at least one direction in which light emitted from the light-emitting device travels. In embodiments, the light emitted from the light-emitting device may be blue light or white light. The light-emitting device may be the same as described herein. In an embodiment, the color conversion layer may include a quantum dot. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.


A pixel-defining film may be located between the subpixels to define each subpixel.


The color filter may further include color filter areas and light-shielding patterns located between the color filter areas, and the color conversion layer may further include color conversion areas and light-shielding patterns located between the color conversion areas.


The color filter areas (or the color conversion areas) may include a first area emitting first color light, a second area emitting second color light, and/or a third area emitting third color light, wherein the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths from one another. For example, the first color light may be red light, the second color light may be green light, and the third color light may be blue light. In an embodiment, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. The quantum dot may be a quantum dot as described herein. The first area, the second area, and/or the third area may each include a scatterer.


In embodiments, the light-emitting device may emit first light, the first area may absorb the first light to emit first-first color light, the second area may absorb the first light to emit second-first color light, and the third area may absorb the first light to emit third-first color light. In this regard, the first-first color light, the second-first color light, and the third-first color light may have different maximum emission wavelengths from one another. For example, the first light may be blue light, the first-first color light may be red light, the second-first color light may be green light, and the third-first color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the light-emitting device as described herein. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein any one of the source electrode and the drain electrode may be electrically connected to any one of the first electrode and the second electrode of the light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, or the like.


The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like.


The electronic apparatus may further include a sealing portion for sealing the light-emitting device. The sealing portion may be located between the color filter and/or the color conversion layer, and the light-emitting device. The sealing portion may allow light from the light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and moisture from penetrating into the light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including an organic layer and/or an inorganic layer. When the sealing portion is a thin-film encapsulation layer, the electronic apparatus may be flexible.


Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. Examples of the functional layers may include a touch screen layer, a polarizing layer, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (for example, fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the light-emitting device as described above, a biometric information collector.


The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like.


[Electronic Equipment]


The light-emitting device may be included in various electronic equipment.


In embodiments, an electronic equipment including the light-emitting device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television (TV), an advertisement board, an indoor light, an outdoor light, a signaling light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall including multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a sign.


The light-emitting device may have excellent effects in terms of luminescence efficiency and long lifespan, and thus the electronic equipment including the light-emitting device may have characteristics such as high luminance, high resolution, and low power consumption.


[Description of FIGS. 2 and 3]



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment.


The electronic apparatus (e.g., a light-emitting apparatus) of FIG. 2 includes a substrate 100, a thin-film transistor (TFT), a light-emitting device, and an encapsulation portion 300 that seals the light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be arranged on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100 and may provide a flat surface on the substrate 100.


A TFT may be arranged on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.


A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be arranged on the active layer 220, and the gate electrode 240 may be arranged on the gate insulating film 230.


An interlayer insulating film 250 may be arranged on the gate electrode 240. The interlayer insulating film 250 may be arranged between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be arranged on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may respectively contact the exposed portions of the source region and the drain region of the active layer 220.


The TFT may be electrically connected to a light-emitting device to drive the light-emitting device, and may be covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. A light-emitting device may be provided on the passivation layer 280. The light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be arranged on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270. The first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.


A pixel defining layer 290 including an insulating material may be arranged on the first electrode 110. The pixel defining layer 290 may expose a region of the first electrode 110, and an interlayer 130 may be formed in the exposed region of the first electrode 110. The pixel defining layer 290 may be a polyimide-based organic film or a polyacrylic-based organic film. Although not shown in FIG. 2, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel defining layer 290 to be provided in the form of a common layer.


The second electrode 150 may be arranged on the interlayer 130, and a capping layer 170 may be further included on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.


The encapsulation portion 300 may be arranged on the capping layer 170. The encapsulation portion 300 may be arranged on a light-emitting device to protect the light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (for example, polymethyl methacrylate, polyacrylic acid, or the like), an epoxy-based resin (for example, aliphatic glycidyl ether (AGE), or the like), or any combination thereof; or any combination of the inorganic films and the organic films.



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment.


The electronic apparatus (e.g., a light-emitting apparatus) of FIG. 3 may differ from the electronic apparatus of FIG. 2, at least in that a light-shielding pattern 500 and a functional region 400 are further included on the encapsulation portion 300. The functional region 400 may be a color filter area, a color conversion area, or a combination of the color filter area and the color conversion area. In an embodiment, the light-emitting device included in the electronic apparatus of FIG. 3 may be a tandem light-emitting device.


[Description of FIG. 4]



FIG. 4 is a schematic perspective view of an electronic equipment 1 including a light-emitting device according to an embodiment.


The electronic equipment 1, which may be a device or apparatus that displays a moving image or still image, may be not only a portable electronic equipment, such as a mobile phone, a smartphone, a tablet personal computer (PC), a mobile communication terminal, an electronic notebook, an electronic book, a portable multimedia player (PMP), a navigation device, or a ultra-mobile PC (UMPC), but also various products, such as a television (TV), a laptop computer, a monitor, an advertisement board, or an Internet of things (IOT). The electronic equipment 1 may be such a product above or a part thereof.


The electronic equipment 1 may be a wearable device, such as a smart watch, a watch phone, a glasses-type display, or a head mounted display (HMD), or a part of the wearable device. However, embodiments are not limited thereto.


For example, the electron equipment 1 may be a dashboard of a vehicle, a center fascia of a vehicle, a center information display arranged on a dashboard of a vehicle, a room mirror display replacing a side mirror of a vehicle, an entertainment display for the rear seat of a vehicle or a display arranged on the back of the front seat, or a head up display (HUD) installed in the front of a vehicle or projected on a front window glass, a computer generated hologram augmented reality head up display (CGH AR HUD). FIG. 4 illustrates an embodiment in which the electronic equipment 1 is a smartphone, for convenience of explanation.


The electronic equipment 1 may include a display area DA and a non-display area NDA outside the display area DA. A display device may implement an image through a two-dimensional array of pixels in the display area DA.


The non-display area NDA is an area that does not display an image, and may surround the display area DA. A driver for providing electrical signals or power to display devices arranged on the display area DA may be arranged in the non-display area NDA. A pad, which is an area to which an electronic element or a printing circuit board may be electrically connected, may be arranged in the non-display area NDA.


In the electronic equipment 1, a length in an x-axis direction and a length in a y-axis direction may be different from each other. In an embodiment, as shown in FIG. 4, the length in the x-axis direction may be shorter than the length in the y-axis direction. In an embodiment, the length in the x-axis direction may be the same as the length in the y-axis direction. In still another embodiment, the length in the x-axis direction may be longer than the length in the y-axis direction.


[Descriptions of FIGS. 5 and 6A to 6C]



FIG. 5 is a schematic perspective view of the exterior of a vehicle 1000 as electronic equipment including a light-emitting device according to an embodiment.



FIGS. 6A to 6C are each a schematic diagram of the interior of a vehicle 1000 according to embodiments.


Referring to FIGS. 5, 6A, 6B, and 6C, the vehicle 1000 may refer to various apparatuses for moving a subject to be transported, such as a person, an object, or an animal, from a departure point to a destination point. Examples of the vehicle 1000 may include a vehicle traveling on a road or track, a vessel moving over a sea or river, an airplane flying in the sky using the action of air, and the like.


The vehicle 1000 may travel on a road or a track. The vehicle 1000 may move in a given direction according to rotation of at least one wheel. Examples of the vehicle 1000 may include a three-wheeled or four-wheeled vehicle, a construction machine, a two-wheeled vehicle, an engine, a bicycle, and a train running on a track.


The vehicle 1000 may include a body having an interior and an exterior, and a chassis that is a portion excluding the body in which mechanical apparatuses necessary for driving are installed. The exterior of the body may include a front panel, a bonnet, a roof panel, a rear panel, a trunk, a pillar provided at a boundary between doors, and the like. The chassis of the vehicle 1000 may include a power generating device, a power transmitting device, a driving device, a steering device, a braking device, a suspension device, a transmission device, a fuel device, and front, rear, left, and right wheels, and the like.


The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display device 2.


The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar arranged between the side window glass 1100 and the front window glass 1200.


The side window glass 1100 may be installed on the side of the vehicle 1000. In an embodiment, the side window glass 1100 may be installed in a door of the vehicle 1000. Multiple side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be arranged adjacent to the cluster 1400, and the second side window glass 1120 may be arranged adjacent to the passenger seat dashboard 1600.


In an embodiment, the side window glasses 1100 may be spaced apart from each other in an x-direction or in a −x-direction. For example, the first side window glass 1110 and the second side window glass 1120 may be spaced apart from each other in the x direction or in the −x direction. An imaginary straight line L connecting the side window glasses 1100 may extend in the x-direction or in the −x-direction. For example, an imaginary straight line L connecting the first side window glass 1110 and the second side window glass 1120 to each other may extend in the x direction or in the −x direction.


The front window glass 1200 may be installed on the front of the vehicle 1000. The front window glass 1200 may be arranged between the side window glasses 1100 facing each other.


The side mirror 1300 may provide a rear view of the vehicle 1000. The side mirror 1300 may be installed on the exterior of the vehicle body. In an embodiment, multiple side mirrors 1300 may be provided. Any one of the side mirrors 1300 may be arranged outside the first side window glass 1110. Another of the side mirrors 1300 may be arranged outside the second side window glass 1120.


The cluster 1400 may be arranged in front of a steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge, a turn signal indicator, a high beam indicator, a warning light, a seat belt warning light, an odometer, a driving record system, an automatic shift selector indicator light, a door open warning light, an engine oil warning light, and/or a low fuel warning light.


The center fascia 1500 may include a control panel on which buttons for adjusting an audio device, an air conditioning device, and a seat heater are disposed. The center fascia 1500 may be arranged on a side of the cluster 1400.


A passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 arranged therebetween. In an embodiment, the cluster 1400 may be arranged to correspond to a driver seat (not shown), and the passenger seat dashboard 1600 may be disposed to correspond to a passenger seat (not shown). In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.


In an embodiment, the display device 2 may include a display panel 3, and the display panel 3 may display an image. The display device 2 may be arranged inside the vehicle 1000. In an embodiment, the display device 2 may be arranged between the side window glasses 1100 facing each other. The display device 2 may be arranged in at least one of the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.


The display device 2 may include an organic light-emitting display device, an inorganic EL display device, a quantum dot display device, and the like. Hereinafter, as the display device 2 according to an embodiment, an organic light-emitting display device display including the light-emitting device according to the disclosure will be described as an example, but various types of display devices as described herein may be used as embodiments.


Referring to FIG. 6A, the display device 2 may be arranged in the center fascia 1500. In an embodiment, the display device 2 may display navigation information. In an embodiment, the display device 2 may display information regarding audio settings, video settings, or vehicle settings.


Referring to FIG. 6B, the display device 2 may be arranged in the cluster 1400. When the display device 2 is arranged on the cluster 1400, the cluster 1400 may display driving information and the like through the display device 2. For example, the cluster 1400 may be digitally implement driving information. The cluster 1400 may digitally display vehicle information and driving information as images. For example, a needle and a gauge of a tachometer and various warning lights or icons may be displayed by a digital signal.


Referring to FIG. 6C, the display device 2 may be arranged in the passenger seat dashboard 1600. The display device 2 may be embedded in the passenger seat dashboard 1600 or arranged on the passenger seat dashboard 1600. In an embodiment, the display device 2 arranged on the passenger seat dashboard 1600 may display an image related to information displayed on the cluster 1400 and/or information displayed on the center fascia 1500. In embodiments, the display device 2 arranged on the passenger seat dashboard 1600 may display information different from information displayed on the cluster 1400 and/or information displayed on the center fascia 1500.


[Manufacturing Method]


Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10-3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


Definitions of Terms

The term “C3-C60 carbocyclic group” as used herein may be a cyclic group consisting of carbon atoms as the only ring-forming atoms and having three to sixty carbon atoms, and the term “C1-C60 heterocyclic group” as used herein may be a cyclic group that has one to sixty carbon atoms and further has, in addition to a carbon atom, at least one heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. For example, a C1-C60 heterocyclic group may have 3 to 61 ring-forming atoms.


The term “cyclic group” as used herein may be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as used herein may be a cyclic group that has three to sixty carbon atoms and may not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may be a heterocyclic group that has one to sixty carbon atoms and may include *—N═*′ as a ring-forming moiety.


In embodiments,

    • the C3-C60 carbocyclic group may be a T1 group or a group in which two or more T1 groups are condensed with each other (for example, a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
    • the C1-C60 heterocyclic group may be a T2 group, ii) a group in which at least two T2 groups are condensed with each other, or a group in which at least one T2 group and at least one T1 group are condensed with each other (for example, a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, or the like),
    • the π electron-rich C3-C60 cyclic group may be a T1 group, a group in which at least two T1 groups are condensed with each other, a T3 group, a group in which at least two T3 groups are condensed with each other, or a group in which at least one T3 group and at least one T1 group are condensed with each other (for example, a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, or the like), and
    • the π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a group in which at least two T4 groups are condensed with each other, a group in which at least one T4 group and at least one T1 group are condensed with each other, a group in which at least one T4 group and at least one T3 group are condensed with each other, or a group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with one another (for example, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, and the like), wherein
    • the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
    • the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
    • the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
    • the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The terms “cyclic group”, “C3-C60 carbocyclic group”, “C1-C60 heterocyclic group”, “π electron-rich C3-C60 cyclic group”, or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may each be a group condensed to any cyclic group, a monovalent group, or a polyvalent group (for example, a divalent group, a trivalent group, a tetravalent group, etc.) according to the structure of a formula for which the corresponding term is used. For example, a “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


Examples of a monovalent C3-C60 carbocyclic group and a monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, and examples of a divalent C3-C60 carbocyclic group and a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as used herein may be a linear or branched aliphatic hydrocarbon monovalent group that has one to sixty carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group. The term “C1-C60 alkylene group” as used herein may be a divalent group having a same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethynyl group and a propynyl group. The term “C2-C60 alkynylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein may be a monovalent group represented by —O(A101) (wherein A101 may be a C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as used herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, and a bicyclo[2.2.2]octyl group. The term “C3-C1 cycloalkylene group” as used herein may include a divalent group having a same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein may be a monovalent cyclic group that has three to ten carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C1 cycloalkenylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein may be a monovalent cyclic group of 1 to 10 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having at least one carbon-carbon double bond in the cyclic structure thereof. Examples of a C1-C1 heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C1 heterocycloalkenylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein may be a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein may be a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of a C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, and an ovalenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the respective rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as used herein may be a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. The term “C1-C60 heteroarylene group” as used herein may be a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms. Examples of a C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, and a naphthyridinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the respective rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as used herein may be a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed to each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure. Examples of a monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, and an indeno anthracenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed polycyclic group described above.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein may be a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, further including, in addition to carbon atoms, at least one heteroatom, as ring-forming atoms, and having non-aromaticity in its entire molecular structure. Examples of a monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphthosilolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, and a benzothienodibenzothiophenyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed heteropolycyclic group described above.


The term “C6-C60 aryloxy group” as used herein may be a group represented by —O(A102) (wherein A102 may be a C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein may be a group represented by —S(A103) (wherein A103 may be a C6-C60 aryl group).


The term “C7-C60 arylalkyl group” as used herein may be a group represented by -(A104)(A105) (wherein A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroarylalkyl group” as used herein may be a group represented by -(A106)(A107) (wherein A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


In the specification, the group “R10a” may be:

    • deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).


In the specification, Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —CI; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof.


The term “heteroatom” as used herein may be any atom other than a carbon atom or a hydrogen atom. Examples of a heteroatom may include O, S, N, P, Si, B, Ge, Se, and any combination thereof.


In the specification, a third-row transition metal may be hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), or the like.


In the specification, the term “Ph” refers to a phenyl group, the term “Me” refers to a methyl group, the term “Et” refers to an ethyl group, the terms “tert-Bu” or “But” each refer to a tert-butyl group, and the term “OMe” refers to a methoxy group.


The term “biphenyl group” as used herein may be a “phenyl group substituted with a phenyl group.” For example, the “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein may be a “phenyl group substituted with a biphenyl group.” For example, the “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


The symbols * and *′ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


In the specification, the terms “x-axis”, “y-axis”, and “z-axis” are not limited to three axes in an orthogonal coordinate system (e.g., a Cartesian coordinate system), and may be interpreted in a broader sense than the aforementioned three axes in an orthogonal coordinate system. For example, the x-axis, y-axis, and z-axis may describe axes that are orthogonal to each other, or may describe axes that are in different directions that are not orthogonal to each other.


Hereinafter, compounds according to embodiments and light-emitting devices according to embodiments will be described in detail with reference to the following Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.


EXAMPLES
Synthesis Example
Synthesis Example 1: Synthesis of Compound 2



embedded image


embedded image


Synthesis of Intermediate 2-1


5.6 g (20 mmol) of 2-iodobiphenyl, 7.5 g (30 mmol) of 2,5-dibromoaniline, 0.022 g (0.1 mmol) of palladium(II) acetate, 0.061 g (0.2 mmol) of tris(o-tolyl)phosphine (P(o-tol)3), and 13 g (40 mmol) of cesium carbonate were added to a reaction container, and suspended in 100 ml of dimethyl sulfoxide. The reaction mixture was heated to a temperature of 120° C. and stirred for 36 hours. After completion of the reaction, the reaction result was cooled at room temperature, 300 ml of distilled water was added thereto, and an extraction process was performed thereon by using ethyl acetate. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 4.8 g (15 mmol) of Intermediate 2-1.


Synthesis of Intermediate 2-2


4.8 g (15 mmol) of Intermediate 2-1, 4.8 g (22.5 mmol) of 2-bromo-4(tert-butyl)pyridine, 6.9 g (30 mmol) of tripotassium phosphate, 0.55 g (3.0 mmol) of CuI, and 0.33 g (3.0 mmol) of picolinic acid were added to a reaction container, and suspended in 60 ml of dimethyl sulfoxide. The reaction mixture was heated and stirred at 160° C. for 24 hours. After completion of the reaction, the reaction result was cooled at room temperature, 100 ml of distilled water was added thereto, and an extraction process was performed thereon by using ethyl acetate. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 5.9 g (13 mmol) of Intermediate 2-2.


Synthesis of Intermediate 2-3


5.9 g (13 mmol) of Intermediate 2-2, 5.2 g (19.5 mmol) of Compound I-1, 0.98 mmol of Sphos, 0.65 mmol of Pd2(dba)3, and 26 mmol of sodium tert-butoxide were suspended in 100 ml of a toluene solvent. The reaction mixture was heated to 100° C. and stirred for 5 hours. After completion of the reaction, the solvent was removed under reduced pressure, and an extraction process was performed thereon by using methylene chloride and distilled water. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 6.4 g (10 mmol) of Intermediate 2-3.


Synthesis of Intermediate 2-4


6.4 g (10 mmol) of Intermediate 2-3, 2.3 g (15 mmol) of bromobenzene, 4.6 g (20 mmol) of tripotassium phosphate, 0.37 g (2.0 mmol) of CuI, and 0.22 g (2.0 mmol) of picolinic acid were added to a reaction container, and suspended in 60 ml of dimethyl sulfoxide. The reaction mixture was heated and stirred at 160° C. for 24 hours. After completion of the reaction, the reaction result was cooled at room temperature, 100 ml of distilled water was added thereto, and an extraction process was performed thereon by using ethyl acetate. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 6.1 g (8.5 mmol) of Intermediate 2-4.


Synthesis of Intermediate 2-5


6.1 g (8.5 mmol) of Intermediate 2-4 and 13 mmol of diphenyliodonium were suspended in 90 ml of toluene. The reaction mixture was heated and stirred at 110° C. for 24 hours. After completion of the reaction, the reaction result was cooled at room temperature, 100 ml of distilled water was added thereto, and an extraction process was performed thereon by using ethyl acetate. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 6.5 g (7.1 mmol) of Intermediate 2-5.


Synthesis of Intermediate 2-6


6.5 g (7.1 mmol) of Intermediate 2-5 and 4.6 g (27.8 mmol) of ammonium hexafluorophosphate were added to a reaction container, and suspended in a mixed solution containing 120 ml of methyl alcohol and 30 ml of water. The reaction mixture was stirred at room temperature for 24 hours. The solid obtained after completion of the reaction was filtered and washed with ether. The washed solid was dried to obtain 6.4 g (6.8 mmol) of Intermediate 2-6.


Synthesis of Compound 2


6.4 g (6.8 mmol) of Intermediate 2-6, 2.6 g (7.2 mmol) of dichloro(1,5-cyclooctadiene) platinum, and 1.1 g (13.6 mmol) of sodium acetate were suspended in 80 ml of dioxane. The reaction mixture was heated and stirred at 110° C. for 72 hours. After completion of the reaction, the reaction result was cooled at room temperature, 100 ml of distilled water was added thereto, and an extraction process was performed thereon by using ethyl acetate. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to column chromatography to obtain 3.8 g (3.9 mmol) of Compound 2 (yield: 57%).


Synthesis Example 2: Synthesis of Compound 34



embedded image


embedded image


Synthesis of Intermediate 34-1


7.2 g (12 mmol) of Intermediate 34-1 was obtained in the same manner as in the synthesis of Intermediate 2-3 according to Synthesis Example 1, except that 4.6 g (20 mmol) of 3-bromo-5-(tert-butyl)aniline was used instead of Compound I-1.


Synthesis of Intermediate 34-2


6.8 g (10 mmol) of Intermediate 34-2 was obtained in the same manner as in the synthesis of Intermediate 2-4 according to Synthesis Example 1, except that 7.2 g (12 mmol) of Intermediate 34-1 was used instead of Intermediate 2-3.


Synthesis of Intermediate 34-3


6.8 g (10 mmol) of Intermediate 34-2, 3.8 g (11 mmol) of Compound I-2, 0.75 mmol of Sphos, 0.5 mmol of Pd2(dba)3, and 20 mmol of sodium t-butoxide were suspended in 100 ml of a toluene solvent, heated to 100° C., and stirred for 5 hours. After completion of the reaction, the solvent was removed therefrom under reduced pressure, and an extraction process was performed thereon by using methylene chloride and distilled water. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 7.2 g (7.6 mmol) of Intermediate 34-3.


Synthesis of Intermediate 34-4


7.2 g (7.6 mmol) of Intermediate 34-3 was dissolved in 380 mmol (56 ml) of triethyl orthoformate, and 9.12 mmol (0.7 ml) of hydrochloric acid was added dropwise thereto. The reaction mixture was heated to 100° C. and stirred for 20 hours. After completion of the reaction, the solvent was removed therefrom under reduced pressure, and an extraction process was performed thereon by using methylene chloride and distilled water. An organic layer extracted therefrom was washed with a saturated aqueous sodium chloride solution, and dried by using sodium sulfate. The obtained result was subjected to a column chromatography to obtain 6.0 g (6.1 mmol) of Intermediate 34-4.


Synthesis of Intermediate 34-5


6.6 g (6.0 mmol) of Intermediate 34-5 was obtained in the same manner as in the synthesis of Intermediate 2-6 according to Synthesis Example 1, except that 6.0 g (6.1 mmol) of Intermediate 34-4 was used instead of Intermediate 2-5.


Synthesis of Compound 34


2.5 g (2.2 mmol) of Compound 34 (yield: 37%) was obtained in the same manner as in the synthesis of Compound 2 according to Synthesis Example 1, except that 6.6 g (6.0 mmol) of Intermediate 34-5 was used instead of Intermediate 2-6.


Synthesis Example 3: Synthesis of Compound 50



embedded image


embedded image


Synthesis of Intermediate 50-2


5.4 g (8.0 mmol) of Intermediate 50-2 was obtained in the same manner as in the synthesis of Intermediate 34-1 according to Synthesis Example 2, except that 5.3 g (10 mmol) of Intermediate 50-1 was used instead of Intermediate 2-2.


Synthesis of Intermediate 50-3


6.0 g (6.9 mmol) of Intermediate 50-3 was obtained in the same manner as in the synthesis of Intermediate 34-2 according to Synthesis Example 2, except that 5.4 g (8.0 mmol) of Intermediate 50-2 and 3.2 g (12 mmol) of 1-bromo-3,5-di-tert-butylbenzene were used instead of Intermediate 34-1 and bromobenzene, respectively.


Synthesis of Intermediate 50-4


7.4 g (6.0 mmol) of Intermediate 50-4 was obtained in the same manner as in the synthesis of Intermediate 34-3 according to Synthesis Example 2, except that 6.0 g (6.9 mmol) of Intermediate 50-3 and 3.4 g (7.6 mmol) of Compound I-3 were used instead of Intermediate 34-2 and Compound I-2, respectively.


Synthesis of Intermediate 50-5


6.6 g (5.1 mmol) of Intermediate 50-5 was obtained in the same manner as in the synthesis of Intermediate 34-4 according to Synthesis Example 2, except that 7.4 g (6.0 mmol) of Intermediate 50-4 was used instead of Intermediate 34-3.


Synthesis of Intermediate 50-6


6.7 g (4.8 mmol) of Intermediate 50-6 was obtained in the same manner as in the synthesis of Intermediate 34-5 according to Synthesis Example 2, except that 6.6 g (5.1 mmol) of Intermediate 50-5 was used instead of Intermediate 34-4.


Synthesis of Compound 50


3.0 g (2.1 mmol) of compound 50 (yield: 44%) was obtained in the same manner as in the synthesis of Compound 2 according to Synthesis Example 1, except that 6.7 g (4.8 mmol) of Intermediate 50-6 was used instead of Intermediate 2-6.


Synthesis Example 4: Synthesis of Compound 86



embedded image


embedded image


Synthesis of Intermediate 86-1


4.2 g (8.2 mmol) of Intermediate 86-1 was obtained in the same manner as in the synthesis of Intermediate 2-2 according to Synthesis Example 1, except that 4.1 g (15 mmol) of Compound I-4 was used instead of 2-bromo-4(tert-butyl)pyridine.


Synthesis of Intermediate 86-2


4.9 g (6.6 mmol) of Intermediate 86-2 was obtained in the same manner as in the synthesis of Intermediate 2-3 according to Synthesis Example 1, except that 4.2 g (8.2 mmol) of Intermediate 86-1 and 4.4 g (12.3 mmol) of Compound I-5 were used instead of Intermediate 2-2 and Compound I-1, respectively.


Synthesis of Intermediate 86-3


4.9 g (6.0 mmol) of Intermediate 86-3 was obtained in the same manner as in the synthesis of Intermediate 2-4 according to Synthesis Example 1, except that 4.9 g (6.6 mmol) of Intermediate 86-2 was used instead of Intermediate 2-3.


Synthesis of Intermediate 86-4


4.7 g (4.5 mmol) of Intermediate 86-4 was obtained in the same manner as in the synthesis of Intermediate 2-5 according to Synthesis Example 1, except that 4.9 g (6.0 mmol) of Intermediate 86-3 and 5.3 g (9.0 mmol) of Compound I-6 were used instead of Intermediate 2-4 and diphenyliodonium, respectively.


Synthesis of Intermediate 86-5


4.6 g (4.3 mmol) of Intermediate 86-5 was obtained in the same manner as in the synthesis of Intermediate 2-6 according to Synthesis Example 1, except that 4.7 g (4.5 mmol) of Intermediate 86-4 was used instead of Intermediate 2-5.


Synthesis of Compound 86


3.0 g (2.4 mmol) of Compound 86 (yield: 56%) was obtained in the same manner as in the synthesis of Compound 2 according to Synthesis Example 1, except that 4.6 g (4.3 mmol) of Intermediate 86-5 was used instead of Intermediate 2-6.


Synthesis Example 5: Synthesis of Compound 116



embedded image


embedded image


Synthesis of Intermediate 116-1


5.3 g (8.2 mmol) of Intermediate 116-1 was obtained in the same manner as in the synthesis of Intermediate 34-1 according to Synthesis Example 2, except that 4.1 g (15 mmol) of Compound I-7 was used instead of 2-bromo-4(tert-butyl)pyridine.


Synthesis of Intermediate 116-2


15.69 g (7.8 mmol) of Intermediate 116-2 was obtained in the same manner as in the synthesis of Intermediate 34-2 according to Synthesis Example 2, except that 5.3 g (8.2 mmol) of Intermediate 116-1 was used instead of Intermediate 34-1.


Synthesis of Intermediate 116-3


8.1 g (7.0 mmol) of Intermediate 116-3 was obtained in the same manner as in the synthesis of Intermediate 34-3 according to Synthesis Example 2, except that 5.6 g (7.8 mmol) of Intermediate 116-2 and 4.4 g (8.6 mmol) of Compound I-8 were used instead of Intermediate 34-2 and Compound I-8, respectively.


Synthesis of Intermediate 116-4


7.2 g (6.0 mmol) of Intermediate 116-4 was obtained in the same manner as in the synthesis of Intermediate 34-4 according to Synthesis Example 2, except that 8.1 g (7.0 mmol) of Intermediate 116-3 was used instead of Intermediate 34-3.


Synthesis of Intermediate 116-5


7.5 g (5.7 mmol) of Intermediate 116-5 was obtained in the same manner as in the synthesis of Intermediate 34-5 according to Synthesis Example 2, except that 7.2 g (6.0 mmol) of Intermediate 116-4 was used instead of Intermediate 34-4.


Synthesis of Compound 116


4.7 g (3.5 mmol) of Compound 116 (yield: 61%) was obtained in the same manner as in the synthesis of Compound 34 according to Synthesis Example 2, except that 7.5 g (5.7 mmol) of Intermediate 116-5 was used instead of Intermediate 34-5.


Synthesis Example 6: Synthesis of Compound 1



embedded image


2.7 g (2.9 mmol) of Compound 1 (yield: 48%) was obtained in the same manner as in the synthesis of Intermediate 2-2 according to Synthesis Example 1, except that 2-bromopyridine was used instead of 2-bromo-4(tert-butyl)pyridine.



1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 6 are shown in Table 1. Synthesis methods of compounds other than the compounds of Synthesis Examples 1 to 6 may be readily recognized by those skilled in the art by referring to the synthesis paths and source materials.











TABLE 1







Compound

MS/FAB










No.

1H-NMR (CDCl3, 500 MHz)

calc.
found













2
δ 8.12-8.10(m, 2H), 7.96(dd, 2H), 7.69(d, 1H), 7.60(dd,
984.3479
984.3480



2H), 7.42-7.37(m, 5H), 7.25-7.23(m, 2H), 7.15-6.98(m,



13H), 6.67(d, 1H), 6.52(s, 1H), 1.32(s, 9H), 1.29 (s, 9H)


34
δ 8.20(d, 2H), 8.12-8.10(m, 2H), 7.96(dd, 2H),
1147.4685
1147.4683



7.68-7.66(m, 2H), 7.60(dd, 2H), 7.40-7.37(m, 3H),



7.25-7.23(m, 2H), 7.13-7.01(m, 7H), 6.79(d, 1H),



6.67(d, 1H), 6.56-6.53(m, 2H), 1.32 (s, 9H), 1.30 (s, 9H)


50
δ 8.21-8.17(m, 3H), 8.15-8.10(m, 4H), 7.75-7.66(m, 5H),
1441.7236
1441.7238



7.50-7.48(m, 2H), 7.41-7.35(m, 5H), 7.21-7.20(m, 2H),



7.14-7.10(m, 4H), 7.06-7.03(m, 3H), 6.95(d, 2H), 6.52(s,



1H), 6.56-6.53(m, 2H), 1.41 (s, 18H), 1.37 (s, 18H) 1.32



(s, 9H), 1.30 (s, 9H)


86
δ 8.11-8.10(m, 2H), 7.96(dd, 2H), 7.75-7.69(m, 5H),
1254.4888
1254.4889



7.60(dd, 2H), 7.48-7.03(m, 26H), 6.93(s, 2H), 6.62(d, 1H),



6.47(s, 1H), 1.69 (s, 6H), 1.41 (s, 18H)


116
δ 8.12-8.10(m, 2H), 7.99-7.96(m, 4H), 7.73-7.69(m, 3H),
1334.6298
1334.6300



7.61-7.60(m, 2H), 7.39-7.37(m, 2H), 7.25-7.24(m, 2H),



7.14-6.97(m, 12H), 6.67(d, 1H), 6.52(s, 1H), 1.40 (s, 18H),



1.37 (s, 9H) 1.32 (s, 9H)


1
δ 8.11-8.10(m, 2H), 7.97-7.96(m, 2H), 7.69(d, 1H),
928.2853
928.2851



7.60-7.56(m, 3H), 7.41-7.38(m, 5H), 7.25-7.24(m, 2H),



7.14-6.97(m, 13H), 6.63-6.57(m, 2H), 1.32 (s, 9H)









Evaluation Example 1

The highest occupied molecular orbital (HOMO) energy level (eV), the lowest unoccupied molecular orbital (LUMO) energy level (eV), and Ti (nm) values of Compound 2, Compound 34, and Compounds CE1 and CE2 were calculated by using the density functional theory (DFT) method of the Gaussian program (structural optimizations using B3LYP/6-311 g(d,p)/LANL2DZ).













TABLE 2






Compound No.
HOMO (eV)
LUMO (eV)
T1 (nm)








 2
−4.60
−1.47
508



34
−4.45
−1.42
532



CE1
−4.91
−1.43
477



CE2
−4.82
−1.71
554







embedded image


embedded image


embedded image


embedded image








Although Compound 2, Compound 34, and Compounds CE1 and CE2 were all structurally similar in that the compounds included azepine structures, it was confirmed that, based on the HOMO energy level (eV), LUMO energy level (eV), and T1 values in Table 2, Compound CE1 emitted blue light. It was confirmed that Compound CE2 emitted green light as in Compound 2 and Compound 34, but had a different emission wavelength region from Compound 2 and Compound 34.


Example 1

As an anode, a glass substrate (product of Corning Inc.) with a 15 Ω/cm2 (1,200 Å) ITO formed thereon was cut to a size of 50 mm×50 mm×0.7 mm, sonicated by using isopropyl alcohol and pure water each for 5 minutes, washed by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes, and mounted on a vacuum deposition apparatus.


2-TNATA was vacuum-deposited on the anode to form a hole injection layer having a thickness of 600 Å, and 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (hereinafter, referred as NPB) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å.


Compound 2 as a dopant and 3,3-di(9H-carbazol-9-yl)biphenyl (mCBP) as a host were co-deposited on the hole transport layer to form an emission layer having a thickness of 300 Å. Here, an amount of Compound 2 was adjusted to be 10 wt % based on a total weight (100 wt %) of the emission layer.


Diphenyl(4-(triphenylsilyl)phenyl)-phosphine oxide (TSPO1) was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å. Alq3 was vacuum-deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å; LiF, which is a halogenated alkali metal, was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å; and Al was vacuum-deposited thereon to form a cathode having a thickness of 3,000 Å, thereby completing the manufacture of an organic light-emitting device.




embedded image


Examples 2 to 6 and Comparative Examples 1 and 2

Organic light-emitting devices were manufactured in the same manner as used in Example 1, except that in forming the emission layer, the compounds shown in Table 3 were used.


Evaluation Example 2

The driving voltage (V), luminance (cd/m2), luminescence efficiency (cd/A), maximum emission wavelength (nm), and lifespan (RT80%) of the organic light-emitting devices manufactured according to Examples 1 to 6 and Comparative Examples 1 and 2 were measured by using Keithley MU 236 and luminance meter PR650, and results thereof are shown in Table 3.


In Table 3, the lifespan (RT80%) is a measure of the time (hr) it takes for the luminance to become 80% of the initial luminance compared to the initial luminance at a current density of 40 mA/cm2 at room temperature.

















TABLE 3












Maximum
Lifespan



Organo-
Driving
Current
Lumi-
Effi-

emission
(RT80% @



metallic
Voltage
density
nance
ciency
Emission
wavelength
J = 40 mA/cm2)



compound
(V)
(mA/cm2)
(cd/m2)
(cd/A)
color
(nm)
(hr)







Example 1
 2
5.05
50
3970
7.96
Green
512
317


Example 2
34
5.15
50
4140
8.30
Green
528
365


Example 3
50
5.13
50
4215
8.45
Green
522
381


Example 4
86
5.20
50
4125
8.26
Green
530
415


Example 5
116 
5.22
50
4150
8.52
Green
527
435


Example 6
 1
5.18
50
3940
7.90
Green
511
302


Comparative
Ir(ppy)3
6.74
50
3870
7.74
Green
516
278


Example 1










Comparative
CE2
5.88
50
3710
7.45
Green
541
210


Example 2







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image








Referring to Table 3, it was confirmed that the organic light-emitting devices of Examples 1 to 6 had lower driving voltage, higher luminescence efficiency, and better lifespan characteristics than those of the organic light-emitting devices of Comparative Examples 1 and 2.


According to embodiments, the use of the organometallic compound may enable the manufacture of a light-emitting device having high efficiency and a long lifespan and a high-quality electronic apparatus including the light-emitting device.


Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.

Claims
  • 1. A light-emitting device comprising: a first electrode;a second electrode facing the first electrode;an interlayer between the first electrode and the second electrode and comprising an emission layer; andan organometallic compound represented by Formula 1:
  • 2. The light-emitting device of claim 1, wherein the first electrode is an anode,the second electrode is a cathode,the interlayer further comprises: a hole transport region between the first electrode and the emission layer; andan electron transport region between the emission layer and the second electrode,the hole transport region comprises a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or a combination thereof, andthe electron transport region comprises a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 3. The light-emitting device of claim 1, wherein the emission layer comprises the organometallic compound.
  • 4. The light-emitting device of claim 1, wherein the emission layer emits light having a maximum emission wavelength in a range of about 490 nm to about 550 nm.
  • 5. The light-emitting device of claim 1, wherein the emission layer comprises a host and a dopant, andthe dopant comprises the organometallic compound.
  • 6. An electronic apparatus comprising the light-emitting device of claim 1.
  • 7. The electronic apparatus of claim 6, further comprising a thin-film transistor, wherein the thin-film transistor comprises a source electrode and a drain electrode, andthe first electrode of the light-emitting device is electrically connected to at least one of the source electrode and the drain electrode.
  • 8. The electronic apparatus of claim 7, further comprising a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof.
  • 9. An electronic equipment comprising the light-emitting device of claim 1, wherein the electronic equipment is a flat panel display, a curved display, a computer monitor, a medical monitor, a television, an advertisement board, an indoor light, an outdoor light, a signaling light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall including multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a sign.
  • 10. An organometallic compound represented by Formula 1:
  • 11. The organometallic compound of claim 10, wherein ring CY1 is: an X1-containing 5-membered ring; oran X1-containing 5-membered ring in which at least one 6-membered ring is condensed,the X1-containing 5-membered ring is a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an iso-oxazole group, a thiazole group, an isothiazole group, an oxadiazole group, or a thiadiazole group, andthe 6-membered ring is a benzene group, a pyridine group, a pyrazine group, or a pyrimidine group.
  • 12. The organometallic compound of claim 10, wherein ring CY2 is a benzene group, a pyridine group, a pyrimidine group, or a naphthalene group, andring CY4 is a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, a benzopyrazole group, a benzimidazole group, or a benzothiazole group.
  • 13. The organometallic compound of claim 10, wherein in Formula 1, a moiety represented by
  • 14. The organometallic compound of claim 10, wherein in Formula 1, a moiety represented by
  • 15. The organometallic compound of claim 10, wherein in Formula 1, a moiety represented by
  • 16. The organometallic compound of claim 10, wherein CY32 and CY33 are each independently a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a quinoline group, an isoquinoline group, or a quinoxaline group.
  • 17. The organometallic compound of claim 10, wherein L1 and L3 are each a single bond.
  • 18. The organometallic compound of claim 10, wherein a2 is an integer from 1 to 10, andat least one of R2 in the number of a2 is not hydrogen.
  • 19. The organometallic compound of claim 10, wherein R1, R2, R4, R32, R33, and R2a are each independently: hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a cyclohexyl group, a phenyl group, a biphenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; ora cyclohexyl group, a phenyl group, a biphenyl group, a terphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, or a carbazolyl group, each unsubstituted or substituted with at least one of deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclohexyl group, a phenyl group, a biphenyl group, a C1-C10 alkylphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, and a carbazolyl group.
  • 20. The organometallic compound of claim 10, wherein the organometallic compound is represented by Formula 1-1:
Priority Claims (1)
Number Date Country Kind
10-2022-0081497 Jul 2022 KR national