This application claims priority to and the benefit of Korean Patent Application No. 10-2019-0156111, filed on Nov. 28, 2019, in the Korean Intellectual Property Office, the entire content of which is incorporated herein by reference.
One or more embodiments of the present disclosure relate to an organometallic compound, an organic light-emitting device including the same, and an apparatus including the same.
Organic light-emitting devices are self-emission devices that produce full-color images, and also have wide viewing angles, high contrast ratios, short response times, as well as excellent characteristics in terms of brightness, driving voltage, and response speed.
An example of the organic light-emitting devices may include a first electrode located on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially located on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transit (e.g., transition or relax) from an excited state to a ground state, thereby generating light.
One or more embodiments include an organometallic compound, an organic light-emitting device including the same, and an apparatus including the organic light-emitting device.
Additional aspects of embodiments will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.
An aspect of an embodiment of the present disclosure provides an organometallic compound represented by Formula 1.
In Formula 1,
M is selected from Period 1 transition metals, Period 2 transition metals, and Period 3 transition metals,
La may be selected from ligands represented by Formula 2,
n1 may be 1 or 2,
Lb may be selected from a monodentate ligand, a bidentate ligand, and a tridentate ligand,
n2 may be 0, 1, 2, or 3, and when n2 is 2 or more, two or more Lb(s) may be identical to or different from each other,
La and Lb may be different from each other,
wherein, in Formula 2,
A1 and A2 may each independently be selected from a C5-C30 carbocyclic group and a C1-C30 heterocyclic group,
X1, X2, X3, and X4 may each independently be C or N,
Y1 and Y2 may each independently be C or N,
T1, T2, and T3 may each independently be selected from a single bond, *—O—*′, *—S—*′, *—C(R4)(B5)—*′, *—Si(R4)(R5)—*′, *—B(R4)—*′, *—N(R4)—*′, and *—P(R4)—*′,
b1 to b3 are each independently an integer of 1, 2, or 3,
R1 to R5 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2),
R1 to R3 may optionally be linked to a neighboring group via a single bond, —C(Q4)(Q5)-, —Si(Q4)(Q5)-, —O—, —S—, —N(Q4)-, —B(Q4)-, —C(═O)—, —S(═O)2—, —S(═O)(Q4)(Q5)-, or —P(═O)(Q4)- to form a unsubstituted or substituted C5-C30 carbocyclic group or unsubstituted or substituted C1-C30 heterocyclic group,
a1 and a2 may each independently be an integer from 0 to 10,
a3 may be 0, 1, or 2,
at least one substituent of the substituted C5-C30 carbocyclic group, the substituted C1-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group,
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12),
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group,
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22), and
—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q1 to Q5, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl group substituted with a C1-C60 alkyl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group, and
*1, *2, and *3 are each a binding site to a central metal M of Formula 1, and
* and *′ each indicate a binding site to a neighboring atom.
Another aspect of an embodiment provides an organic light-emitting device including a first electrode, a second electrode, and an organic layer including an emission layer between the first electrode and the second electrode, wherein the organic layer includes at least one organometallic compound.
The above and other aspects and features of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the present disclosure, the expression “at least one of a, b or c” indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof.
Hereinafter, embodiments of the present disclosure will be described in more detail with reference to the accompanying drawings. The same or corresponding components will be denoted by the same reference numerals, and thus, redundant description thereof will not be repeated here.
As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/or “comprising,” as used herein, specify the presence of stated features or components, but do not preclude the presence or addition of one or more other features or components.
It will be understood that when a layer, region, or component is referred to as being “on” or “onto” another layer, region, or component, it may be directly or indirectly formed on the other layer, region, or component. That is, for example, intervening layers, regions, or components may be present.
Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, because sizes and thicknesses of components in the drawings may be arbitrarily illustrated for convenience of explanation, the following embodiments of the present disclosure are not limited thereto.
The term “organic layer,” as used herein, refers to a single layer and/or a plurality of layers between the first electrode and the second electrode of the organic light-emitting device. A material included in the “organic layer” is not limited to an organic material. For example, the “organic layer” may include an inorganic material.
An organometallic compound In one embodiment is represented by Formula 1 below:
M(La)n1(Lb)n2 Formula 1
M in Formula 1 may be selected from Period 1 transition metals, Period 2 transition metals, and Period 3 transition metals.
In one embodiment, M may be selected from platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), iridium (Ir), rhodium (Rh), cobalt (Co), meitnerium (Mt), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm), but embodiments of the present disclosure are not limited.
For example, M may be selected from iridium (Ir), cobalt (Co), rhodium (Rh), and meitnerium (Mt).
n1 in Formula 1 may be 1 or 2.
La in Formula 1 may be selected from ligands represented by Formula 2;
Further details of Formula 2 are provided herein below.
In Formula 1, Lb may be selected from a monodentate ligand, a bidentate ligand, and a tridentate ligand, and n2 may be 0, 1, 2, or 3, and when n2 is 2 or more, two or more Lb(s) may be identical to or different from each other. Further details of Lb are described herein below.
La and Lb in Formula 1 may be different from each other.
In one embodiment, in Formula 1, M may be selected from iridium (Ir), cobalt (Co), rhodium (Rh) and meitnerium (Mt), n1 may be 1, and n2 may be 1, 2, or 3.
For example, M may be iridium (Ir), n1 may be 1, and n2 may be 1.
A1 and A2 in Formula 2 may each independently be selected from a C5-C30 carbocyclic group, and a C1-C30 heterocyclic group.
In one embodiment, A1 and A2 may be each independently selected from:
i) a first ring, ii) a second ring, iii) a condensed cyclic group in which two or more first rings are condensed with each other (e.g., combined together), iv) a condensed cyclic group in which two or more second rings are condensed with each other (e.g., combined together), or v) a condensed cyclic group in which at least one first ring is condensed with at least one second ring,
wherein the first ring may be selected from a cyclopentane group, a cyclopentene group, a cyclopentadiene group, a furan group, a thiophene group, a pyrrole group, a borole group, a phosphole group, a silole group, a germole group, a selenophene group, an oxazole group, a dihydroxazole group, an isoxazole group, a dihydroisoxazole group, an oxadiazole group, a dihydroxadiazole group, an isoxadiazole group, a dihydroisoxadiazole group, an oxatriazole group, a dihydroxatriazole group, an isoxatriazole group, a dihydroisoxatriazole group, a thiazole group, a dihydrothiazole group, an isothiazole group, a dihydroisothiazole group, a thiadiazole group, a dihydrothiadiazole group, an isothiadiazole group, a dihydroisothiadiazole group, a thiatriazole group, a dihydrothiatriazole group, an isothiatriazole group, a dihydroisothiatriazole group, a pyrazole group, a dihydropyrazole group, an imidazole group, a dihydroimidazole group, a triazole group, a dihydrotriazole group, a tetrazole group, a dihydrotetrazole group, an azasilole group, a diazasilole group, and a triazasilole group, and
the second ring may be selected from a cyclohexane group, a cyclohexene group, a cyclohexadiene group, an adamantane group, a norbornane group, a norbornene group, a benzene group, a pyridine group, a dihydropyridine group, a tetrahydropyridine group, a pyrimidine group, a dihydropyrimidine group, a tetrahydropyrimidine group, a pyrazine group, a dihydropyrazine group, a tetrahydropyrazine group, a pyridazine group, a dihydropyridazine group, a tetrahydropyridazine group, and a triazine group, but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, A1 and A2 may each independently be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an indole group, a carbazole group, an indenopyridine group, an indolopyridine group, a benzofuropyridine group, a benzothienopyridine group, a benzosilolopyridine group, an indenopyrimidine group, an indolopyrimidine group, a benzofuropyrimidine group, a benzothienopyrimidine group, a benzosilolopyrimidine group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a cinnoline group, a phthalazine group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, an imidazopyridine group, an imidazopyrimidine group, an imidazopyrazine group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, and a benzothiadiazole group, but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, A1 and A2 may each independently be selected from a benzene group, a naphthalene group, an indene group, a fluorene group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an indole group, a carbazole group, an indenopyridine group, an indolopyridine group, a benzofuropyridine group, a benzothienopyridine group, a benzosilolopyridine group, an indenopyrimidine group, an indolopyrimidine group, a benzofuropyrimidine group, a benzothienopyrimidine group, a benzosilolopyrimidine group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a benzopyrazole group, a benzimidazole group, an imidazopyridine group, an imidazopyrimidine group, an imidazopyrazine group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, and a benzothiadiazole group, but embodiments of the present disclosure are not limited thereto.
X1, X2, X3, and X4 in Formula 2 may each independently be C or N.
In one embodiment, (i) X1 may be C, X2 may be C, X3 may be C, and X4 may be C; (ii) X1 may be N, X2 may be C, X3 may be C, and X4 may be C; (iii) X1 may be C, X2 may be N, X3 may be C, and X4 may be C; (iv) X1 may be C, X2 may be C, X3 may be N, and X4 may be C; (v) X1 may be C, X2 may be C, X3 may be C, and X4 may be N; (vi) X1 may be N, X2 may be N, X3 may be C, and X4 may be C; (vii) X1 may be N, X2 may be C, X3 may be N, and X4 may be C; (viii) X1 may be N, X2 may be C, X3 may be C, and X4 may be N; (ix) X1 may be C, X2 may be N, X3 may be N, and X4 may be C; (x) X1 may be C, X2 may be N, X3 may be C, and X4 may be N; (xi) X1 may be C, X2 may be C, X3 may be N, and X4 may be N; (xii) X1 may be N, X2 may be N, X3 may be N, and X4 may be C; (xiii) X1 may be N, X2 may be N, X3 may be C, and X4 may be N; or (xiv) X1 may be N, X2 may be C, X3 may be N, and X4 may be N; (xv) X1 may be N, X2 may be N, X3 may be N, and X4 may be N.
Y1 and Y2 in Formula 2 may each independently be C or N.
For example, (i) Y1 may be C and Y2 may be C; (ii) Y1 may be C and Y2 may be N; (iii) Y1 may be N and Y2 may be C; or (iv) Y1 may be N and Y2 may be N.
T1, T2, and T3 in Formula 2 may each independently be a single bond, *—O—*′, *—S—*′, *—C(R4)(R5)—*′, *—Si(R4)(R5)—*′, *—B(R4)—*′, *—N(R4)—*′, and *—P(R4)—*′.
In one embodiment, T1, T2, and T3 may be a single bond.
In one embodiment, at least one of T1, T2, and T3 may be selected from *—O—*′, *—S—*′, *—C(R4)(R5)—*′, *—Si(R4)(R5)—*′, *—B(R4)—*′, *—N(R4)—*′, and *—P(R4)—*′.
In one or more embodiments, at least one of Ti and T2 may be selected from *—O—*′, *—S—*′, *—C(R4)(B5)—*′, *—Si(R4)(R5)—*′, *—B(R4)—*′, *—N(R4)—*′, and *—P(R4)—*′, and
T3 may be a single bond.
For example, Ti and T3 may each be a single bond, and T2 may be selected from *—O—*′, *—S—*′, *—C(R4)(B5)—*′, *—Si(R4)(R5)—*′, *—B(R4)—*′, *—N(R4)—*′, and *—P(R4)—*′.
In one or more embodiments, Ti and T3 may be a single bond and T2 may be *—O—*′.
b1 to b3 in Formula 2 may each independently be an integer of 1, 2, or 3.
In one embodiment, b1 to b3 may each be 1.
R1 to R5 in Formula 2 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2).
In one embodiment, R1 to R5 may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and
—Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, R1 to R5 may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group; and
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group.
For example, R1 to R5 may each independently be selected from:
hydrogen, deuterium, —F, cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group; and
a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, each substituted with at least one selected from deuterium, —F, and a cyano group, but embodiments of the present disclosure are not limited thereto.
R1 to R3 in Formula 2 may optionally be linked together to a neighboring group via a single bond, —C(Q4)(Q5)-, —Si(Q4)(Q5)-, —O—, —S—, —N(Q4)-, —B(Q4)-, —C(═O)—, —S(═O)2—, —S(═O)(Q4)(Q5)-, or —P(═O)(Q4)- to form a unsubstituted or substituted C5-C30 carbocyclic group or unsubstituted or substituted C1-C30 heterocyclic group.
a1 and a2 in Formula 2 may each independently be an integer from 0 to 10.
a3 in Formula 2 may be 0, 1, or 2.
In one embodiment, Formula 2 may be represented by Formula 2-1 or 2-2:
In Formulae 2-1 and 2-2,
A1, A2, R1 R2, a1, a2, X3, X4, Y1, Y2, T1, T2, T3, b1, b2, b3, *1, *2, and*3 are the same as described above, and R31, R32, R33, R34, R35, and R36 are each the same as described in connection with R3.
In one embodiment, Lb in Formula 1 may be a tridentate ligand, and n2 may be 1.
In one embodiment, Lb may be selected from ligands represented by Formula 3:
In Formula 3,
A11 may be selected from a C5-C30 carbocyclic group and a C1-C30 heterocyclic group,
L1 and L2 may each independently be selected from a single bond, *—O—*′, *—S—*′, *—C(R14)(R15)—*′, *—Si(R14)(R15)—′, *—N(R14)—*′, and *—P(R14)—*′,
c1 and c2 may each independently be 1, 2, or 3,
X11, X12, X13, and X14 may each independently be C or N,
Y11 may be C or N,
T11, T12 and T13 may each independently be selected from a single bond, *—O—*′, *—S—*′, *—C(R16)(R17)—*′, *—Si(R16)(R17)—′, *—N(R16)—*′, and *—P(R16)—*′,
b11, b12, and b13 may each independently be 1, 2, or 3,
R11, R12, R13, R14, R15, R16, and R17 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), and —P(═O)(Q1)(Q2),
Ru to R13 may optionally be linked together to a neighboring group via a single bond, —C(Q4)(Q5)-, —Si(Q4)(Q5)-, —O—, —S—, —N(Q4)-, —B(Q4)-, —C(═O)—, —S(═O)2—, —S(═O)(Q4)(Q5)-, or —P(═O)(Q4)- to form a unsubstituted or substituted C5-C30 carbocyclic group or a unsubstituted or substituted C1-C30 heterocyclic group,
a11 may be an integer from 0 to 10,
a12 and a13 may each independently be 0, 1, 2, or 3,
at least one substituent of the substituted C5-C30 carbocyclic group, the substituted C1-C30 heterocyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(C211)(C212)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12);
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group;
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, a terphenyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22); and
—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q1 to Q5, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryl group substituted with a C1-C60 alkyl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group, and
*1, *2, and *3 are each a binding site to a central metal M of Formula 1, and
* and *′ each indicate a binding site to a neighboring atom.
In one embodiment, A11 in Formula 3 may be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, a furan group, a thiophene group, a silole group, an indene group, a fluorene group, a benzofuran group, a dibenzofuran group, a benzothiophene group, a dibenzothiophene group, a benzosilole group, a dibenzosilole group, an indole group, a carbazole group, an indenopyridine group, an indolopyridine group, a benzofuropyridine group, a benzothienopyridine group, a benzosilolopyridine group, an indenopyrimidine group, an indolopyrimidine group, a benzofuropyrimidine group, a benzothienopyrimidine group, a benzosilolopyrimidine group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a cinnoline group, a phthalazine group, a phenanthroline group, a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isooxazole group, a thiazole group, an isothiazole group, an oxadiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, an imidazopyridine group, an imidazopyrimidine group, an imidazopyrazine group, a benzoxazole group, a benzothiazole group, a benzoxadiazole group, and a benzothiadiazole group.
In one or more embodiments, A11 may be selected from a benzene group, a naphthalene group, an anthracene group, a phenanthrene group, a triphenylene group, a pyrene group, a chrysene group, an indene group, and a fluorene group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, each of L1 and L2 in Formula 3 may be a single bond, but embodiments of the present disclosure are not limited thereto.
In one embodiment, (i) X11 may be C, X12 may be C, X13 may be C, and X14 may be C; (ii) X11 may be N, X12 may be C, X13 may be C, and X14 may be C (iii) X11 may be C, X12 may be N, X13 may be C, and X14 may be C; (iv) X11 may be C, X12 may be C, X13 may be N, and X14 may be C; (v) X11 may be C, X12 may be C, X13 may be C, and X14 may be N; (vi) X11 may be N, X12 may be N, X13 may be C, and X14 may be C; (vii) X11 may be N, X12 may be C, X13 may be N, and X14 may be C; (viii) X11 may be N, X12 may be C, X13 may be C, and X14 may be N; (ix) X11 may be C, X12 may be N, X13 may be N, and X14 may be C; (x) X11 may be C, X12 may be N, X13 may be C, and X14 may be N; (xi) X11 may be C, X12 may be C, X13 may be N, and X14 may be N; (xii) may be N, X12 may be N, X13 may be N, and X14 may be C; (xiii) X11 may be N, X12 may be N, X13 may be C, and X14 may be N; (xiv) X11 may be N, X12 may be C, X13 may be N, and X14 may be N; or (xv) X11 may be N, X12 may be N, X13 may be N, and X14 may be N.
In one embodiment, Y11 in Formula 3 may be C.
In one embodiment, T11, T12, and T13 may each independently be a single bond.
In one embodiment, R11, R12, R13, R14, R15, R16, and R17 may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group; and
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and
—Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 and Q31 to Q33 may each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, R11, R12, R13, R14, R15, R16, and R17 may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group; and
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group.
In one embodiment, R11, R12, R13, R14, R15, R16, and R17 may each independently be selected from:
hydrogen, deuterium, —F, cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group; and
a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, each substituted with at least one selected from deuterium, —F, and a cyano group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, at least one selected from R11, R12, R13, R14, R15, R16, and R17 may be selected from —F, a cyano group, and a C1-C20 alkyl group substituted with at least one selected from —F and a cyano group.
For example, at least one of R11, R12, and R13 may be selected from —F, a cyano group, and a C1-C20 alkyl group substituted with at least one selected from —F and a cyano group.
For example, R13 may be selected from —F, a cyano group, and a C1-C20 alkyl group substituted with at least one of —F and a cyano group.
In one embodiment, Formula 3 is represented by one of Formulae 3-1 and 3-2:
In Formulae 3-1 and 3-2,
A11, L1, L2, c1, c2, Y11, T11, T12, T13, b11, b12, b13, R11, R14, R15, R16, R17, and a11 are the same as described above,
R12a, R12b, R12c, R12d, R12e, R12f, and R12g are the same as described in connection with R12, and
R13a, R13b, R13c, R13d, R13e, R13f, and R13g are the same as described in connection with R13.
In one embodiment, the organometallic compound represented by Formula 1 may be selected from Compounds BD1 to BD48:
In the organometallic compound, because Ir or the like is included as M, and thus, a relatively high metal to ligand charge transfer (MLCT) may be provided to ligands La and Lb having a wide energy difference in the organometallic compound, and concurrently (e.g., at the same time), because high spin-orbit coupling (SOC) effects (up to 5000 cm−1) are provided, an intersystem crossing rate between singlets and triplets (e.g., in the organometallic compound) may be increased. Accordingly, the organometallic compound may emit phosphorescent light with high efficiency at a maximum emission wavelength (Amax) of about 390 nm to about 500 nm.
In the organometallic compound, because the center ring in a tridentate ligand La is directly linked to an adjacent ring, the vibration when in the excited state is suppressed (e.g., the vibration of the organometallic compound while in an excited state may be reduced), and thus, a high quantum yield (QY) may be obtained.
The organometallic compound includes a 5-membered heteroring in which two or more nitrogen atoms are contained as the central ring in a tridentate ligand La. Accordingly, compared to a ligand having a 6-membered heteroring, for example, pyridine, due to a strong bonding force between a metal and a carbene, a central-metal triplet state (3MC state) is improved (e.g., the 3MC state of the organometallic compound is energetically more favorable), and thus, structural stability of the organometallic compound may be obtained.
The organometallic compound includes the tridentate ligand La. Accordingly, compared to the case including a bidentate ligand, a bonding force between a ligand and metal is increased, and thus, high structural stability of the organometallic compound is obtained.
Synthesis methods of the organometallic compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to Examples provided below.
The expression “(an organic layer) includes at least one of organometallic compounds,” as used herein, may include a case in which “(an organic layer) includes identical organometallic compounds represented by Formula 1” and a case in which “(an organic layer) includes two or more different organometallic compounds represented by Formula 1.”
For example, the organic layer may be the organometallic compound, and may include only Compound 1. In this regard, Compound 1 may exist in an emission layer of the organic light-emitting device. In one or more embodiments, the organic layer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may exist in an identical layer (for example, Compound 1 and Compound 2 may all exist in an emission layer), or different layers (for example, Compound 1 may exist in an emission layer and Compound 2 may exist in an electron transport layer).
The organic layer may include at least one region of i) a hole transport region located between the first electrode (anode) and the emission layer, and including at least one of a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer, and ii) an electron transport region located between the emission layer and the second electrode (cathode) and including at least one of a hole blocking layer, an electron transport layer, and an electron injection layer. The emission layer may include at least one organometallic compound represented by Formula 1.
In one embodiment, the emission layer is a first color light emission layer,
the organic light-emitting device further comprises i) at least one second emission layer to emit second color light or ii) at least one second emission layer to emit second color light and at least one third emission layer to emit third color light, between the first electrode and the second electrode,
the maximum emission wavelength of the first color light, the maximum emission wavelength of the second color light, and the maximum emission wavelength of the third color light may be identical to or different from each other, and
the first color light and the second color light may be emitted in the form of mixed light, or the first color light, the second color light, and the third color light may be emitted in the form of mixed light.
The emission layer may further include a host compound, and the organometallic compound included in the emission layer is a dopant, and the amount of the host compound included in the emission layer is greater than the amount of the organometallic compound included in the emission layer.
In this regard, the host compound may include a second compound and a third compound, wherein the organometallic compound, the second compound, and the third compound are different from each other, the second compound and the third compound form an exciplex, and the organometallic compound and at least one of the second compound and the third compound may not form an exciplex.
The exciplex is effectively formed between the second compound and the third compound, but no exciplex is formed between the organometallic compound and the at least one of the second compound and the third compound. For example, the organometallic compound and the at least one of the second compound and the third compound may be selected such that the organometallic compound does not form an exciplex with the at least one of the second compound and the third compound. Accordingly, stable host energy (energy of at least one of the second compound and the third compound) may be efficiently transferred to a dopant (the organometallic compound), thereby improving the efficiency of organic light-emitting devices. When an exciplex is formed between the organometallic compound and at least one of the second compound and the third compound, the exciplex formation causes the emission wavelength of the organometallic compound to shift to a longer wavelength. Thus, a target emission wavelength may not be obtained from the organometallic compound, and thus, the efficiency of organic light-emitting devices within the target wavelength range may be reduced.
In one embodiment, the second compound may be represented by Formula 4-1; and
the third compound may be represented by Formula 4-2:
In Formulae 4-1 and 4-2,
X21 may be selected from C(R21) and N; X22 may be selected from C(R22) and N; X23 may be selected from C(R23) and N; X24 may be selected from C(R24) and N; X25 may be selected from C(R25) and N; X26 may be selected from C(R26) and N; and at least one of X21 to X26 may be N,
R21 to R26 may each independently be selected from a group represented by *-(L21)a21-(R27)b27, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and at least one of R21 to R26 may be a group represented by *-(L21)a21-(R27)b27;
L21 may be selected from a unsubstituted or substituted C5-C60 carbocyclic group and a unsubstituted or substituted C1-C60 heterocyclic group,
a21 may be an integer from 0 to 6,
R27 may be selected from a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2);
b27 may be an integer from 1 to 10,
X31 may be selected from a single bond, O, S, B(R33), N(R33), C(R33)(R34), and Si(R33)(R34); X32 may be selected from a single bond, O, S, B(R35), N(R35), C(R35)(R36), and Si(R35)(R36); and X31 and X32 are not a single bond at the same time,
ring A31 and ring A32 may each independently be selected from a C5-C60 carbocyclic group, and a C1-C60 heterocyclic group,
R31 to R36 may each independently be selected from a group represented by *-(L31)a31-(R37)b37, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and at least one of R31 to R36 may be a group represented by *-(L31)a31-(R37)b37,
b31 and b32 may each independently be an integer from 1 to 10;
L31 may be selected from a unsubstituted or substituted C5-C60 carbocyclic group and a unsubstituted or substituted C1-C60 heterocyclic group,
a31 may be an integer from 0 to 6,
R37 may be selected from a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2);
b37 may be an integer from 1 to 10,
Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group; and
* indicates a binding site to a neighboring atom.
For example, at least one of X21 to X26 in Formula 4-1 may be N, and at least the other one may be C[(L21)a21-(R27)b27], but embodiments of the present disclosure are not limited thereto.
For example, in Formula 4-1, X21 may be N, X22 may be C(R22); X23 may be C(R23), X24 may be C(R24), X25 may be C(R25), and X26 may be C(R26);
X21 may be N, X22 may be C(R22), X23 may be N, X24 may be C(R24), X25 may be C(R25), and X26 may be C(R26);
X21 may be N, X22 may be C(R22), X23 may be C(R23), X24 may be N, X25 may be C(R25), and X26 may be C(R26); or
X21 may be N, X22 may be C(R22), X23 may be N, X24 may be C(R24), X25 may be N, and X26 may be C(R26), but embodiments of the present disclosure are not limited thereto.
For example, R21 to R26 in Formula 4-1 may each independently be selected from: a group represented by *-(L21)a21-(R27)b27, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, R21 to R26 in Formula 4-1 may each independently be selected from: a group represented by *-(L21)a21-(R27)b27, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, and a C1-C20 alkyl group;
a C1-C20 alkyl group, substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;
groups represented by Formulae 5-1 to 5-139; and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), but embodiments of the present invention disclosure are not limited thereto:
In Formulae 5-1 to 5-139,
X51 may be selected from O, S, N(R51), and C(R51)(R60),
X52 may be N or C(R52), X53 may be N or C(R53), X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), X57 may be N or C(R57), X58 may be N or C(R58), X59 may be N or C(R59),
R51 to R60 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a thiophenyl group, a furanyl group, a silolyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32),
Q1 to Q3 and Q31 to Q33 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group,
b51 may be 1, 2, 3, 4, and 5,
b52 may be selected from 1, 2, 3, 4, 5, 6, and 7,
b53 may be selected from 1, 2, 3, 4, 5, 6, 7, 8, and 9,
b54 may be selected from 1, 2, 3, and 4,
b55 may be selected from 1, 2, and 3,
b56 may be selected from 1 and 2,
b57 may be selected from 1, 2, 3, 4, 5, and 6, and
* indicates a binding site to a neighboring atom.
For example, L21 in Formula 4-1 may be selected from a benzene group, a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group; and
a benzene group, a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, an azafluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, a diazafluorenyl group, a diazacarbazolyl group, a diazadibenzofuranyl group, and a diazadibenzothiophenyl group, but embodiments of the present disclosure are not limited thereto.
For example, a21 in Formula 4-1 may be an integer from 0 to 2, but embodiments of the present disclosure are not limited thereto.
For example, R27 in Formula 4-1 may be selected from: hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, R27 in Formula 4-1 may be selected from: hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, and a C1-C20 alkyl group;
a C1-C20 alkyl group, substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;
groups represented by Formulae 5-1 to 5-139; and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, R27 in Formula 4-1 may be selected from: —C(Q1)(Q2)(Q3) and —Si(Q1)(Q2)(Q3); and
a group represented by Formula 7-1 and a group represented by Formula 7-2, but embodiments of the present disclosure are not limited thereto:
In Formulae 7-1 and 7-2,
Y71 may be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q31)(Q32)(Q33), and —Si(Q31)(Q32)(Q33),
ring A71 may be selected from a C5-C60 carbocyclic group, and a C1-C60 heterocyclic group,
X71 may be selected from C(R71) and N,
R71 and R72 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32),
R71 and R72 may optionally be linked to form a unsubstituted or substituted C5-C30 carbocyclic group or a unsubstituted or substituted C1-C30 heterocyclic group,
b72 may be an integer from 1 to 10,
Q1 to Q3 and Q31 to Q33 may each independently be selected from a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and
* indicates a binding site to a neighboring atom.
For example, ring A71 in Formulae 7-1 and 7-2 is the same as described in connection with A11.
For example, X31 in Formula 4-2 may be selected from a single bond, O, S,
B(R33), N(R33), C(R33)(R34), and Si(R33)(R34), and
X32 may be selected from O, S, B(R35), N(R35), C(R35)(R36), and Si(R35)(R36), but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, X31 in Formula 4-2 may be selected from a single bond, O, S, N(R33), C(R33)(R34), and Si(R33)(R34), and
X32 may be selected from O, S, N(R35), C(R35)(R36), and Si(R35)(R36), but embodiments of the present disclosure are not limited thereto.
For example, ring A31 and ring A32 in Formula 4-2 may each independently be selected from a cyclohexane group, a cyclohexene group, cyclohexadiene group, a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a siline group, an oxasiline group, a thiasiline group, an azasiline group, a dihydrodisiline group, a dioxine group, a oxathiine group, a oxazine group, a dithiine group, a thiazine group, a fluorene group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a benzofluorene group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, an indolofluorene group, an indolocarbazole group, an indolodibenzofuran group, an indolodibenzothiophene group, an indenofluorene group, an indenocarbazole group, an indenodibenzofuran group, an indenodibenzothiophene group, a benzofuranofluorene group, a benzofuranocarbazole group, a benzofuranodibenzofuran group, a benzofuranodibenzothiophene group, a benzothienofluorene group, a benzothienocarbazole group, a benzothienodibenzofuran group, a benzothienodibenzothiophene group, a dibenzosiline group, a dibenzooxasiline group, a dibenzothiasiline group, a dibenzoazasiline group, a dibenzodihydrodisiline group, a dibenzodioxine group, a dibenzooxathiine group, a dibenzooxazine group, a dibenzodithiine group, and a dibenzothiazine group, but embodiments of the present disclosure are not limited thereto.
For example, R31 to R36 in Formula 4-2 may each independently be selected from: a group represented by *-(L31)a31-(R37)b37, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, a biphenyl group, and a terphenyl group,
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32);
groups represented by Formulae 8-1 and 8-2; and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), but embodiments of the present disclosure are not limited thereto:
In Formulae 8-1 and 8-2,
X81 is selected from N, C(R83), and Si(R83),
X82 is selected from a single bond, O, S, B(R84), N(R84), C(R84)(R85), and Si(R84)(R85),
X83 is selected from a single bond, O, S, B(R86), N(R86), C(R86)(R87), and Si(R86)(R87),
X82 and X83 are not a single bond at the same time,
ring A81 and ring A82 may each independently be selected from a C5-C60 carbocyclic group, and a C1-C60 heterocyclic group,
R81 to R87 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32),
b81 and b82 may each independently be an integer from 1 to 10,
* indicates a binding site to a neighboring atom, and
Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C60 alkyl group, a phenyl group, and a biphenyl group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group.
In one or more embodiments R31 to R36 in Formula 4-2 may each independently be selected from: a group represented by *-(L31)a31-(R37)b37, hydrogen, deuterium, —F, —Cl, —Br, cyano group, and a C1-C20 alkyl group;
a C1-C20 alkyl group, substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;
groups represented by Formulae 5-1 to 5-139;
groups represented by Formulae 8-1 and 8-2; and
—C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
wherein Q1 to Q3 and Q31 to Q33 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group, but embodiments of the present disclosure are not limited thereto.
For example, L31 in Formula 4-2 may be selected from: a benzene group, a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group; and
a benzene group, a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinolinyl group, an isoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, an azafluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, a diazafluorenyl group, a diazacarbazolyl group, a diazadibenzofuranyl group, and a diazadibenzothiophenyl group, but embodiments of the present disclosure are not limited thereto.
For example, a31 in Formula 4-2 may be an integer from 0 to 2.
For example, R37 in Formula 4-2 may be selected from a group represented by Formula 8-1 and a group represented by Formula 8-2.
For example, ring A81 and ring A82 in Formulae 8-1 and 8-2 may each independently be selected from a cyclohexane group, a cyclohexene group, cyclohexadiene group, a benzene group, a naphthalene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a quinoxaline group, a quinazoline group, a siline group, an oxasiline group, a thiasiline group, an azasiline group, a dihydrodisiline group, a dioxine group, a oxathiine group, a oxazine group, a dithiine group, a thiazine group, a fluorene group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, a benzofluorene group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, an indolofluorene group, an indolocarbazole group, an indolodibenzofuran group, an indolodibenzothiophene group, an indenofluorene group, an indenocarbazole group, an indenodibenzofuran group, an indenodibenzothiophene group, a benzofuranofluorene group, a benzofuranocarbazole group, a benzofuranodibenzofuran group, a benzofuranodibenzothiophene group, a benzothienofluorene group, a benzothienocarbazole group, a benzothienodibenzofuran group, a benzothienodibenzothiophene group, a dibenzosiline group, a dibenzooxasiline group, a dibenzothiasiline group, a dibenzoazasiline group, a dibenzodihydrodisiline group, a dibenzodioxine group, a dibenzooxathiine group, a dibenzooxazine group, a dibenzodithiine group, and a dibenzothiazine group.
In one embodiment, the second compound may be represented by one of Formulae 4-1-1 and 4-1-2, but embodiments of the present disclosure are not limited thereto:
In Formulae 4-1-1 and 4-1-2,
X21 may be selected from C(R21) and N; X23 may be selected from C(R23) and N; X24 may be selected from C(R24) and N; X25 may be selected from C(R25) and N; and X26 may be selected from C(R26) and N,
at least one of X21 and X23 to X26 in Formula 4-1-1 may be N,
at least one of X21 and X23 to X25 in Formula 4-1-2 may be N,
R21 and R23 to R26 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q1)(Q2)(Q3), —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
L21a and L21b may each independently be selected from a unsubstituted or substituted C5-C60 carbocyclic group and a unsubstituted or substituted C1-C60 heterocyclic group,
a21a and a21b may each independently be an integer from 0 to 6,
R27a and R27b may each independently be selected from —C(Q1)(Q2)(Q3) and —Si(Q1)(Q2)(Q3); and
a group represented by Formula 7-1 and a group represented by Formula 7-2:
In Formulae 7-1 and 7-2,
Y71 may be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q31)(Q32)(Q33), and —Si(Q31)(Q32)(Q33),
ring A71 may be selected from a C5-C60 carbocyclic group, and a C1-C60 heterocyclic group,
X71 may be selected from C(R71) and N,
R71 and R72 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C7-C60 alkyl aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C2-C60 alkyl heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —C(Q31)(Q32)(Q33), —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —N(Q31)(Q32), —P(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32),
R71 and R72 may optionally be linked to form a unsubstituted or substituted C5-C30 carbocyclic group or a unsubstituted or substituted C1-C30 heterocyclic group,
b72 may be an integer from 1 to 10,
b27a and b27b may each independently be an integer from 1 to 10,
Q1 to Q3 and Q31 to Q33 may each independently be selected from a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C6-C60 aryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group and a C1-C60 heteroaryl group that is substituted with at least one selected from deuterium, —F, a cyano group, a C1-C10 alkyl group, a phenyl group, and a biphenyl group, and
* indicates a binding site to a neighboring atom.
In one embodiment, the second compound may be selected from compounds of Group II, and
the third compound may be selected from Group III, but embodiments of the present disclosure are not limited thereto.
The decay time of delayed fluorescence in the time-resolved electroluminescence (TREL) spectrum of the organic light emitting device may be 50 nanoseconds (ns) or more, for example, 50 ns or more and 10 microseconds (μs) or less. In one embodiment, the decay time of delayed fluorescence in the TREL spectrum of the organic light-emitting device may be 1.4 μs or more and 4 μs or less or 1.5 μs or more and 3 μs or less. When the decay time of delayed fluorescence of the organic light-emitting device is within these ranges, the time that the organometallic compound remains in an excited state is relatively reduced, so that the organic light-emitting device may have high luminescent efficiency and a long lifespan.
In one embodiment, the absolute value of the difference between the lowest unoccupied molecular orbital (LUMO) energy level of the organometallic compound, and the LUMO energy level of the second compound may be about 0.1 eV or more and about 1.0 eV or less, the absolute value of the difference between the LUMO energy level of the organometallic compound and the LUMO energy level of the third compound may be about 0.1 eV or more and about 1.0 eV or less, the absolute value of the difference between the highest occupied molecular orbital (HOMO) energy level of the organometallic compound the HOMO energy level of the second compound may be 1.25 eV or less (for example, about 1.25 eV or less and about 0.2 eV or more), or the absolute value of the difference between the HOMO energy level of the organometallic compound and the HOMO energy level of the third compound may be 1.25 eV or less (for example, about 1.25 eV or less and about 0.2 eV or more).
When the relationships between LUMO energy level and HOMO energy level satisfy the conditions as described above, the balance between holes and electrons injected into the emission layer can be made (e.g., can be suitable for operation of the organic light-emitting device).
The term “an organic layer,” as used herein, refers to a single layer and/or a plurality of layers located between the first electrode and the second electrode of an organic light-emitting device. A material included in the “organic layer” is not limited to an organic material. For example, the organic layer may include an inorganic material.
Description of
Hereinafter, the structure of the organic light-emitting device 10 according to an embodiment and a method of manufacturing the organic light-emitting device 10 will be described in connection with
First Electrode 110
In
The first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, the material for a first electrode may be selected from materials with a high work function to facilitate hole injection.
The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming a first electrode may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), and any combinations thereof, but embodiments of the present disclosure are not limited thereto. In one or more embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming a first electrode may be selected from magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), and any combinations thereof, but embodiments of the present disclosure are not limited thereto.
The first electrode 110 may have a single-layered structure, or a multi-layered structure including two or more layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode 110 is not limited thereto.
Organic Layer 150
The organic layer 150 is located on the first electrode 110. The organic layer 150 may include an emission layer.
The organic layer 150 may further include at least one region of a hole transport region between the first electrode 110 and the emission layer and an electron transport region between the emission layer and the second electrode 190.
Hole Transport Region in Organic Layer 150
The hole transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
The hole transport region may include at least one layer selected from a hole injection layer, a hole transport layer, an emission auxiliary layer, and an electron blocking layer.
For example, the hole transport region may have a single-layered structure including a single layer including a plurality of different materials, or a multi-layered structure having a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein for each structure, constituting layers are sequentially stacked from the first electrode 110 in this stated order, but the structure of the hole transport region is not limited thereto.
The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, and a compound represented by Formula 202:
In Formulae 201 and 202,
L201 to L204 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
L205 may be selected from *—O—*′, *—N(Q201)-*′, a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
xa1 to xa4 may each independently be an integer from 0 to 3,
xa5 may be an integer from 1 to 10,
R201 to R204 and Q201 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.
In one embodiment, in Formula 202, R201 and R202 may optionally be linked via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group, and R203 and R204 may optionally be linked via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.
In one embodiment, in Formulae 201 and 202,
L201 to L205 may each independently be selected from:
a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and
a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33) and —N(Q31)(Q32),
wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
In one or more embodiments, xa1 to xa4 may each independently be 0, 1, or 2.
In one or more embodiments, xa5 may be 1, 2, 3, or 4.
In one or more embodiments, R201 to R204 and Q201 may each independently be selected from: a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and
a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33) and —N(Q31)(Q32),
wherein Q31 to Q33 are the same as described above.
In one or more embodiments, at least one selected from R201 to R203 in Formula 201 may each independently be selected from:
a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and
a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group,
but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, in Formula 202, i) R201 and R202 may be linked to each other via a single bond, and/or ii) R203 and R204 may be linked to each other via a single bond.
In one or more embodiments, R201 to R204 in Formula 202 may each independently be selected from:
a carbazolyl group; and
a carbazolyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group,
but embodiments of the present disclosure are not limited thereto.
The compound represented by Formula 201 may be represented by Formula 201-1 below:
In one embodiment, the compound represented by Formula 201 may be represented by Formula 201-2 below, but embodiments of the present disclosure are not limited thereto:
In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201-2(1) below, but embodiments of the present disclosure are not limited thereto:
The compound represented by Formula 201 may be represented by Formula 201A:
In one embodiment, the compound represented by Formula 201 may be represented by Formula 201A(1) below, but embodiments of the present disclosure are not limited thereto:
In one embodiment, the compound represented by Formula 201 may be represented by Formula 201A-1 below, but embodiments of the present disclosure are not limited thereto:
In one embodiment, the compound represented by Formula 202 may be represented by Formula 202-1 below:
In one or more embodiments, the compound represented by Formula 202 may be represented by Formula 202-1(1) below:
The compound represented by Formula 202 may be represented by Formula 202A:
In one or more embodiments, the compound represented by Formula 202 may be represented by Formula 202A-1:
In Formulae 201-1, 201-2, 201-2(1), 201A, 201A(1), 201A-1, 202-1, 202-1(1), 202A, 202A-1,
L201 to L203, xa1 to xa3, xa5, and R202 to R204 are the same as described above,
L205 may be selected from a phenylene group, and a fluorenylene group,
X211 may be selected from O, S, and N(R211),
X212 may be selected from O, S, and N(R212),
R211 and R212 may be the same as defined in connection with R203, and
R213 to R217 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.
The hole transport region may include at least one compound selected from Compounds HT1 to HT48 below, but embodiments of the present disclosure are not limited thereto:
A thickness of the hole transport region may be from about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one of a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer and the hole transport layer are within these ranges, suitable or satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.
The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block or reduce the flow of electrons from an electron transport region. The emission auxiliary layer and the electron blocking layer may include the materials as described above.
p-Dopant
The hole transport region may further include, in addition to the above-described materials, a charge-generation material for the improvement of conductive properties (e.g., electrically conductive properties). The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.
The charge-generation material may be, for example, a p-dopant.
In one embodiment, the p-dopant may have a lowest unoccupied molecular orbital (LUMO) energy level of −3.5 eV or less.
The p-dopant may include at least one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments of the present disclosure are not limited thereto.
For example, the p-dopant may include at least one selected from: a quinone derivative, such as tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ);
a metal oxide, such as tungsten oxide and molybdenum oxide;
1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN); and
a compound represented by Formula 221,
but embodiments of the present disclosure are not limited thereto:
In Formula 221,
R221 to R223 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and at least one selected from R221 to R223 may have at least one substituent selected from a cyano group, —F, —Cl, —Br, —I, a C1-C20 alkyl group substituted with —F, a C1-C20 alkyl group substituted with —Cl, a C1-C20 alkyl group substituted with —Br, and a C1-C20 alkyl group substituted with —I.
Emission Layer in Organic Layer 150
When the organic light-emitting device 10 is a full-color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub-pixel. In one or more embodiments, the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In one or more embodiments, the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.
The emission layer may include a host and a dopant. The host may be understood by referring to the description of the second compound and the third compound, and the dopant may be understood by referring to the description of the organometallic compound represented by Formula 1 for the dopant description.
An amount of a dopant in the emission layer may be, based on about 100 parts by weight of the host, in the range of about 0.01 to about 15 parts by weight, but embodiments of the present disclosure are not limited thereto.
A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.
Host in Emission Layer
In one or more embodiments, the host may include a compound represented by Formula 301 below.
[Ar301]xb11−[(L301)xb1-R301]xb21 Formula 301
In Formula 301,
Ar301 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,
xb11 may be 1, 2, or 3,
L301 may be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
xb1 may be an integer from 0 to 5,
R301 may be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), and —P(═O)(Q301)(Q302),
xb21 may be an integer from 1 to 5, and
Q301 to Q303 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.
In one embodiment, Ar301 in Formula 301 may be selected from:
a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group; and
a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.
When xb11 in Formula 301 is two or more, two or more of Ar301(s) may be linked via a single bond.
In one or more embodiments, the compound represented by Formula 301 may be represented by Formula 301-1 or 301-2:
In Formulae 301-1 and 301-2,
A301 to A304 may each independently be selected from a benzene group, a naphthalene group, a phenanthrene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a pyridine group, a pyrimidine group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, an indole group, a carbazole group, a benzocarbazole group, a dibenzocarbazole group, a furan group, a benzofuran group, a dibenzofuran group, a naphthofuran group, a benzonaphthofuran group, a dinaphthofuran group, a thiophene group, a benzothiophene group, a dibenzothiophene group, a naphthothiophene group, a benzonaphthothiophene group, and a dinaphthothiophene group,
X301 may be O, S, or N-[(L304)xb4-R304],
R311 to R314 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
xb22 and xb23 may each independently be 0, 1, or 2,
L301, xb1, R301 and Q31 to Q33 are the same as described above,
L302 to L304 may each independently be the same as described in connection with L301,
xb2 to xb4 may each independently be the same as described in connection with xb1, and
R302 to R304 may each independently be the same as described in connection with R301.
For example, L301 to L304 in Formulae 301, 301-1, and 301-2 may each independently be selected from:
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q31 to Q33 are the same as described above.
In one embodiment, R301 to R304 in Formulae 301, 301-1, and 301-2 may each independently be selected from:
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and
Q31 to Q33 are the same as described above.
In one embodiment, the host may include an alkaline earth-metal complex.
For example, the host may be selected from a Be complex (for example, Compound H55), an Mg complex, and a Zn complex.
In one or more embodiments, the host may include at least one selected from 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), bis(4-(9H-carbazol-9-yl)phenyl)diphenylsilane (BCPDS), 4-(1-(4-(diphenylamino)phenyl)cyclohexyl)phenyl)diphenyl-phosphine oxide (POPCPA), and Compounds H1 to H124, but embodiments of the present disclosure are not limited thereto:
In one embodiment, the host may include at least one of a silicon-containing compound (for example, BCPDS, etc.) and a phosphine oxide-containing compound (for example, POPCPA, etc.).
The host may include only one compound or may include two or more compounds that are different from each other (for example, the host of the following Examples includes BCPDS and POPCPA). In one or more embodiment, the host may instead have various suitable other modifications.
Phosphorescent Dopant Included in Emission Layer in Organic Layer 150
The phosphorescent dopant may include an organometallic complex represented by Formula 401 below:
In Formulae 401 and 402,
M may be selected from iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), and thulium (Tm),
L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is two or more, two or more L401(s) may be identical to or different from each other,
L402 may be an organic ligand, and xc2 may be an integer from 0 to 4, wherein when xc2 may be two or more, two or more L402(s) may be identical to or different from each other,
X401 to X404 may each independently be nitrogen or carbon,
X401 and X403 may be linked via a single bond or a double bond, and X402 and X404 may be linked via a single bond or a double bond,
A401 and A402 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,
X405 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)═C(Q412)-′, *—C(Q411)=′, or *═C═*′, wherein Q411 and Q412 may be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group,
X406 may be a single bond, O, or S,
R401 and R402 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), and —P(═O)(Q401)(Q402), and Q401 to Q403 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C20 aryl group, and a C1-C20 heteroaryl group,
xc11 and xc12 may each independently be an integer from 0 to 3,
* and *′ in Formula 402 each indicate a binding site to a M in Formula 401.
In one embodiment, A401 and A402 in Formula 402 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, an indene group, a pyrrole group, a thiophene group, a furan group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a quinoxaline group, a quinazoline group, a carbazole group, a benzimidazole group, a benzofuran group, a benzothiophene group, an isobenzothiophene group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a dibenzofuran group, and a dibenzothiophene group.
In one or more embodiments, in Formula 402, i) X401 may be nitrogen and X402 may be carbon, or ii) X401 and X402 may each be nitrogen at the same time.
In one or more embodiments, R401 and R402 in Formula 402 may each independently be selected from:
hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;
a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a phenyl group, a naphthyl group, a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, and a norbornenyl group;
a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;
a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and
—Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), and —P(═O)(Q401)(Q402),
wherein Q401 to Q403 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, when xc1 in Formula 401 is 2 or more, two A401(s) in two or more L401(s) may optionally be linked to each other via X407, which is a linking group, two A402(s) may optionally be linked to each other via X408, which is a linking group (see Compounds PD1 to PD4 and PD7 below). X407 and X408 may each independently be a single bond, *—C(═O)—*′, *—N(Q413)-*′, *—C(Q413)(Q414)-*′ or *—C(Q413)═C(Q414)-*′ (where Q413 and Q414 may each independently be hydrogen, deuterium, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group), but embodiments of the present disclosure are not limited thereto.
L402 in Formula 401 may be a monovalent, divalent, or trivalent organic ligand. For example, L402 may be selected from halogen, diketone (for example, acetylacetonate), carboxylic acid (for example, picolinate), —C(═O), isonitrile, —CN, and phosphorus-containing ligand (for example, phosphine, or phosphite), but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, the phosphorescent dopant may be selected from, for example, Compounds PD1 to PD25, but embodiments of the present disclosure are not limited thereto:
Fluorescent Dopant Included in Emission Layer in Organic Layer 150
The fluorescent dopant may further include an arylamine compound or a styrylamine compound.
The fluorescent dopant may include a compound represented by Formula 501 below.
In Formula 501,
Ar501 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,
L501 to L503 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
xd1 to xd3 may each independently be an integer from 0 to 3,
R501 and R502 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group,
xd4 may be an integer from 1 to 6.
In one embodiment, Ar501 in Formula 501 may be selected from:
a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group; and
a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
In one or more embodiments, L501 to L503 in Formula 501 may each independently be selected from:
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.
In one or more embodiments, R501 and R502 in Formula 501 may each independently be selected from:
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, and —Si(Q31)(Q32)(Q33),
wherein Q31 to Q33 may be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
In one or more embodiments, xd4 in Formula 501 may be 2, but embodiments of the present disclosure are not limited thereto.
For example, the fluorescent dopant may be selected from Compounds FD1 to FD22:
In one or more embodiments, the fluorescent dopant may be selected from the following compounds, but embodiments of the present disclosure are not limited thereto.
Electron Transport Region in Organic Layer 150
The electron transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
The electron transport region may include at least one selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer, but embodiments of the present disclosure are not limited thereto.
For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein for each structure, constituting layers are sequentially stacked from an emission layer. However, embodiments of the structure of the electron transport region are not limited thereto.
The electron transport region may include the second compound as described above.
In one embodiment, the electron transport region may include a buffer layer, the buffer layer is in direct contact with the emission layer, and the buffer layer may include the second compound as described above.
In one or more embodiments, the electron transport region may include a buffer layer, an electron transport layer, and an electron injection layer stacked in this order from the emission layer, and the buffer layer may include the second compound as described above.
The electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one π electron-depleted nitrogen-containing ring.
The term “π electron-depleted nitrogen-containing ring,” as used herein, refers to a C1-C60 heterocyclic group having at least one *—N═*′ moiety as a ring-forming moiety.
For example, the “π electron-depleted nitrogen-containing ring” may be i) a 5-membered to 7-membered heteromonocyclic group having at least one *—N═*′ moiety, ii) a heteropolycyclic group in which two or more 5-membered to 7-membered heteromonocyclic groups each having at least one *—N═*′ moiety are condensed with each other, or iii) a heteropolycyclic group in which at least one of 5-membered to 7-membered heteromonocyclic groups, each having at least one *—N═*′ moiety, is condensed with at least one C5-C60 carbocyclic group.
Examples of the π electron-depleted nitrogen-containing ring include an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isoxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, an indazole, a purine, a quinoline, an isoquinoline, a benzoquinoline, a phthalazine, a naphthyridine, a quinoxaline, a quinazoline, a cinnoline, a phenanthridine, an acridine, a phenanthroline, a phenazine, a benzimidazole, an isobenzothiazole, a benzoxazole, an isobenzoxazole, a triazole, a tetrazole, an oxadiazole, a triazine, a thiadiazole, an imidazopyridine, an imidazopyrimidine, and an azacarbazole, but are not limited thereto.
For example, the electron transport region may include a compound represented by Formula 601:
[Ar601]xe11-[(L601)xe1-R601])xe21 Formula 601
In Formula 601,
Ar601 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,
xe11 may be 1, 2, or 3,
L601 may be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
xe1 may be an integer from 0 to 5,
R601 may be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), and —P(═O)(Q601)(Q602),
Q601 to Q603 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and
xe21 may be an integer from 1 to 5.
In one embodiment, at least one of Ar601(s) in the number of xe11 and R601(s) in the number of xe21 may include the π electron-depleted nitrogen-containing ring.
In one embodiment, Ar601 in Formula 601 may be selected from:
a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group; and
a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
When xe11 in Formula 601 is two or more, two or more Ar601(s) may be linked via a single bond.
In one or more embodiments, Ar601 in Formula 601 may be an anthracene group.
In one or more embodiments, a compound represented by Formula 601 may be represented by Formula 601-1 below:
In Formula 601-1,
X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), at least one selected from X614 to X616 may be N,
L611 to L613 may each independently be the same as described in connection with the L601,
xe611 to xe613 may each independently be the same as described in connection with xe1,
R611 to R613 may each independently be the same as described in connection with R601, and
R614 to R616 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
In one embodiment, L601 and L611 to L613 in Formulae 601 and 601-1 may each independently be selected from:
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and
a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group,
but embodiments of the present disclosure are not limited thereto.
In one or more embodiments, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
In one or more embodiments, R601 and R611 to R613 in Formulae 601 and 601-1 may each independently be selected from:
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group;
a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and
—S(═O)2(Q601) and —P(═O)(Q601)(Q602),
wherein Q601 and Q602 are the same as described above.
The electron transport region may include at least one compound selected from Compounds ET1 to ET36, but embodiments of the present disclosure are not limited thereto:
In one or more embodiments, the electron transport region may include at least one compound selected from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), NTAZ, diphenyl(4-(triphenylsilyl)phenyl-phosphine oxide (TSPO1) and 3P-T2T:
Thicknesses of the buffer layer, the hole blocking layer, and the electron control layer may each be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thicknesses of the buffer layer, the hole blocking layer, and the electron control layer are within these ranges, the electron blocking layer may have excellent electron blocking characteristics or electron control characteristics without a substantial increase in driving voltage.
A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within the range described above, the electron transport layer may have suitable or satisfactory electron transport characteristics without a substantial increase in driving voltage.
The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
The metal-containing material may include at least one selected from alkali metal complex and alkaline earth-metal complex. The alkali metal complex may include a metal ion selected from a Li ion, a Na ion, a K ion, a Rb ion, and a Cs ion, and the alkaline earth-metal complex may include a metal ion selected from a Be ion, a Mg ion, a Ca ion, a Sr ion, and a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy diphenyloxadiazole, a hydroxy diphenylthiadiazole, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene, but embodiments of the present disclosure are not limited thereto.
For example, the metal-containing material may include a L1 complex. The L1 complex may include, for example, Compound ET-D1 (lithium 8-hydroxyquinolate, LiQ) or ET-D2.
The electron transport region may include an electron injection layer that allows electrons to be easily provided from the second electrode 190. The electron injection layer may directly contact the second electrode 190.
The electron injection layer may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
The electron injection layer may include an alkali metal, alkaline earth metal, a rare earth metal, an alkali metal compound, alkaline earth metal compound, a rare earth metal compound, an alkali metal complex, alkaline earth metal complex, a rare earth metal complex, or any combination thereof.
The alkali metal may be selected from Li, Na, K, Rb, and Cs. In one embodiment, the alkali metal may be Li, Na, or Cs. In one or more embodiments, the alkali metal may be Li or Cs, but embodiments of the present disclosure are not limited thereto.
The alkaline earth metal may be selected from Mg, Ca, Sr, and Ba.
The rare earth metal may be selected from Sc, Y, Ce, Tb, Yb, and Gd.
The alkali metal compound, the alkaline earth-metal compound, and the rare earth metal compound may be selected from oxides and halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth-metal, and the rare earth metal.
The alkali metal compound may be selected from alkali metal oxides, such as Li2O, Cs2O, or K2O, and alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, KI, or RbI. In one embodiment, the alkali metal compound may be selected from LiF, Li2O, NaF, LiI, NaI, CsI, and KI, but embodiments of the present disclosure are not limited thereto.
The alkaline earth metal compound may be selected from BaO, SrO, CaO, BaxSr1-xO (0<x<1), and BaxCa1-xO (0<x<1). In one embodiment, the alkaline earth-metal compound may be selected from BaO, SrO, and CaO, but embodiments of the present disclosure are not limited thereto.
The rare earth metal compound may be selected from YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, and TbF3. In one embodiment, the rare earth metal compound may be selected from YbF3, ScF3, TbF3, YbI3, ScI3, and TbI3, but embodiments of the present disclosure are not limited thereto.
The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include an ion of alkali metal, alkaline earth-metal, and rare earth metal as described above, and a ligand coordinated with a metal ion of the alkali metal complex, the alkaline earth-metal complex, or the rare earth metal complex may be selected from hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy diphenylthiadiazole, hydroxy phenylpyridine, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, and cyclopentadiene, but embodiments of the present disclosure are not limited thereto.
The electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material. When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.
A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have suitable or satisfactory electron injection characteristics without a substantial increase in driving voltage.
Second Electrode (190)
The second electrode 190 is located on the organic layer 150 having such a structure. The second electrode 190 may be a cathode which is an electron injection electrode, and in this regard, a material for forming the second electrode 190 may be selected from metal, an alloy, an electrically conductive compound, and a combination thereof, which have a relatively low work function.
The second electrode 190 may include at least one selected from lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ITO, and IZO, but embodiments of the present disclosure are not limited thereto. The second electrode 190 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
The second electrode 190 may have a single-layered structure, or a multi-layered structure including two or more layers.
Description of
An organic light-emitting device 20 of
Regarding
In the organic layer 150 of each of the organic light-emitting devices 20 and 40, light generated in an emission layer may pass through the first electrode 110, which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer 210 toward the outside, and in the organic layer 150 of each of the organic light-emitting devices 30 and 40, light generated in an emission layer may pass through the second electrode 190, which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer 220 toward the outside.
The first capping layer 210 and the second capping layer 220 may increase external luminescent efficiency according to the principle of constructive interference.
The first capping layer 210 and the second capping layer 220 may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.
At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include at least one material selected from carbocyclic compounds, heterocyclic compounds, amine-based compounds, porphyrine derivatives, phthalocyanine derivatives, a naphthalocyanine derivatives, alkali metal complexes, and alkaline earth-metal complexes. The carbocyclic compound, the heterocyclic compound, and the amine-based compound may be optionally substituted with a substituent containing at least one element selected from O, N, S, Se, Si, F, Cl, Br, and I. In one embodiment, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include an amine-based compound.
In one embodiment, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include the compound represented by Formula 201 or the compound represented by Formula 202.
In one or more embodiments, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include a compound selected from Compounds HT28 to HT33 and Compounds CP1 to CP5, but embodiments of the present disclosure are not limited thereto:
Hereinbefore, the organic light-emitting device according to an embodiment has been described in connection with
Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and/or laser-induced thermal imaging.
When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec by taking into consideration the composition of a material to be included in a layer to be formed, and the structure of a layer to be formed.
When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by spin coating, the spin coating may be performed at a coating speed of about 2,000 rpm to about 5,000 rpm and at a heat treatment temperature of about 80° C. to 200° C. by taking into consideration the composition of a material to be included in a layer to be formed, and the structure of a layer to be formed.
Apparatus
The organic light-emitting device may be included in various suitable apparatuses.
In more detail, one example of such apparatuses may include: a thin-film transistor including a source electrode, a drain electrode, and an activation layer; and the organic light-emitting device. Here, the first electrode of the organic light-emitting device may be in electrical contact with one of the source electrode and the drain electrode of the thin-film transistor.
The thin-film transistor may further include a gate electrode, a gate insulation layer, or the like.
The active layer may include crystalline silicon, amorphous silicon, organic semiconductor, oxide semiconductor, or the like, but embodiments of the present disclosure are not limited thereto.
The apparatus may further include a sealing part for sealing the organic light-emitting device. The sealing part may allow an image from the organic light-emitting device to be implemented and may block outside air and moisture from penetrating into the organic light-emitting device. The sealing part may be a sealing substrate including a transparent glass or a plastic substrate. The sealing part may be a thin film encapsulation layer including a plurality of organic layers and/or a plurality of inorganic layers. When the sealing part is a thin film encapsulation layer, the entire apparatus may be flexible.
For example, the apparatus may be a light-emitting apparatus, an authentication apparatus, or an electronic apparatus.
The light-emitting apparatus may be used as various suitable displays, light sources, and the like.
The authentication apparatus may be, for example, a biometric authentication apparatus for authenticating an individual by using biometric information of a biometric body (for example, a finger tip, a pupil, or the like). The authentication apparatus may further include, in addition to the organic light-emitting device, a biometric information collector.
The electronic apparatus may be applied to personal computers (for example, a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (for example, electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram (ECG) displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various suitable measuring instruments, meters (for example, meters for a vehicle, an aircraft, and a vessel), projectors, and the like, but embodiments of the present disclosure are not limited thereto.
General Definition of at Least Some of the Substituents
The term “C1-C60 alkyl group,” as used herein, refers to a linear or branched aliphatic saturated hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. The term “C1-C60 alkylene group,” as used herein, refers to a divalent group having substantially the same structure as that of the C1-C60 alkyl group.
The term “C2-C60 alkenyl group,” as used herein, refers to a hydrocarbon group having at least one carbon-carbon double bond at a main chain (e.g., in the middle) or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group,” as used herein, refers to a divalent group having substantially the same structure as that of the C2-C60 alkenyl group.
The term “C2-C60 alkynyl group,” as used herein, refers to a hydrocarbon group having at least one carbon-carbon triple bond at a main chain (e.g., in the middle) or at a terminal end (e.g., the terminus) of the C2-C60 alkyl group, and examples thereof include an ethynyl group, and a propynyl group. The term “C2-C60 alkynylene group,” as used herein, refers to a divalent group having substantially the same structure as that of the C2-C60 alkynyl group.
The term “C1-C60 alkoxy group,” as used herein, refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.
The term “C3-C10 cycloalkyl group,” as used herein, refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group,” as used herein, refers to a divalent group having substantially the same structure as that of the C3-C10 cycloalkyl group.
The term “C1-C10 heterocycloalkyl group,” as used herein, refers to a monovalent monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group,” as used herein, refers to a divalent group having substantially the same structure as that of the C1-C10 heterocycloalkyl group.
The term “C3-C10 cycloalkenyl group,” as used herein, refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity (e.g., it is not aromatic), and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group,” as used herein, refers to a divalent group having substantially the same structure as the C3-C10 cycloalkenyl group.
The term “C1-C10 heterocycloalkenyl group,” as used herein, refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one carbon-carbon double bond in its ring. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group,” as used herein, refers to a divalent group having substantially the same structure as the C1-C10 heterocycloalkenyl group.
The term “C6-C60 aryl group,” as used herein, refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and the term “C6-C60 arylene group,” as used herein, refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be fused to each other (e.g., combined together). The term “C7-C60 alkylaryl group,” as used herein, refers to a C6-C60 aryl group substituted with at least one C1-C60 alkyl group.
The term “C1-C60 heteroaryl group,” as used herein, refers to a monovalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group,” as used herein, refers to a divalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group, and the C1-C60 heteroarylene group each include two or more rings, two or more rings may be fused to each other (e.g., combined together).
The term “C6-C60 aryloxy group,” as used herein, refers to —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group,” as used herein, indicates —SA103 (wherein A103 is the C6-C60 aryl group).
The term “C6-C60 aryloxy group,” as used herein, refers to —OA102 (wherein A102 is the C6-C60 aryl group), and the term “C6-C60 arylthio group,” as used herein, refers to —SA103 (wherein A103 is the C6-C60 aryl group).
The term “monovalent non-aromatic condensed polycyclic group,” as used herein, refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed with each other (e.g., combined together), having only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure (e.g., is not aromatic). An example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group,” as used herein, refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group.
The term “monovalent non-aromatic condensed heteropolycyclic group,” as used herein, refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other (e.g., combined together), at least one heteroatom selected from N, O, Si, P, and S, other than carbon atoms, as a ring-forming atom, and no aromaticity in its entire molecular structure (e.g., is not aromatic). An example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group,” as used herein, refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group.
The term “C5-C60 carbocyclic group,” as used herein, refers to a monocyclic or polycyclic group that includes only carbon as a ring-forming atom and consists of 5 to 60 carbon atoms. The C5-C60 carbocyclic group may be an aromatic carbocyclic group or a non-aromatic carbocyclic group. The C5-C60 carbocyclic group may be a ring, such as benzene, a monovalent group, such as a phenyl group, or a divalent group, such as a phenylene group. In one or more embodiments, depending on the number of substituents connected to the C5-C60 carbocyclic group, the C5-C60 carbocyclic group may be a trivalent group or a quadrivalent group.
The term “C1-C60 heterocyclic group,” as used herein, refers to a group having substantially the same structure as the C5-C60 carbocyclic group, except that as a ring-forming atom, at least one heteroatom selected from N, O, Si, P, and S is used in addition to carbon (the number of carbon atoms may be in a range of 1 to 60).
At least one substituent of the substituted C5-C60 carbocyclic group, the substituted C1-C60 heterocyclic group, the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C7-C60 alkyl aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted C2-C60 alkyl heteroaryl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:
deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;
a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12);
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;
a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22); and
—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),
wherein Q11 to Q13, Q21 to Q23 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C7-C60 alkyl aryl group, a C1-C60 heteroaryl group, a C2-C60 alkyl heteroaryl group, a C1-C60 heteroaryloxy group, a C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.
The term “Ph,” as used herein, refers to a phenyl group, the term “Me,” as used herein, refers to a methyl group, the term “Et,” as used herein, refers to an ethyl group, the term “tert-Bu” or “But,” as used herein, refers to a tert-butyl group, and the term “OMe,” as used herein, refers to a methoxy group.
The term “biphenyl group,” as used herein, refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.
The term “terphenyl group,” as used herein, refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” is a phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.
* and *′, as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula.
Hereinafter, a compound according to embodiments and an organic light-emitting device according to embodiments will be described in more detail with reference to Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples indicates that an identical molar equivalent of B was used in place of A.
Compound BD1 was synthesized by referring to the following Scheme I.
(1) Synthesis of Intermediate Compound [L1-1]
Iodobenzene (1.0 eq), imidazole (1.2 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L1-1] (Yield: 72%).
(2) Synthesis of Intermediate Compound [L1]
Intermediate compound [L1-1] (1.0 eq), diphenyliodonium trifluoromethanesulfonate (1.3 eq), and Cu(OAc)2 (5 mol %) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 100° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L1] (Yield: 60%).
(3) Synthesis of Intermediate Compound [L2-1]
1,3-dibromobenzene (1.0 eq), imidazole (3.0 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L2-1] (Yield: 50%).
(4) Synthesis of Intermediate Compound [L2]
Intermediate compound [L2-1](1.0 eq) and iodomethane (5.0 eq) were dissolved in THF (1.0 M), and then, stirred at a temperature of 70° C. for 12 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L2] (Yield: 66%).
(5) Synthesis of Compound BD1
Intermediate compound [L1] (1.0 eq), Intermediate compound [L2] (1.0 eq), IrCl3.xH2O (1.2 eq), and KOAc (0.5 eq) were dissolved in propionic acid (0.1M), and stirred at a temperature of 120° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Compound BD1 (Yield: 20%).
Compound BD7 was synthesized by referring to the following Scheme II.
Synthesis of Intermediate Compound [L1-1]
Iodobenzene (1.0 eq), imidazole (1.2 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L1-1] (Yield: 72%).
(2) Synthesis of Intermediate Compound [L1]
Intermediate compound [L1-1] (1.0 eq), diphenyliodonium trifluoromethanesulfonate (1.3 eq), and Cu(OAc)2 (5 mol %) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 100° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L1] (Yield: 60%).
(3) Synthesis of Intermediate Compound [L3-1]
1,3-dibromo-5-(trifluoromethyl)benzene (1.0 eq), imidazole (3.0 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline) (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L3-1] (Yield: 50%).
(4) Synthesis of Intermediate Compound [L3]
Intermediate compound [L3-1](1.0 eq) and iodomethane (5.0 eq) were dissolved in THF (1.0 M), and then, stirred at a temperature of 70° C. for 12 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L3] (Yield: 66%).
(5) Synthesis of Compound BD7
Intermediate compound [L1] (1.0 eq), Intermediate compound [L3] (1.0 eq), IrCl3.xH2O (1.2 eq), and KOAc (0.5 eq) were dissolved in propionic acid (0.1M), and stirred at a temperature of 120° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Compound BD7 (Yield: 20%).
Compound BD33 was synthesized by referring to the following Scheme III.
Synthesis of Intermediate Compound [L4-1]
2-iodophenol (1.0 eq), imidazole (1.2 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L4-1] (Yield: 72%).
(2) Synthesis of Intermediate compound [L4]
Intermediate compound [L4-1] (1.0 eq), diphenyliodonium trifluoromethanesulfonate (1.3 eq), and Cu(OAc)2 (5 mol %) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 100° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L4] (Yield: 60%).
(3) Synthesis of Intermediate Compound [L5-1]
1,3-dibromo-5-(trifluoromethyl)benzene (1.0 eq), benzimidazole (3.0 eq), CuI (0.01 eq), K2CO3 (2.0 eq), and L-proline) (0.02 eq) were dissolved in dimethylsulfonate (0.1M), and then, stirred at a temperature of 130° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L5-1] (Yield: 50%).
(4) Synthesis of Intermediate Compound [L5]
Intermediate compound [L5-1](1.0 eq) and iodomethane (5.0 eq) were dissolved in THF (1.0 M), and then, stirred at a temperature of 70° C. for 12 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Intermediate compound [L5] (Yield: 66%).
(5) Synthesis of Compound BD33
Intermediate compound [L4] (1.0 eq), [L5] (1.0 eq), IrCl3.xH2O (1.2 eq), and KOAc (0.5 eq) were dissolved in propionic acid (0.1M), and stirred at a temperature of 120° C. for 24 hours. The reaction mixture was cooled to room temperature, and then subjected to an extraction process three times using dichloromethane and water to obtain an organic layer. The obtained organic layer was dried by using magnesium sulfate and concentrated, and column chromatography was used to obtain Compound BD33 (Yield: 20%).
1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 3 are shown in Table 1 below.
Embodiments of compounds other than the compounds shown in Table 1 may be easily recognized by those skilled in the art by referring to the above described synthesis routes and source materials.
1H NMR (CDCl3, 400 MHz)
As an anode, an ITO/Ag/ITO substrate was cut to a size of 50 mm×50 mm×0.7 mm, sonicated with acetone, isopropyl alcohol, and pure water each for 15 minutes, and then cleaned by exposure to ultraviolet rays and ozone for 30 minutes. Then, the ITO substrate was provided to a vacuum deposition apparatus.
Compound 2-TNATA was vacuum-deposited on the ITO substrate to form a hole injection layer having a thickness of 60 nm, and then, NPB was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 30 nm.
Compound H56, which is a host, and Compound BD28, which is a dopant, were co-deposited to a weight ratio of 10:1 on the hole transport layer to form an emission layer having a thickness of 25 nm.
BAlq was deposited on the emission layer to form a hole blocking layer having a thickness of 5 nm, and then, Alq3 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 25 nm, and then, LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.5 nm, and Al was deposited on the electron injection layer to form a cathode having a thickness of 150 nm, thereby completing the manufacture of an organic light-emitting device.
Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that an emission layer was formed by using Compounds shown in Table 2.
The driving voltage (V) at 1000 cd/m2, current density (mA/cm2), luminescent efficiency (cd/A), maximum emission wavelength (nm), and lifespan (TN) of the organic light-emitting devices manufactured according to Examples 1 to 3 and Comparative Examples 1 to 3 were measured by using Keithley MU 236 and luminance meter PR650, and results thereof are shown in Table 2. In Table 2, the lifespan (TN) is a measure of the time taken when the luminance reaches 90% of the initial luminance.
From Table 2, it can be seen that the organic light-emitting devices of Examples 1 to 3 have higher current efficiency and a longer lifespan than the organic light-emitting devices of Comparative Examples 1 to 3.
The organic light-emitting devices according to embodiments of the present disclosure have high efficiency and a long lifespan.
It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the appended claims, and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0156111 | Nov 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
8580961 | Chi et al. | Nov 2013 | B2 |
9024308 | Bold et al. | May 2015 | B2 |
9219237 | Chi et al. | Dec 2015 | B1 |
9553277 | Chi et al. | Jan 2017 | B2 |
10008680 | Chi et al. | Jun 2018 | B2 |
10153442 | Chi et al. | Dec 2018 | B2 |
20070141397 | Watanabe | Jun 2007 | A1 |
20080299365 | Choi | Dec 2008 | A1 |
20130320315 | Wu | Dec 2013 | A1 |
20160355534 | Chi et al. | Dec 2016 | A1 |
20160380216 | Tsai et al. | Dec 2016 | A1 |
20190088889 | Tsai et al. | Mar 2019 | A1 |
20200373499 | Kim | Nov 2020 | A1 |
Entry |
---|
Weinberg et al. “Iridium(I) and Iridium(III) Complexes Supported by a Diphenolate Imidazolyl-Carbene Ligand” Organometallics, 2010, 29, 89-100. (Year: 2010). |
Number | Date | Country | |
---|---|---|---|
20210167301 A1 | Jun 2021 | US |