This invention relates to concurrent production of sugar streams and cellulosic ethanol from whole sugar cane. More particularly, this invention relates to equipment, systems and processes for biorefining of whole sugar cane to produce sugar streams, cellulosic ethanol and other co-products.
Sugar cane, a C4 photosynthetic plant, has one of the highest productivities and yields per acre of any plant when grown under tropical conditions. It has been grown for centuries for the production of table sugar and molasses from which rum is produced. The primary process for producing sugar was to extract juice from freshly cut sugar cane and then to concentrate the juice by evaporation until the sugar crystallized and could be recovered by filtration as raw sugar. In the early days of the industry, many sugar mills consisted of wind-powered, heavy twin rollers into which the cane stalks were fed at the nip. The cane was thus crushed and the expressed sugar juice was collected for further processing. The residual crushed cane solids, known as bagasse, still contained major quantities of sugar since the bagasse could only be squeezed to about 50% solids. This represented significant losses of sugar yield. In the 19th century, this loss of yield was addressed by adding expensive counter-current washing systems for post-crushing processing of the bagasse. These high capital cost innovations increased the yield of sugar juice but required more energy for the evaporation of the added wash water, which in turn led to the introduction of more efficient evaporators, such as multiple effect evaporators, which also increased the capital cost and technical complexity of the mills. The final wet, residual bagasse, was rejected from the mill and stored outside in huge piles. Most sugar mills burn the bagasse as a low-value fuel to provide the steam and power are needed for evaporation of the diluted cane juice, but, with modern evaporators and other efficiency improvements, modern mills do not need all the bagasse from the harvest. Consequently, bagasse is stored in giant piles and left to rot thereby producing negative environmental consequences with no economic returns to the mills. Production of sugar cane increased dramatically in recent years, particularly in South America, for use in production of fuel ethanol further increasing the accumulations of bagasse.
The exemplary embodiments of the present invention relate apparatus, systems and process for biorefining of sugar cane for concurrent production of sugar streams from cane juice, and cellulosic ethanol, and other co-products from fibrous bagasse waste materials.
Some exemplary embodiments of the present invention relate to bagasse biorefining apparatus for receiving and processing bagasse waste materials concurrent with cane juice extraction. The bagasse waste materials are pulped to produce cellulosic materials which are then saccharified, i.e., hydrolyzed to produce sugar streams. The sugar streams are fermented to produce fermentation beers that are subsequently distilled for recovery of ethanol. The ethanol may be further refined and processed into fuel-grade ethanols. The bagasse biorefining apparatus may be included in the design and construction of new sugar mill installations. The bagasse biorefining apparatus may also be retrofitted to legacy sugar mill operations. The bagasse biorefining apparatus may be used to reduce bagasse stockpile accumulations at the end of annual sugar production cycles.
The bagasse waste materials are pulped by organosolv processes wherein the bagasse materials are pulped by commingling with suitable organic solvents in suitable heated and pressurized vessels. Suitable organic solvents are exemplified by short-chain alcohols, organic acids, ketones, and mixtures. Short-chain alcohols exemplified by methanol, ethanol, butanol, and propanol are particularly useful for organosolv pulping of bagasse. Cellulosic pulps produced from bagasse by organosolv pulping are separated from black liquors comprising spent solvents and solubilized and/or fractionated components. The cellulosic pulps are transferred to equipment for enzymatic hydrolysis to produce sugar streams. The sugar streams may then be transferred to fermenters for culture with suitable fermentative microrganisms to produce beers. It is optional to transfer the cellulosic pulp into equipment configured for concurrent saccharification and fermentation in the same vessel, i.e., in CSF vessels. The beers are distilled in distillation towers for separation and recovery of ethanol and stillage. The stillage may be disposed or alternatively, used to adjust the viscosity of the cellulosic pulps prior to enzymatic hydrolysis.
Equipment may be provided for recovery of spent solvents from black liquors. The spent solvents may then recharged by mixing with fresh solvents, and recycled for additional organosolv pulping. The black liquors may first be de-lignified prior to solvent recovery. Novel lignin derivatives may be recovered during de-lignification, and used for other industrial applications. Equipment may also be provided for recovery of furfurals and for processing stillages separated from the spent solvent for recovery of other organic compounds exemplified by acetic acid, formic acid, sugar syrups that may comprise one or more hexoses and pentoses. The apparatus and equipment may be configured do deliver a portion of the recovered sugar syrups to the fermentation equipment for increased yields of ethanol from the bagasse waste materials. The saccharification and fermentation equipment may also be configured to receive inputs from cane juice streams, sugar streams and molasses streams.
Other exemplary embodiments of the present invention relate to modifications to continuous countercurrent vertical extractors originally configured for organosolv processing of lignocellulosic biomass feedstocks, to make the vertical extractors suitable for receiving therein sugar cane, billets, pressing cane juice therefrom, and separating the cane juice from the sugar cane fibres, i.e., the bagasse.
The present invention is described in conjunction with reference to the following drawings, in which:
The exemplary embodiments of the present invention relate to biorefinery systems and integrated processes for processing whole sugar cane to concurrently produce: (a) a raw sugar stream and bagasse solids materials, and (b) cellulosic ethanol from the bagasse materials.
Suitable digestion/extraction equipment for organosolv processing of the bagasse are exemplified by counterflow or countercurrent digesters and concurrent flow digesters among others. In accordance with an exemplary embodiment of the present invention, the bagasse solids stream 40 is delivered into one end of a countercurrent digester and conveyed to the opposite end therein with a screw-type auger. Pressurized and heated organic solvent is delivered through an inlet at the end of the digester opposite to the bagasse input end and counterflows against the movement of the bagasse through the digester thereby providing turbulence and commingling of the solvent with the bagasse solids stream. Alternatively, the inlet for receiving the pressurized stream of heated digestion/extraction solvent may be provided about the bagasse input end of the digestion/extraction vessel or further alternatively, interposed the two ends of the digestion/extraction vessel. Exemplary organic solvents suitable for organosolv processing of bagasse solids streams include methanol, ethanol, propanol, butanol, acetone, and suitable mixtures thereof. If so desired, the organic solvents may be additionally controllably acidified by the addition of an inorganic or organic acid. If so desired, the pH of the organic solvents may be controllably manipulated by the addition of an inorganic or organic base. The commingling of the pressurized, heated organic solvent with the bagasse solids stream may be referred to as a cooking process. It is suitable for the digestion/extraction vessel to be controllably pressurized and temperature-controlled to enable manipulation of pressure and temperature so that target cooking conditions are provided while the organic solvent is commingling with the feedstock. Exemplary cooking conditions include pressures in the range of about 15-40 bar (g), temperatures in the range of about 120-350° C., and pHs in the range of about 0.5-5.5. During the cooking process, lignins and lignin-containing compounds contained within the bagasse solids stream will be fractionated and/or dissolved into the organic solvent resulting in the cellulosic fibrous materials previously adhered thereto and therewith to disassociate and to separate from each other. Those skilled in these arts will understand that in addition to the dissolution of lignins and lignin-containing polymers, the cooking process will release from the bagasse into the organic solvents in solute and particulate forms, monosaccharides, oligosaccharides and polysaccharides, organic acids such as acetic acid, formic acid and levulinic acids, and other organic compounds exemplified by furfural and 5-hydroxymethyl furfural (5-HMF) among others. Those skilled in these arts refer to such organic solvents containing lignins, lignin-containing compounds, monosaccharides, oligosaccharides, polysaccharides, hemicelluloses and other organic compounds extracted from lignocellulosic feedstocks such as bagasse, as “black liquors” or “spent liquors”. The disassociated cellulosic fibrous materials released from the bagasse solids are conveyed to the output end of the digestion/extraction vessel where they are discharged via a second auger feeder which compresses the cellulosic fibrous materials into a solids fraction, i.e., a pulp which is then conveyed to the saccarification equipment 60 or alternatively to the concurrent saccharification and fermentation equipment 63. As shown in
As shown in
Another exemplary embodiment of the present invention relates to organosolv biorefining systems and methods configured for retrofitting sugar cane processing mills designed primarily for extraction of cane juice for production of sugar and molasses, for processing bagasse to produce ethanol. Retrofitting organosolv systems to sugar cane processing mills will enable processing of stored bagasse stockpiles to produce ethanol and optionally to recover co-products derived from bagasse such as lignin derivatives, furfurals, organic acids, sugar syrups, and other organic compounds. The advantage is that the bagasse is already accumulated in a central location and it has very little alternative value once the needs of the sugar mill for power and steam have been met through the combustion of bagasse. Therefore, this represents a major opportunity for the apparatus, systems and processes disclosed herein, which are scalable to match the annual throughputs of existing sugar mills. Depending on the geographic location of the cane fields, most cane harvesting only occurs over a six month period. Retrofitting organosolv biorefining systems to existing sugar mills enables concurrent organosolv processing of at least a portion of the bagasse produced during sugar production at cane harvest time, and continued processing of stockpiled excess bagasse after annual sugar production by the mills has been completed. Thus, bagasse from one six month harvesting period can to be accumulated and used over a twelve month period. This is not a problem because bagasse can be easily stored (and often is) for the six months between harvesting seasons. But this implies that the biorefinery would need to be economically attractive on a relatively small scale, because it would need to survive on only six months production of bagasse. Accordingly, it is within the scope of the present invention to scale the organosolv biorefining systems and equipment to enable year-round processing of bagasse generated from processing annual sugar cane harvests for sugar production. Thus, the exemplary embodiments of the present invention are well-suited to the utilization of bagasse from the legacy table sugar production countries and areas. Such countries could continue with their present practices and still sell their primary product into the table sugar market, while using excess bagasse to create additional value for their operations. Such a system has numerous advantages over existing operations. It simplifies and improves the efficiency of the entire sugar mill operation by eliminating the need for bagasse washers and reduces the energy requirements for evaporation. In a single mill operation, concentrated sugar juice is recovered and the resultant bagasse is processed by modified and/or adapted organosolv technology to produce cellulosic ethanol and/or other fermentation products, lignin and various co-products of the process. The yield of sugar in the juice would be lower than with conventional sugar mill processing, but the value of the “lost” sugar would be recovered in the enhanced ethanol production or derivatives, as described above. Furthermore, the sugar juice recovered from such an operation would be more concentrated than the juice from a traditional mill operation because it would not be diluted with wash water. This would lead to lower evaporation costs (i.e. lower steam demand), smaller evaporators and lower water demand by the mill. This in turn would lower the need for bagasse as a fuel, therefore leaving more of the bagasse for use as a feedstock for a modular biorefinery, assuming that a traditional mill would run side-by-side with the modular biorefinery
After a sugar mill has been upgraded with organosolv biorefining apparatus for ethanol production from bagasse, additional apparatus (
Other exemplary embodiments of the present invention relate to modifications to continuous countercurrent vertical extractors originally configured for organosolv processing of lignocellulosic biomass feedstocks, to make the vertical extractors suitable for receiving therein sugar cane, billets, pressing cane juice therefrom, and separating the cane juice from the sugar cane fibres, i.e., the bagasse. A suitable exemplary continuous countercurrent extractor system comprises a plug-screw feeder configured to receive biomass at about the bottom of the extractor configured to receive a water supply about the top of the extractor, and to convey the biomass upwards to about the top of the extractor from where it egresses through a suitable conveyance device, e.g., a second plug-screw feeder provided therefor. The extractor is provided with at least an outer containment wall and a porous inner wall adjacent to the plug-screw feeder. The biomass, e.g., sugar cane billets, may be delivered directly to the bottom of the extractor. Alternatively, the sugar cane billets may conveyed from a holding container/bin to the bottom of the extractor with a separate plug-screw feeder configured to initiate the extraction of cane juice during its conveyance of the sugar cane biomass to a receptacle provided therefor at about the bottom of the vertical extractor. Plug-screw feeders force relatively moist materials such as sugar cane biomass, into high-density plugs thereby expressing liquids from the biomass. The expressed liquids are forced out through screens in the inner walls of the screw feeders. Those skilled in these arts will understand that the plurality of plug screw feeders provided with and cooperating with the exemplary continuous countercurrent vertical extractor serve the purposes of both crushing the cane biomass and squeezing out the cane juice in a similar manner as the roller mills employed in the prior art sugar mills. Those skilled in these arts will also understand that it is optional to configure the exemplary continuous countercurrent vertical extractor in a horizontal orientation or alternatively, in an angled orientation wherein the residual bagasse materials egress end is elevated relative to the biomass receiving end.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA10/00057 | 1/15/2010 | WO | 00 | 12/14/2011 |
Number | Date | Country | |
---|---|---|---|
61145478 | Jan 2009 | US |