The present invention relates generally to the delivery of therapeutic fluids. More specifically, the present invention relates to an adapter for an endoscope so that an injection lumen can be used to provide side firing injections to an internal treatment site.
A wide variety of medical treatments are at least partially performed through the delivery and introduction of therapeutic compositions to a treatment location. Lower urinary tract health is an increasingly important health issue, e.g., based on an aging population. Prostate disease, for example, is a significant health risk for males. Diseases of the prostate include prostatitis, benign prostatic hyperplasia (BPH, also known as benign prostatic hypertrophy), and prostatic carcinoma.
Prostatitis is an inflammation of the prostate gland. Prostatitis is caused by bacterial infection in many instances, in which case treatment generally includes antimicrobial medication. Noninfectious forms of prostatitis are treated by other means such as administration of an alpha-1-adrenoreceptor antagonist drug to relax the muscle tissue in the prostate and reduce the difficulty in urination. Benign prostatic hypertrophy (BPH) is a very common disorder affecting an estimated 12 million men in the United States alone. BPH is a non-cancerous condition characterized by enlargement of the prostate, obstruction of the urethra, and gradual loss of bladder function. BPH may be treated with a number of therapeutic modalities including surgical and medical methods, depending on severity of symptoms. Treatments range from “watchful waiting” for men with mild symptoms, to medications, to surgical procedures.
Surgical methods used to relieve the symptoms of BPH include methods of promoting necrosis of tissue that blocks the urethra. Hyperthermic methods, for example, use the application of heat to “cook” tissue and kill the cells. The necrosed tissue is gradually absorbed by the body. Several methods of applying heat or causing necrosis have been demonstrated, including direct heat (transurethral needle ablation, or TUNA), microwave (transurethral microwave treatment, or TUMT), ultrasound (high-intensity focused ultrasound, or HIFU), electrical vaporization (transurethral electrical vaporization of the prostate, or TUEVP) and laser ablation (visual laser ablation of the prostate, or VLAP), among others.
Chemical ablation (chemoablation) techniques for promoting prostate tissue necrosis have also been considered. In one chemical ablation technique, absolute ethanol is injected transurethrally into the prostate tissue. This technique is known as transurethral ethanol ablation of the prostate (TEAP). The injected ethanol causes cells of the prostate to burst, killing the cells. The prostate shrinks as the necrosed cells are absorbed.
To inject the prostate, a transuretheral flexible endoscopic probe is typically directed to the area of interest. Because a flexible endoscope is rotated inside bends the injection tube will tend to uncontrollably rotate inside the channel of the endoscope because it does not have equal bending stiffness in all degrees of movement. Moreover, the articulating section of the flexible endoscope can typically only bend on one direction making compound bends impossible. This is a problem in the anatomy around the prostate. Therefore there is a need to fix the injection tube in a preselected orientation so as to enable an injection in the desired direction.
The invention relates to needleless devices useful for injecting fluid to tissue of the lower urinary tract such as the prostate. The devices inject a therapeutic fluid or “injectate” at high-pressure using an orifice at the end of an elongate shaft inserted into the urethra. To treat the prostate, the injectate fluid passes through the urethra and disperses in the prostate as a cloud of particles. The needleless systems can overcome undesired or disadvantageous features of systems.
In a first embodiment, the needleless injector device as described can be used with various delivery methods such as methods that allow for direct vision of an injection wherein an internal location of an injection orifice is determined visually. Direct vision methods involve the use of an optical feature to view an injection site directly, such as by use of an endoscope or optical fiber that is included in an injector device, e.g., as a component of the shaft.
Endoscopes used for such surgery have outer tubes which are placed into the patient's urethra. Inner pathways within the endoscope provide a number of passages for guiding the treatment devices as well as the optical visualization system. The surgical or treatment instrument in this embodiment is a needleless injector device. The needleless injector device includes a body at a proximal end; a flexible shaft extending from the body to a distal end of the shaft; at least one injection orifice at the distal end of the shaft in fluid communication with a fluid chamber at the proximal end; and a pressure source in communication with the fluid chamber. The main body of the endoscope comprises actuators driving the surgical instrument, for instance to reciprocate it axially. As a rule, the endoscope also comprises fittings for flushing water with which the area of surgery is flushed to achieve better viewing.
As regards the present invention, the injector lumen is held in a known orientation within the endoscope by the disposition of an adapter within the working channel of the endoscope. This adapter is shaped such that it mates with a non-circular injection tube so as to prevent the rotation of the injection tube within the working channel. This eliminates the uncontrolled aspect of the injector lumen moving within the channel from rotation of the endoscope so that the operator does not know where the injector orifice is directed.
For example, the injection tube could have a rectangular cross section which would mate with the working opening of the adapter, thus preventing rotation. The adapter has at least one more opening to allow for irrigation fluid to flow through the working channel of the scope. The openings created by the adapter do not have to be defined by a cross-section. The adapter can define openings for the injection tube and fluid passage in conjunction with the surface of the working channel scope. This increases the area for the openings for further uses, such as the addition of additional tools.
The above summary of the various representative embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the invention. The figures in the detailed description that follows more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
a is a side, partially hidden view of an embodiment of a needleless fluid injector device;
b is a schematic illustration of an embodiment of a needleless fluid injector device;
a is an end view of an embodiment of an adapter for maintaining the position of the needleless fluid delivery system according to the present invention;
b is an end view of an embodiment of an adapter for maintaining the position of the needleless fluid delivery system according to the present invention;
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives.
In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as to not unnecessarily obscure aspects of the present invention.
Due to geometry, plastic deformation and material properties, the injection shaft containing an injection lumen may not match the orientation of a flexible cystoscope or endoscope in which it is housed or sheathed. For this application, applicant uses cystoscope and endoscope interchangeably as endoscope is a more general term for a tubular instrument fitted with a light and visualization system, while cystoscope typically refers to the device of this type used to examine the urethra.
For example, placement of the endoscope within the area of the prostate may require a number of bending actions of the endoscope which may result in the injector lumen bending or moving at a different rate or direction. Where the injection lumen was aligned with the visual field of the endoscope at the beginning of the procedure may no longer be the case by the time the endoscope is positioned relative to the prostate. This can be especially problematic if the injection is to be lateral as opposed to out the distal end of the injector lumen. The orientation needs to remain constant so that the injection always takes place with respect to the visual field and in the same spot.
The orientation matching may be accomplished in a first embodiment by placing an adapter ring that does not allow rotation of the injection lumen with respect to the flexible cystoscope. The adapter may optionally allow the injection lumen to advance or retract axially with respect to the cystoscope. The adapter ring may be attached to the cystoscope and/or the injection shaft. The attachment to either can be a press fit, a snap fit, a bond, a magnetic connection or other suitable methods.
Cystoscope 100 includes a proximal portion 112 that remains external to the patient during use as shown in
Referring to
Referring to
As depicted in
In an alternate embodiment as depicted in
While the present invention has been described in relation to treatment of the prostate, it should be understood that the invention may be used wherever appropriate and beneficial within an animal or human body, including but not limited to, urological applications, gynecological applications, urogynecological applications, renal applications, etc.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives.
The present application claims priority to U.S. Provisional Application Ser. No. 60/865,010, filed Nov. 9, 2006 and entitled, “ORIENTATION ADAPTER FOR INJECTION TUBE IN FLEXIBLE ENDOSCOPE”, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4701162 | Rosenberg | Oct 1987 | A |
4705502 | Patel | Nov 1987 | A |
4742817 | Kawashima et al. | May 1988 | A |
4792330 | Lazarus | Dec 1988 | A |
4848367 | Avant et al. | Jul 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4909785 | Burton et al. | Mar 1990 | A |
4911164 | Roth | Mar 1990 | A |
4932956 | Reddy et al. | Jun 1990 | A |
4946442 | Sanagi | Aug 1990 | A |
5047039 | Avant et al. | Sep 1991 | A |
5123908 | Chen | Jun 1992 | A |
5152772 | Sewell, Jr. | Oct 1992 | A |
5261889 | Laine et al. | Nov 1993 | A |
5306226 | Salama | Apr 1994 | A |
5540701 | Sharkey et al. | Jul 1996 | A |
5545171 | Sharkey et al. | Aug 1996 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5931842 | Goldsteen et al. | Aug 1999 | A |
5964791 | Bolmsjo | Oct 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6119045 | Bolmsjo | Sep 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6203533 | Ouchi | Mar 2001 | B1 |
6210378 | Ouchi | Apr 2001 | B1 |
6238336 | Ouchi | May 2001 | B1 |
6238368 | Devonec | May 2001 | B1 |
6254570 | Rutner et al. | Jul 2001 | B1 |
6299598 | Bander | Oct 2001 | B1 |
6302905 | Goldsteen et al. | Oct 2001 | B1 |
6391039 | Nicholas et al. | May 2002 | B1 |
6416545 | Mikus et al. | Jul 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6447533 | Adams | Sep 2002 | B1 |
6461367 | Kirsch et al. | Oct 2002 | B1 |
6471678 | Alvarez de Toledo et al. | Oct 2002 | B1 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6520974 | Tanner et al. | Feb 2003 | B2 |
6530932 | Swayze et al. | Mar 2003 | B1 |
6537205 | Smith | Mar 2003 | B1 |
6562024 | Alvarez de Toledo et al. | May 2003 | B2 |
6565579 | Kirsch et al. | May 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6602243 | Noda | Aug 2003 | B2 |
6695832 | Schon et al. | Feb 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6719709 | Whalen et al. | Apr 2004 | B2 |
6719749 | Schweikert et al. | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6740098 | Abrams et al. | May 2004 | B2 |
6746456 | Xiao | Jun 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6821283 | Barzell et al. | Nov 2004 | B2 |
7749156 | Ouchi | Jul 2010 | B2 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020002363 | Urakawa et al. | Jan 2002 | A1 |
20020087176 | Greenhalgh | Jul 2002 | A1 |
20030069629 | Jadhav et al. | Apr 2003 | A1 |
20030208183 | Whalen et al. | Nov 2003 | A1 |
20030229364 | Seiba | Dec 2003 | A1 |
20040078047 | Nicholas et al. | Apr 2004 | A1 |
20040087995 | Copa et al. | May 2004 | A1 |
20050070938 | Copa et al. | Mar 2005 | A1 |
20050131431 | Copa et al. | Jun 2005 | A1 |
20050251155 | Orban, III | Nov 2005 | A1 |
20060129125 | Copa et al. | Jun 2006 | A1 |
20060200178 | Hamel et al. | Sep 2006 | A1 |
20060264985 | Copa et al. | Nov 2006 | A1 |
20060276811 | Copa et al. | Dec 2006 | A1 |
20070219584 | Copa et al. | Sep 2007 | A1 |
20070225554 | Maseda et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 9204869 | Apr 1992 | WO |
WO 9607447 | Mar 1996 | WO |
WO 9916359 | Apr 1999 | WO |
WO 9921490 | May 1999 | WO |
WO 9921491 | May 1999 | WO |
WO 9958081 | Nov 1999 | WO |
WO2004000135 | Dec 2003 | WO |
WO2004000136 | Dec 2003 | WO |
WO2004000137 | Dec 2003 | WO |
WO2004000138 | Dec 2003 | WO |
WO2004034913 | Apr 2004 | WO |
2007013070 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080114203 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60865010 | Nov 2006 | US |