This is the first application filed for the present technology.
The present technology relates generally to mobile devices and, in particular, to techniques for determining an orientation of a mobile device.
It is now increasingly common for mobile devices to include digital compasses (magnetometers) from which an orientation of the mobile may be determined. However, there are a number of shortcomings with digital compasses or magnetometers. For example, the device is susceptible to interference from surrounding magnetic objects (e.g. a holster magnet or the hard drive inside the device). Another shortcoming is that the device may be worn in a holster, carried in a purse or placed such that the orientation of the device does not represent the orientation of the user of the device.
A solution to the foregoing technical problem(s) would be highly desirable. Such a solution is disclosed in the present specification and the appended drawings.
Further features and advantages of the present technology will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
The present technology generally provides orientation determination techniques for a mobile device or for a system that includes a mobile device and a head-mounted accessory device such as, for example, an earpiece, eyewear, headset or the like. As discussed herein, mobile devices may include a variety of portable electronic devices, such as mobile communication devices (such as cellular phones or smart phones), music players (such as MP3 players), electronic navigation devices (such as Global Positioning System devices), portable DVD players, a personal digital assistants (PDAs), portable computers (such as tablet computers or laptop computers), and some accessories that may be used with smart phones or portable computers, for example. Mobile devices may be handheld, that is, sized and shaped to be held or carried in a human hand. In general, orientation (which includes the direction that an object may be facing or pointing or aligned or aimed or otherwise positioned) may be determined with respect to any reference, such as the center of the Earth, or a magnetic pole of the Earth. Orientation with respect to one reference may be convertible to orientation with respect to another reference; e.g., orientation with respect to the center of the Earth may be convertible to orientation with respect to a floor. As discussed herein, orientation is not determined with respect to any particular reference.
One aspect of the present technology is a method for a mobile device to determine an orientation of a user of the mobile device. The method entails receiving, over a short-range wireless connection between the mobile device and a head-mounted device, a first orientation signal from a first digital compass in the head-mounted accessory device, and determining the orientation of the user based on the first orientation signal.
In one implementation, the method further includes obtaining a second orientation signal from a second digital compass in the mobile device and determining the orientation of the user based on both the first orientation signal and the second orientation signal. The method may further include inferring, based on the first and second orientation signals, whether the user is viewing the mobile device. Based on this inference, the mobile device may control its own functions such as, for example, the delivery or display of content.
Another aspect of the present technology is a tangible computer-readable medium upon which are stored instructions in code that are configured or programmed to perform the foregoing method(s) when the code stored in the computer-readable medium is loaded into memory and executed on a processor of a mobile device.
Another aspect of the present technology is a system for determining an orientation of a user of a mobile device. The system has a head-mounted accessory device including a first digital compass for providing a first orientation signal and a short-range wireless transmitter for transmitting the first orientation signal to the mobile device. The system also has a short-range wireless receiver in the mobile device for receiving the first orientation signal from the head-mounted accessory device and a processor operatively coupled to memory for determining the orientation of the user of the mobile device based on the first orientation signal.
In one implementation, the mobile device comprises a second digital compass for providing a second orientation signal to enable the processor to determine the orientation based on both the first orientation signal and the second orientation signal. The device may infer from the first and second orientation signals whether the user is viewing the mobile device, thereby providing a basis upon which device functions, such as for example the delivery and display of content, may be controlled.
The details and particulars of these aspects of the technology will now be described below, by way of example, with reference to the attached drawings.
As depicted in
Where the mobile device 100 is a wireless communications device, the mobile device 100 further includes a radiofrequency (RF) transceiver 170 for communicating wirelessly with one or more base stations over a cellular wireless network using cellular communication protocols and standards for both voice call and packet data transfer such as GSM, CDMA, GPRS, EDGE, UMTS, LTE, etc. The mobile device may include a Subscriber Identity Module (SIM) card 112 for GSM-type devices or a Re-Usable Identification Module (RUIM) card for CDMA-type devices. The RF transceiver 170 may include separate voice and data channels.
For telephony, the mobile device 100 may include a microphone 180 and a speaker 182 (and optionally an earphone jack).
The mobile device 100 may also include a positioning system such as a Global Positioning System (GPS) receiver (chipset) 190 for receiving GPS radio signals transmitted from one or more orbiting GPS satellites 192. Although the present disclosure refers to expressly to the “Global Positioning System”, it should be understood that this term and its abbreviation “GPS” are being used expansively to include any satellite-based navigation-signal broadcast system, and would therefore include other systems used around the world including the Beidou (COMPASS) system being developed by China, the multi-national Galileo system being developed by the European Union, in collaboration with China, Israel, India, Morocco, Saudi Arabia and South Korea, Russia's GLONASS system, India's proposed Regional Navigational Satellite System (IRNSS), and Japan's proposed QZSS regional system.
The mobile device 100 may optionally include a Wi-Fi™ transceiver 192, a Bluetooth® transceiver 194, a near-field communications (NFC) chip. The mobile device may also include a transceiver for WiMax™ (IEEE 802.16), a transceiver for ZigBee® (IEEE 802.15.4-2003 or other wireless personal area networks), an infrared transceiver or an ultra-wideband transceiver.
The mobile device 100 includes a digital compass 196. The digital compass may be a magnetometer. The digital compass provides an orientation signal indicative of the orientation of the device. The orientation may also be referred to, in some implementations, as the compass bearing or heading. The digital compass (or solid-state compass) may incorporate two or three magnetic field sensors (or magneto-inductive sensors) from which a microprocessor can compute the heading using trigonometry.
The mobile device 100 may also include a tilt sensor 198. The tilt sensor may be an accelerometer. The tilt sensor provides a tilt signal indicative of a tilt angle of the device.
In one variant, a tilt-sensitive digital compass may include both the magnetometer and the accelerometer (or other tilt sensor), i.e. both the magnetometer and the accelerometer may be integrated into a single chip or device. For example, an integrated magnetometer-accelerometer may include magneto-inductive sensors or magneto-resistive sensors with a 3-axis MEMS accelerometer in a single ASIC chip. Alternatively, the digital compass may incorporate a Hall-effect magnetic sensor. In other variants, the mobile device and/or the accessory device may include a gyroscope in addition to the magnetometer and accelerometer.
For the purposes of this specification, the expression “short-range wireless” refers to any UHF or SHF wireless technologies, such as Bluetooth® that operates in the 2.4 GHz band, ZigBee® that operates in the ISM radio bands, i.e. 868 MHz in Europe, 915 MHz in the USA and Australia and 2.4 GHZ in other jurisdictions, Wi-Fi® that operates in the 2.4 GHz or 5 GHz bands, or Ultra Wide Band (UWB) that operates in the 3.1-10.6 GHz band.
In a variant, the mobile device may determine a probability that the user is looking at the display of the mobile device. Based on this probability, the device may variably control the display (or delivery) of content. Controlling the delivery of content, which may for example include displaying content or preventing content from being displayed or displaying a portion of content, may be called selectively displaying content. As previously indicated, content may include any kind of visual information and may include text, still or moving pictures or graphics. Content that is very sensitive (as determined by a user to be private, according to any standard) may be concealed even if there is a small probability that the user is not looking at the display of the mobile device. Content that is not so sensitive may be displayed onscreen unless there is a substantial probability that the user is not looking at the display. Thus, an inferred probability that the user is looking at the display enables the mobile device to modulate how the display of content is controlled.
In the example depicted in
In the example depicted in
The inference, as illustrated above, may be based on orientation (compass bearing or compass reading). This inference may be refined by also taking into account the tilt of the user's head and the tilt of the mobile device.
In the example depicted in
In the example depicted in
In
The method may further include (at step 404) inferring whether the user is looking at the display of the mobile device.
The method may further include (at step 406) controlling device function(s) based on the inference drawn in step 404. For example, the device function may be the displaying, delivery or provision of content onscreen. For example, in one implementation of the technology, the method includes determining content to deliver from the mobile device based on the orientation and then delivering the content based on the orientation. For example, the mobile device may shut off the display when the mobile device infers that the user wearing the head-mounted accessory device has looked away from the display of the mobile device. In this example, the mobile device only reactivates the display screen when the orientation of the user's head (as determined by the orientation signal received from the digital compass in the head-mounted accessory device) again matches that of the mobile device. In other words, in one implementation of the technology, the method includes determining an orientation of the mobile device by obtaining a second orientation signal from a second digital compass in the mobile device, inferring from the orientation of the mobile device and from the orientation of the user whether the user is viewing the mobile device, and selectively displaying content on the mobile device only when the orientation of the user matches within a predetermined tolerance the orientation of the mobile device.
The method may also take into account the relative tilt of the devices in addition to their relative orientations. In one implementation of the technology, the method includes determining a first tilt angle of the accessory device based on a first tilt sensor in the accessory device, determining a second tilt angle of the mobile device based on a second tilt sensor in the mobile device, and comparing the first and second tilt angles to infer whether the user is viewing the mobile device. The tilt sensor may be an accelerometer. The comparison of the first and second tilt angles may involve application of a threshold function or filter to provide an activation signal only when the difference between the first tilt angle and the second tilt angle is less than a predetermined angular threshold.
From the foregoing is should be apparent that a main advantage of this system is that it enables the mobile device to infer the orientation of the user's head and hence to infer whether or not the user is likely looking at the display of the mobile device.
Another advantage of a system having two spaced-apart devices each with its own digital compass is that this system provides increased directional accuracy. The problem of magnetic interference from nearby magnetic components can introduce errors in the digital compass readings. A corollary advantage of this two-compass system is that an anomaly in the data from one of the sensors can be detected more easily using the data from both sensors. An “anomaly” may be any situation in which the data make no sense for a conventional usage or are otherwise difficult to interpret or apply. An anomaly may occur with respect to a device or to an accessory or to both, or to one with respect to the other. One event in which there is a huge jump in the magnetic field read by one device, while the other remains fairly constant may be one example of an anomaly. Such an anomaly could indicate, for instance, that the device that experienced the jump was thrown into a purse where there are other magnetic objects. The device in the purse might then need to be recalibrated. One compass can be calibrated or recalibrated using the other compass. For example, in one implementation of the technology, recalibrating the second digital compass can be accomplished using the first digital compass. Furthermore, such calibration or recalibration of the magnetometer on the headset can be done while the user is wearing the headset (i.e., there is no need to remove the accessory device and make the conventional in-air figure eight calibration gesture that is conventionally required to calibrate the digital compass on a handset). All that would be required is for the user to turn his/her head around and/or perhaps walk around a little, and/or do a 360-degree body rotation.
Yet another advantage of this novel system is that the mobile device can obtain an orientation signal from a digital compass in the head-mounted accessory device, which enables the user to holster or stow the mobile device. This enables hands-free operation of orientation-based services delivered by the mobile device. In the case where the orientation of the holster with respect to the user's head is known, both digital compasses can still be used for providing greater directional accuracy. In other words, if the device is stowed in a holster that is attached to the user's belt on his/her right side—and if the user has previously indicated to the device that this is where it will be stowed when in its holster), the signals from both digital compass can be used. The operation of letting the device “know” where it is stowed when in its holster can be done from a configuration menu on the device.
In another embodiment, there are cases where it makes sense for the device to start relying entirely on the headset sensor instead of on its internal sensor. For instance, the way for the device to recognize that it was just holstered is through a combination of Hall-Effect sensor (in the device) and a magnet in the holster. As it turns out, the holster magnet tends to disturb the magnetic field around the device, which it turn, means that the data returned by the digital compass is no longer accurate.
The mobile device 100 can display any number of orientation-based services on the display screen in response to receipt of an orientation signal from the digital compass in the head-mounted accessory device. One simple example is a digital compass interface that can be programmed to guide the user to a given destination or to guide the user back a stored location or waypoint. The compass may also be displayed on a map for navigation. The compass may be used in a variety of other orientation-based services.
In one example implementation, the mobile device may detect whether the device is holstered, docked or otherwise stowed (placed in an operative state as opposed to an operative, handheld state). In that case, the mobile device may utilize only the compass signal from the digital compass in the head-mounted accessory device and ignore the signal from the digital compass in the mobile device. For example, only when the device detects that it is handheld will it utilize its own onboard digital compass. Alternatively, the signal from the holstered device may be used by pre-determining (measuring) the orientation of the holster relative to the user's head.
In one example, the mobile device may provide direction-based content to the user of the mobile device while the mobile device is holstered or stowed away in a backpack or purse, for example. This enables a variety of location-based and direction-based services to be delivered by the mobile device without utilizing the digital compass in the mobile device.
For example, a user can receive content, e.g. travel-guide audio narration for buildings or landmarks that the user is facing based on the GPS position fix and the compass reading from the digital compass in the head-mounted accessory device. The user can receive this content without having to hold the mobile device in the direction of the building or landmark. The direction/orientation of the user is determined by the head-mounted accessory device and relayed over the short-range wireless connection to the mobile device where the direction/orientation is used to determine and deliver suitable direction-based content (or orientation-based content).
Any of the methods disclosed herein may be implemented in hardware, software, firmware or any combination thereof. Where implemented as software, the method steps, acts or operations may be programmed or coded as computer-readable instructions and recorded electronically, magnetically or optically on a fixed or non-transitory or tangible computer-readable medium, computer-readable memory, machine-readable memory or computer program product. In other words, the computer-readable memory or computer-readable medium comprises instructions in code which when loaded into a memory and executed on a processor of a computing device cause the computing device to perform one or more of the foregoing method(s).
A computer-readable medium can be any means that contain, store, communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus or device. The computer-readable medium may be electronic, magnetic, optical, electromagnetic, infrared or any semiconductor system or device. For example, computer executable code to perform the methods disclosed herein may be tangibly recorded on a computer-readable medium including, but not limited to, a floppy-disk, a CD-ROM, a DVD, RAM, ROM, EPROM, Flash Memory or any suitable memory card, etc. The method may also be implemented in hardware. A hardware implementation might employ discrete logic circuits having logic gates for implementing logic functions on data signals, an application-specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array (PGA), a field programmable gate array (FPGA), etc.
This invention has been described in terms of specific embodiments, implementations and configurations which are intended to be exemplary only. Persons of ordinary skill in the art will appreciate, having read this disclosure, that many obvious variations, modifications and refinements may be made without departing from the inventive concept(s) presented herein. The scope of the exclusive right sought by the Applicant(s) is therefore intended to be limited solely by the appended claims.