This invention relates to an orientation-independent antenna which presents a circular polarization characteristic to incoming waves such that these waves are detected regardless of polarization and angle of arrival, and more particularly to the use of shorts to decrease the VSWR of the antenna at the lower frequencies thereof, thus to improve its bandwidth.
Especially with regard to the control of robotic vehicles such as are used in war theatres and the like, it is important to be able to robustly communicate with the robotic vehicle from a base station. Presently, satellite communication systems (Satcom) are used where power levels are low and often times are not useful in communicating with terrestrial vehicles, especially those having antenna orientations that are not predictable.
For instance, as a robotic vehicle moves about terrain or for instance within a building, signals arrive at the antenna utilized by the robotic vehicle with a variety of different polarizations and directions.
If for instance the antenna utilized by the robotic vehicle is vertically polarized, then it will be insensitive to incoming signals having a horizontal polarization, and these signals, especially if they are weak, will not be detected. Likewise, if one utilized a horizontally polarized antenna, it would be insensitive to signals coming in with a vertical polarization. Of course, signals that are elliptically polarized which have components in both the vertical and horizontal directions would be non-optimally received with an antenna whose polarization did not match that of the incoming wave.
It would, therefore, be desirable to provide an antenna having a characteristic that is independent of the direction of arrival and polarization of an incoming wave. Such antennas are those exhibiting circular polarization as there will be no direction that results in polarization cancellations.
More particularly, if one were utilizing a vertical dipole on a robotic vehicle, one would have reasonable 360 degree coverage, but only for vertically polarized signals. The vertical dipole would therefore be relatively insensitive to horizontally polarized signals. In short, the dipole would not be sensitive to anything straight up.
To make matters somewhat more problematic, many antennas that are mounted on robotic vehicles have masts that are purposely flexible so that if the antenna hits an object, it will bend and not trap the antenna or stop the robot. The antenna with a flexible mast has its vertical or horizontal orientation direction altered by the flexibility of the mast which means that reliable communications cannot be established if the polarization direction of the antenna is not exactly aligned with that of the incoming signal.
In short, with a robotic vehicle as it moves through the environment, the antenna may tilt at various angles and therefore compromise communications with a base station. Further, when robotic vehicles maneuver through a building, signals can come in from various different directions due to multi-path problems. Since buildings even further attenuate satellite signals, optimum antenna orientation is a requirement if one is using anything other than a circularly polarized antenna.
Moreover, on robotic vehicles there is a requirement for miniaturization. It is not possible in most instances to provide elongated whips or antennas that are large with respect to the vehicle because of the terrain through which they operate, or because of the buildings in which they move. It is therefore important to be able to provide a miniature wide band antenna which has a circular polarization in all directions.
As described in a co-pending application entitled Orientation-Independent Antenna (ORIAN) by John T. Apostolos assigned to the assignee hereof, incorporated herein by reference and filed on even date herewith, while satisfactory performance over the majority of the bandwidth of this antenna has been achieved, lowering the VSWR, especially at the lower frequencies has been a problem. For instance, while in one embodiment of the orientation-independent circularly polarized antenna less than 2.5:1 VSWR is achievable between 245 MHz and 450 MHz, the VSWR of the antenna exceeds 2.5:1 between 225 MHz and 245 MHz. Note that at these lower frequencies a transmitter may throttle down in the face of high VSWR and may even stop transmitting, thus limiting the useful bandwidth of the antenna.
An orientation-independent circularly polarized antenna that uses crossed vertical loops and a horizontal loop is provided with an increased bandwidth by providing shorts between adjacent elements. When a cube is provided with triangular shaped elements, 4 each to a side of the cube, shorts between the bases of adjacent triangular shaped elements on adjacent vertical faces of the cube provide for an extension of bandwidth at the low end of the antenna's operating range. In one embodiment for an 8 inch cube, shorts down 0.95 from a top corner of the cube result in less than a 2.5:1 VSWR across the entire bandwidth of the antenna. For a Satcom antenna, this means acceptable operation between 225 MHz and 245 MHz in an antenna that has a frequency range from 225 MHz to 450 MHz. Thus low frequency operation is not precluded. The type of antenna for which the subject shorts are effective is now described.
In order to provide an antenna which has a circularly polarized characteristic at all directions, a pair of crossed vertical loops at 90 degrees to each other are driven in quadrature or at a 90 degree phase difference so that one has pure circular polarization at the zenith and pure vertical polarization at the horizon. As one progresses from the zenith to the horizon, the circular polarization degrades. Moreover, when using square loops for the vertical loops, a better approximation of circular polarization can be obtained by driving the four loop segments at 0°, 90°, 180° and 270° to provide for progressive phase excitation of the loops.
By inserting a horizontal loop at 90 degrees to both of the vertical loops and by also phasing the horizontal loop segments at 0°, 90°, 180° and 270°, it has been found that one obtains a circular polarization over an entire hemisphere and down to 45 degrees below the horizon. This is because when the vertical crossed loops are fed in quadrature, there is good circular polarization at the zenith, i.e. 90 degrees elevation. The axial ratio degrades as the elevation angle decreases until at 0 deg elevation there is only vertical polarization. The missing horizontal polarization at 0 deg is filled in by the horizontal loop. Note that the horizontal loop legs are progressively fed in 90 degree increments. The reason for this type of feed is that the vertically polarized wave from the vertical crossed loops has a progressive phase as a function of azimuth. The horizontal loop must have a progressive phase that matches the progressive phase of the wave from the vertical crossed loops. Furthermore, the phase of the horizontal loop must be offset 90 degrees from that of the vertical crossed loops.
In one embodiment, this triple loop orientation-independent antenna is implemented utilizing pairs of bowties on the six faces of a cube, with the pairs of bowties being implemented as triangular shaped conductive elements.
The cubic implementation of the three crossed loops provides an orientation independent antenna in which the field from this antenna is circularly polarized at all angles of arrival within a hemisphere.
Thus, at any position on a hemisphere surrounding the antenna one has circular polarization with magnitudes or amplitudes that are equal regardless of the point in space at which a signal comes in.
This permits robust receipt of signals regardless of angle of arrival and regardless of how the signals are either originally polarized or have their polarization altered before they arrive at the antenna.
Note, due to the volumetric nature of the antenna, the antenna exhibits wideband operation.
In one embodiment, the miniature antenna is provided by having triangular shaped metallic elements on a cube so as to form four opposed triangular elements on each side of the cube.
It will be appreciated that given a face of the cube and appropriate phasing of a pair of triangular shaped elements for one loop, one can achieve circular polarization in a direction normal to the face of the cube, both in the forward and rearward directions. This is accomplished by driving the two orthogonal sets of opposed triangular elements on the given face to yield circular polarization normal to the face of the cube.
Note that one has either a vertical polarization or a horizontal polarization out the edge of this face.
By using the various faces of the cube and forming the horizontal loop with four legs so that the legs of the loop are driven at 0°, 90°, 180° and 270° offset by 90° from the vertical loops, one can fill in the circular polarization out the edge of the face. For instance, for a cube side perpendicular to the face of the cube discussed above, its circular polarization directions being normal to this face are also normal to the circular polarization directions of the first face. This provides a full 360 degrees of circular polarization in the horizontal phase.
Likewise, the top face of the cube being perpendicular to the front face provides circular polarization in the vertical direction. This, when combined with the circular polarization in the horizontal direction now achieves circular polarization in a full 180° degree arc so that the combined faces provide circular polarization throughout a hemisphere in which the cubical antenna resides at its center. The subject antenna does provide better than hemispherical coverage in that its coverage extends downwardly by about 45 degrees.
More particularly, in one illustrative embodiment, the loops are provided by the triangular shaped elements on various faces of a cube with their apecies pointing inwardly to a point at the center of the face of the cube. In one embodiment, one pair of the crossed vertical loops is provided by sides 1, 5, 3 and 6 and triangular elements 3-4 on each face. The orthogonal vertical loop is comprised of sides 2, 5, 4 and 6 and elements 1-2 on each face.
In order to provide for the feeding of the crossed pair of loops, the 3-4 elements on sides 1, 5, 3 and 6 are fed progressively at 90° increments, with the 1-2 elements on sides 2, 5, 4 and 6 being driven at 90° with respect to the first loop. Additionally, each of the legs of each vertical loop are excited at 0°, 90°, 180° and 270°. The horizontal loop is driven by driving the 1-2 elements on vertical sides 1, 2, 3 and 4 progressively at 0°, 90°, 180° and 270°, offset 90° from the vertical loops.
While the phasing of the various legs of the various loops might require different phasing boxes for each of the loops, it has been found that the appropriate phasing of each of the legs of each of the loops can be accomplished utilizing a specialized feed network utilizing 6 hybrids. By feeding selected pairs of triangular elements on each side of the cube utilizing these 6 hybrids, one can simultaneously provide the appropriate phasing for each of the legs of each of the three loops.
In one embodiment, in order to provide feeds for the triangular shaped elements on the various faces of the cube, a number of combiners and/or hybrids are used. The combiners/hybrids establish the appropriate phase relationships. The first combiner functions as a summer to take the antenna feed and divide it into a feed that is associated with one corner of the cube which corresponds to the feeding of one of the aforementioned crossed loops.
The combiner/summer also splits off a signal which feeds a diametrically opposite corner of the cube to form the feed for the second of the crossed loops.
In an embodiment in which the combiners are not housed within the cube, for the crossed loop associated with one corner of the cube, a combiner splits the incoming signal and passes it to three separate hybrids, with each of the separate hybrids driving a set of coaxial feeds having their outer braids bonded to respective triangular elements as the coax extends towards an apex of an associated triangular element.
Each of the adjacent sections, for instance 1 and 4, on for instance sides 1, 2 and 5 of the cube are fed in this phased manner.
The result of the phased drive of sections 1 and 4 on sides 1, 2 and 5 of the cube are pairs of crossed loops, with one loop formed at sides 1, 5 and 3, and with the orthogonal loop formed at sides 2, 5 and 4. When driven appropriately, the result is the aforementioned circular polarization characteristic of the antenna that is independent of angle of arrival.
In one embodiment, the sides are connected to each other with matching and balancing impedances, Z. Note that the cube is centered in a spherical coordinate system in which the impedances are parallel combinations of capacitance and meanderlines.
With appropriate excitation the field associated with the cubic antenna in the upper hemisphere is close to being proportional to
(Φ−iθ)exp(iΦ+iθ) Eq. 1
where Φ and θ are the spherical coordinate basis vectors.
From this equation it can be seen that an observer sees a circularly polarized wave from any vantage point in the hemisphere.
Note that a small error associated with the θ component is present since the fields associated with that direction deviate from sinusoidal. The maximum deviation from 1 of the axial ratio is 0.8. If a sphere is used instead of a cube, then the worst case axial ratio is 0.95.
For an internally fed antenna, in one embodiment each side of the cube is fed with two ferrite coaxial transmission lines. For each vertical loop this leads to four pairs of coaxial cables converging at the center of the cube to form a beam former. All four excitation pairs are driven at 0° or 90° depending on which vertical loop is driven. The four pairs are combined in an eight way summer so that the two vertical loops can be driven albeit with a 90° phase shift provided by hybrids. The hybrids can be made up of wide band surface mounted components confined to a metal enclosure at the center of the cube, with equipment embedded in such a volumetric-based antenna not compromising performance. Note that the input ferrite loaded coax feeding the beam former can enter the antenna via one of the corners.
In an alternative embodiment, it is possible to feed the antenna without penetrating the interior. This type of feed is useful when the antenna interior is used as a space for other parts of the system and where the transmitter or receiver to be connected to the antenna is external to the antenna.
Note that in this embodiment pairs of coaxial lines feed selected sides of the vertical loops. The outer conductor of each coaxial line is bonded directly to the associated triangular element. The inner coax conductors cross over at the end of the coax to feed the adjacent triangular elements at the gaps between the feed vertices, with the feed forming a so-called infinite balun. The three pairs of coax converge to the nearest corner of the cubical antenna. At this corner ferrite loading is applied to the coaxial lines as the lines leave the antenna surface.
Note there is a complimentary set of three pairs of coaxial lines on the opposite side of the antenna. Sides 4, 3 and 6 are fed by these complimentary pairs. The lines converge at the corner diagonally situated with respect to the nearest corner. The two sets of three pairs of lines are brought together and coupled into a beam former.
The subject antenna can be fed for either right or left hand circular polarization. For optimal operation both polarizations can be monitored simultaneously to effect polarization diversity. This can provide double the data throughput.
The above describes the construction and phasing of an orientation-independent circularly polarized antenna. To lower the VSWR in the lower frequency range, shorts are provided to provide synergistic coupling between the elements, thus to lower the VSWR at the lower antenna frequencies.
In summary, an orientation-independent antenna presenting a circular polarization characteristic and having both crossed vertical loops and a horizontal loop is provided with improved bandwidth by the use of shorts between adjacent antenna elements to lower the VSWR of the antenna, especially at the lower frequency range of the antenna. In one embodiment the antenna elements are on the vertical faces of a cube.
These and other features of the subject invention will be better understood in connection with a Detailed Description in conjunction with drawings, of which:
Prior to describing the improved performance afforded by the subject shorts, the basic orientation-independent antenna with circular polarization is now described.
Referring to
As illustrated, the transmitted signal polarization is illustrated by a double ended arrow 24 which as can be seen does not line up with double ended arrow 14 corresponding to the polarization of the whip antenna. This means that the signals from the satellite, which may not be very powerful and which are further attenuated through the walls of the building, may not be robustly received if there is a mismatch in the polarization directions of the incoming wave and the antenna on the robot. In point of fact, it is possible that these signals could be cross polarized and therefore result in no energy being received by the transceiver within the robot.
Referring to
Signals from satellite 20 come direct from the satellite as illustrated at 40 but may be attenuated as they pass through mound or hill 32 such that they arrive at antenna 12 with an unknown polarization direction and somewhat attenuated. Signals 44 from satellite 20 may be reflected by foliage 46 and redirected towards antenna 12 again with a polarization direction 48 that may not match the polarization of antenna 12.
What this shows is that in order for the robust receipt of signals, as weak as they may be, it is important that the antenna be able to respond to whatever is the polarization direction of the incoming signal.
It is part of the subject invention that the antenna utilized on the robot has a circular polarization characteristic such that it is insensitive to the polarization direction of incoming waves.
While the subject antenna will be described in connection with robots, other applications or orientation-independent antenna are within the scope of this invention. For instance, the use on ships avoids the use of whip antennas which sometimes interferes with aircraft.
As can be seen in
The antenna elements of the cube, which will be described hereinafter as being triangular, are phased by phasing module 52 such that as far as receiver 54 is concerned, the signals arriving at antenna 50 will be received regardless of their polarization. This is because for antennas that are given a circular polarization there will be no angle at which a polarized wave will not be detected.
Put another way, no matter what the point of view within hemisphere 60 the in-phase and quadrature components will be identical and will be at right angles to each other with these two vectors orthogonal and having equal magnitudes. This is characteristic of circular polarization, and from antenna 50's point of view, its polarization characteristic is circular no matter the angle of arrival of the incoming signal.
How to construct such an orientation-independent circularly polarized antenna which preserves its circular polarization 360° around the azimuth and 180° from horizon to horizon can best be explained by the manner in which antenna 50 is meant to operate.
Referring to
The characteristic of crossed vertical loops driven in this manner is that one has a circular polarization at the zenith and a vertical polarization at the horizon. Thus, from the zenith as one progresses to the horizon, the circular polarization degrades.
While circular cross vertical loops provide circular polarization at the zenith, as shown in
Likewise for crossed loop 64, assuming leg 80 has a 0° phase, with respect to leg 80, leg 82 will be shifted by 90°, leg 84 will be shifted by a 180° phase, and leg 86 will be shifted by leg 270°.
While starting off with constant current in the vertical crossed loops, progressive leg phasing is utilized in the crossed loops because it gives a better approximation to circular polarization. Furthermore, progressively phasing the legs of the vertical loops provides circular polarization not only over the hemisphere but also below the horizon down to approximately 45 degrees. Thus, as the progressive phase excitation of the legs of the vertical loops yields a better approximation to circular polarization.
Referring now to
As will be seen, horizontal loop 90 is provided with legs or segments 100, 102, 104 and 106 which are excited with progressive 90° phase shifts, such that if leg 100 has a 0° phase shift, leg 102 is progressively shifted by 90°, leg 104 by 180°, leg 106 by 270° with respect to leg 100.
The vertically polarized wave from the vertical crossed loops has a progressive phase as a function of azimuth. The horizontal loop must have a progressive phase that matches the progressive phase of the wave from the vertical crossed loops. Note also that the phase of the horizontal loop must be offset 90° from that of the vertical crossed loops.
A volumetric antenna which can provide for the two crossed vertical loops and the horizontal loop is implemented utilizing a cubic structure in which the cube carries four triangular shaped conductive elements on each face.
As illustrated in
Having constructed this antenna, as illustrated in
In this figure, cube Sides 1, 3, 5 and 6 are driven utilizing coaxial cable having a center conductor and an outer braid attached to opposed apexes of opposed triangular elements. In this figure, as far as Side 1 is concerned, coax 130 has its outer braid 132 connected to the apex of triangular element 4, with the center conductor 134 coupled to the apex of triangular element 3. As to Side 3, coax 140 has its center conductor 142 coupled to the apex of element 3 on Side 3 and its outer braid 144 connected to the apex of triangular element 4.
Likewise for Side 5, coax 150 has its center conductor 152 connected to the apex of triangular element 3, whereas the outer braid at 154 is connected to triangular element 4. Finally, for Side 6, coax 160 has its center conductor 164 coupled to the apex of triangular element 3, whereas the outer braid 162 is coupled to the apex of triangular element 4.
Coaxes 130, 140, 150 and 160 are phased by a phasing box or module 170 to provide the indicated phasing. This corresponds not only to the creation of Loop 1 but also provides Loop 1 with the stepped phasing 0°, 90°, 180° and 270° for the legs as illustrated at 172.
Referring now to
As to Side 4, coax 200 has its center conductor 202 coupled to triangular element 3, whereas the outer braid 204 is coupled to triangular element 4.
Finally, coax 210 has a center conductor 212 coupled to element 1, whereas the outer braid 214 is coupled to element 2.
Phasing module 220 establishes the indicated phasing on the noted coaxial lines and provides Loop 2 with the stepped phasing from 0° through 270° for the various legs thereof.
Referring now to
The same is true for Side 3 where coax 250 has its center conductor 252 connected to element 1 and its outer braid 254 connected to element 2.
Finally, coax 260 has its center conductor 262 connected to element 1, whereas its outer braid 264 is connected to element 2.
Here, phasing module 270 phases the coax lines as illustrated, with the phasing providing the stepped 90° leg phasing on the horizontal loop as illustrated.
The above phasing of the elements of the cubic antenna to provide angle independent circular polarization requires sophisticated phasing circuitry or phasing modules.
Moreover, referring to
It can be shown that with the hybrids of
The hybrids of
Moreover, as can be seen in
Referring now to
What can be seen is that the appropriate phasing can be accomplished by externally driving half of the triangular elements from one corner of the cube as illustrated using three hybrids, with an opposed corner (not shown) driven by a second set of hybrids 302 so as to provide for the drive and phasing to produce the orthogonal oriented vertical loops and an orthogonally oriented horizontal loop to give the antenna its circular polarization characteristic.
Note that the subject antenna is right hand and left hand polarization capable. For optimal operation both modes can be simultaneously monitored to obtain the advantages of polarization diversity. In fact the two polarization modes may be used as two separate channels. The additional polarization mode is obtained, referring to
It will be appreciated that the cubic geometry can be altered to a spherical configuration with the 24 triangles laid out on a sphere. The feed methodologies are the same as those of the cubic version. The sphere reduces an error present in the cube due to a deviation from ideal sinusoidal excitation. The worst case axial ratio improves from 0.8 for the cube to 0.95 for the sphere.
Referring now to
While the antenna described hereinbefore is generally satisfactory when one goes below 245 MHz, the VSWR rapidly exceeds 2.5:1. What happens at this point is that a transmitter will throttle down its output and will quickly shut off in the face of rising VSWR. Thus, in order to extend the transmitter operating range of the antenna, it is important to reduce the VSWR at these lower frequencies.
This has been accomplished in the subject invention by providing shorts between adjacent antenna elements and more particularly between the bases of triangular elements on adjacent vertical sides of a cube.
These shorts are illustrated in
In one embodiment, with a cube eight inches on a side, the shorts are positioned 0.95 inches from the adjacent top corner of the cube.
This offset for the short from the cube corner was arrived at empirically and provides good results for short placement within an eighth of an inch.
It is noted that the antenna cube and the offset for the shorts are scalable such that the short offset is 0.11875 with respect to the length of a side of the cube.
With the empirically-derived positioning of the shorts, the antenna exhibits less than a 2.5:1 VSWR so that the antenna can work down to 225 MHz.
In adapting the cubic antenna of
While the exact position of the shorts with respect to the corners of the cube were derived empirically, the subject invention is not limited to the exact positioning of the shorts but is rather broad enough to encompass positioning shorts between adjacent antenna elements.
Moreover, when utilizing a spherical shape for the antenna, shorts between laterally adjacent elements on the surface of the sphere are within the scope of this invention.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications or additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
This Application claims rights under 35 USC § 119(e) from U.S. Application Ser. No. 60/937,026 filed Jun. 25, 2007, the contents of which are incorporated herein by reference.
This related application claims the only feature of this invention which was made with United States Government support under Contract No. W56 HZV-05-C-0724 awarded by the U.S. Army which comprises the shorts shown in FIG. 16. The other features of the invention which are claimed in a co-pending companion application were not made under a United States Government contract.
Number | Date | Country | |
---|---|---|---|
60937026 | Jun 2007 | US |