The present invention relates to electrical connectors and more particularly to orientationless electrical connectors.
When making an electrical connection using wiring assemblies, one must orient the separate connectors so as to align their respective pins and slots. This ensures that the necessary signal is directed down the correct path as determined by the circuit's designer. Existing connectors for making contact between printed circuit boards, wiring assemblies, or combinations of the two, require precise alignment for proper engagement. It takes longer for the user to make the electrical connection if alignment is necessary than if it were unnecessary.
There are also applications which require a connection that can swivel to allow the wires on either side on the connection to spin without causing damage to said wires or the connection itself. Some examples of these moving applications include, but are not limited to, hinges, transmission shafts and other assemblies which necessitate rotation about an axis, and handheld devices that require a wired connection.
While the invention is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific form disclosed, but, on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims.
In the following description and in the figures, like elements are identified with like reference numerals. The use of “e.g.,” “etc,” and “or” indicates non-exclusive alternatives without limitation unless otherwise noted. The use of “including” means “including, but not limited to,” unless otherwise noted.
When making an electrical connection using wiring assemblies, one must orient the separate connectors to align with their respective pins and slots. This ensures that the necessary signal is directed down the correct path as determined by the circuit's designer. Some applications require a connection that can swivel to allow the wires on either side on the connection to spin without causing damage to said wires or the connection itself.
The present invention is a spring probe receptacle assembly 10 for establishing an electrical connection (for signal or current transfer) between two circuits or wiring assemblies, preferably regardless of the axial orientation of the connectors with respect to one another. This assembly could be used for carrying information, electrical signals, power, or current (e.g., high current). High current applications are available due to the large amount of surface area the connection is configured to establish when engaged. A method of manufacturing the receptacle assembly is likewise disclosed.
Referring initially to
It is preferred that spring probe receptacle assembly be orientationless, thereby enabling it to be electrically connected 360 degrees around one axis, preferably axisymmetric. The orientationless configuration implemented in the preferred embodiment is illustrated in
In the embodiment shown, the body 80 (made of plastic) is molded around the PCB 60 in a plastic injection molding process. This process forms a hermetic seal between the PCB 60 and the body 80, allowing the socket assembly 14 to be used in devices that require an air and watertight seal. The socket assembly 14 is simple and inexpensive to manufacture because it is designed to be built with modern injection molding, PCB manufacturing, and PCB assembly techniques.
The socket guides (74, 74′, 174, 174′) defining a plurality of channels 76, 76′, 176, 176′ there-between (also shown in
The plug assembly 12 comprising a base 20 having a plurality of spring probe contact receivers defined therein, these spring probe contact receivers (22, 23, 24, 25, 26, 28) configured for connecting with the barrel portion of a spring probe contact (30, 32, 34, 36, 38, 40). As shown in
Preferably, the spring probe contacts (30, 32, 34, 36, 38, 40) comprise a barrel portion 44 for receiving a spring (not shown) therein, the spring biasing a plunger portion 48. The plunger portion 48 configured for contacting a contact ring of the PCB and electrically connecting the plug assembly 12 to the socket assembly 14. The plunger portion 48, upon rotation of the plug assembly and/or the socket assembly (as shown in
In such a configuration, the spring probe receptacle assembly 10 is capable of carrying very high currents in the range of 20 A per contact ring. The contact rings (61, 62, 64, 66) can each receive multiple spring probe contacts (30, 32, 34, 36, 38, 40), as shown in
Preferred method of manufacture. The PCB 60 is manufactured through typical PCB manufacturing techniques. The PCB 60 is then placed into a mold cavity and plastic is injected, surrounding the PCB 60 and filling the cavity, thereby forming the body 80. It is preferred that the PCB 60 have defined there-through a plurality of plated holes 70, the plated holes allowing material to flow through the PCB 60 (represented by the tubes 72 of
It is preferred that the mold be designed so that it exerts pressure on the PCB ring contacts and front face 94 during the molding process. This leaves the ring contacts exposed after the molding process, forming the channels (76, ′76, 176, ′176) and the socket guides (74, 74′, 174, 174′) is completed and therefore accessible by the spring probes. Mold pressure is also placed on the back face 96 of the PCB in order to leave pads 84 exposed on the back side of the PCB 60 as shown in
The PCB 60 is preferably manufactured such that several plated holes 70 and vias connect the contact rings (61, 62, 64, 66) on the front of the PCB 60 to traces on the back of the PCB 60. The traces are connected to the exposed pads 84 on the back of the PCB 60.
The spring probe receptacle assembly can be manufactured in a wide range of sizes and can be scaled by adding as many rings and spring probes as the design calls for. The spring probe receptacle assembly also providing support and proper alignment for the spring probe contacts.
In the embodiment shown in
There are many applications for the preferred embodiment ranging from permanent to momentary connections. In one example application, the connector is used between a handheld device and its charging base station. Since this electrical connector can be made to spin, it is also useful in applications where one side of the electrical connection must be able to rotate freely from the other side of the connection.
One embodiment comprising a spring probe receptacle assembly for making electrical contact between two circuit boards, wiring assemblies, or a combination of the two, comprising a socket assembly and a plug assembly. The socket and plug assemblies configured to removably interface with each other to form an electrical connection. The socket assembly containing a printed circuit board having a front face and a back face, the front face containing a plurality of stationary electrical contacts configured in a circular orientation. Preferably the printed circuit board comprises a plurality of plated holes defined there-through extending from the front face to the back face.
The plug assembly containing a plurality of spring contact probes. The spring contact probes are preferably configured to provide pressure on the stationary electrical contacts, when interfaced, sufficient to provide electrical connection. The receptacle assembly further comprising a plurality of socket guides partially surrounding the stationary electrical contacts. The socket guides configured to guide the spring contact probes into the correct position and to protect said stationary electrical contacts from accidental contact with electrically conductive objects. The socket guides defining a plurality of channels there-between. It is preferred that the stationary electrical contacts and the spring contact probes are configured in an axisymmetric orientation such that electrical contact is established between the plug assembly and the socket assembly regardless of the plug assembly and the socket assembly's respective rotational orientation. Preferably, the plug assembly and the socket assembly are configured to form a watertight electrical connection when interconnected. Preferably, the plug assembly further comprises a plurality of curved probe tabs adjacent the spring contact probes, the curved probe tabs configured for receipt into the channels. It is preferred that the stationary electrical contacts be contained within the same plane, being parallel and equidistant from the back face of the socket assembly and that the spring contact probes be generally parallel to one another. When interfaced, a stationary electrical contact can be simultaneously contacted by two or more spring contact probes, thereby allowing higher current to be conducted through the connector. Additionally, it is preferred that a body be molded around the printed circuit board, the plurality of socket guides extending from the body, and body extending through the plated holes.
The exemplary embodiments shown in the figures and described above illustrate but do not limit the invention. It should be understood that there is no intention to limit the invention to the specific form disclosed; rather, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims. For example, while the exemplary embodiments illustrate use with wire bundles or signal lines, the invention is not limited to use with these and may be used with other forms of signal propagation as rotating circuit cards or automotive applications. While the invention is not limited to use with wired systems, it is expected that various embodiments of the invention will be particularly useful in such devices. Hence, the foregoing description should not be construed to limit the scope of the invention, which is defined in the following claims.
The purpose of the Abstract of the Disclosure is to enable the public, and especially the scientists, engineers, and practitioners in the art who are not familiar with patent terms, legal terms or phraseology, to determine quickly from a cursory inspection, the nature and essence of this technical disclosure. The Abstract of the Disclosure is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
This application claims the priority date of the provisional application entitled Orientationless Spring Probe Receptacle Assembly filed by Michael Maughan, Fred Jessup, Erik J. Cegnar, and David G. Alexander on Sep. 19, 2008 with application Ser. No. 61/098,692, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2860316 | Watters et al. | Nov 1958 | A |
3193636 | Daniels | Jul 1965 | A |
4071924 | Meyn | Feb 1978 | A |
4508405 | Damon et al. | Apr 1985 | A |
4583798 | Blazowich | Apr 1986 | A |
4681385 | Kruger et al. | Jul 1987 | A |
5174763 | Wilson | Dec 1992 | A |
5316503 | Thompson et al. | May 1994 | A |
5409403 | Falossi et al. | Apr 1995 | A |
5425645 | Skovdal et al. | Jun 1995 | A |
5728600 | Saxelby, Jr. et al. | Mar 1998 | A |
5803750 | Purington et al. | Sep 1998 | A |
5945831 | Sargent et al. | Aug 1999 | A |
5984687 | Schwarz | Nov 1999 | A |
6149448 | Haller et al. | Nov 2000 | A |
6190180 | Purington et al. | Feb 2001 | B1 |
6609931 | Parrish et al. | Aug 2003 | B2 |
6945805 | Bollinger | Sep 2005 | B1 |
7029289 | Li | Apr 2006 | B2 |
7261601 | Chen | Aug 2007 | B1 |
7264486 | Ma | Sep 2007 | B2 |
D556142 | Kudo et al. | Nov 2007 | S |
7331795 | Duke | Feb 2008 | B2 |
20060141815 | Li | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100075513 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
61098692 | Sep 2008 | US |