FIELD OF THE INVENTION
The present disclosure is directed to an orthodontic system and method for correcting Class II and Class III malocclusions as well as dental asymmetries, wherein a variable length assembly is provided for attaching to both maxillary and mandibular installed archwires.
BACKGROUND
Prior Art orthodontic correction devices/systems for Class II malocclusions, Class III malocclusions, and/or dental asymmetries can be useful for mixed dentitions (e.g., a mixture of permanent and deciduous dentition). However at least some such correction devices/systems are patient removable orthodontic appliances.
It would be advantageous to have an orthodontic correction system that can be effective for correcting Class II malocclusions, Class III malocclusions, dental asymmetries and/or dental related skeletal anomalies wherein the patient's dentition is permanent or near permanent. In particular, it would be advantageous to have such an orthodontic correction system that can be fitted to a patient's currently fitted orthodontic appliances (e.g., brackets and archwires) which are non-removable by the patient. Moreover, it is desirable to utilize such an orthodontic correction system without having to perform an extraction of a patient's dentition. The advantages recited hereinabove are meet by the orthodontic correction system disclosed hereinbelow.
SUMMARY
An orthodontic correction system is disclosed for correcting Class II malocclusions, Class III malocclusions, dental asymmetries and/or dental related skeletal anomalies wherein the patient's dentition is permanent or near permanent. The correction system attaches to a patient's dentition via a novel orthodontic appliance that is affixed to, e.g., pre-installed upper and lower archwires. Accordingly, the orthodontic correction system disclosed herein is particularly useful for those patients that already have fixed appliances installed, and are currently undergoing orthodontic care. However, the present orthodontic correction system may also be provided as part of a planned orthodontic treatment prior to the start of such treatment in order to help correct the malocclusions and/or create space for impacted teeth. Moreover, the present orthodontic correction system may be particularly useful for patients that are uncooperative or unreliable in utilizing other orthodontic appliances (e.g., patient removable appliances) for correcting Class II, Class III, dental asymmetries and/or dental related skeletal anomalies.
In at some installations and orthodontic treatments with the correction system disclosed herein, maxillary teeth can be moved mesially, while mandibular teeth are moved distally so that a Class I classification of a patient's dentition results as one skilled in the art will understand.
Further description of the advantages, benefits and patentable aspects of the present disclosure will become evident from the description hereinbelow and the accompanying drawings. All novel aspects of the disclosure, whether mentioned explicitly in this Summary section or otherwise (e.g., hereinbelow), are considered subject matter for patent protection either singly or in combination with other aspects of this disclosure. Accordingly, such novel aspects disclosed hereinbelow and/or in the drawings that may be omitted from, or less than fully described in, this Summary section are fully incorporated herein by reference into this Summary. In particular, all claims of the claims section hereinbelow are fully incorporated herein by reference into this Summary section.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a cross sectional view of the archwire attachment 30 (for better clarity, the cross section is not cross hatched).
FIG. 2 shows a first embodiment of the alignment assembly 18 attached to archwires 26 that are secured to a patient's dentition.
FIG. 3 shows a second embodiment of the alignment assembly 18 attached to archwires 26 that are secured to a patient's dentition.
FIG. 4 shows a third embodiment of the alignment assembly 18 attached to archwires 26 that are secured to a patient's dentition.
FIG. 5 shows a cross sectional view of the archwire attachment 30 (for better clarity, the cross section is not cross hatched), how the alignment assembly 18 attaches thereto, and how the archwire attachment 30 fixedly attaches to an archwire 26.
FIG. 6 shows a cross sectional view of a second embodiment of the archwire attachment (30a) (for better clarity, the cross section is not cross hatched), how the alignment assembly 18 attaches thereto, and how the archwire attachment 30a fixedly attaches to an archwire 26.
FIG. 7 shows a cross sectional view of a third embodiment of the archwire attachment (30b) (for better clarity, the cross section is not cross hatched), how the alignment assembly 18 attaches thereto, and how the archwire attachment 30b fixedly attaches to an archwire 26.
FIG. 8 shows a cross sectional view of a fourth embodiment of the archwire attachment (30c) (for better clarity, the cross section is not cross hatched).
FIG. 9 shows a cross sectional view of a fourth embodiment of the archwire attachment (30d) (for better clarity, the cross section is not cross hatched). A solid pin with a head is used to secure the archwire.
FIGS. 10A and 10B each show an alternative component for securing an archwire attachment (30d).
FIG. 11 shows a fourth embodiment of the alignment assembly 18 attached to archwires 26 that are secured to a patient's dentition for Class III correction.
DETAILED DESCRIPTION
As provided hereinbelow, the term “set screw,” “set screw/shaft” are intended to be broadly interpreted as any mechanism that can secure a first component in a fixed position relative to a second component.
FIGS. 2-4 and 9 show various embodiments of the novel orthodontic correction system 10 of the present disclosure. In particular, the correction system 10 includes at least one correction assembly 14 having a variable length alignment assembly 18 useful in providing corrective orthodontic forces to a patient's dentition and/or jaw via hinges 22 that attach the alignment assembly between maxillary and mandibular archwires 26. In particular, the alignment assembly 18 can have its length varied along the axis 28 by an orthodontic clinician. More particularly, such an alignment assembly 18 may have one its hinges 22 connected each of the alignment assembly's ends so that, e.g., one hinge 22 connects the alignment assembly to a desired position along a maxillary positioned archwire 26, and a second hinge 22 connects the alignment assembly to a desired position along a mandibular positioned archwire 26 as shown in FIGS. 2-4 and 9. Accordingly, the combination of the hinges 22 and the attached alignment assembly 18 allow patient jaw movement (e.g., jaw and mouth opening and closing), while also providing desired orthodontic corrective forces on the patient's dentition and/or jaw.
Embodiments of the hinges 22 include an archwire attachment 30 (FIGS. 1-5) that can be directly affixed to the archwires 26 in a desired position along the length of each of the archwires. In particular, referring to FIG. 5, each archwire attachment 30 includes: (a) an archwire slot 34 therethrough for providing a corresponding archwire 26 therein, (b) a set screw/shaft (hex head) 38, (c) a threaded bore 42 for mating with the set screw/shaft 38 for securing the archwire attachment 30 along the length of the corresponding archwire 26, the bore extending into the archwire slot 34 at, e.g., a 90 degree angle to the side of the slot being pierced by the bore, and (d) a threaded bore 46 for mating with, e.g., a threaded screw/shaft 50 (having a head 52) for pivotally securing the alignment assembly 18 thereto. Thus, each archwire attachment 30 provides both a connection point for connecting a dentition fixed archwire 26 to its corresponding alignment assembly 18 in a manner that allows for pivoting movement about the screw/shaft 50.
The hinges 22 may be made of an acceptable orthodontic metal alloy (e.g., stainless steel), a ceramic or a plastic as one skilled in the will understand. The archwire slot 34 (and other corresponding embodiments thereof described hereinbelow) may be effective for receiving an archwire 26 having cross sectional dimensions of, e.g., 0.022×0.025 inches, and/or 0.018×0.025 inches. The alignment assembly 18 includes a piston assembly 54 and two pivot eyelets 58. The piston assembly 54 is attached to each of the maxillary and mandibular archwires 26 via, e.g., a corresponding one of the two pivot eyelets 58 (best shown in FIG. 5) which attaches to each terminal end of the piston assembly. In particular, each eyelet 58 receives a corresponding screw/shaft 50 therethrough such that the eyelet pivotally attaches the alignment assembly 18 to a corresponding one of the archwire attachments 30. More particularly, the head 52 of such a corresponding screw/shaft 50 prevents the eyelet 58 from disengaging from the shaft of the corresponding screw/shaft 50. Note that each piston assembly 54 includes at least a male piston (or shaft) 62 and a female piston (or piston sleeve) 66, wherein the male piston is capable of snuggly sliding within a sleeve interior cylinder 67 accessed via an open end 68 of the piston sleeve such that a free end of the shaft 69 remains within sleeve interior cylinder during operation of the alignment assembly 18 in a patient's mouth.
Corrective orthodontic forces are induced on a patient's dentition and/or jaw by fixing the length of the piston assembly 54 in a manner that induces an orthodontic corrective force(s) between the maxillary and mandibular archwires 26. More specifically, for a each installed alignment assembly 18, the length thereof (when its piston 62 is fully retracted within its sleeve 66) induces forces along the corresponding axis 28 when, e.g., the patient has his/her maxillary and mandibular dentition are “closed”, i.e., together (or as together as such maxillary and mandibular dentition can be obtained depending on the configuration and orientation of the installed one or more alignment assemblies 18). In particular, when the patient's dentition is closed, such induced forces are transferred to the attached archwires 26 and then to the patient's teeth for inducing corrective forces on the teeth and/or the patient's maxillary-mandibular relative alignment. Moreover, since the extent with which the piston 62 is able to slide within its sleeve 66 can varied by an orthodontic clinician, these induced forces can be varied in magnitude, and since the archwire alignments 30 can be varied along the archwires 26 (e.g., by the orthodontic clinician), the direction of such induced forces can also be varied. Accordingly, an orthodontic clinician may periodically change the length(s) of the one or more installed piston assemblies 54 as the patient's dentition and/or jaw responds to the force(s) exerted thereon by the piston assemblies 54. More particularly, the correction system 10 may include a plurality of correction assemblies 14 (e.g., one on each of the right and left sides of the patient's dentition) for exerting desired forces on each of the left and right sides of the patient's face and/or dentition.
For a Class II malocclusion, one of the correction assemblies 14 may be fixed (between maxillary and mandibular archwires 26) on each of the left and right sides of the patient's dentition so that the corresponding induced orthodontic forces, applied to each of the left and right side of the patient's jaw, are substantially the same for urging the patient's lower jaw and/or dentition to develop/move uniformly forward and thereby correct the Class II malocclusion. Alternatively, in the case of an orthodontic asymmetry, there may be one or more of the alignment assemblies 18 used for moving the patient's teeth so that, e.g., the maxillary midline and the mandibular midline are urged to coincide or align with one another. Moreover, for an orthodontic asymmetry, more than one of the alignment assemblies 14 may be used, wherein their respective piston assemblies 54 may be set at different lengths to induce corrective orthodontic forces in substantially different directions. For example, since asymmetric dentition may be accompanied by a Class I malocclusion on one side of the patient's dentition, and a Class II malocclusion on the other side such that the upper and lower midlines do not coincide with each other or with the facial midline, a plurality of the correction assemblies 14 may be used wherein at least two such assemblies induce forces that purposefully differ in magnitudes, and/or their directions along their respective axes 28. In particular, for treating such an asymmetry, one or more correction assemblies 14 may be installed on each side of the patient's dentition, wherein the correction assemblies on one side of the patient's dentition are: (i) longer than those on the other side of the patient's dentition, and (ii) oriented at an angle more traverse to the axes of the patient's teeth.
Additionally, for treating a Class III malocclusion, one of the correction assemblies 14 may be fixed (between maxillary and mandibular archwires 26) on each of the left and right sides of the patient's dentition so that orthodontic forces applied to each of the left and right side of the patient's jaw are substantially the same for inducing the mandibular dentition to move uniformly backward and the upper dentition to move uniformly forward, thereby correcting the Class III malocclusion (see FIG. 9, wherein the front of the patient's dentition is on the right). In one embodiment, one or more shims 70 may be inserted onto (and surrounding) the shaft 62 (FIG. 2) in a manner that prevents the piston sleeve 66 from receiving a portion of the length of the shaft 62 adjacent the eyelet 58 to which the shaft 62 attaches, and thus by varying the thickness of the shims on the shaft 62, the shortest length of the alignment assembly 54 can be varied by an orthodontic clinician. Each of the shims 70 may be cylindrical in shape with a center opening (not shown) extending through the shim along a center axis of symmetry for insertion of a shaft 62 therethrough in order to attach the shim to the shaft. Thus, the thickness of the shim 70 (along the axis 28 when the shim is provided on the shaft 62 corresponding with this axis) increases the shortest length that the alignment assembly 18 having the shim attached thereto, and in particular, increases this shortest length by the thickness of the shim. In one embodiment, such shims 70 may be composed of hard rubber to act as a cushioning material that does not permanently deform under a patient's bite pressure. However, other materials can be used for the shims 70 such as a dental approved plastic or silicon with acceptable elastomeric and hardness properties so that the shims 70 cannot permanently deform or compress under typical bite pressures. For example, such acceptable elastomeric and hardness properties may include: a Shore hardness in a range of 60 to 90, more preferably in a range of 70 to 80 (on the ASTM D2240 type A scale). However, other ranges are also acceptable, e.g., depending on the patient (child or adult, etc.). Note that such a cushioning material that does not permanently deform under a patient's bite pressure may be particularly advantageous in treatments for correcting Class III malocclusions.
Note that since the shims 70 have an outer extent traverse to the axis 28 that cannot fit within the piston sleeve 66, and since the one or more shims fit tightly around the shaft 62 and do not readily substantially deform (even under jaw pressure), the shims are prevented from slipping over the eyelet 58 to which the shaft is attached. Accordingly, when the shim(s) 70 are provided on the shaft 62 (e.g., by an orthodontic clinician), the shim(s) remain sandwiched between the piston sleeve 66 and the eyelet 58 formed at the end of the shaft until the orthodontic clinician removes them. Further note that insertion and/or removal of the one or more shims 70 may be readily performed by the orthodontic clinician removing the alignment assembly 18 from the archwires 26 and then disassembling the piston assembly 54. More particularly, upon removal of the alignment assembly 18 from a patient's dentition, a clinician may retract the shaft 62 from the piston sleeve 66, insert the shaft through the center opening of each of the one or more shims 70 of the desired thickness (i.e., along the length of the shaft), and then reinsert the free end of the shaft back into the piston sleeve 66. Accordingly, the shortest length of the resulting alignment assembly 18 is increased by the thickness of the shim(s) inserted on the shaft 62. In some embodiments, a lip 72 (shown in the embodiment of FIG. 4) may be provided between the shaft 62 and the shaft's eyelet but the lip has an increased outer extent relative to the shaft, and wherein the lip provides, e.g., a planar surface orthogonal to the length of the shaft that the shims 70 can abut against. The lip 72 may be included in a part that is both attachable and detachable from the shaft 62 so that a shim(s) 70 may be more easily provided on the shaft. For example, the lip 72 and the adjacent eyelet 58 may be provided as a part that is separable from their shaft 62, wherein this part may be threaded over the end of the shaft that is operably immediately adjacent to the lip (i.e., not the free end 69 of the shaft). In such an embodiment, the result of connecting this part to the shaft may result in an expanded diameter or extent traverse to the axis 28. Accordingly, the sleeve interior cylinder 67 at its open end 68 may require a corresponding expanded diameter or extent so that the expanded portion of the part and the shaft 62 can fit therein.
In one embodiment, alignment assembly 18 may be provided with a single shim 70 on the shaft 62, wherein this shim has a set screw (not shown) threaded within a side of the shim so that the orthodontic clinician can fix the position of the shim along its shaft by tightening this set screw so that the shim is fixedly attached to the shaft 62 and cannot slide along a length of the shaft.
In another embodiment, the length of the piston assembly 54 (and correspondingly the length of the alignment assembly 18) may be modified by a collar 74 (FIG. 3) that surrounds both a portion of the shaft 62 and at least the open end 68 of the piston sleeve 66. The collar 74 may be substantially cylindrical wherein the end 78 thereof includes an opening 82 through which the shaft 62 extends such that the shaft and the collar can slide relative to one another through this opening. The collar 74 may be threadably attached to the piston sleeve 66 so that by rotating the collar in one direction about the axis 28 of the piston assembly 54 length, internal threads 83 to the collar 74 mate with at least a portion of corresponding threads 84 on the external surface of the piston sleeve 66. extends the length of the piston sleeve and collar combination. Alternatively, if the collar 74 is rotated in the opposite direction about the axis 28, the collar 74 internal threads unscrew from the mating threads on the external surface of the piston sleeve 66. Accordingly, the collar 74 reduces the length of the piston sleeve 66 and collar combination. Thus, by varying the extent to which the collar 74 internal threads mate with the exterior threats of the sleeve 66, the length of the alignment assembly 18 may be varied. In particular, when the mating threads overlap more, the alignment assembly 18 shortens, and when the mating threads overlap less, the alignment assembly lengthens. Note that, as above, a lip 72 (shown in the embodiment of FIG. 4) may be provided between the shaft 62 and the shaft's eyelet such that the lip is integral with the shaft but the lip has an increased outer extent relative to the shaft, and wherein the lip provides, e.g., a planar surface orthogonal to the length of the shaft that the end 78 can abut against.
In one embodiment, instead of, or in addition to, the collar 74 being threaded for operation in varying the length of the alignment assembly 18 as described above, the collar 74 may have a set screw (not shown) threaded therein for tightly contacting the piston shaft 62 thereby securing the collar in position.
In another embodiment, the length of the piston assembly 54 may be modified by threads internal to a rotatable spacer 86 (FIG. 4) that mates with threads on the exterior surface of at least a portion of the shaft 62 for varying the length of the alignment assembly 18. Thus, by rotating the spacer 86 in one direction about the axis 28, the sleeve 66 internal threads 90 unscrew from at least a portion of the mating threads 92 on the external surface of the shaft 62. Accordingly, the length of the alignment assembly 18 extends. Alternatively, if the portion 86 is rotated in the opposite direction about the axis 28, the spacer 86 internal threads 90 screw further onto the mating threads 92 on the external surface of the shaft 62. Accordingly, the length of the alignment assembly 18 is reduced. Note that, as above, the lip 72 may be provided between the shaft 62 and the shaft's eyelet such that the lip has an increased outer extent relative to the shaft, and wherein the lip provides, e.g., a planar surface orthogonal to the axis 28 that the spacer 86 can abut against. As with previous embodiments, a set screw or other securing mechanism may be user to fix the spacer 86 in place upon the threaded portion of the shaft 62. However, as with all previous embodiments, a set screw or other such securing mechanism may be unnecessary; in particular, when the mating threats are tightly fitting and formed of a hard elastomeric plastic such as polyoxymethylene (manufactured under the trade name of Delrin®), or polyurethane.
An alternative embodiment of the archwire attachment (30a) is shown in FIG. 6, wherein instead of having a fully enclosed slot 34 (requiring the archwire 26 to be inserted therethrough), a slot 34a is provided which is open on the side of the archwire attachment 30a facing the patient's teeth. Accordingly, the archwire attachment 30a can be easily attached to an archwire 26 already in place in on a patient's dentition. In particular, once a desired position along the length of the archwire 26 is determined, the archwire 26 (e.g., at the desired position or approximately so) can be slid into the open ended slot 34a until the archwire contacts the interior slot side 93. Then a set screw 94 (or other securing mechanism) can be provided within a threaded bore 98 extending adjacent to the archwire retaining portion 100 in the slot 34a. Accordingly, if the top of the threads on the surface of the set screw 94 extend into the retaining portion 100 having the archwire 26, then when the set screw 94 is threaded through the bore 98, the threads of the set screw will bite into the archwire for fixing the archwire attachment 30a in place along the archwire 26. Additionally/alternatively, the archwire attachment 30a may be composed of a material that is bendable when the set screw 94 is threaded through the threaded bore 98, wherein upon tightening the set screw within the bore, the slot 34a crimps onto the archwire 26 thereby fixing the archwire attachment 30a in place along the archwire. Note that alternative techniques for fixing the archwire attachment 30a along an archwire 26 are also within the scope of the present disclosure. For example, an insert (not shown) may be provided in the slot 34a wherein this insert wraps around the three sides of the archwire 26 that face slot sides, and on the archwire's side that faces the set screw 94, an extended portion of the insert covers the entry of the bore 98 into the slot 34a. Thus, when the set screw 94 contacts the extended portion, the set screw 94 forces this extended portion to tightly wrap around at least a part of the side of the archwire 26 that faces the patient's teeth and thereby fix the position of the archwire attachment 30a along the archwire.
A further alternative embodiment of the archwire attachment (30b) is shown in FIG. 7 which is similar to the embodiment of FIG. 6 with the following exceptions: the threaded bore 98 (identified in FIG. 7 as 98b) has different threaded bore diameters on the sides of the slot 34a, and the set screw 94 (identified in FIG. 7 as 94b) has two corresponding threaded mating diameters for threading with respective portions of the threaded bore 98b. The set screw 98b further includes a tapered conical midportion 102 such that as the set screw/shaft 98b is threaded into the smaller bored portion, this tapered midportion enters the slot 34a adjacent to but, e.g., not contacting the archwire 26. However, as the set screw 94b is threaded further into the slot 34a, the diameter of the tapered midportion 102 becomes larger and commences to contact a larger and larger area of the archwire 26 thereby deforming the archwire into the inverse of the shape of the tapered conical midportion 102 for securing the archwire attachment 30b in place along the archwire.
A further alternative embodiment of the archwire attachment (30c) is shown in FIG. 8, which is similar to the embodiment of FIG. 5 with the following exception: the threaded bore 46c for mating with, e.g., a threaded screw/shaft 50 (for pivotally securing an eyelet 58 thereto), is provided on the same side of the attachment 30c as the threaded bore 42 is located.
An additional embodiment of the archwire attachment (30d) is shown in FIG. 9, wherein instead of the set screw 94 and threaded bore 98 as in FIG. 6, the archwire attachment 30d has a solid pin 106 (having a head 107 and a shaft 108) which smoothly slides into a hole 110 which, e.g., drilled (and not tapped). Accordingly, to use the archwire attachment 30d, a clinician provides the archwire 26 into the slot 34a in the same manner as for FIG. 6, and then slides the pin 106 into the hole 110. Subsequently, to secure the pin 106 within the hole 110, an excess length 114 of the pin that protrudes out of the exit end 118 of the hole may be bent by the clinician sufficiently to prevent inadvertent dislodging from the hole.
Instead of bending the pin 106 to secure it in the hole 110, the excess length 114 thereof may be threaded (not shown) so that a bolt may be threaded thereon for securing the pin in the hole. Alternatively, the pin 106 may be replaced by wire formed as in FIG. 10A wherein a single length of wire 122 is formed in a manner to provide a head 126 (functionally corresponding to the head 107), and a shaft 130 (functionally corresponding to the shaft 108). Alternatively, the pin 106 may be replaced by bend rod 134 as in FIG. 10B wherein the bent rod portion 138 is formed to functionally correspond to the head 107, and the remainder 142 of the rod is used to functionally correspond to the shaft 108.
In operation, a clinician may perform the following steps in utilizing the correction system 10.
- Step 1.1. Determine the type(s) of orthodontic abnormalities to treat with the correction system 10.
- Step 1.2. If the abnormality is a Class II malocclusion, then one of the correction assemblies 14 may be fixed (between maxillary and mandibular archwires 26) on each of the left and right sides of the patient's dentition so that the corresponding induced orthodontic forces, applied to each of the left and right side of the patient's jaw, are substantially the same for urging the patient's lower jaw and/or dentition to develop/move uniformly forward.
- Step 1.3. If the abnormality is a Class III malocclusion, then one of the correction assemblies 14 may be fixed (between maxillary and mandibular archwires 26) on each of the left and right sides of the patient's dentition so that orthodontic forces applied to each of the left and right side of the patient's jaw are substantially the same for inducing the mandibular dentition to move uniformly backward and the upper dentition to move uniformly forward.
- Step 1.4. If the abnormality is an asymmetry, then a plurality of the correction assemblies 14 may be used wherein at least two such assemblies induce forces that purposefully differ in magnitudes, and/or their directions along their respective axes 28. In particular, for treating such an asymmetry, one or more correction assemblies 14 may be installed on each side of the patient's dentition, wherein the correction assemblies on one side of the patient's dentition are: (i) longer than those on the other side of the patient's dentition, and (ii) oriented at an angle more traverse to the axes of the patient's teeth.
For attaching a correction assembly 14 to a patient's dentition, a clinician may perform the following steps.
- Step 2.1. Determine a position for attaching the correction assembly 14 to each of the maxillary archwire 26 and the mandibular archwire 26.
- Step 2.2. Position an archwire attachment (30, 30a-30d) of the correction assembly 14 in its position on the maxillary archwire, and secure this archwire attachment with its corresponding screw, rod, or rod shaped wire as described herein.
- Step 2.3. Position an archwire attachment (30, 30a-30d) of the correction assembly 14 in its position on the mandibular archwire, and secure this archwire attachment with its corresponding screw, rod, or rod shaped wire as described herein.
- Step 2.4. Lengthen or shorten the alignment assembly 18 as needed to provide the desired orthodontic pressures on patient's dentition or jaw adjacent the positions where the archwire attachments of Steps 2.2 and 2.3. In particular, depending on the embodiment of the alignment assembly 18 used, provide shims 70 on the shaft 62 (FIG. 2), rotate the collar 74 (FIG. 3), rotate one of the spacer 86 or the threaded shaft 62 (FIG. 4), or tighten a set screw into a threaded hole in the sleeve 66 so that this set screw tightly contacts the shaft 62 within the sleeve.
- Step 2.5. For the archwire attachment of Step 2.2, provide the shaft of the screw/shaft 50 within the eyelet 58 of the correction assembly 14, and then thread this screw/shaft into the threaded bore 46 or 46c of the archwire attachment wherein this eyelet is sandwiched between a side of the archwire attachment and the head 52 of the screw/shaft 50.
- Step 2.6. For the archwire attachment of Step 2.3, provide the shaft of the screw/shaft 50 within the eyelet 58 of the correction assembly 14, and then thread this screw/shaft into the threaded bore 46 or 46c of the archwire attachment wherein this eyelet is sandwiched between a side of the archwire attachment and the head 52 of the screw/shaft 50.
Thus, by affixing one or more of the correction assemblies 14 to previously installed archwires 26, as described above, substantially guarantees movement of the patient's teeth and/or jaw alignment. Moreover, the forces induced by an alignment assembly 18 on the orthodontic brackets that secure one of the archwires 26 to the patient's teeth, are:
- (i) only indirectly transmitted to such brackets (via the one archwire 26),
- (ii) distributed over two or more brackets secured to the one archwire 26 wherein
- (an embodiment of) the archwire attachment (for the alignment assembly) is attached between these brackets, and
- (iii) somewhat cushioned by the flexing of the archwire 26.
Accordingly, due to at least (i) through (iii) above, there is a reduction in unintentional detachment (e.g., debonding) of the orthodontic brackets, and there is a reduction in such brackets slipping or misaligning from their prescribed positions on the patient's teeth. Moreover, since the orthodontic forces induced by one or more installed alignment assemblies are directly applied to the archwires 26, to the upper and lower dentitions, the clinician can have greater control in the treatment of malocclusions and dental asymmetries since, e.g., these conditions, in general, effect the aggregate configuration of a patient's dentition, instead of, e.g., a localized misalignment of one or two teeth.
It is further noted that orthodontic correction system 10 can be used for orthodontic micro-adjustments by changing, e.g., the position of the archwire attachment(s) 30 (or 30a, 30b or 30c) on one or more of the archwires 26. In particular, based upon the fixation position of the archwire attachment(s) on an archwire(s) 26, the clinician can change the amount of the forces applied. Moreover, the orthodontic correction system 10 can control individual tooth movement in some circumstances, e.g., distallization of maxillary second molars. Further, in some installations of one or more of the alignment assemblies 18, the longer the length of such installed assemblies 18, the better the orthodontic control and leverage over the patient's dentition and teeth.
The foregoing disclosure has been presented for purposes of illustration and description. Further, the above disclosure is not intended to limit the claimed invention(s) to the form disclosed herein. Consequently, variation and modification commiserate with the above teachings, within the skill and knowledge of the relevant art, are within the scope of the present disclosure. The embodiment described hereinabove is further intended to explain the best mode presently known of practicing the claimed invention(s) and to enable others skilled in the art to utilize the claimed invention as such, or in other embodiments, and with the various modifications required by their particular application or uses of the claimed invention(s).