This disclosure relates to orthodontic appliances, including archwires and associated orthodontic brackets.
Orthodontic appliances are commonly used to correct misaligned teeth.
There are many types of orthodontic appliances. However, each may have drawbacks, such as requiring too much time to prepare and/or install.
One type of orthodontic appliance is the pin and tube appliance. The pin and tube appliance can control the movement and position of each tooth in three-dimensional space. It can include an orthodontic archwire with a male “pin” that inserts into a female vertical “tube” that is attached to the tooth. The pin and tube do not move relative to each other. Interproximal loops can be placed in between the teeth to move the teeth to open or close spaces.
However, the pin and tube appliance can present challenges, including:
Another type of orthodontic appliances is the edgewise appliance. An edgewise appliance may include orthodontic brackets (with rectangular slots) that are bonded onto each tooth. An archwire that is rectangular in cross-section may fit into rectangular slots in the orthodontic brackets.
However, the edgewise appliance can present problems, including:
Another type of orthodontic appliances is the pre-adjusted, straight-wire appliance that uses nickel-titanium wires. This appliance can minimize the amount archwire bending that is required in edgewise appliances. The shape memory, super-elasticity, and lower modulus of elasticity features of shape memory alloys can lower the amount of force delivered to the teeth and significantly reduce the pathologic lesions as a result of heavy force use from rigid stainless steel wires. The large range of movement for some of shape memory alloy archwires can reduce the number of archwires required for treatment and, as such, reduce the number of activation appointments that are needed.
However, the pre-adjusted straight-wire appliance can present challenges. For example, considerable time may be required to tie the archwire into the orthodontic bracket, especially when lingual braces are used. The appliance may also still rely heavily on sliding the orthodontic bracket relative to the archwire to open and close space. To overcome the unpredictable amount of friction that is generated, frequent monthly appointments may still be required to ensure that the correct amount of movement is achieved.
Another type of orthodontic appliance uses self-ligating orthodontic brackets. These may reduce the amount of time and effort required to tie a wire into an orthodontic straight-wire appliance. Various types of doors and latches may be provided to replace tying the orthodontic wire. These doors and latches can make it easier to deliver and change orthodontic archwires. They can also eliminate the unnecessary tying and untying of archwires at appointments when the archwire does not need to be changed. Self-ligating orthodontic brackets can also provide a metal-to-metal interface between the orthodontic slot and the wire, reducing the amount of friction when moving teeth.
However, self-ligating orthodontic brackets can present problems, including:
CAD/CAM technology can also be used in connection with orthodontics. This technology can be used to create an expected desired end result prior to the starting of orthodontic treatment. Customized wires and orthodontic brackets can be designed based on the expected desired end result of the orthodontic treatment to reduce the amount of doctor intervention required at each appointment.
However, using CAD/CAM technology may not overcome all of the problems associated with the orthodontic appliances, such as:
An orthodontic appliance may include an archwire and multiple orthodontic brackets. The archwire may fit within a human mouth and contain multiple male connectors. Each orthodontic bracket may have a configuration that facilitates attaching the bracket to a single tooth. Each orthodontic bracket may allow one of the male connectors to be locked into the orthodontic bracket with a snapping action. The male connector may be unable to slide with respect to the orthodontic bracket after being locked in the orthodontic bracket. A manual unlocking action may allow the male connector to disengage from the orthodontic bracket.
Each male connector may be a male loop, have a U or rectangular shape, and or may be an integral portion of the archwire.
The archwire may include an interproximal loop between each neighboring set of male loops. The interproximal loops may face in the same or the opposite direction as the male loops. Each interproximal loop may be an integral portion of the archwire.
Each orthodontic bracket may have a slot into which a male connector is inserted during the snapping action. Each slot may have an inclined surface across which a portion of the male loop slides during the snapping action. Each inclined surface may end in an edge over which a portion of the male loop slides at the end of the snapping action.
Each slot may have two parallel rails that surround and contact an exterior portion of the male loop and prevent the male loop from moving laterally with respect to the orthodontic bracket after the male loop is inserted into the orthodontic bracket and locked by the snapping action.
Each slot may have a floor that contacts a side of the male loop and that comes between the male loop and the tooth to which the orthodontic bracket is attached after the male loop is inserted into the orthodontic bracket and locked by the snapping action.
Each slot may have a bridge that contacts an opposite side of the male loop after the male loop is inserted into the orthodontic bracket and locked by the snapping action.
Each inclined surface may bend while the male loop is being inserted into the orthodontic bracket and unbend at the end of the snapping action. Each inclined surface may instead not bend while the male loop is being inserted into the orthodontic bracket.
The archwire may include two legs connecting each male connector to the archwire. Each slot may include two concave portions that each seat one of the two legs during the locking.
Each male loop may have side legs. Each orthodontic bracket may include a stop that prevents the side legs from collapsing when the male loop is locked in the orthodontic bracket.
These, as well as other components, steps, features, objects, benefits, and advantages, will now become clear from a review of the following detailed description of illustrative embodiments, the accompanying drawings, and the claims.
The drawings are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps that are illustrated. When the same numeral appears in different drawings, it refers to the same or like components or steps.
Illustrative embodiments are now described. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for a more effective presentation. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps that are described.
The male loops 107 of the archwire 101 may be configured to snap fit into an orthodontic bracket such that it will not slide with respect to the orthodontic bracket after it has been snap fit to the bracket. Examples of orthodontic brackets that may be used for this purpose are discussed below in connection with the discussion of
The archwire 101 may be custom designed based on the position of the teeth when they are set in an expected finished alignment. The archwire 101 may be fabricated such that when the archwire 101 is deflected within its elastic range, the archwire 101 may return to its original shape reflecting the expected finished alignment of the teeth.
To engage the archwire 101 into an orthodontic bracket on a misaligned tooth, temporary deflections of the archwire 101 may take place. The archwire can be made of any material, such as a shape memory alloy, beta-titanium, or stainless steels.
Between each neighboring set of the male loops 107 may be one of the interproximal loops 105 located to correspond to an interdental space after installation. The male loops 107 may be connected to the interproximal loops 105 by the archwire legs 103. The archform 101 may define a longitudinal axis. The interproximal segments of the archform 101 may include a first point on the longitudinal axis, a second point on the longitudinal axis, and an interproximal loop 105 between the first and second points. The interproximal loop 105 can include a first portion configured to extend in a gingival direction away from the first point and a second portion configured to extend in an occlusal direction to the second point. The interproximal loop 105 can define a gap along the longitudinal axis between the first and second points that provides an unobstructed opening configured to face in the occlusal direction, the unobstructed opening providing access into the interproximal loop 105. The archform 101 can include an interproximal loop 105 extending away from the longitudinal axis in a gingival direction between the first and second points, without extending on an occlusal side of the longitudinal axis, to define a gap along the longitudinal axis that is open in an occlusal direction to facilitate flossing.
Each male loop 107 may be configured in a U or rectangular shape so as to match a U or rectangular shape of a springboard that is part of the orthodontic bracket. Examples of springboards are also discussed below. Each of the male loops 107 may have two substantially parallel side bars 109 and the arc portion 111. The interproximal loops 105 located in the interdental space may have a different shape, such as U, T, tear-drop, triangular, rectangular, or boot shape. The archwire legs 103 may be parallel to the bite plane when they are left in a passive position. The directions of the male loops 107 may reflect the mesio-distal angulation and facio-lingual inclination of the teeth in the expected finishing setup of the teeth. The interproximal loops 105 may point towards the gingival direction, although they may not be all parallel to one another. Interproximal loops 105 may be oriented to be very close to but not touching the gums. One or more of the male loops 107 and/or interproximal loops 105 may be omitted and replaced by a straight wire, such as in the case of missing teeth or when their respective functions are not necessary. All of the legs 103, the interproximal loops 105, and the male loops 107 may be part of a single continuous wire, bent to form these sub-components. The single wire may not have any component attached to it prior to snapping it into the orthodontic brackets.
The male loops 107 may point to the occlusal direction when the orthodontic brackets are oriented in such a way as to allow the archwire 101 to be inserted from the gingival to the occlusal direction.
Users may instead wish to insert the archwire 101 from the occlusal to the gingival direction, in which case the male loops 107 may point to the gingival direction and the orthodontic brackets may be bonded to the tooth 180 degrees from the orientation needed for the insertion in the occlusal description.
Each orthodontic bracket may be bonded to a tooth, oriented so that it has a mesial side towards the midline of the dental arch; a distal side that is away from the midline of the dental arch; a gingival side that is toward the gingivae; an occlusal side that is toward the biting surface of the teeth; a tooth side that is toward the tooth; and a non-tooth side that is away from the tooth. With respect to the descriptions of different orthodontic brackets that follow in connection with
The orthodontic bracket 301 may include an orthodontic bracket body 305, the springboard 337, and a base 303. The orthodontic bracket body 305 may include six sides: the bridge 307 on a non-tooth side, a floor 309 on the base 303, a stop 317 on the gingival side, an opening 327 on the occlusal side, and orthodontic bracket rails 329, one on the mesial side and one on the distal side.
The opening 327 may be on the occlusal side of the orthodontic bracket body 305. The opening 327 may allow access for machining the internal components of the orthodontic bracket body 305.
The stop 317 may be on the gingival side of the orthodontic bracket body 305. The stop 317 may combine with other structures to form an archwire insertion slot 347, a vertical archwire slot 349, and a horizontal archwire slot 351. The stop 317 may serves one or more functions in increasing effective and efficient force transfer of the archwire 353 to the orthodontic bracket 301 to move teeth. Examples of these functions are discussed below. The archwire 353 may be of any type, such as the archwire 101 or 201.
The mesial and distal sides of the orthodontic bracket body 305 may include a vertical portion 331 of the orthodontic bracket rails 329. The vertical portion 331 of the orthodontic bracket rails 329, together with the bridge 307 and the floor 309, may form the vertical archwire slot 349 for receiving a male loop 359. The male loop 359 may be of any type, such as the male loop 107 or 207.
A non-tooth side of the orthodontic bracket body 305 may include the bridge 307 that may connect the mesial and the distal orthodontic bracket rails 329. The bridge 307 may combine with other structures to form the archwire insertion slot 347, the vertical archwire slot 349, and the horizontal archwire slot 351. The bridge 307 may also serve functions in increasing effective and efficient force transfer of the archwire 353 to the orthodontic bracket 301 to move teeth. Examples of these functions are discussed further below.
The tooth-side of the orthodontic bracket body 305 may include the floor 309. The floor 309 may combine with other structures to form the archwire insertion slot 347, the vertical archwire slot 349, and the horizontal archwire slot 351.
The floor 309 may have three levels.
A first floor level 311 may be the portion of the floor 309 level that is closest to the bridge 307. The first floor level 311 may combine with the bridge 307 and the vertical component of the orthodontic bracket rail 329 to form the vertical archwire slot 349. The side bars of the male loop 359 may ride along the first floor level 311 when the archwire 353 is inserted and removed from the orthodontic bracket 301.
A second floor level 313 may be located between the first floor level 311 and a third floor level 315. It may accommodate a springboard body 339 when the springboard 337 is in an active unlocking position, as shown in
The third floor level 315 may be the portion of the floor 309 that is closest to the orthodontic bracket base 303. The third floor level 315 may have a depth that is slighter larger than the depth of a springboard protuberance 345 such that it allows the springboard 337 to flex when the archwire 353 is inserted into the orthodontic bracket 301 (locking) or when an instrument is pressed against the springboard body 339 (unlocking).
The bridge 307 may have an access port 357 in the middle to allow an instrument to access and press down on the springboard 337.
The stop 317 may have a springboard slot 321. The springboard slot 321 may be angulated such that a springboard slot outside opening 323 is closer to the base 303 than a springboard slot inside opening 325.
The archwire insertion slot 347 may include a space bordered on three sides by the bridge 307, the floor 309, and the stop 317. The archwire insertion slot 347 may be large enough to allow seating and insertion of the arc of the male loop 359.
The vertical archwire slot 349 may include a space bordered on three sides by the bridge 307, the floor 309, and the vertical portion 331 of the orthodontic bracket rail 329. The vertical archwire slot 349 may be large enough to allow seating of the side bars of the male loop 359.
The horizontal archwire slot 351 may include a space bordered on three sides by an orthodontic bracket leg 335, the floor 309, and the horizontal component 333 of the orthodontic bracket rail 329. The horizontal archwire slot 351 may be large enough to allow seating of the orthodontic bracket legs 335.
The springboard 337 may be a movable member of the orthodontic bracket body 305. It may have a U or rectangular shape with the springboard body 339 that has two parallel sides, a springboard plug 341 that is fixed to the springboard slot 321, and a springboard free end 343. The springboard free end 343 may have the half-disc shaped springboard protuberance 345 facing the floor 309. The springboard 337 may be held at a position such that at the point where the springboard 337 exits the springboard slot 321, the bridge 307 side of the springboard 337 may be slightly closer to the base 303 of the orthodontic bracket than the first floor level 311 is to the base 303 of the orthodontic bracket 301. This may ease snapping and unsnapping the archwire 353 from the orthodontic bracket 301. The occlusal end of the springboard 337 may be closer to the bridge 307 than the gingival end of the springboard 337, such that the space between the springboard free end 343 and the bridge 307 may be less than half the diameter of the archwire 353 when the springboard 337 is in the passive locked position (
The base 303 may provide more surface area and thus better bonding retention of the orthodontic bracket 301 to the tooth. The base 303 may be larger than the floor 309 of the orthodontic bracket body 305. It may have a tooth side that touches and bonds to the tooth. The tooth side may be custom made to fit to a particular patient's particular tooth, it may be made to fit a certain type of teeth for all patients, or it may be made to fit all teeth indiscriminately. The orthodontic bracket side of the base 303 may be connected to the base side of the floor 309. The outline of the base 303 may be rounded and smooth. The transition between the orthodontic bracket body 305 and the base 303 and between the base 303 and the tooth surface may be gradual and seamless. Alternatively, the base 303 may be omitted and the tooth-side of the floor 309 can be bonded directly to the tooth.
To snap the archwire 353 into the orthodontic bracket 301, the male loop 359 may be seated into the archwire insertion slot 347 and pushed occlusally. The side bars of male loop 359 may be made to slide along the vertical archwire slot 349. As the side bars of male loop 359 slide along the vertical archwire slot 349, the arc of male loop 359 may glide over the springboard body 339 towards the springboard free end 343, causing the springboard body 339 to be depressed from its passive locking position (
To unsnap the archwire 353 from the orthodontic bracket 301, the springboard body 339 may be depressed with an instrument through the access port 357. The free end 343 of the springboard 337 may then move toward the floor 309 of the orthodontic bracket until the springboard protuberance 345 touches the third floor level 315, thereby clearing the male loop 359 for withdrawal. This is the active unlocking position (
The components in
One difference between the embodiment shown in
The bridge 411 may be narrower in the occlusal-gingival direction than the bridge 307. The bridge 411 may not contain the access port 409.
A stop 413 may not contain the springboard opening 319, the springboard slot 321, the springboard slot outside opening 323, or the springboard slot inside opening 325.
The floor 415 may have only one level.
To snap the archwire 417 into the orthodontic bracket 401, the operator may take the same steps as described in connection with
To unsnap the archwire 417, the free end 407 of the springboard 403 may move from the passive locking position (
The components in
One functional difference between the embodiment shown in
The springboard 503 may have a springboard extension 509 that extends towards a stop 519. The springboard extension 509 may be along a plane that is parallel with orthodontic bracket rails 521. The springboard extension 509 may include a depression groove 511 that allows an instrument to press down and depress the springboard extension 509 towards the floor. There may not be any access port.
To snap the archwire 515 into the orthodontic bracket 501, the same steps may be taken as discussed above in connection with
To unsnap the archwire 515 from the orthodontic bracket 501, the free end 507 of the springboard 503 may be moved from a passive locking position to an active unlocking position. This may be accomplished by depressing an instrument against the depression groove 511, causing the springboard extension 509 to depress towards the floor 517. As the springboard extension 509 depresses towards the floor 517, the free end 507 may be concurrently lifted away from the floor 517 until the springboard 503 is in the active unlocking position. After the male loop 513 is withdrawn from the orthodontic bracket 501, the springboard 503 may move from the active unlocking position (
The components in
The bridge 603 may be formed by an orthodontic bracket wire extension 605 that extends from the mesial orthodontic bracket rail 617 and the orthodontic bracket wire extension 605 that extends from the distal orthodontic bracket rail 619. Both orthodontic bracket wire extensions 605 may extend and meet at the center of the orthodontic bracket where one orthodontic bracket wire extension 605 may take a 90 degree turn and extend towards the occlusal end of the orthodontic bracket 601 and the other orthodontic bracket wire extension 605 may take a 90 degree turn and extend towards the gingival end of the orthodontic bracket 601. These orthodontic bracket wire extensions 605 may be movable members such that when the springboard 607 is attached to the orthodontic bracket wire extension 605 and a depression groove 621 is depressed towards the floor 615, the free end 613 of the springboard 607 may move from a passive locking position (
The springboard 607 may be a separate piece that is attached to the bridge 603 through bonding, welding, or any other technique.
To snap and unsnap the male loop 609 into the orthodontic bracket 601, the same steps may be taken as described above in connection with
The components in
One functional difference between the embodiments in
The springboard 703 may be a non-movable member. The most occlusal portion of the springboard 703 may be a springboard end 707. The springboard end 707 may have an access port 717 that allows an instrument to access underneath the archwire when it is in the snapped position. The springboard end 707 may be in a position that is always occlusal to a bridge 709. The distance between the floor 715 and the edge of the springboard end 707 that is furthest away from the floor 715 may be the height 711 of the springboard 703. The angle between the springboard 703 and the floor 715 may be such that: (1) the distance between the floor 715 and the height 711 of the springboard 703 is more than the distance between the floor 715 and the base side of the bridge 709; (2) the distance between the floor 715 and the base side of the bridge 709 is more than the diameter of the archwire, allowing for the male loop 719 to pass through during insertion of the archwire 353; and (3) the minimum distance between the floor 715 and the height 711 of the springboard 703 is half the diameter of the male loop 719.
The bridge 709 may be narrower in the occlusal-gingival direction than in what is shown in
The stop 713 may not contain a springboard opening, a springboard slot, a springboard slot outside opening, or a springboard slot inside opening.
The floor 715 may have only one level.
To snap an archwire into the orthodontic bracket 701, the operator may take the same steps as described in connection with the embodiment in
To unsnap the male loop 719, an instrument may be inserted into the access port 717 to lift the male loop 719 from the passive archwire locking position (
The components in
The bridge 805 may be formed by an orthodontic bracket rail protuberance 819 that extends from a mesial orthodontic bracket rail 813 and an orthodontic bracket rail protuberance 819 that extends from the distal orthodontic bracket rail 813. Both orthodontic bracket rail protuberances 819 may extend towards but may not join at the center of the orthodontic bracket 801.
The area of the orthodontic bracket body 803 located near the occlusal end of the springboard 703 may be cut away to reduce bulk of the orthodontic bracket base.
To snap and unsnap the loop 821 into or out of the orthodontic bracket 801, the same steps may be taken that are discussed above in connection with 7A-7F.
The male loops discussed above may be replaced with a male locking insert 915. This insert 915 may have various shapes, such as a triangular cross section. The male locking insert 915 may cooperate with a springboard 909.
The orthodontic bracket 901 may have a space to receive the male locking insert 915 that is surrounded by four walls, a floor 903, mesial and distal side walls 905, and a bridge 907. The opening 911 may be in about the middle of the bridge 907. The bridge 907 on the side where the insert 915 enters the orthodontic bracket 901 may be level with the floor 903. The bridge 907 on the opposite side may be slanted to meet with the floor 903. That bridge 907 may match the slant of the springboard 909.
To snap the archwire 913 in place, the springboard 909 may be inserted into the orthodontic bracket 901 with its height facing a rectangular opening 911. The insertion may force the height to deflect, causing the lowering of its profile and allowing it to snap into the orthodontic bracket 901. Once the height of the springboard 909 passes the bridge 907 on the gingival side of the opening 911, the springboard 909 may recover from the deflection, returning the profile of the springboard 909 to its original height and locking the insert 915 in place.
To unsnap the insert 915, an instrument may be used to press on the height of the springboard 909 through the opening 911 to cause the springboard 909 to deflect. The profile of the springboard 909 may be lowered until the height is below the bridge 907 to allow withdrawal of the insert 915.
The male loops may be replaced with stops, eyelets, indentations, or any type of protuberance 1003 that allows control of the orthodontic bracket 1001 in three dimensions, while also preventing the archwire 1007 from sliding after it is engaged with the orthodontic bracket 1001. A vertical tube can be added to the protuberance 1003 to allow auxiliaries such as hooks to be added when necessary.
The orthodontic bracket 1001 may be in the form of any orthodontic bracket, such a self-ligating bracket, a twin bracket, a single wing bracket, or a ribbon arch bracket. The orthodontic bracket 1001 may be modified such that there is the compartment 1005 in the internal aspect of the orthodontic bracket 1001 to receive the protuberance 1003 in such a way that allows the protuberance 1003 to couple forces with the orthodontic bracket 1001 in three dimensions in a non-sliding manner.
Archwire male loops may be removed and replaced with stops, eyelets, indentations, or any type of protuberance 1105 on the mesial and distal aspects of the orthodontic bracket 1101. These protuberances may act as stops to prevent the archwire 1103 from sliding.
The bracket 1101 may be any type orthodontic bracket, such as a self-ligating bracket, a twin bracket, a single wing bracket, or a ribbon arch bracket.
An archwire may be activated by deflecting it away from its default position and inserting into a snapped position within an orthodontic bracket that is bonded to a tooth. When this elastic deflection occurs, the archwire may exert a reaction force in the direction that returns the archwire to the designed configuration, thereby transferring forces to the tooth and causing orthodontic tooth movement.
This archwire activation may completely control any tooth movement in three-dimensional space.
For mesio-distal tooth movement, if there is space between adjacent teeth, snap fitting an archwire into an orthodontic bracket may cause an interproximal loop to open, which may cause the archwire to be activated, leading to closing of space in the mesial-distal direction. Whereas, if there is overlap between adjacent teeth, archwire snap fitting into an orthodontic bracket may cause an interproximal loop to close, which may cause the archwire also to be activated, this time leading to opening of space in the mesial-distal direction.
For occlusal-gingival tooth movement, if the adjacent teeth are not at the same level, an archwire snap fitting into an orthodontic bracket may cause connecting archwire legs and interproximal loops to deflect in a slanted manner which may cause the archwire to be activated, leading to tooth correction in the occlusal-gingival direction.
For facio-lingual tooth movement, archwire snap fitting into an orthodontic bracket may cause the wire to be pushed away from its original position which may cause the archwire to be activated, leading to tooth correction in the facio-lingual direction.
The various configurations of archwires and orthodontic brackets that have been discussed may provide one or more advantages. These are now discussed.
There may be superior mesio-distal angulation and facio-lingual inclination orthodontic control because the vertical male loop may offer a longer arm for coupling forces to the orthodontic bracket when compared to the rectangular dimensions of an edgewise appliance. Moreover, the spread of the two parallel side bars of the male loop may make them function like a twin orthodontic bracket in providing a force couple in dealing with any axial rotation.
The interproximal loops may allow the operator to adjust the rigidity of the archwire, which may provide versatility for the same archwire diameter to be used in a wide array of cases.
The interproximal loops can be designed to allow patients to easily floss while undergoing orthodontic treatment.
The interproximal loops may be designed to have a certain type of shape (such as a “boot” or a “tear”). These shapes can be used to hold elastic rubber bands.
The archwire may be designed such that it can be activated to move the teeth. This type activation may be self-activating and self-limiting because it may not require use of external forces such as power chain and coil springs to move the teeth. This type of activation may also be self-limiting because the archwire may only exert forces that return the archwire to its original shape, negating the need for frequent appointments.
This approach may also not permit sliding of the archwire with respect to the orthodontic bracket, thus making movement of the teeth much more predictable.
The orthodontic bracket can be manufactured using casting, metal injection molding, 3D printing, micromachining, any combination of generic mass production and customization techniques, and/or any direct digital manufacturing technique. The archwire can be bent by the operator, through a wire-bending robot, and/or through any other process that can set the shape of the wire to a pre-determined shape.
The orthodontic appliances that have been described may be used in various ways.
If the system has a base that is fully customized to the tooth, the steps are may include:
The various portions of the various brackets that have been described may be all part of a single integration piece of material, such as steel, aluminum, nickel-titanium, any other shape memory alloy, or any other metal alloy, ceramic, zirconia, dental composite, or any other plastic material. One or more of these components may instead be formed separately from the others.
The components, steps, features, objects, benefits, and advantages that have been discussed are merely illustrative. None of them, nor the discussions relating to them, are intended to limit the scope of protection in any way. Numerous other embodiments are also contemplated. These include embodiments that have fewer, additional, and/or different components, steps, features, objects, benefits, and advantages. These also include embodiments in which the components and/or steps are arranged and/or ordered differently.
Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
All articles, patents, patent applications, and other publications that have been cited in this disclosure are incorporated herein by reference.
The phrase “means for” when used in a claim is intended to and should be interpreted to embrace the corresponding structures and materials that have been described and their equivalents. Similarly, the phrase “step for” when used in a claim is intended to and should be interpreted to embrace the corresponding acts that have been described and their equivalents. The absence of these phrases from a claim means that the claim is not intended to and should not be interpreted to be limited to these corresponding structures, materials, or acts, or to their equivalents.
The scope of protection is limited solely by the claims that now follow. That scope is intended and should be interpreted to be as broad as is consistent with the ordinary meaning of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows, except where specific meanings have been set forth, and to encompass all structural and functional equivalents.
Relational terms such as “first” and “second” and the like may be used solely to distinguish one entity or action from another, without necessarily requiring or implying any actual relationship or order between them. The terms “comprises,” “comprising,” and any other variation thereof when used in connection with a list of elements in the specification or claims are intended to indicate that the list is not exclusive and that other elements may be included. Similarly, an element preceded by an “a” or an “an” does not, without further constraints, preclude the existence of additional elements of the identical type.
None of the claims are intended to embrace subject matter that fails to satisfy the requirement of Sections 101, 102, or 103 of the Patent Act, nor should they be interpreted in such a way. Any unintended coverage of such subject matter is hereby disclaimed. Except as just stated in this paragraph, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
The abstract is provided to help the reader quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, various features in the foregoing detailed description are grouped together in various embodiments to streamline the disclosure. This method of disclosure should not be interpreted as requiring claimed embodiments to require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the detailed description, with each claim standing on its own as separately claimed subject matter.
This application is a continuation of U.S. patent application Ser. No. 15/249,262, filed on Aug. 26, 2016, which is a continuation application of U.S. patent application Ser. No. 14/067,690 filed on Oct. 30, 2013, which claims priority to U.S. provisional patent application 61/720,263, entitled “Frictionless, Self-Activating, Self-Limiting, and Self-Contained Orthodontic Appliance” filed Oct. 30, 2012. The entire content of the foregoing applications are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1005131 | Angle et al. | Oct 1911 | A |
1307382 | Stanton | Jun 1919 | A |
1429749 | Maeulen et al. | Sep 1922 | A |
2257069 | Peak | Sep 1941 | A |
2495692 | Brusse | Jan 1950 | A |
2524763 | Brusse | Oct 1950 | A |
2582230 | Brusse | Jan 1952 | A |
3256602 | Broussard | Jun 1966 | A |
3262207 | Kesling | Jul 1966 | A |
3374542 | Moylan, Jr. | Mar 1968 | A |
3593421 | Brader | Jul 1971 | A |
3600808 | Reeve | Aug 1971 | A |
3683502 | Wallshein | Aug 1972 | A |
3691635 | Wallshein | Sep 1972 | A |
3762050 | Dal Pont | Oct 1973 | A |
3765091 | Northcutt | Oct 1973 | A |
3878610 | Coscina | Apr 1975 | A |
3936938 | Northcutt | Feb 1976 | A |
3949477 | Cohen et al. | Apr 1976 | A |
3975823 | Sosnay | Aug 1976 | A |
4103423 | Kessel | Aug 1978 | A |
4192070 | Lemchen et al. | Mar 1980 | A |
4193195 | Merkel et al. | Mar 1980 | A |
4197643 | Burstone et al. | Apr 1980 | A |
4268250 | Reeve | May 1981 | A |
4330273 | Kesling | May 1982 | A |
4354833 | Fujita | Oct 1982 | A |
4354834 | Wilson | Oct 1982 | A |
4382781 | Grossman | May 1983 | A |
4385890 | Klein | May 1983 | A |
4412819 | Cannon | Nov 1983 | A |
4424033 | Wool | Jan 1984 | A |
4436510 | Klein | Mar 1984 | A |
4479779 | Wool | Oct 1984 | A |
4483674 | Schütz | Nov 1984 | A |
4490112 | Tanaka et al. | Dec 1984 | A |
4501554 | Hickham | Feb 1985 | A |
4561844 | Bates | Dec 1985 | A |
4582487 | Creekmore | Apr 1986 | A |
4585414 | Kottermann | Apr 1986 | A |
4592725 | Goshgarian | Jun 1986 | A |
4634662 | Rosenberg | Jan 1987 | A |
4659310 | Kottermann | Apr 1987 | A |
4664626 | Kesling | May 1987 | A |
4674978 | Acevedo | Jun 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4725229 | Miller | Feb 1988 | A |
4797093 | Bergersen | Jan 1989 | A |
4797095 | Armstrong et al. | Jan 1989 | A |
4842514 | Kesling | Jun 1989 | A |
4872449 | Beeuwkes | Oct 1989 | A |
4881896 | Bergersen | Nov 1989 | A |
4892479 | McKenna | Jan 1990 | A |
4897035 | Green | Jan 1990 | A |
4900251 | Andreasen | Feb 1990 | A |
4978323 | Freedman | Dec 1990 | A |
5011405 | Lemchen | Apr 1991 | A |
5044947 | Sachdeva et al. | Sep 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5092768 | Korn | Mar 1992 | A |
5114339 | Guis | May 1992 | A |
5123838 | Cannon | Jun 1992 | A |
5127828 | Suyama | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5154606 | Wildman | Oct 1992 | A |
5174754 | Meritt | Dec 1992 | A |
5176514 | Viazis | Jan 1993 | A |
5176618 | Freedman | Jan 1993 | A |
5238404 | Andreiko | Aug 1993 | A |
5242304 | Truax et al. | Sep 1993 | A |
5248257 | Cannon | Sep 1993 | A |
5259760 | Orikasa | Nov 1993 | A |
5344315 | Hanson | Sep 1994 | A |
5368478 | Andreiko | Nov 1994 | A |
5380197 | Hanson | Jan 1995 | A |
5399087 | Arndt | Mar 1995 | A |
5431562 | Andreiko | Jul 1995 | A |
5447432 | Andreiko | Sep 1995 | A |
5454717 | Andreiko | Oct 1995 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5516284 | Wildman | May 1996 | A |
5624258 | Wool | Apr 1997 | A |
5630715 | Voudouris | May 1997 | A |
5683243 | Andreiko | Nov 1997 | A |
5683245 | Sachdeva et al. | Nov 1997 | A |
5722827 | Allesee | Mar 1998 | A |
5816800 | Brehm | Oct 1998 | A |
5820370 | Brosius | Oct 1998 | A |
5863198 | Doyle | Jan 1999 | A |
5890893 | Heiser | Apr 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
5993208 | Jonjic | Nov 1999 | A |
6015289 | Andreiko | Jan 2000 | A |
6036489 | Brosius | Mar 2000 | A |
6042374 | Farzin-Nia et al. | Mar 2000 | A |
6086364 | Brunson | Jul 2000 | A |
6089861 | Kelly | Jul 2000 | A |
6095809 | Kelly et al. | Aug 2000 | A |
6099304 | Carter | Aug 2000 | A |
6183250 | Kanno et al. | Feb 2001 | B1 |
6190166 | Sasakura | Feb 2001 | B1 |
6196839 | Ross | Mar 2001 | B1 |
6217325 | Chishti et al. | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6244861 | Andreiko | Jun 2001 | B1 |
6250918 | Sachdeva et al. | Jun 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6318994 | Chishti et al. | Nov 2001 | B1 |
6318995 | Sachdeva et al. | Nov 2001 | B1 |
6334853 | Kopelman et al. | Jan 2002 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6358045 | Farzin-Nia et al. | Mar 2002 | B1 |
6371761 | Cheang et al. | Apr 2002 | B1 |
6394801 | Chishti et al. | May 2002 | B2 |
6398548 | Muhammad et al. | Jun 2002 | B1 |
6413084 | Rubbert et al. | Jun 2002 | B1 |
6431870 | Sachdeva | Aug 2002 | B1 |
6450807 | Chishti et al. | Sep 2002 | B1 |
6464496 | Sachdeva et al. | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6471512 | Sachdeva et al. | Oct 2002 | B1 |
6512994 | Sachdeva | Jan 2003 | B1 |
6514074 | Chishti et al. | Feb 2003 | B1 |
6532299 | Sachdeva et al. | Mar 2003 | B1 |
6540512 | Sachdeva et al. | Apr 2003 | B1 |
6554613 | Sachdeva et al. | Apr 2003 | B1 |
6572693 | Wu et al. | Jun 2003 | B1 |
6582226 | Jordan et al. | Jun 2003 | B2 |
6587828 | Sachdeva | Jul 2003 | B1 |
6595774 | Risse | Jul 2003 | B1 |
6554611 | Chishti et al. | Aug 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6612143 | Butscher et al. | Sep 2003 | B1 |
6616444 | Andreiko | Sep 2003 | B2 |
6626666 | Chishti et al. | Sep 2003 | B2 |
6629840 | Chishti et al. | Oct 2003 | B2 |
6632089 | Rubbert | Oct 2003 | B2 |
6648640 | Rubbert | Nov 2003 | B2 |
6663385 | Tepper | Dec 2003 | B2 |
6679700 | McGann | Jan 2004 | B2 |
6682344 | Stockstill | Jan 2004 | B1 |
6685469 | Chishti et al. | Feb 2004 | B2 |
6685470 | Chishti et al. | Feb 2004 | B2 |
6688885 | Sachdeva et al. | Feb 2004 | B1 |
6699037 | Chishti et al. | Mar 2004 | B2 |
6702575 | Hilliard | Mar 2004 | B2 |
6705863 | Phan et al. | Mar 2004 | B2 |
6722880 | Chishti et al. | Apr 2004 | B2 |
6728423 | Rubbert et al. | Apr 2004 | B1 |
6729876 | Chishti et al. | May 2004 | B2 |
6732558 | Butscher et al. | May 2004 | B2 |
6733285 | Puttler et al. | May 2004 | B2 |
6733287 | Wilkerson | May 2004 | B2 |
6733288 | Vallittu et al. | May 2004 | B2 |
6736638 | Sachdeva et al. | May 2004 | B1 |
6738508 | Rubbert et al. | May 2004 | B1 |
6739869 | Taub et al. | May 2004 | B1 |
6744914 | Rubbert et al. | Jun 2004 | B1 |
6744932 | Rubbert et al. | Jun 2004 | B1 |
6746241 | Townsend-Hansen | Jun 2004 | B2 |
6755064 | Butscher | Jun 2004 | B2 |
6771809 | Rubbert et al. | Aug 2004 | B1 |
6776614 | Wiechmann | Aug 2004 | B2 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6845175 | Kopelman et al. | Jan 2005 | B2 |
6846179 | Chapouland | Jan 2005 | B2 |
6851949 | Sachdeva et al. | Feb 2005 | B1 |
6860132 | Butscher | Mar 2005 | B2 |
6893257 | Kelly | May 2005 | B2 |
6928733 | Rubbert et al. | Aug 2005 | B2 |
6948931 | Chishti et al. | Sep 2005 | B2 |
6971873 | Sachdeva | Dec 2005 | B2 |
6988889 | Abels | Jan 2006 | B2 |
7008221 | McGann | Mar 2006 | B2 |
7013191 | Rubbert | Mar 2006 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7029275 | Rubbert | Apr 2006 | B2 |
7033171 | Wilkerson | Apr 2006 | B2 |
7037107 | Yamamoto | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7063531 | Maijer et al. | Jun 2006 | B2 |
7068836 | Rubbert et al. | Jun 2006 | B1 |
7076980 | Butscher | Jul 2006 | B2 |
7077646 | Hilliard | Jul 2006 | B2 |
7077647 | Choi et al. | Jul 2006 | B2 |
7080979 | Rubbert et al. | Jul 2006 | B2 |
7092107 | Babayoff et al. | Aug 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7125248 | Phan et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7160110 | Imgrund et al. | Jan 2007 | B2 |
7172417 | Sporbert et al. | Feb 2007 | B2 |
7175428 | Nicholson | Feb 2007 | B2 |
7186115 | Goldberg et al. | Mar 2007 | B2 |
7188421 | Cleary et al. | Mar 2007 | B2 |
7214056 | Stockstill | May 2007 | B2 |
7229282 | Andreiko | Jun 2007 | B2 |
7234936 | Lai | Jun 2007 | B2 |
7234937 | Sachdeva et al. | Jun 2007 | B2 |
7244121 | Brosius | Jul 2007 | B2 |
7245977 | Simkins | Jul 2007 | B1 |
7252506 | Lai | Aug 2007 | B2 |
7267545 | Oda | Sep 2007 | B2 |
7283891 | Butscher | Oct 2007 | B2 |
7296996 | Sachdeva | Nov 2007 | B2 |
7335021 | Nikodem | Feb 2008 | B2 |
7347688 | Kopelman et al. | Mar 2008 | B2 |
7354268 | Raby et al. | Apr 2008 | B2 |
7357634 | Knopp | Apr 2008 | B2 |
7361017 | Sachdeva | Apr 2008 | B2 |
7404714 | Cleary et al. | Jul 2008 | B2 |
7416408 | Farzin-Nia et al. | Aug 2008 | B2 |
7442041 | Imgrund et al. | Oct 2008 | B2 |
7458812 | Sporbert et al. | Dec 2008 | B2 |
7471821 | Rubbert et al. | Dec 2008 | B2 |
7578674 | Chishti et al. | Aug 2009 | B2 |
7585172 | Rubbert | Sep 2009 | B2 |
7590462 | Rubbert | Sep 2009 | B2 |
7621743 | Bathen | Nov 2009 | B2 |
7641473 | Sporbert | Jan 2010 | B2 |
7674110 | Oda | Mar 2010 | B2 |
7677887 | Nicholson | Mar 2010 | B2 |
7704072 | Damon | Apr 2010 | B2 |
7717708 | Sachdeva | May 2010 | B2 |
7722354 | Dumas | May 2010 | B1 |
7726470 | Cinader, Jr. et al. | Jun 2010 | B2 |
7726968 | Raby et al. | Jun 2010 | B2 |
7751925 | Rubbert | Jul 2010 | B2 |
7811087 | Wiechmann | Oct 2010 | B2 |
7837466 | Griffith et al. | Nov 2010 | B2 |
7837467 | Butscher | Nov 2010 | B2 |
7845938 | Kim et al. | Dec 2010 | B2 |
7850451 | Wiechmann | Dec 2010 | B2 |
7871267 | Griffith et al. | Jan 2011 | B2 |
7909603 | Oda | Mar 2011 | B2 |
8029275 | Kesling | Oct 2011 | B2 |
8033824 | Oda et al. | Oct 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8047034 | Butscher | Nov 2011 | B2 |
8057226 | Wiechmann | Nov 2011 | B2 |
8070487 | Chishti et al. | Dec 2011 | B2 |
8082769 | Butscher | Dec 2011 | B2 |
8092215 | Stone-collonge et al. | Jan 2012 | B2 |
8102538 | Babayoff | Jan 2012 | B2 |
8113828 | Greenfield | Feb 2012 | B1 |
8113829 | Sachdeva | Feb 2012 | B2 |
8121718 | Rubbert | Feb 2012 | B2 |
8142187 | Sporbert | Mar 2012 | B2 |
8152519 | Dumas et al. | Apr 2012 | B1 |
8192197 | Sporbert | Jun 2012 | B2 |
8194067 | Raby | Jun 2012 | B2 |
8220195 | Maijer et al. | Jul 2012 | B2 |
8266940 | Riemeir et al. | Sep 2012 | B2 |
8297970 | Kanomi | Oct 2012 | B2 |
8308478 | Primus et al. | Nov 2012 | B2 |
8313327 | Won | Nov 2012 | B1 |
8359115 | Kopelman et al. | Jan 2013 | B2 |
8363228 | Babayoff | Jan 2013 | B2 |
8366440 | Bathen | Feb 2013 | B2 |
8376739 | Dupray | Feb 2013 | B2 |
8382917 | Johnson | Feb 2013 | B2 |
8393896 | Oda | Mar 2013 | B2 |
8417366 | Getto | Apr 2013 | B2 |
8439671 | Cinader, Jr. | May 2013 | B2 |
8451456 | Babayoff | May 2013 | B2 |
8454364 | Taub et al. | Jun 2013 | B2 |
8459988 | Dumas | Jun 2013 | B2 |
8465279 | Bathen | Jun 2013 | B2 |
8469704 | Oda et al. | Jun 2013 | B2 |
8479393 | Abels et al. | Jul 2013 | B2 |
8485816 | Macchi | Jul 2013 | B2 |
8500445 | Borri | Aug 2013 | B2 |
8517727 | Raby et al. | Aug 2013 | B2 |
8545221 | Sonte-collenge et al. | Oct 2013 | B2 |
8562337 | Kuo et al. | Oct 2013 | B2 |
8591225 | Wu et al. | Nov 2013 | B2 |
8591226 | Griffith et al. | Nov 2013 | B2 |
8636505 | Fornoff | Jan 2014 | B2 |
8638447 | Babayoff et al. | Jan 2014 | B2 |
8638448 | Babayoff et al. | Jan 2014 | B2 |
8675207 | Babayoff | Mar 2014 | B2 |
8678818 | Dupray | Mar 2014 | B2 |
8690568 | Chapouland | Apr 2014 | B2 |
8708697 | Li et al. | Apr 2014 | B2 |
8714972 | Eichenberg | May 2014 | B2 |
8734149 | Phan et al. | May 2014 | B2 |
8780106 | Chishti et al. | Jul 2014 | B2 |
8805048 | Batesole | Aug 2014 | B2 |
8805563 | Kopelman et al. | Aug 2014 | B2 |
8807995 | Kabbani et al. | Aug 2014 | B2 |
8827697 | Cinader, Jr. et al. | Sep 2014 | B2 |
8845330 | Taub et al. | Sep 2014 | B2 |
8871132 | Abels et al. | Oct 2014 | B2 |
8931171 | Rosenberg | Jan 2015 | B2 |
8932054 | Rosenberg | Jan 2015 | B1 |
8936464 | Kopelman | Jan 2015 | B2 |
8961172 | Dupray | Feb 2015 | B2 |
8979528 | Macchi | Mar 2015 | B2 |
8986004 | Dumas | Mar 2015 | B2 |
8992215 | Chapouland | Mar 2015 | B2 |
8998608 | Imgrund et al. | Apr 2015 | B2 |
9022781 | Kuo et al. | May 2015 | B2 |
9066775 | Bukhary | Jun 2015 | B2 |
9089386 | Hagelganz | Jul 2015 | B2 |
9101433 | Babayoff | Aug 2015 | B2 |
9119689 | Kabbani | Sep 2015 | B2 |
9127338 | Johnson | Sep 2015 | B2 |
9144473 | Aldo | Sep 2015 | B2 |
9204942 | Phan et al. | Dec 2015 | B2 |
9299192 | Kopelman | Mar 2016 | B2 |
9301815 | Dumas | Apr 2016 | B2 |
9329675 | Ojelund et al. | May 2016 | B2 |
9339352 | Cinader et al. | May 2016 | B2 |
9402695 | Curiel et al. | Aug 2016 | B2 |
9427291 | Khoshnevis et al. | Aug 2016 | B2 |
9427916 | Taub et al. | Aug 2016 | B2 |
9439737 | Gonzales et al. | Sep 2016 | B2 |
9451873 | Kopelman et al. | Sep 2016 | B1 |
9492246 | Lin | Nov 2016 | B2 |
9498302 | Patel | Nov 2016 | B1 |
D774193 | Makmel et al. | Dec 2016 | S |
9510757 | Kopelman | Dec 2016 | B2 |
9517112 | Hagelganz et al. | Dec 2016 | B2 |
9529970 | Andreiko | Dec 2016 | B2 |
9539064 | Abels et al. | Jan 2017 | B2 |
9554875 | Gualano | Jan 2017 | B2 |
9566132 | Stone-collonge et al. | Feb 2017 | B2 |
9566134 | Hagelganz et al. | Feb 2017 | B2 |
9585733 | Voudouris | Mar 2017 | B2 |
9585734 | Lai et al. | Mar 2017 | B2 |
9610628 | Riemeier | Apr 2017 | B2 |
9615901 | Babyoff et al. | Apr 2017 | B2 |
9622834 | Chapouland | Apr 2017 | B2 |
9629551 | Fisker et al. | Apr 2017 | B2 |
9707056 | Machata et al. | Jul 2017 | B2 |
9814543 | Huang et al. | Nov 2017 | B2 |
9844420 | Cheang | Dec 2017 | B2 |
9848958 | Matov et al. | Dec 2017 | B2 |
9867678 | Macchi | Jan 2018 | B2 |
9867680 | Damon | Jan 2018 | B2 |
9872741 | Gualano | Jan 2018 | B2 |
9877804 | Chester | Jan 2018 | B2 |
9877805 | Abels et al. | Jan 2018 | B2 |
9925020 | Jo | Mar 2018 | B2 |
9937018 | Martz et al. | Apr 2018 | B2 |
9962244 | Esbech et al. | May 2018 | B2 |
9975294 | Taub et al. | May 2018 | B2 |
9987105 | Dupray | Jun 2018 | B2 |
10045834 | Gualano | Aug 2018 | B2 |
10058400 | Abels et al. | Aug 2018 | B2 |
10058401 | Tan | Aug 2018 | B2 |
10064706 | Dickerson | Sep 2018 | B2 |
10070943 | Fornoff | Sep 2018 | B2 |
10076780 | Riemeier et al. | Sep 2018 | B2 |
10130987 | Riemeier et al. | Nov 2018 | B2 |
10136966 | Reybrouck et al. | Nov 2018 | B2 |
10179036 | Lee | Jan 2019 | B2 |
10219877 | Khoshnevis et al. | Mar 2019 | B2 |
10226312 | Khoshnevis et al. | Mar 2019 | B2 |
10278791 | Schumacher | May 2019 | B2 |
10278792 | Wool | May 2019 | B2 |
10292789 | Martz et al. | May 2019 | B2 |
10368961 | Paehl et al. | Aug 2019 | B2 |
10383707 | Roein Peikar et al. | Aug 2019 | B2 |
D859663 | Cetta et al. | Sep 2019 | S |
10413386 | Moon et al. | Sep 2019 | B2 |
10588717 | Chun et al. | Mar 2020 | B2 |
10636522 | Katzman et al. | Apr 2020 | B2 |
10639130 | Blees et al. | May 2020 | B2 |
10772706 | Schumacher | Sep 2020 | B2 |
10828133 | Tong et al. | Nov 2020 | B2 |
10881489 | Tong et al. | Jan 2021 | B2 |
10905527 | Roein Peikar et al. | Feb 2021 | B2 |
10952820 | Song et al. | Mar 2021 | B2 |
10980614 | Roein Peikar et al. | Apr 2021 | B2 |
10993785 | Roein Peikar et al. | May 2021 | B2 |
20020098460 | Farzin-Nia et al. | Jul 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030180689 | Arx et al. | Sep 2003 | A1 |
20040072120 | Lauren | Apr 2004 | A1 |
20040166459 | Voudouris | Aug 2004 | A1 |
20040219471 | Cleary et al. | Nov 2004 | A1 |
20050043837 | Rubbert et al. | Feb 2005 | A1 |
20050106529 | Abolfathi et al. | May 2005 | A1 |
20050191592 | Farzin-Nia et al. | Sep 2005 | A1 |
20050244780 | Abels et al. | Nov 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20060068354 | Jeckel | Mar 2006 | A1 |
20060257813 | Highland | Nov 2006 | A1 |
20070015103 | Sorel | Jan 2007 | A1 |
20070031773 | Scuzzo | Feb 2007 | A1 |
20070087302 | Reising et al. | Apr 2007 | A1 |
20070111154 | Sampermans | May 2007 | A1 |
20070134611 | Nicholson | Jun 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070154859 | Hilliard | Jul 2007 | A1 |
20070172788 | Hill, II et al. | Jul 2007 | A1 |
20070190478 | Goldberg et al. | Aug 2007 | A1 |
20070231768 | Hutchinson | Oct 2007 | A1 |
20080032250 | Kopelman et al. | Feb 2008 | A1 |
20080063995 | Farzin-Nia et al. | Mar 2008 | A1 |
20080160475 | Rojas-Pardini | Jul 2008 | A1 |
20080199825 | Jahn | Aug 2008 | A1 |
20080248439 | Griffith | Oct 2008 | A1 |
20080254403 | Hilliard | Oct 2008 | A1 |
20080286711 | Corcoran et al. | Nov 2008 | A1 |
20090042160 | Ofir | Feb 2009 | A1 |
20090191502 | Cao et al. | Jul 2009 | A1 |
20090197217 | Butscher et al. | Aug 2009 | A1 |
20090220907 | Suyama | Sep 2009 | A1 |
20100092903 | Sabilla | Apr 2010 | A1 |
20100092905 | Martin | Apr 2010 | A1 |
20100105000 | Scommegna | Apr 2010 | A1 |
20100129766 | Hilgers | May 2010 | A1 |
20100178628 | Kim | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100193979 | Goldberg et al. | Aug 2010 | A1 |
20100279243 | Cinader, Jr. et al. | Nov 2010 | A1 |
20100304321 | Patel | Dec 2010 | A1 |
20110008745 | McQuillan et al. | Jan 2011 | A1 |
20110059414 | Hirsch | Mar 2011 | A1 |
20110220612 | Kim | Sep 2011 | A1 |
20110250556 | Heiser | Oct 2011 | A1 |
20110287376 | Walther | Nov 2011 | A1 |
20120148972 | Lewis | Jun 2012 | A1 |
20120208144 | Chiaramonte | Aug 2012 | A1 |
20120322019 | Lewis | Dec 2012 | A1 |
20130065193 | Curiel et al. | Mar 2013 | A1 |
20130196281 | Thornton | Aug 2013 | A1 |
20130196282 | Eichelberger et al. | Aug 2013 | A1 |
20140120491 | Khoshnevis et al. | May 2014 | A1 |
20140154637 | Hansen et al. | Jun 2014 | A1 |
20140170586 | Cantarella | Jun 2014 | A1 |
20140287376 | Hultgren et al. | Sep 2014 | A1 |
20150010879 | Kurthy | Jan 2015 | A1 |
20150064641 | Gardner | Mar 2015 | A1 |
20150072299 | Alauddin et al. | Mar 2015 | A1 |
20150140501 | Kim | May 2015 | A1 |
20150351872 | Jo | Dec 2015 | A1 |
20160074139 | Machata et al. | Mar 2016 | A1 |
20160106522 | Kim | Apr 2016 | A1 |
20160166357 | Portalupi | Jun 2016 | A1 |
20160206403 | Ouellette et al. | Jul 2016 | A1 |
20160242871 | Morton et al. | Aug 2016 | A1 |
20160270885 | Kwon et al. | Sep 2016 | A1 |
20160278883 | Fasci et al. | Sep 2016 | A1 |
20160287354 | Viecilli et al. | Oct 2016 | A1 |
20160310239 | Paehl et al. | Oct 2016 | A1 |
20160361141 | Tong et al. | Dec 2016 | A1 |
20160361142 | Tong et al. | Dec 2016 | A1 |
20160374780 | Carrillo Gonzalez et al. | Dec 2016 | A1 |
20170105817 | Chun et al. | Apr 2017 | A1 |
20170128169 | Lai et al. | May 2017 | A1 |
20170151037 | Lee | Jun 2017 | A1 |
20170156823 | Roein et al. | Jun 2017 | A1 |
20170165532 | Khan et al. | Jun 2017 | A1 |
20170196660 | Lee | Jul 2017 | A1 |
20170224444 | Viecilli et al. | Aug 2017 | A1 |
20170252140 | Murphy et al. | Sep 2017 | A1 |
20170296304 | Tong et al. | Oct 2017 | A1 |
20180014916 | Cinader, Jr. et al. | Jan 2018 | A1 |
20180021108 | Cinader, Jr. et al. | Jan 2018 | A1 |
20180049847 | Oda et al. | Feb 2018 | A1 |
20180153651 | Tong et al. | Jun 2018 | A1 |
20180185120 | Wool | Jul 2018 | A1 |
20180185121 | Pitts et al. | Jul 2018 | A1 |
20180214250 | Martz | Aug 2018 | A1 |
20180221113 | Tong et al. | Aug 2018 | A1 |
20180303583 | Tong et al. | Oct 2018 | A1 |
20180338564 | Oda et al. | Nov 2018 | A1 |
20190001396 | Riemeier et al. | Jan 2019 | A1 |
20190090988 | Schumacher et al. | Mar 2019 | A1 |
20190090989 | Jo | Mar 2019 | A1 |
20190142551 | Dickenson et al. | May 2019 | A1 |
20190159871 | Chan et al. | May 2019 | A1 |
20190163060 | Skamser et al. | May 2019 | A1 |
20190175304 | Morton et al. | Jun 2019 | A1 |
20190321136 | Martz et al. | Oct 2019 | A1 |
20190321138 | Peikar et al. | Oct 2019 | A1 |
20190350682 | Cinader, Jr. et al. | Nov 2019 | A1 |
20190365507 | Khoshnevis et al. | Dec 2019 | A1 |
20190365508 | Khoshnevis et al. | Dec 2019 | A1 |
20200107911 | Roein Peikar et al. | Apr 2020 | A1 |
20200129272 | Roein Peikar et al. | Apr 2020 | A1 |
20200138549 | Chun et al. | May 2020 | A1 |
20200188063 | Cinader, Jr. et al. | Jun 2020 | A1 |
20200345455 | Peikar et al. | Nov 2020 | A1 |
20200345460 | Peikar et al. | Nov 2020 | A1 |
20200375699 | Roein Peikar et al. | Dec 2020 | A1 |
20200390524 | Peikar et al. | Dec 2020 | A1 |
20200405452 | Song et al. | Dec 2020 | A1 |
20210007830 | Peikar et al. | Jan 2021 | A1 |
20210007832 | Roein Peikar et al. | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
1372872 | Oct 2002 | CN |
102215773 | Oct 2011 | CN |
202365955 | Aug 2012 | CN |
202892116 | Apr 2013 | CN |
103505293 | Jan 2014 | CN |
203506900 | Apr 2014 | CN |
104188728 | Dec 2014 | CN |
204049881 | Dec 2014 | CN |
105596098 | May 2016 | CN |
105662615 | Jun 2016 | CN |
205569100 | Sep 2016 | CN |
106029002 | Oct 2016 | CN |
106137419 | Nov 2016 | CN |
3915807 | Nov 1990 | DE |
1139902 | Oct 2001 | EP |
1276433 | Jan 2003 | EP |
2076207 | Jul 2009 | EP |
2522298 | Nov 2012 | EP |
2617383 | Jul 2013 | EP |
100549294 | Feb 2006 | KR |
100737442 | Jul 2007 | KR |
100925286 | Nov 2009 | KR |
101723674 | Apr 2017 | KR |
133408 | Oct 2013 | RU |
WO 0180761 | Nov 2001 | WO |
WO 0185047 | Nov 2001 | WO |
WO 03045266 | Jun 2003 | WO |
WO 2005008441 | Jan 2005 | WO |
WO 2007069286 | Jun 2007 | WO |
WO 2008051774 | May 2008 | WO |
WO 2011034522 | Mar 2011 | WO |
WO 2011090502 | Jul 2011 | WO |
WO 2011103669 | Sep 2011 | WO |
WO 2012089735 | Jul 2012 | WO |
WO 2012140021 | Oct 2012 | WO |
WO 2013019398 | Feb 2013 | WO |
WO 2016148961 | Sep 2016 | WO |
WO 2016199972 | Dec 2016 | WO |
WO 2016210402 | Dec 2016 | WO |
WO 2017112004 | Jun 2017 | WO |
WO 2017194478 | Nov 2017 | WO |
WO 2017198640 | Nov 2017 | WO |
WO 2018122862 | Jul 2018 | WO |
Entry |
---|
EP Search Report dated Aug. 28, 2020 in EP Application No. 18748336.7. |
International Search Report for International Application No. PCT/US2020/020526 dated May 22, 2020. |
U.S. Appl. No. 15/249,262, filed Aug. 26, 2016, Tong et al. |
Coro, Jorge C. et al., “MEAW Therapy” MEAW Therapy—Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/ on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages. |
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: A Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115. |
EP Search Report dated Jun. 23, 2016 in EP application No. 13850778.5 in 5 pages. |
EP Search Report dated May 29, 2020 in EP Application No. 17875658.1. |
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011. |
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php , accessed Nov. 30, 2015 in 4 pages. |
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33. |
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages. |
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014). |
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res., 2003, vol. 6 (Suppl 1): pp. 143-149. |
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014). |
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735. |
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109. |
International Search Report for International Application No. PCT/US2013/067560 dated Feb. 14, 2014. |
International Search Report for International Application No. PCT/US2017/028180 dated Aug. 14, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US 2017/064021 dated Mar. 2, 2018. |
International Search Report for International Application No. PCT/US2018/016293 dated May 10, 2018. |
International Search Report for International Application No. PCT/US2018/028437 dated Aug. 9, 2018. |
CN Office Action dated Jun. 30, 2020 in CN Application No. 201780033738X. |
Number | Date | Country | |
---|---|---|---|
20190365508 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
61720263 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15249262 | Aug 2016 | US |
Child | 16295984 | US | |
Parent | 14067690 | Oct 2013 | US |
Child | 15249262 | US |