The present invention is related to orthodontic brackets, and in particular, to such brackets wherein one or more archwires can be secured in laterally entered archwire retaining channels.
An orthodontic bracket is disclosed herein for retaining one or more archwires in position. The bracket includes a base having a tooth affixing side and an opposing side, and there is one or more archwire retention channels extending in the mesial-distal directions. Each of the archwire retention channels includes a pair of inverted archwire retaining regions on one side of the channel, wherein each of the retaining regions, in turn, includes a recess that opens generally towards an opposing side of the channel, the opposing side being, in one embodiment, part of the bracket base. Each such recess is for grasping or holding an archwire within the channel having the recess. A first of the archwire retention channels includes a first pair of gingivally located inverted archwire retaining regions whose recesses hold a common archwire. In an embodiment of the bracket having more than one archwire retention channel, a second of the archwire retention channels includes a second pair of occlusally located inverted archwire retaining regions whose recesses hold another archwire. Moreover, for each of the archwire retention channel(s), there is a corresponding archwire retaining ridge extending gingivally-occlusally along the opposing side bracket base between the two archwire retaining regions of the channel, wherein this retaining ridge contacts a portion of an archwire that faces away from the archwire portion being held in the recesses of the inverted archwire retaining regions for the channel. Accordingly, for each pair of archwire retaining regions and an archwire held by the pair, the corresponding archwire retaining ridge exerts a force on the archwire directed toward the interiors of the recesses of the inverted retaining regions of the pair. In particular, this force assists in seating the archwire in the retaining regions of the pair.
In particular for the at least one of the archwire retention channel included in the bracket and an archwire provided therein, the elasticity of the archwire to retain an initial non-curved shape causes the archwire to resist a channel induced bow in the archwire (such bowing or curving shown in
In some embodiments, one archwire retention channel may be configured to provide more than a single bow or bind of the archwire within the channel. In particular, such a channel may be configured so that an archwire contained therein must form at least one “S” shape with the channel.
The novel bracket preferably has a generally square bracket base with opposing mesial-distal sidewalls, and opposing gingival-occlusal sidewalls that extend between the tooth affixing side and the opposing side (also referred to as an “upper side” herein). Each of the above described retaining ridges is provided by a corresponding thickened portion of the bracket base that extends in the gingival-occlusal direction of the bracket approximately along a gingival-occlusal occlusal center line of the bracket base. The thickened portion gradually thins in the mesial-distal direction of the bracket, ending with the same thickness as the gingival-occlusal sidewalls.
Two archwire retention bridges are also included on the novel bracket, wherein each end of each bridge includes one of the inverted archwire retaining regions from a different one of the first and second pairs identified above. A central archwire retention channel (positioned between the two archwire retention channels described above) extends in the mesial and distal direction along a central portion of the bracket. This channel is formed by the two archwire retention bridges which enclose spaced apart portions of the archwire retention channel for securing an archwire therein.
Embodiments of the bracket may be made of stainless steel for strength or other materials, including ceramics, plastics, polycrystalline alumina material, alumina (aluminum oxide), and zirconia. The bracket base design allows for the bracket to be used in both direct and indirect bonding to patients' teeth. Embodiments of the bracket may be formed via an injection molding technique.
Such a universal bracket design may be primarily attached to the lingual side of patients' teeth, but for embodiments of the bracket attached the labial/buccal side of a patients' teeth, the bracket base tooth facing curvature may be specific to particular tooth types.
This Summary section is neither intended nor should be construed as being representative of the full extent and scope of the present invention. Various embodiments of the present disclosure are set forth in the attached figures and in the detailed description hereinbelow and as embodied by the claims. Accordingly, this Summary does not contain all of the aspects and embodiments of the present disclosure, and is not meant to be limiting or restrictive in any manner. Furthermore, the disclosure should be understood by those of ordinary skill in the art to encompass obvious improvements and modifications thereto.
Referring to
The bracket base 24 may be made of a variety of materials, but in one embodiment may be stainless steel for strength. However, other materials may be used including ceramics and plastics. The remainder of the bracket 20 may be composed of various materials in addition to those recited above (e.g., polycrystalline alumina material, alumina (aluminum oxide), zirconia). In one embodiment, the bracket 20 may be formed via an injection molding technique.
The bracket base 24 may be a universal bracket design in that it can be attached to the surface of various tooth types (e.g., incisor, bicuspid, molar, etc). Moreover, such a universal bracket design does not require bracket identification to aid in identifying placement of the bracket and/or identifying a particular embodiment of the bracket 20. Such a universal bracket design also leads to simplified inventory management since only one embodiment of the bracket 20 may be needed for placement on all teeth types instead of different embodiments of the bracket for different teeth types. However, such universal bracket design may be primarily for the lingual side of patients' teeth. For embodiments of the bracket 20 to be provided on the labial/buccal side of patients' teeth, the curvature of the tooth affixing side 26 may be specific to particular tooth types as one skilled in the art will understand. Accordingly, it is also within the scope of the present disclosure that markings or identifications may be provided on embodiments of the bracket 20 for identifying the bracket (e.g., as a universal bracket, or specific to a particular tooth type(s)), for identifying the manufacturer or distributor of the bracket, and/or for identifying a particular placement or orientation of the bracket on a tooth or tooth type. Note that descriptions of providing such markings and/or identifications are disclosed in U.S. Patent Application Publication 2008/0020338 filed Jul. 24, 2007 and published Jan. 24, 2008, this application being fully incorporated herein by reference.
The bracket base 24 design allows for the bracket 20 to be used in both direct and indirect bonding. Note that the term direct bonding refers to applying adhesive directly to a patient's tooth and subsequently attaching a bracket 20 thereto. Indirect bonding refers to positioning one or more brackets 20 on a dental cast of a patient's teeth. The dental cast, having the brackets 20 attached thereto, is then surrounded with a material, wherein the material, once solidified, secures the brackets therein and can act as a transportation device for the brackets once the dental cast is dissolved away. Adhesive is then applied to the back of each of the brackets 20 prior to placing the transportation device containing the brackets onto the patient's teeth. Accordingly, in the indirect bonding technique, all of the brackets 20 are bonded to the patient's teeth simultaneously. Once the brackets 20 are bonded, the transportation device is removed from the teeth, leaving behind the brackets attached to the teeth.
Regarding the retaining ridges 25 described above, each such ridge corresponds to a maximal offset from the tooth affixing side 26 along a corresponding one of the archwire retention channels 28 and 36. Moreover, in at least some embodiments, such a ridge 25 has its maximal offset centered on line L of
In another embodiment of the bracket 20, the retaining ridges 25 may have a larger or smaller maximal offset from the tooth affixing side 26 to the upper side 29 of the bracket base 24 when compared to the embodiments of the figures. Moreover, one of the retaining ridges 25 may have a larger maximal offset from the tooth affixing side 26 than the other retaining ridge 25. This variance in the maximal offset of the retaining ridges 25 may allow for and aid in the retention of different diameter archwires in the retaining regions 40a,b and 44a,b.
In another embodiment of the bracket 20, one or more of the retaining ridges 25 may have a corresponding secondary retaining ridge located at the gingival or occlusal edges of the bracket base 24. These secondary retaining ridges may be located on the upper side 29 at the gingival and/or occlusal edges of the bracket base 24. Such secondary retaining ridges may extend in the mesial-distal direction on the upper side 29 of the bracket base 24. The secondary retaining ridges may have varying shapes (e.g., hemispherical or elliptical). Accordingly, the retaining regions 40a,b and 44a,b, in conjunction with the secondary retaining ridges, keep the corresponding archwire secured in one of the corresponding archwire retention channels 28 and 36 (more specifically their recesses 27).
For further description of the archwire retention channels 28, 32 and 36, reference is made to
Referring to
Whether the bracket embodiment of
In another embodiment, the archwire retaining regions 40a and 44a (or 40b and 44b) may be joined together, above the upper side 29. Such joining of the retaining regions for one of the archwire retention channels 28 or 26 may form a single integral retaining region, or the joining may be in form of a bridge therebetween similar to the bridges 56 and 60 (except extending in the mesial-distal direction rather than the gingival-occlusal direction). Regardless, there may be a cutout (not shown) over the corresponding retaining ridge 25 so that when the archwire contacts the retaining ridge 25, the archwire is wedged into this cutout. In another embodiment, there may be only one of the outer archwire retention channels 28 and 36 utilized to retain an archwire.
Referring to
A lateral view of the bracket 20, as shown in
An end perspective view of the bracket 20 is shown in
A plurality of the brackets 20 is shown connected together by archwires in
Alternative embodiments of the bracket 20 include providing the inverted archwire retaining portions so that instead of their recesses 37 opening toward the base 24, such recesses open in another direction (e.g., away from the base, or generally parallel with the upper side 29 of the base). In such embodiments, the retaining ridge 25 is also repositioned to face in the direction toward such recesses for retaining an archwire in the same manner as, e.g., shown in
In each of the embodiments of the bracket 20 disclosed hereinabove, at least one of the archwire retention channels 28 and 36 is provided, wherein for an archwire provided therein, the elasticity of the archwire to retain an initial non-curved shape causes the archwire to resist the channel induced bow in the archwire (such curving shown in
In use, after an orthodontist has secured the bracket 20 to one of a patient's teeth, the orthodontist may exert a force (e.g., substantially parallel to the upper side 29) on a corresponding archwire to force the archwire enter one or both of the archwire retention channels (28 or 36), wherein such force induces the corresponding archwire to bow in the channel. Alternatively, the orthodontist may thread the archwire into such a channel, wherein the orthodontist pushes the archwire into the channel by purposely bowing or binding the archwire to follow the bow of the channel, and then once the archwire is threaded through the channel, the orthodontist can then bend the archwire into the correct orientation to attach the archwire to, e.g., a next orthodontic appliance attached to, e.g., a next tooth. Note, that such subsequent bending of the archwire by the orthodontist is believed to also provide similar forces on the archwire (and traverse to the length thereof) as described above for securing the archwire within the channel.
The disclosure herein describes the best mode known to carry out the invention as claimed in the claims hereinbelow. Moreover, the foregoing disclosure has been provided for purposes of illustration and description. This disclosure is not intended to limit the invention claimed hereinbelow, and various embodiments thereof. Variations, embodiments and modifications will be apparent to those skilled in the art and are intended to be within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 12/724,159, filed Mar. 15, 2010, and claims the benefit of U.S. Provisional Patent Application Ser. No. 61/160,653, filed Mar. 16, 2009. The entire disclosure of the prior application hereinabove is incorporated herein fully by reference.
Number | Name | Date | Kind |
---|---|---|---|
626476 | Angle | Jun 1899 | A |
1890487 | Angle | Dec 1932 | A |
2011575 | Ford | Aug 1935 | A |
2104192 | Ford | Jan 1938 | A |
2196515 | Atkinson | Apr 1940 | A |
3028671 | Berger | Apr 1962 | A |
3055110 | Kesling | Sep 1962 | A |
3158934 | Waldman | Dec 1964 | A |
3193930 | Bien | Jul 1965 | A |
3391461 | Johnson | Jul 1968 | A |
3435527 | Kesling | Apr 1969 | A |
3494034 | Kesling | Feb 1970 | A |
3504438 | Wittman et al. | Apr 1970 | A |
3526961 | Kesling | Sep 1970 | A |
3765091 | Northcutt | Oct 1973 | A |
3798773 | Northcutt | Mar 1974 | A |
3838514 | Polak | Oct 1974 | A |
3854207 | Wildman | Dec 1974 | A |
3874080 | Wallshein | Apr 1975 | A |
3916526 | Schudy | Nov 1975 | A |
3964156 | Williams et al. | Jun 1976 | A |
3975824 | Lee | Aug 1976 | A |
3985282 | Miller et al. | Oct 1976 | A |
3987547 | Moss | Oct 1976 | A |
4015334 | Moss | Apr 1977 | A |
4028809 | Wallshein | Jun 1977 | A |
4083113 | Miller et al. | Apr 1978 | A |
4103423 | Kessel | Aug 1978 | A |
4134208 | Pearlman | Jan 1979 | A |
4171568 | Forster | Oct 1979 | A |
4172999 | Leidich | Oct 1979 | A |
4183141 | Dellinger et al. | Jan 1980 | A |
4192070 | Lemchen et al. | Mar 1980 | A |
4193195 | Merkel et al. | Mar 1980 | A |
4197642 | Wallshein | Apr 1980 | A |
4212638 | Korn | Jul 1980 | A |
4219617 | Wallshein | Aug 1980 | A |
D256950 | Sable | Sep 1980 | S |
4242085 | Wallshein | Dec 1980 | A |
4248587 | Kurz | Feb 1981 | A |
4260375 | Wallshein | Apr 1981 | A |
4284405 | Dellinger | Aug 1981 | A |
4299569 | Frantz | Nov 1981 | A |
4302532 | Wallshein | Nov 1981 | A |
4322206 | Reynolds | Mar 1982 | A |
4350487 | Kesling et al. | Sep 1982 | A |
4354834 | Wilson | Oct 1982 | A |
4386908 | Kurz | Jun 1983 | A |
4415330 | Daisley et al. | Nov 1983 | A |
4419078 | Pletcher | Dec 1983 | A |
4430061 | Webb et al. | Feb 1984 | A |
4455137 | Diamond | Jun 1984 | A |
4462800 | Jones | Jul 1984 | A |
4478577 | Warren, Jr. | Oct 1984 | A |
4498867 | Kesling | Feb 1985 | A |
4511331 | Scebold et al. | Apr 1985 | A |
4527975 | Ghafari et al. | Jul 1985 | A |
4529382 | Creekmore | Jul 1985 | A |
4531911 | Creekmore | Jul 1985 | A |
4531991 | Ziemek et al. | Jul 1985 | A |
4545760 | Forster | Oct 1985 | A |
4551095 | Mason | Nov 1985 | A |
4575337 | Fujita | Mar 1986 | A |
4626209 | Tsai et al. | Dec 1986 | A |
4639218 | Jones et al. | Jan 1987 | A |
4659309 | Merkel | Apr 1987 | A |
4661059 | Kanno | Apr 1987 | A |
D290040 | Kelly | May 1987 | S |
4669979 | Snead | Jun 1987 | A |
4669981 | Kurz | Jun 1987 | A |
D291919 | Reynolds | Sep 1987 | S |
4700697 | Mundell et al. | Oct 1987 | A |
4712999 | Rosenberg | Dec 1987 | A |
4752221 | Hanson et al. | Jun 1988 | A |
4773853 | Kussick | Sep 1988 | A |
4781334 | Derichs | Nov 1988 | A |
4781582 | Kesling | Nov 1988 | A |
4793804 | Schudy | Dec 1988 | A |
4795342 | Jones | Jan 1989 | A |
4799882 | Kesling | Jan 1989 | A |
4819316 | Rossini et al. | Apr 1989 | A |
4820151 | Pospisil | Apr 1989 | A |
4838786 | Reher et al. | Jun 1989 | A |
4854866 | Wilson | Aug 1989 | A |
4859179 | Kesling | Aug 1989 | A |
4900251 | Andreasen | Feb 1990 | A |
4917602 | Broussard | Apr 1990 | A |
4927360 | Pospisil | May 1990 | A |
4927362 | Snead | May 1990 | A |
4954080 | Kelly et al. | Sep 1990 | A |
4963092 | Snead | Oct 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4997182 | Kussick | Mar 1991 | A |
5022854 | Broughton et al. | Jun 1991 | A |
5030089 | Kawaguchi | Jul 1991 | A |
5035614 | Greenfield | Jul 1991 | A |
5044945 | Peterson | Sep 1991 | A |
5057012 | Kesling | Oct 1991 | A |
5059119 | Snead | Oct 1991 | A |
5062794 | Miura | Nov 1991 | A |
5066225 | Forbes Jones et al. | Nov 1991 | A |
D322482 | Ianieri et al. | Dec 1991 | S |
5095602 | Reher et al. | Mar 1992 | A |
5120218 | Hanson | Jun 1992 | A |
5125831 | Pospisil | Jun 1992 | A |
5125832 | Kesling | Jun 1992 | A |
5127828 | Suyama | Jul 1992 | A |
5133740 | Kussick | Jul 1992 | A |
5151028 | Snead | Sep 1992 | A |
5154607 | Hanson | Oct 1992 | A |
5158452 | Franseen et al. | Oct 1992 | A |
5160261 | Peterson | Nov 1992 | A |
5161969 | Pospisil et al. | Nov 1992 | A |
D331975 | Pospisil | Dec 1992 | S |
5183388 | Kumar | Feb 1993 | A |
5203804 | Nikutowski et al. | Apr 1993 | A |
5224858 | Hanson | Jul 1993 | A |
5226814 | Allen | Jul 1993 | A |
5230620 | Watanabe | Jul 1993 | A |
5238402 | Rohlcke et al. | Aug 1993 | A |
5242299 | Yoshida | Sep 1993 | A |
D340523 | Barngrover | Oct 1993 | S |
5252066 | Fairhurst | Oct 1993 | A |
5254002 | Reher et al. | Oct 1993 | A |
5267855 | Tuneberg | Dec 1993 | A |
5269680 | Kawaguchi | Dec 1993 | A |
5277581 | Peterson | Jan 1994 | A |
5288229 | Huff et al. | Feb 1994 | A |
5292248 | Schultz | Mar 1994 | A |
5299934 | Suyama | Apr 1994 | A |
5302117 | Kraut et al. | Apr 1994 | A |
5302121 | Gagin | Apr 1994 | A |
5320525 | Forster | Jun 1994 | A |
5320526 | Tuneberg | Jun 1994 | A |
5322435 | Pletcher | Jun 1994 | A |
5322613 | Ohira | Jun 1994 | A |
5356288 | Cohen | Oct 1994 | A |
5358402 | Reed et al. | Oct 1994 | A |
5362232 | Franseen et al. | Nov 1994 | A |
5362233 | Thompson | Nov 1994 | A |
5380196 | Kelly et al. | Jan 1995 | A |
5383784 | Sernetz | Jan 1995 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
D358649 | Moschik | May 1995 | S |
D358650 | Moschik | May 1995 | S |
D359776 | Hilgers | Jun 1995 | S |
5439379 | Hansen | Aug 1995 | A |
5441408 | Moschik | Aug 1995 | A |
5441409 | Tuneberg | Aug 1995 | A |
5443384 | Franseen et al. | Aug 1995 | A |
5454716 | Banerjee et al. | Oct 1995 | A |
5464349 | Andreiko et al. | Nov 1995 | A |
5470228 | Franseen et al. | Nov 1995 | A |
5474444 | Wildman | Dec 1995 | A |
5474445 | Voudouris | Dec 1995 | A |
5505616 | Harwell | Apr 1996 | A |
5522725 | Jordan et al. | Jun 1996 | A |
5545037 | Takeshi | Aug 1996 | A |
5556277 | Yawata et al. | Sep 1996 | A |
5562445 | DeVincenzo et al. | Oct 1996 | A |
5588833 | Risse | Dec 1996 | A |
5595484 | Orikasa et al. | Jan 1997 | A |
5597302 | Pospisil et al. | Jan 1997 | A |
5607301 | Roman | Mar 1997 | A |
5616026 | Cash | Apr 1997 | A |
5618175 | Reher et al. | Apr 1997 | A |
5620321 | Thornburg et al. | Apr 1997 | A |
5622494 | Andreiko et al. | Apr 1997 | A |
5653588 | Moschik | Aug 1997 | A |
5685711 | Hanson | Nov 1997 | A |
5692898 | Orikasa et al. | Dec 1997 | A |
5707231 | Watt et al. | Jan 1998 | A |
5720611 | Teng | Feb 1998 | A |
5727941 | Kesling | Mar 1998 | A |
5729768 | Fields et al. | Mar 1998 | A |
5738514 | DeVincenzo et al. | Apr 1998 | A |
5746592 | Nezu et al. | May 1998 | A |
5746594 | Jordan et al. | May 1998 | A |
RE35863 | Sachdeva et al. | Jul 1998 | E |
5779470 | Kussick | Jul 1998 | A |
5791897 | Wildman | Aug 1998 | A |
5810583 | Doyle | Sep 1998 | A |
5820371 | Forster | Oct 1998 | A |
5829972 | Farzin-Nia | Nov 1998 | A |
5829975 | Gold | Nov 1998 | A |
5857849 | Kurz | Jan 1999 | A |
5871350 | Clark et al. | Feb 1999 | A |
5879157 | Schue | Mar 1999 | A |
5885073 | Kussick | Mar 1999 | A |
5885074 | Hanson | Mar 1999 | A |
5890891 | Doyle | Apr 1999 | A |
5908293 | Voudouris | Jun 1999 | A |
5915550 | Gartz | Jun 1999 | A |
6036489 | Brosius | Mar 2000 | A |
6053458 | Meyer | Apr 2000 | A |
6053729 | Brehm et al. | Apr 2000 | A |
6053759 | Kunert et al. | Apr 2000 | A |
6071119 | Christoff et al. | Jun 2000 | A |
6086364 | Brunson | Jul 2000 | A |
6109916 | Wilcko et al. | Aug 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6126441 | Tenti | Oct 2000 | A |
6142775 | Hansen et al. | Nov 2000 | A |
6162051 | Brehm et al. | Dec 2000 | A |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6193508 | Georgakis | Feb 2001 | B1 |
6206690 | Vargas | Mar 2001 | B1 |
6217322 | Kesling | Apr 2001 | B1 |
6220857 | Abels | Apr 2001 | B1 |
6227849 | Brehm et al. | May 2001 | B1 |
6234792 | DeVincenzo | May 2001 | B1 |
6264469 | Moschik | Jul 2001 | B1 |
6276930 | Pozzi | Aug 2001 | B1 |
6280185 | Palmer et al. | Aug 2001 | B1 |
6302688 | Jordan et al. | Oct 2001 | B1 |
6347939 | Abels | Feb 2002 | B2 |
6354834 | Kanomi | Mar 2002 | B2 |
6358043 | Mottate et al. | Mar 2002 | B1 |
6358046 | Brehm et al. | Mar 2002 | B1 |
6361314 | Garton, Jr. | Mar 2002 | B1 |
6361317 | Rahman | Mar 2002 | B1 |
6368105 | Voudouris et al. | Apr 2002 | B1 |
6371760 | Zavilenski et al. | Apr 2002 | B1 |
6394798 | Huff et al. | May 2002 | B1 |
6428314 | Jones, Jr. et al. | Aug 2002 | B1 |
6461157 | Kussick | Oct 2002 | B1 |
6478579 | Brusse | Nov 2002 | B1 |
6491519 | Clark et al. | Dec 2002 | B1 |
6506049 | Hanson | Jan 2003 | B2 |
6582226 | Jordan et al. | Jun 2003 | B2 |
6592366 | Triaca et al. | Jul 2003 | B2 |
6607383 | Abels et al. | Aug 2003 | B2 |
6616445 | Abels et al. | Sep 2003 | B2 |
6655957 | Abels et al. | Dec 2003 | B2 |
6655958 | Abels et al. | Dec 2003 | B2 |
6656767 | King et al. | Dec 2003 | B1 |
6659766 | Abels et al. | Dec 2003 | B2 |
6659767 | Abels et al. | Dec 2003 | B2 |
6663385 | Tepper | Dec 2003 | B2 |
6668834 | Zikria | Dec 2003 | B1 |
6695612 | Abels et al. | Feb 2004 | B2 |
6705862 | Schultz | Mar 2004 | B2 |
6709268 | Pospisil et al. | Mar 2004 | B2 |
6733286 | Abels et al. | May 2004 | B2 |
6769910 | Pantino | Aug 2004 | B1 |
6776613 | Orikasa | Aug 2004 | B2 |
6776614 | Wiechmann et al. | Aug 2004 | B2 |
6846178 | Freeman, Jr. et al. | Jan 2005 | B2 |
6863528 | Lin | Mar 2005 | B2 |
6877982 | Williams | Apr 2005 | B2 |
6893257 | Kelly | May 2005 | B2 |
6903262 | Blersch | Jun 2005 | B2 |
6910884 | Kelly et al. | Jun 2005 | B2 |
6913459 | Fukutomi | Jul 2005 | B2 |
7001179 | Devincenzo | Feb 2006 | B2 |
7025591 | Kesling | Apr 2006 | B1 |
7033170 | Cordato | Apr 2006 | B2 |
7033171 | Wilkerson | Apr 2006 | B2 |
7055908 | Williams | Jun 2006 | B1 |
7074037 | Macchi | Jul 2006 | B2 |
7094052 | Abels et al. | Aug 2006 | B2 |
7140875 | Lai et al. | Nov 2006 | B2 |
7151541 | Seder | Dec 2006 | B2 |
7153130 | Christoff | Dec 2006 | B2 |
7210927 | Abels et al. | May 2007 | B2 |
7234935 | Abels et al. | Jun 2007 | B2 |
7247018 | Freeman et al. | Jul 2007 | B2 |
7258545 | Hotta | Aug 2007 | B2 |
7267545 | Oda | Sep 2007 | B2 |
7306458 | Lu | Dec 2007 | B1 |
7416408 | Farzin-Nia et al. | Aug 2008 | B2 |
7621743 | Bathen et al. | Nov 2009 | B2 |
7695277 | Stevens | Apr 2010 | B1 |
7704072 | Damon | Apr 2010 | B2 |
7780443 | Hagelganz | Aug 2010 | B2 |
7811087 | Wiechmann et al. | Oct 2010 | B2 |
7850451 | Wiechmann et al. | Dec 2010 | B2 |
7909603 | Oda | Mar 2011 | B2 |
7959437 | Zakhem | Jun 2011 | B2 |
7963768 | Hilliard | Jun 2011 | B2 |
8251697 | Smith et al. | Aug 2012 | B2 |
8376739 | Dupray et al. | Feb 2013 | B2 |
8485816 | Macchi | Jul 2013 | B2 |
20010036615 | Binder | Nov 2001 | A1 |
20020025502 | Williams | Feb 2002 | A1 |
20020110778 | Abels et al. | Aug 2002 | A1 |
20020187452 | Abels et al. | Dec 2002 | A1 |
20030049582 | Abels et al. | Mar 2003 | A1 |
20030064344 | Vazquez | Apr 2003 | A1 |
20030088261 | Schraga | May 2003 | A1 |
20030096209 | Sugiyama et al. | May 2003 | A1 |
20030143509 | Kopelman et al. | Jul 2003 | A1 |
20040244149 | Anscher | Dec 2004 | A1 |
20040259048 | Balabanovsky | Dec 2004 | A1 |
20050069833 | Chikami | Mar 2005 | A1 |
20050244777 | Schultz | Nov 2005 | A1 |
20060014116 | Maijer et al. | Jan 2006 | A1 |
20060019212 | Macchi | Jan 2006 | A1 |
20060046224 | Sondhi et al. | Mar 2006 | A1 |
20060063123 | Cleary et al. | Mar 2006 | A1 |
20060099544 | Lai et al. | May 2006 | A1 |
20060099545 | Lai et al. | May 2006 | A1 |
20060199137 | Abels et al. | Sep 2006 | A1 |
20060228662 | Lokar et al. | Oct 2006 | A1 |
20060228664 | Castner et al. | Oct 2006 | A1 |
20060246392 | Vigolo | Nov 2006 | A1 |
20060252002 | Hanson | Nov 2006 | A1 |
20060257810 | Maijer et al. | Nov 2006 | A1 |
20060263737 | Oda | Nov 2006 | A1 |
20060269889 | Voudouris | Nov 2006 | A1 |
20070054231 | Manemann et al. | Mar 2007 | A1 |
20070092849 | Cosse | Apr 2007 | A1 |
20070166658 | Voudouris | Jul 2007 | A1 |
20070207436 | Tan et al. | Sep 2007 | A1 |
20070224569 | Oda | Sep 2007 | A1 |
20070243497 | Voudouris | Oct 2007 | A1 |
20070248926 | Lai et al. | Oct 2007 | A1 |
20070256694 | Kussick | Nov 2007 | A1 |
20070264606 | Muha | Nov 2007 | A1 |
20070281269 | Forster | Dec 2007 | A1 |
20080014544 | Nucera | Jan 2008 | A1 |
20080128297 | Rose | Jun 2008 | A1 |
20080131831 | Abels et al. | Jun 2008 | A1 |
20080138759 | Kravitz et al. | Jun 2008 | A1 |
20080160474 | Wolf et al. | Jul 2008 | A1 |
20080182219 | Spalty | Jul 2008 | A1 |
20080223377 | Kussick | Sep 2008 | A1 |
20080227047 | Lowe et al. | Sep 2008 | A1 |
20080268398 | Cantarella | Oct 2008 | A1 |
20090004617 | Oda et al. | Jan 2009 | A1 |
20090004618 | Oda et al. | Jan 2009 | A1 |
20090004619 | Oda et al. | Jan 2009 | A1 |
20090042160 | Ofir | Feb 2009 | A1 |
20090162807 | Hagelganz et al. | Jun 2009 | A1 |
20090291404 | Oda | Nov 2009 | A1 |
20090325118 | Lewis et al. | Dec 2009 | A1 |
20100003632 | Ruiz Diaz et al. | Jan 2010 | A1 |
20100062387 | Hilliard | Mar 2010 | A1 |
20100129765 | Mohr et al. | May 2010 | A1 |
20100159411 | Oda | Jun 2010 | A1 |
20100178629 | Oda et al. | Jul 2010 | A1 |
20100196839 | Stevens | Aug 2010 | A1 |
20100196840 | Lai et al. | Aug 2010 | A1 |
20100203463 | Huff | Aug 2010 | A1 |
20100261131 | Ruiz-Vela et al. | Oct 2010 | A1 |
20100279247 | Kesling | Nov 2010 | A1 |
20100285420 | Oda | Nov 2010 | A1 |
20100285421 | Heiser | Nov 2010 | A1 |
20100304321 | Patel | Dec 2010 | A1 |
20110014583 | Romano et al. | Jan 2011 | A1 |
20110020762 | Kanomi et al. | Jan 2011 | A1 |
20110039224 | Cosse | Feb 2011 | A1 |
20110076633 | Bryant | Mar 2011 | A1 |
20110081622 | Mashouf | Apr 2011 | A1 |
20110086322 | Baron et al. | Apr 2011 | A1 |
20110123942 | Rudman et al. | May 2011 | A1 |
20110165532 | Benvegnu′ et al. | Jul 2011 | A1 |
20110287378 | Dupray et al. | Nov 2011 | A1 |
20120070797 | Edgren | Mar 2012 | A1 |
20120322020 | Smith et al. | Dec 2012 | A1 |
20140038121 | Smith et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
8903611 | Aug 1990 | DE |
69228472 | Oct 1999 | DE |
0317098 | May 1989 | EP |
0379668 | Aug 1990 | EP |
0389223 | Sep 1990 | EP |
0397533 | Nov 1990 | EP |
0588961 | Mar 1994 | EP |
0624354 | Nov 1994 | EP |
0875211 | Nov 1998 | EP |
1332727 | Aug 2003 | EP |
1359859 | Nov 2003 | EP |
2130174 | Jul 1999 | ES |
2497657 | Jul 1982 | FR |
2887135 | Dec 2006 | FR |
S64-25847 | Jan 1989 | JP |
H01-160547 | Jun 1989 | JP |
H02-147112 | Dec 1990 | JP |
H03-21236 | Jan 1991 | JP |
H06-507803 | Sep 1994 | JP |
2579431 | Feb 1997 | JP |
11-276504 | Oct 1999 | JP |
2003-102749 | Apr 2003 | JP |
WO 9107925 | Jun 1991 | WO |
WO 9200041 | Jan 1992 | WO |
WO 9220296 | Nov 1992 | WO |
WO 2004039276 | May 2004 | WO |
Entry |
---|
U.S. Appl. No. 10/821,699, filed Apr. 9, 2004, Ricketts. |
U.S. Appl. No. 11/123,470, filed May 5, 2005, Wilson. |
U.S. Appl. No. 13/199,828, filed Sep. 9, 2011, Rudman et al. |
U.S. Appl. No. 13/506,513, filed Apr. 23, 2012, Rudman et al. |
U.S. Appl. No. 13/654,021, filed Oct. 17, 2012, Upchurch, Jr. et al. |
U.S. Appl. No. 13/762,455, filed Feb. 8, 2013, Smith et al. |
U.S. Appl. No. 13/762,994, filed Feb. 8, 2013, Macchi et al. |
U.S. Appl. No. 13/766,997, filed Feb. 14, 2013, Dupray et al. |
U.S. Appl. No. 13/919,545, filed Jun. 17, 2013, Edgren. |
“Direct Bond Tubes,” American Orthodontics, New Products Catalog, 2005, p. 76. |
“Focus on Brackets,” Orthodontic Products, Mar. 2005, pp. 1-2. |
3M Unitek Corporation Catalog, 1990, pp. 1-1, 1-3, 3-7, Figs. A, B. |
Ricketts, “Provocations and Perceptions in Cranio-Facial Orthopedics,” RMO, Inc., Denver, CO, USA, 1989, cover and pp. 982-1021. |
Ortho Organizers, Inc. Advertisement, “Journal of Clinical Orthodontics,” Sep. 1989, 3 pages. |
Epstein, “Bi-Dimensional Orthos Treatment: Benefits and Rationale of Differential Bracket-Slot Sizes,” Clinical Impressions, 1998, vol. 7(3), 6 pages. |
“Buccal Tube,” Sankin, printed Apr. 1, 2004, 7 pages. |
Victory Series Appliance System, Mastering the Art of Orthodontic Application, 3M Unitek Dental Products Division, 1998, 4 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US2010/025488, mailed May 3, 2010. |
Written Opinion for International (PCT) Patent Application No. PCT/US2010/025488, mailed May 3, 2010. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2010/025488, dated Sep. 20, 2011 10 pages. |
Official Action for U.S. Appl. No. 12/724,159, mailed Aug. 27, 2012 8 pages. |
Notice of Allowance for U.S. Appl. No. 12/724,159, mailed Mar. 18, 2013 8 pages. |
U.S. Appl. No. 14/223,194, filed Mar. 24, 2014, Dupray et al. |
Official Action for U.S. Appl. No. 13/762,994 mailed May 5, 2014, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20130302745 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61160653 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12724159 | Mar 2010 | US |
Child | 13939937 | US |