The present invention is generally related to one-piece orthodontic appliances that have a frangible portion, and more particularly, an orthodontic bracket that includes a frangible mechanism to permit closure of an integral cover.
Orthodontic brackets are secured to a patient's teeth for use in selectively straightening the patient's teeth. One type of orthodontic bracket known in the art includes a base having a slot formed thereon. The slot is configured to receive an archwire that extends between different teeth. A separate cover plate is removably attached to the base for use in securing the archwire to the base. One example of the above orthodontic bracket is disclosed in U.S. Pat. No. 4,712,999.
One object of the present invention is to develop an orthodontic bracket of the kind known in the prior art that is low-cost, simple to manufacture, and compact in construction.
The above and other objects of the present invention are satisfied by the features of the present invention as claimed herein and in particular by an inventive orthodontic bracket having a cover and base that are integrally connected together as a single piece. The inventive orthodontic bracket is relatively low-cost and simple to manufacture. This is due in part to the fact that the orthodontic bracket comprises only one single component which does not have to be assembled. In addition, in one embodiment the inventive orthodontic bracket is made from only one single material, preferably including a metal, plastic or ceramic material. More preferably, the bracket comprises a substantially rigid metal material. Furthermore, the cover is integrally formed with the base so as to prevent unwanted separation. Advantageous embodiments are described in the description, the claims and the figures.
The bracket in accordance with the invention is preferably formed in a self-ligating manner, and the archwire is clamped between the cover and the base. It can be advantageous for this purpose for a plurality of locking recesses to be provided on the cover or the base in order to close the cover at different opening widths. Archwires having different cross-section sizes can be inserted into the slot in this way and be fixed there by closing the cover.
In one embodiment, an orthodontic bracket consists of at least two structural portions comprising a base and a ligation cover. However, the base and ligation cover are not separate, but are integrally formed as one contiguous piece by such methods as casting, injection molding, or machining. Upon being manufactured, the base and ligation over are substantially rigidly connected through one or more webs at a hinge mechanism. The web or webs are frangible, allowing the two structural portions to move relative to each other once the web or webs are sheared, yet after shearing, the base and the ligation cover remain interlocked because of the hinge. The one or more webs can be configured in a variety of geometries. For example, the web or webs may be configured horizontally, vertically, or radially from the pin or axle of the hinge. Alternatively, the web or webs by take on a helical or curved form, extending along at least a portion of the length of the pin or axle of the hinge. At some point along the structure of the web or webs, there may be an area of reduced thickness where the fracturing forces are directed.
In a separate aspect of the invention, the base includes a void space that preferably contains or is operatively associated with the pin or axle of the ligation cover. The shape of the void space and/or the pin or axle may be substantially round or oval, or they may be square, rectangular, triangular, hexagonal, octagonal, trapezoidal, polygonal, a parallelogram, or a free-form combination of lines and arcs. The void space may be substantially the same shape as the pin or axle, or they may be dissimilar in shape.
In a separate aspect of the invention, after forming the bracket, such as by casting, injection molding, or machining, the contiguous one-piece bracket consisting of the base and the ligation cover remains contiguous with an unsheared web or webs until at any time during one of the manufacturing, packaging or application processes that sufficient force is applied to fracture the integrally formed web or webs. After forming the bracket, additional manufacturing processes may include sintering, deburring, polishing, sandblasting, coating or plating, painting, and/or adhesive application. During one of these additional manufacturing processes, the web or webs may be sheared, or the shearing of the web or webs may be performed as part of a different manufacturing processes, or shearing of the web or webs may be performed at a later time.
In a separate aspect of the invention, the bracket preferably includes a latch or interlocking mechanism that is formed as part of the initial one-piece manufacturing process, or as part of a later manufacturing process. The latch or interlocking mechanism allows the ligation cover to be secured to the base at a location spaced apart from the hinge mechanism. In addition, the latch or interlocking mechanism allows an archwire placed within the bracket to be ligated when the ligation cover is closed.
Various embodiments of the present invention are set forth in the attached figures and in the detailed description of the invention as provided herein and as embodied by the claims. It should be understood, however, that this Summary of the Invention may not contain all of the aspects and embodiments of the present invention, is not meant to be limiting or restrictive in any manner, and that the invention as disclosed herein is and will be understood by those of ordinary skill in the art to encompass obvious improvements and modifications thereto.
Additional advantages of the present invention will become readily apparent from the following discussion, particularly when taken together with the accompanying drawings.
The present invention is described below by means of example embodiments and with reference to the enclosed drawings, in which are shown:
a-5c are a series of side perspective views of an embodiment of the present invention with its cover in a fully open, partially closed, and closed position;
a-6d are perspective views of possible alternate configurations of the axle and frangible portions interconnected thereto;
a-7d are side elevation views of still other alternate configurations of the axle and frangible portions interconnected thereto; and
a-8e are side elevation views of possible configurations for the pin or axle and the void space structure associated with the present invention.
While the following disclosure describes the invention in connection with those embodiments presented, one should understand that the invention is not strictly limited to these embodiments. Furthermore, one should understand that the drawings are not necessarily to scale, and that in certain instances, the disclosure may not include details which may be necessary to manufacture particular embodiments, such as conventional details of fabrication and assembly.
Referring now to
For the one-piece bracket embodiment, body 26 is preferably integrally formed together with cover 28 during manufacture of the bracket 10. More particularly, in a preferred embodiment, body 26 and cover 28 are integrally molded such as by injection molding, casting, or machining or otherwise manufactured as a single unit, such that the body 26 and cover 28 are an integral piece.
Still referring to
Still referring to
The cover interior surface 45 of the front portion 34 may include at least one projection (not shown) to provide limited surface contact between the cover 28 and archwire A. In addition, the base 26 may also include at least one projection (not shown) to provide limited surface contact between the base 26 and archwire A.
Referring now to
Referring now to
In one embodiment of the present invention, the hinge mechanism 30 preferably includes a frangible portion. More particularly, the hinge mechanism 30 includes a part that is frangible or breaks upon rotating the cover 28 to latch with the base 26. Since the entire bracket 10 is preferably manufactured as single integral unit, the frangible portion is also produced as part of process of making the bracket 10. Referring now to
Referring now to
Although not required, the pin 32 of
The web 50 shown in
Referring now to
Referring now to
Referring now to
Referring still to
Referring now to
In a separate aspect of the invention, a pin is provided that can be moved vertically and/or laterally, and which preferably also rotates. More specifically, a pin 32 is provided that can be moved vertically and/or laterally within the base 26. Several different embodiments of the present invention are discussed below that illustrate this aspect of the invention. In general, the pin 32, can be located in a variety of orientations, and it is to be understood that the pin position in the figures is only exemplary.
Referring now to
The hinge mechanism 78 includes two webs 50. However, instead of two webs 50 as depicted, the hinge mechanism 78 could alternatively be constructed of only one web, or it may be constructed of more than two webs. The hinge mechanism 78 is capable of moving inside the void space 80 because the void space 80 is larger than the pin 32. In use, the cover that is interconnected to the pin 32 is rotated, thereby shearing the connection of the webs 50 with the pin 32. The pin 32 can then be rotated. In addition, the pin can be shifted within the void space 80. For example, the pin 32 can be shifted in accordance with position arrow PA from a first position 82a to second position 82b, where the pin 32 in the second position 82b is laterally and/or vertically displaced relative to the first position 82a. The ability of the pin 32 to move laterally and/or vertically allows for the cover 28 to be shifted during the process of latching the cover 28 to the base 26. For example, if a substantially rigid and/or substantially inelastic material is used to form the base 26 and/or the cover 28, the cover latch member 42 that cooperates with a base latch member 44 may not be able to deflect sufficiently to allow the cover 28 latch to the base 26. If required, a laterally and/or vertically moveable pin 32 allows the cover 28 some motion to permit the latching process. Furthermore, even if sufficiently deformable materials are used to construct the base 26 and/or the cover 28, the moveable pin 32 may provide reduced friction interaction between the bracket 10 and the archwire A.
Referring now to
In a separate aspect of the invention, the pin shape and the void space shape may be preferentially structured to place the pin in a restricted second position. That is, the pin shape and void space may compliment each other, whereby the pin is placed in an area of the void space that limits the lateral and/or vertical movement of the pin when the webs are sheared and the pin is in its second position. Referring now to
Referring now to
After casting, injection molding, or machining the contiguous one-piece bracket 10 that includes the body 26 and the cover 28, the bracket 10 remains a contiguous one-piece bracket to allow for other manufacturing processes, such as sintering, deburring, polishing, sandblasting, coating or plating, and/or paint or adhesive application.
To provide further written description and enablement support for the present invention, especially as to how appliances are manufactured, etc., the following U.S. patents are incorporated herein by reference in their entireties: U.S. Pat. Nos. 6,695,612, 6,659,767; 6,659,766; 6,655,958, 6,655,957; 6,616,445; 6,607,383; 6,347,939; 6,220,857; 4,712,999; and 4,419,078.
To assist in the understanding of the present invention the following list of components and associated numbering found in the drawings is provided herein:
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present application claims the benefit of U.S. Provisional Application No. 60/623,715 filed on Oct. 28, 2004, the entire disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1890487 | Angle | Dec 1932 | A |
3028671 | Berger | Apr 1962 | A |
3391461 | Johnson | Jul 1968 | A |
3435527 | Kesling | Apr 1969 | A |
3494034 | Kesling | Feb 1970 | A |
3504438 | Wittman et al. | Apr 1970 | A |
3526961 | Kesling | Sep 1970 | A |
3765091 | Northcutt | Oct 1973 | A |
3838514 | Polak | Oct 1974 | A |
3854207 | Wildman | Dec 1974 | A |
3874080 | Wallshein | Apr 1975 | A |
3964156 | Williams et al. | Jun 1976 | A |
4028809 | Wallshein | Jun 1977 | A |
4103423 | Kessel | Aug 1978 | A |
4134208 | Pearlman | Jan 1979 | A |
4172999 | Leidich | Oct 1979 | A |
4193195 | Merkel et al. | Mar 1980 | A |
4197642 | Wallshein | Apr 1980 | A |
4219617 | Wallshein | Aug 1980 | A |
D256950 | Sable | Sep 1980 | S |
4242085 | Wallshein | Dec 1980 | A |
4260375 | Wallshein | Apr 1981 | A |
4299569 | Frantz | Nov 1981 | A |
4302532 | Wallshein | Nov 1981 | A |
4354834 | Wilson | Oct 1982 | A |
4386908 | Kurz | Jun 1983 | A |
4415330 | Daisley et al. | Nov 1983 | A |
4419078 | Pletcher | Dec 1983 | A |
4430061 | Webb et al. | Feb 1984 | A |
4478577 | Warren, Jr. | Oct 1984 | A |
4498867 | Kesling | Feb 1985 | A |
4527975 | Ghafari et al. | Jul 1985 | A |
4529382 | Creekmore | Jul 1985 | A |
4531991 | Ziemek et al. | Jul 1985 | A |
4545760 | Forster | Oct 1985 | A |
4626209 | Tsai et al. | Dec 1986 | A |
4659309 | Merkel | Apr 1987 | A |
4661059 | Kanno | Apr 1987 | A |
D290040 | Kelly | May 1987 | S |
4669981 | Kurz | Jun 1987 | A |
D291919 | Reynolds | Sep 1987 | S |
4712999 | Rosenberg | Dec 1987 | A |
4752221 | Hanson et al. | Jun 1988 | A |
4773853 | Kussick | Sep 1988 | A |
4781582 | Kesling | Nov 1988 | A |
4793804 | Schudy | Dec 1988 | A |
4799882 | Kesling | Jan 1989 | A |
4819316 | Rossini et al. | Apr 1989 | A |
4820151 | Pospisil | Apr 1989 | A |
4838786 | Reher et al. | Jun 1989 | A |
4854866 | Wilson | Aug 1989 | A |
4859179 | Kesling | Aug 1989 | A |
4917602 | Broussard | Apr 1990 | A |
4927362 | Snead | May 1990 | A |
4954080 | Kelly et al. | Sep 1990 | A |
4963092 | Snead | Oct 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4997182 | Kussick | Mar 1991 | A |
5022854 | Broughton et al. | Jun 1991 | A |
5030089 | Kawaguchi | Jul 1991 | A |
5044945 | Peterson | Sep 1991 | A |
5057012 | Kesling | Oct 1991 | A |
5059119 | Snead | Oct 1991 | A |
5062794 | Miura | Nov 1991 | A |
5066225 | Forbes Jones et al. | Nov 1991 | A |
D322482 | Ianieri et al. | Dec 1991 | S |
5095602 | Reher et al. | Mar 1992 | A |
5125831 | Pospisil | Jun 1992 | A |
5125832 | Kesling | Jun 1992 | A |
5127828 | Suyama | Jul 1992 | A |
5133740 | Kussick | Jul 1992 | A |
5151028 | Snead | Sep 1992 | A |
5154607 | Hanson | Oct 1992 | A |
5158452 | Franseen et al. | Oct 1992 | A |
5160261 | Peterson | Nov 1992 | A |
5161969 | Pospisil et al. | Nov 1992 | A |
D331975 | Pospisil | Dec 1992 | S |
5203804 | Nikutowski et al. | Apr 1993 | A |
5226814 | Allen | Jul 1993 | A |
5230620 | Watanabe | Jul 1993 | A |
5238402 | Rohlcke et al. | Aug 1993 | A |
5242299 | Yoshida | Sep 1993 | A |
D340523 | Barngrover | Oct 1993 | S |
5254002 | Reher et al. | Oct 1993 | A |
5267855 | Tuneberg | Dec 1993 | A |
5269680 | Kawaguchi | Dec 1993 | A |
5277581 | Peterson | Jan 1994 | A |
5288229 | Huff et al. | Feb 1994 | A |
5292248 | Schultz | Mar 1994 | A |
5299934 | Suyama | Apr 1994 | A |
5302117 | Kraut et al. | Apr 1994 | A |
5302121 | Gagin | Apr 1994 | A |
5320525 | Forster | Jun 1994 | A |
5320526 | Tuneberg | Jun 1994 | A |
5322435 | Pletcher | Jun 1994 | A |
5362232 | Franseen et al. | Nov 1994 | A |
5362233 | Thompson | Nov 1994 | A |
D358649 | Moschik | May 1995 | S |
D358650 | Moschik | May 1995 | S |
D359776 | Hilgers | Jun 1995 | S |
5441408 | Moschik | Aug 1995 | A |
5441409 | Tuneberg | Aug 1995 | A |
5443384 | Franseen et al. | Aug 1995 | A |
5454716 | Banerjee et al. | Oct 1995 | A |
5470228 | Franseen et al. | Nov 1995 | A |
5522725 | Jordan et al. | Jun 1996 | A |
5556277 | Yawata et al. | Sep 1996 | A |
5588833 | Risse | Dec 1996 | A |
5595484 | Orikasa et al. | Jan 1997 | A |
5597302 | Pospisil et al. | Jan 1997 | A |
5607301 | Roman | Mar 1997 | A |
5616026 | Cash | Apr 1997 | A |
5618175 | Reher et al. | Apr 1997 | A |
5622494 | Andreiko et al. | Apr 1997 | A |
5653588 | Moschik | Aug 1997 | A |
5685711 | Hanson | Nov 1997 | A |
5692898 | Orikasa et al. | Dec 1997 | A |
5707231 | Watt et al. | Jan 1998 | A |
5727941 | Kesling | Mar 1998 | A |
5729768 | Fields et al. | Mar 1998 | A |
5746592 | Nezu et al. | May 1998 | A |
5746594 | Jordan et al. | May 1998 | A |
RE35863 | Sachdeva et al. | Jul 1998 | E |
5779470 | Kussick | Jul 1998 | A |
5810583 | Doyle | Sep 1998 | A |
5829972 | Farzin-Nia | Nov 1998 | A |
5857849 | Kurz | Jan 1999 | A |
5871350 | Clark et al. | Feb 1999 | A |
5885073 | Kussick | Mar 1999 | A |
5885074 | Hanson | Mar 1999 | A |
5890891 | Doyle | Apr 1999 | A |
5908293 | Voudouris | Jun 1999 | A |
5915550 | Gartz | Jun 1999 | A |
6053729 | Brehm et al. | Apr 2000 | A |
6086364 | Brunson | Jul 2000 | A |
6109916 | Wilcko et al. | Aug 2000 | A |
6126441 | Tenti | Oct 2000 | A |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6193508 | Georgakis | Feb 2001 | B1 |
6206690 | Vargas | Mar 2001 | B1 |
6217322 | Kesling | Apr 2001 | B1 |
6220857 | Abels | Apr 2001 | B1 |
6227849 | Brehm et al. | May 2001 | B1 |
6264469 | Moschik | Jul 2001 | B1 |
6280185 | Palmer et al. | Aug 2001 | B1 |
6347939 | Abels | Feb 2002 | B2 |
6394798 | Huff et al. | May 2002 | B1 |
6428314 | Jones, Jr. et al. | Aug 2002 | B1 |
6461157 | Kussick | Oct 2002 | B1 |
6478579 | Brusse | Nov 2002 | B1 |
6491519 | Clark et al. | Dec 2002 | B1 |
6607383 | Abels et al. | Aug 2003 | B2 |
6616445 | Abels et al. | Sep 2003 | B2 |
6655957 | Abels et al. | Dec 2003 | B2 |
6655958 | Abels et al. | Dec 2003 | B2 |
6656767 | King et al. | Dec 2003 | B1 |
6659766 | Abels et al. | Dec 2003 | B2 |
6659767 | Abels et al. | Dec 2003 | B2 |
6695612 | Abels et al. | Feb 2004 | B2 |
6705862 | Schultz | Mar 2004 | B2 |
6709268 | Pospisil et al. | Mar 2004 | B2 |
6776613 | Orikasa | Aug 2004 | B2 |
6846178 | Freeman, Jr. et al. | Jan 2005 | B2 |
6893257 | Kelly | May 2005 | B2 |
6910884 | Kelly et al. | Jun 2005 | B2 |
6913459 | Fukutomi | Jul 2005 | B2 |
7025591 | Kesling | Apr 2006 | B1 |
7033171 | Wilkerson | Apr 2006 | B2 |
7210927 | Abels et a | May 2007 | B2 |
7234935 | Abels et al. | Jun 2007 | B2 |
20020025500 | Abels et al. | Feb 2002 | A1 |
20020110771 | Abels et al. | Aug 2002 | A1 |
20020110772 | Abels et al. | Aug 2002 | A1 |
20020110773 | Abels et al. | Aug 2002 | A1 |
20020110774 | Abels et al. | Aug 2002 | A1 |
20020110775 | Abels et al. | Aug 2002 | A1 |
20020110776 | Abels et al. | Aug 2002 | A1 |
20020110777 | Abels et al. | Aug 2002 | A1 |
20020110778 | Abels et al. | Aug 2002 | A1 |
20020187452 | Abels et al. | Dec 2002 | A1 |
20030049582 | Abels et al. | Mar 2003 | A1 |
20050003320 | Freeman et al. | Jan 2005 | A1 |
20050244777 | Schultz | Nov 2005 | A1 |
20060046224 | Sondhi et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
8903611 | Aug 1990 | DE |
69228472 | Oct 1999 | DE |
0317098 | May 1989 | EP |
0379668 | Aug 1990 | EP |
0389223 | Sep 1990 | EP |
0397533 | Nov 1990 | EP |
0875211 | Nov 1998 | EP |
2130174 | Jul 1999 | EP |
1332727 | Aug 2003 | EP |
1359859 | Nov 2003 | EP |
2497657 | Jul 1982 | FR |
64-25847 | Jan 1989 | JP |
1-160547 | Jun 1989 | JP |
2-147112 | Dec 1990 | JP |
3-21236 | Jan 1991 | JP |
2579431 | Feb 1997 | JP |
11-276504 | Oct 1999 | JP |
WO 9107925 | Jun 1991 | WO |
WO 9220296 | Nov 1992 | WO |
WO 2004039276 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
60623715 | Oct 2004 | US |