The present application relates to an orthodontic correction technology; and in particular to an orthodontic bracket designed to receive orthodontic archwires.
Misaligned teeth can adversely affect a person's dental aesthetics, functions, and health. The goal of orthodontic correction is to bring the teeth into proper alignment by using appliances which exert mechanical forces to move the teeth to positions or orientations where the dental functions and aesthetics are improved.
Conventional braces use archwires and brackets to induce corrective force on the teeth. The archwire is pre-shaped and interconnects the teeth through brackets that are fixed to the surfaces of the teeth. When initially installed, the archwire elastically deforms to accommodate the misaligned teeth. The archwire is resilient and exerts forces on the teeth through the brackets to bring the teeth into alignment with the pre-shaped form of the archwire. The archwire exerts continuous forces on the teeth to urge them to their finish positions. Traditional wires are fixed to the brackets using ligatures and strong forces are transmitted to the teeth. With self-ligating brackets, archwires can slide more freely in the bracket slot, achieving orthodontic tooth movement with less pressure and discomfort to the patient.
Prior art discloses self-ligating brackets consisting of a main bracket body attached to a base. An archwire slot extends mesial-distally across the main bracket body and between the gingival and occlusal tie wings. The archwire slot opens edgewise in the opposite direction to the base to receive an archwire. The bracket further consists of a locking clip which allows placement and removal of an archwire in the open position and slides to lock in place to maintain the archwire in the archwire slot in the closed position. Prior art discloses various locking clips or closures designed to achieve the same purpose.
Installation of the archwire with the self-ligating brackets requires specialized tools designed to manipulate the opening and closing of the locking clips or closures. Usually, the placement and removal of an archwire is performed by a person (e.g. dentist) other than the patient who is not able to perform the task alone. Such manipulations can be difficult, especially in the case of lingual brackets. The locking clips or closures add to the complication and cost in the manufacture of the self-ligating brackets. The structure of the locking clips or closures also add edges and protrusions to the bracket body which causes more discomfort to the patient.
It is desirable to make the task of archwire installation easier with an improved bracket design without a locking clip or closure mechanism. The present invention improves upon the deficiencies in prior art devices by simplifying the design and construction of the bracket while retaining the archwire retention characteristics of self-ligating brackets.
In some embodiments of the invention, an orthodontic bracket for use in combination with an archwire to apply corrective force to a tooth is provided. The orthodontic bracket includes a backend surface, a frontend surface, a first side surface, a second side surface, and a passageway. The backend surface is adapted for attachment. The frontend surface is opposite the backend surface. The first side surface is connected between the backend surface and the frontend surface. The second side surface is connected between the backend surface and the frontend surface and opposite the first side surface. The passageway extends from the first side surface to the second side surface. The cross-section of the passageway includes an access opening, an archwire slot, a path portion, and at least one rotation portion. The access opening is configured to allow the archwire to enter the passageway. The archwire slot is formed at the end of the passageway to receive the archwire. The path portion connects the access opening and the archwire slot. The rotation portion is provided in the path portion to allow the archwire to change its orientation.
In some embodiments of the invention, an orthodontic bracket for use in combination with an archwire to apply corrective force to a tooth is provided. The orthodontic bracket includes a backend surface, a frontend surface, a first side surface, a second side surface, and a passageway. The backend surface is adapted for attachment. The frontend surface is opposite the backend surface. The first side surface is connected between the backend surface and the frontend surface. The second side surface is connected between the backend surface and the frontend surface and opposite the first side surface. The passageway extends from the first side surface to the second side surface. The cross-section of the passageway includes an access opening, an archwire slot, and a path portion. The access opening is configured to allow the archwire to enter the passageway. The archwire slot is formed at the end of the passageway to receive the archwire. The path portion connects the access opening and the archwire slot and has a curved form.
In some embodiments of the invention, an orthodontic bracket for use in combination with an archwire to apply corrective force to a tooth is provided. The orthodontic bracket includes a backend surface, a frontend surface, a first side surface, a second side surface, and a passageway. The backend surface is adapted for attachment. The frontend surface is opposite the backend surface. The first side surface is connected between the backend surface and the frontend surface. The second side surface is connected between the backend surface and the frontend surface and opposite the first side surface. The passageway extends from the first side surface to the second side surface. The cross-section of the passageway includes an access opening, an archwire slot, a path portion, and at least one notch. The access opening is configured to allow the archwire to enter the passageway. The archwire slot is formed at the end of the passageway to receive the archwire. The path portion connects the access opening and the archwire slot. The at least one notch is formed on the first side surface and/or the second side surface for retaining an O-ring elastic.
In some embodiments of the invention, an orthodontic bracket for use in combination with an archwire to apply corrective force to a tooth is provided. The orthodontic bracket includes a backend surface, a frontend surface, a first side surface, a second side surface, and a passageway. The backend surface is adapted for attachment. The frontend surface is opposite the backend surface. The first side surface is connected between the backend surface and the frontend surface. The second side surface is connected between the backend surface and the frontend surface and opposite the first side surface. The passageway extends from the first side surface to the second side surface in an extending direction. The cross-section of the passageway including an access opening, an archwire slot, and a curving path portion. The access opening is configured to allow the archwire to enter the passageway. The archwire slot is formed at the end of the passageway to receive the archwire. The path portion connects the access opening and the archwire slot. The path portion further includes at least one twisting portion defined by gradually bending and twisting surfaces, wherein the archwire must swing away from the extending direction of the passageway to pass through the bending and twisting surfaces of the twisting portion.
In some embodiments of the invention, an orthodontic bracket for use in combination with an archwire to apply corrective force to a tooth is provided. The orthodontic bracket includes a backend surface, a frontend surface, a first side surface, a second side surface, and a passageway. The backend surface is adapted for attachment. The frontend surface is opposite the backend surface. The first side surface is connected between the backend surface and the frontend surface. The second side surface is connected between the backend surface and the frontend surface and opposite the first side surface. The passageway extends from the first side surface to the second side surface in an extending direction. The cross-section of the passageway including an access opening, an archwire slot, and a curving path portion. The access opening is configured to allow the archwire to enter the passageway. The archwire slot is formed at the end of the passageway to receive the archwire. The path portion connects the access opening and the archwire slot. The path portion further includes a protrusion formed in the path portion, wherein the archwire must be bent around the protrusion to pass through.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In order to illustrate the purposes, features, and advantages of the invention, the preferred embodiments and drawings of the invention are shown in detail as follows.
In the following detailed description, the orientations of “on”, “above”, “under”, “below”, “left”, and “right” are used for representing the relationship between the relative positions of each element as illustrated in the drawings, and are not meant to limit the invention.
Moreover, although the terms first, second, third, fourth etc. may be used in the following detailed description to describe various elements, regions or sections, these elements, regions or sections should not be limited by these terms. These terms are only used to distinguish one element, region or section from another element, region or section. Thus, a first element, region or section discussed below could be termed a second element, region or section without departing from the teachings of the present invention.
In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Various features may be arbitrarily drawn in different scales for the sake of simplicity and clarity.
Embodiments of the present invention disclose an orthodontic bracket design with a locking system that does not use a locking clip or closure for entrapping an archwire in the archwire slot. The locking system requires the deployment of at least two counteracting (orthodontic) brackets.
The gingival access bracket 100 includes a main body 101 connected to a base 102. The base 102 has a backend surface S1 (cannot be seen in
In addition, the main body 101 and the base 102 of the gingival access bracket 100 collectively have two opposite side surfaces S3, S4 (only one side surface S3 can be seen in
The main body 101 further has a passageway 103 formed therein and extending from the side surface S3 to the side surface S4 for receiving an archwire 30 (see
In some embodiments, the main body 101 and the base 102 may comprise the same material, such as metal, metal alloys, ceramics, resins, plastics, or other materials suitable for use in oral applications. In addition, the main body 101 and the base 102 may be integrally formed in one-piece. For example, the main body 101 and the base 102 may be made of a metal material and may be formed in one piece by metal injection molding (MMA). Alternatively, the main body 101 and the base 102 may be individually produced parts with the same or different materials as described above and may be assembled together via adhesive, welding, or other boding methods. In some alternative embodiments, the main body 101 may also comprise multiple parts and/or multiple materials. Brackets of the present invention may be manufactured in multiple parts, but is assembled to provide the inherent functionality.
Similarly, the occlusal access bracket 200 includes a main body 201 connected to a base 202. The base 202 has a backend surface S1 (cannot be seen in
In addition, the main body 201 and the base 202 of the occlusal access bracket 200 collectively have two side surfaces S3, S4 (only one side surface S3 can be seen in
The main body 201 further has a passageway 203 formed therein and extending from the side surface S3 to the side surface S4 for receiving an archwire 30 (see
The material and manufacturing method of the main body 201 and the base 202 of the occlusal access bracket 200 are similar to the main body 101 and the base 102 of the gingival access bracket 100 and are thus not repeated here.
The gingival access bracket 100 and the occlusal access bracket 200 form a counteracting set. Without specifying the (archwire) access direction, either the gingival access bracket 100 or the occlusal access bracket 200 can be called a counteracting bracket. The counteracting brackets may be used as labial brackets as well as lingual brackets in some embodiments. To achieve the counteracting effect of archwire entrapment, which will be further explained in the following paragraphs, any two adjacent counteracting brackets can be deployed in counteracting pairs where a gingival access bracket is paired with an occlusal access bracket. However, individual bracket can also achieve archwire retention via some features such as a curved passageway (see
On the other hand, the cross-section of the passageway 203 of the occlusal access bracket 200 is designed to include an access opening 203A, an archwire slot 203B, and a curved path portion 203C. The configuration, structure, and function of the access opening 203A, archwire slot 203B and path portion 203C are similar to those of the access opening 103A, archwire slot 103B and path portion 103C of the gingival access bracket 100 and are thus not repeated here. In some embodiments, an archwire 30 can enter the access opening 203A and follow the curved path portion 203C in a generally counterclockwise or clockwise direction to enter the archwire slot 203B of the occlusal access bracket 200.
The maximum archwire size allowed is determined by the size of the archwire slots 103B and 203B. In some embodiments, as shown in
In some embodiments, the width W of the narrowest part of the path portion 103C, 203C is greater than the short side but less than the long side of the rectangular cross-section of an archwire. Accordingly, the archwire is allowed to pass through the path portion 103C and the path portion 203C in a substantially fixed orientation (i.e., without rotation). Moreover, excessive twisting of the archwire during traversal along the path portions 103C and 203C can be avoided.
It should be appreciated that many variations and modifications can be made to the embodiments of the present disclosure. For example,
The rotation portions 103D and 203D are configured to allow an archwire 30 to rotate to change its orientation (the dotted circles in the passageways 103 and 203 depicted in the figure represents that the archwire 30 may rotate in the rotation portions 103D and 203D) before entering the archwire slots 103B and 203B. In some embodiments, the width W′ of the rotation portion 103D (e.g. the diameter of the circular rotation portion 103D) is greater than the (maximum) width W of the path portion 103C, and the width W′ of the rotation portion 203D (e.g. the diameter of the circular rotation portion 203D) is greater than the (maximum) width W of the path portion 203C, so as to allow the archwire 30 to change its orientation. In addition, the rotation portion 103D may be positioned near the archwire slot 103B or at any position of the path portion 103C, and the rotation portion 203D may be positioned near the archwire slot 203B or at any position of the path portion 203C.
In some alternative embodiments, as shown in
Accordingly, the doctor or patient can manually turn segments of the archwire 30 to their original orientations at the rotation portions 103D and 203D, so that the stress loading on the archwire 30 due to twisting is released before the archwire 30 enters the archwire slots 103B and 203B.
It should be appreciated that the above design of the rotation portions 103D and 203D may also be integrated with the embodiments as described above. On the other hand, in the cases of no rotation portion provided in the path portion 103C, 203C of the bracket 100, 200 (e.g., the embodiments shown in
In addition, as shown in
In some embodiments of the present invention as shown in
In some embodiments of the present invention (see
In some embodiments, the O-ring notches 222 are positioned near the archwire slot 203B, as shown in
To keep an auxiliary archwire in the auxiliary archwire slot 226, two O-ring elastics O (not shown in the figure for the purpose of simplicity and clarity) can be installed in the O-ring notches 222 near the auxiliary archwire slot 226 (for example, a pair of O-ring notches 222 above and another pair of O-ring notches 222 below the auxiliary archwire slot 226). However, it should be appreciated that many variations and modifications can be made to the embodiments of the disclosure.
Still referring to
As shown in
In addition to fixed braces applications, the counteracting brackets described above can also be used in patient removable appliances.
The procedure to install the appliance is as follow. First, the uprighting tooth cap 40, the first and second anchorage segments 41 and 42 are installed on the dental arch D without an archwire attached. Next, segments of the archwire 30 are installed on the counteracting brackets 100 and 200 of the uprighting tooth cap 40, the first and second anchorage segments 41 and 42. The archwire installation can be performed by the patient easily due to the counteracting brackets. In some embodiments, the tooth cap segments 40, 41, and 42 may be comprised of segments of aligners, retainers or positioners.
As described above, the counteracting bracket of the present disclosure improves upon the conventional self-ligating bracket in terms of construction, ease of use and patient discomfort. The counteracting bracket has a simplified design without a locking clip or closure mechanism. The dental professional is released from the demanding task of manipulating tiny locking clips or closure mechanisms. Finally, with the removal of additional edges and protrusions of a locking clip or closure mechanism, a simple and easy-to-use bracket is created with smooth surfaces and rounded edges, which reduces patient discomfort. In another aspect, the ease of use also allows the counteracting bracket to be applied in patient removable appliances.
Although embodiments of the present disclosure and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, it will be readily understood by those skilled in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
This application is a Continuation-In-Part of pending U.S. patent application Ser. No. 15/827,184, filed on Nov. 30, 2017 and entitled “ORTHODONTIC BRACKET”, which claims priority of U.S. Provisional Patent Application No. 62/563,771, filed on Sep. 27, 2017, the entirety of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
484668 | Parsons | Oct 1892 | A |
2926422 | Wallshein | Mar 1960 | A |
3052028 | Wallshein | Sep 1962 | A |
3158934 | Waldman | Dec 1964 | A |
3724074 | Wallshein | Apr 1973 | A |
4144642 | Wallshein | Mar 1979 | A |
4511331 | Scebold | Apr 1985 | A |
4936774 | Stoller | Jun 1990 | A |
5762492 | Kanomi | Jun 1998 | A |
7306457 | Vigolo | Dec 2007 | B2 |
7581950 | Kesling | Sep 2009 | B1 |
20060204917 | Clor | Sep 2006 | A1 |
20060246392 | Vigolo | Nov 2006 | A1 |
20060263737 | Oda | Nov 2006 | A1 |
20140120491 | Khoshnevis | May 2014 | A1 |
20160030139 | Braun | Feb 2016 | A1 |
20160235502 | Hagelganz et al. | Aug 2016 | A1 |
20170325912 | Feller | Nov 2017 | A1 |
20180318047 | Kesling | Nov 2018 | A1 |
20180325629 | Cursio | Nov 2018 | A1 |
20190090989 | Jo | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
202821674 | Mar 2013 | CN |
2020821674 | Mar 2013 | CN |
2012-095994 | May 2012 | JP |
WO 2014137654 | Sep 2014 | WO |
WO 2016066514 | May 2016 | WO |
WO-2016066514 | May 2016 | WO |
WO-2016082927 | Jun 2016 | WO |
WO 2017109716 | Jun 2017 | WO |
WO-2017109716 | Jun 2017 | WO |
Entry |
---|
Translation of CN 202821674 from WIPO website translated on May 17, 2020 (Year: 2013). |
Japan Patent Office, Office Action, Patent Application Serial No. 2018-182988, dated Dec. 10, 2019, Japan. |
U.S. Patent Office, Office Action, U.S. Appl. No. 15/827,184, dated Oct. 18, 2018. |
European Patent Office, Search Report, Application No. 18197189.6, dated Jan. 29, 2019, Europe. |
Number | Date | Country | |
---|---|---|---|
20190090990 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62563771 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15827184 | Nov 2017 | US |
Child | 16154599 | US |