The present invention relates to image coding such as moving picture coding. The present invention particularly relates to an orthogonal transform apparatus and an integrated circuit which perform orthogonal transform which is a basic process in image coding and decoding.
Conventionally, there is an orthogonal transform apparatus which performs orthogonal transform which is a basic process in image coding and decoding.
In current moving picture compression and expansion, there are MPEG (Motion Picture Expert Group) moving picture coding standards such as MPEG-1, MPEG-2, MPEG-4, H.264/AVC, and VC-1 which are defined by the standards in order to be compatible with differences in image size and medium employed. For example,
MPEG-1 and MPEG-2 are used for media having a relatively large image size such as DVD, MPEG-4 and one mode of H.264/AVC are used for media having a relatively small image size such as mobile phones or one-segment broadcasting, and H.264/AVC and VC-1 are used for media having a significantly large image size such as HDTV.
When a moving picture is coded, processing is performed by dividing the moving picture into processing-units called macroblocks (MB). MBs are made up of luminance components and chrominance components. There are four luminance components Y0, Y1, Y2, and Y3, and two chrominance components Cb and Cr. Each of the Y and C components includes the 64 pixel components of an 8×8 block.
Orthogonal transform is a process common to MPEG-1, MPEG-2, MPEG-4, H.264/AVC, and VC-1. Orthogonal transform is a process performed for each of the components Y0, Y1, Y2, Y3, Cb, and Cr, and is a technique for transforming a moving picture signal, which is a spatial component, into a frequency component. By performing orthogonal transform, a bias in data is created when a natural image, and the like, is transformed into frequency components, and this works effectively for the data compression in variable-length coding and the like. Furthermore, aside from the coding of moving pictures, such orthogonal transform technique is also a basic process used in audio compression, signal processing, and so on.
Orthogonal transform is different for each of the aforementioned coding standards. First, DCT (Discrete Cosine Transform) is used in MPEG-1, MPEG-2, and MPEG-4. Furthermore, Hadamard transform, integer accuracy orthogonal transform, and so on, are used in new coding standards such as H.264/AVC and VC-1.
It should be noted that DCT is one of the most common orthogonal transforms, and is a lossy transform in which errors arise before and after transformation because the transform base includes decimal precision, whereas the orthogonal transform performed for H.264/AVC, VC-1, and so on, has a feature in which errors before and after transformation do not arise because the transform base is an integer.
In H.264/AVC and VC-1, in addition to orthogonal transform on an 8×8 basis, orthogonal transform on a 4×4 basis is also performed in order to reduce the image error after decoding. The transform matrix in
Although orthogonal transform is expressed in the matrix format in this manner, it is a commonly known problem that, when implemented by performing a simple matrix calculation, a large amount of calculation is required and thus becomes a cause for increased processing time and circuit scale. As such, generally, matrix expansion is performed by making use of the properties of the matrix format, and processing is performed using a high-speed algorithm which reduces the number of calculations. Methods such as Chen and Wang are known as high-speed algorithms.
As is clear from
The illustration on the left side in
Meanwhile, the illustration on the right side of
The two-input basic calculating device 20 performs product-sum calculation for a first input (input at the top-left black circle) and a second input (input at the bottom-left black circle) to the two-input basic calculating device 20, and outputs a first output (top-right black circle). More specifically, the two-input basic calculating device 20 performs the product-sum calculation (first input)×a11+(second input)×a12, and outputs the calculation result as the first output. Here, all and a12 in the above-described mathematical expression are coefficients obtained by the two-input basic calculating device 20 from a coefficient supplying unit, which supplies product-sum calculation coefficients, such as the transform coefficient memory 21 shown in
In existing coding standards such as MPEG-2, DCT processing is implemented using high-speed orthogonal transform algorithms such as that described above. Furthermore, in H.264/AVC, processing is generally implemented according to the procedure described in the written standards. With regard to VC-1, processing is generally implemented by directly performing matrix calculation since high-speed algorithms therefor are not generally known.
Here, the internal workings of the butterfly devices shown in
Meanwhile, H.264/AVC requires a three-input calculating device.
Consequently, in H.264/AVC, an orthogonal transform apparatus which uses a calculating device performing three-input cross-multiplication expanded to the configuration such as that shown in
Patent Reference 1: Japanese Unexamined Patent Application Publication No. 4-229724
Problems that Invention is to Solve
However, there are cases where implementation of a program or circuit which performs processing in all of the plural coding standards is desired. In such cases, it is necessary to have separate programs or circuits for each coding standard. For example, implementation of complex and varied moving picture coding is required of recent semiconductor integrated circuits. Furthermore, lowering of power consumption is also essential. Amidst such a backdrop, having a circuit for each coding standard leads to an increase in the dimensions of the entire semiconductor integrated circuit, and becomes a hindrance to the implementation of plural moving picture coding. Furthermore, the increase in circuit scale also leads to an increase in power consumption and thus hinders the implementation of lowering of power consumption. Furthermore, even from the perspective of calculating devices, using calculating methods separately for each device is inefficient as it does not allow processing standardization, and is also a factor for the occurrence of errors in program management.
The present invention is conceived to solve the aforementioned problems and has as an object to provide an orthogonal transform apparatus which achieves program standardization and the reduction of the dimensions of the entire semiconductor integrated circuit, by implementing plural orthogonal transform processes using one common high-speed orthogonal transform algorithm calculating device or circuit configuration.
More specifically, the object of the present invention is to provide an orthogonal transform apparatus which performs a common high-speed orthogonal transform algorithm which can perform the orthogonal transform in new coding standards such as H.264/AVC or VC-1, and implement existing DCT processing such as that in MPEG-2 by merely changing transform coefficients, without changing the basic calculating unit and the connection relationship of the calculating device as in the conventional configuration.
In order to achieve the aforementioned object, the orthogonal transform apparatus in an aspect of the present invention is an orthogonal transform apparatus which performs orthogonal transform on plural input signals, the orthogonal transform apparatus including: a first butterfly calculating unit including a two-input basic calculating unit configured to perform a product-sum calculation of two inputs on input signals which are part of the plural input signals; a second butterfly calculating unit including a four-input basic calculating unit configured to perform a product-sum calculation of four inputs on input signals which are a remainder of the plural input signals; a third butterfly calculating unit including a two-input basic calculating unit configured to perform a product-sum calculation of two inputs on a result of the calculation by the second butterfly calculating unit; a first delaying unit configured to hold a result of the calculation by the first butterfly calculating unit; a first selecting unit configured to select data from between the result of the calculation by the first butterfly calculating unit and the result of the calculation held by the first delaying unit; a second delaying unit configured to hold a result of the calculation by the third butterfly calculating unit; a second selecting unit configured to select data from between the result of the calculation by the third butterfly calculating unit and the result of the calculation held by the second delaying unit; a fourth butterfly calculating unit including a two-input basic calculating unit configured to perform a product-sum calculation of two inputs on the data selected by the first selecting unit and the data selected by the second selecting unit; and a transform coefficient supplying unit configured to supply, to the first to fourth butterfly calculating units, transform coefficients to be used in the product-sum calculations by the first to fourth butterfly calculating units, wherein the second butterfly calculating unit is configured to switch the product-sum calculation performed by the four-input basic calculating unit of the second butterfly calculating unit, between a predetermined three-input calculation and a predetermined two-input calculation for performance of plural types of orthogonal transforms by the first to fourth butterfly calculating units.
Accordingly, it is possible to provide an orthogonal transform apparatus which can perform the orthogonal processing of new coding standards such as H.264/AVC or VC-1, and can also implement the processing for existing DCT orthogonal transforms such as in MPEG-2 by merely changing transform coefficients, and thus perform a high-speed orthogonal transform algorithm that is common to plural processes, without having to change the basic calculating unit and calculating device connection relationships as in the conventional configuration, since the calculations performed by the four-input basic calculating unit included in the second butterfly unit can be switched between a three-input calculation and a two-input calculation.
In addition, with this, it is possible to implement plural orthogonal transforms using one common high-speed orthogonal transform algorithm calculating unit or circuit configuration, and thus it is possible to achieve program standardization, reduction of dimensions of the entire semiconductor integrated circuit, lowering of power consumption, facilitation of the implementation of plural moving picture coding processes, and inhibition of error occurrence in the management of programs.
According to the above-described configuration, processing for plural orthogonal transforms, particularly orthogonal transforms having different base properties can be implemented using a common orthogonal transform unit. The effect thereof is allowing implementation of program standardization and reduction of dimensions of the entire semiconductor integrated circuit.
Hereinafter, embodiments of the orthogonal transform apparatus and integrated circuit in the present invention shall be described with reference to the drawings.
The orthogonal transform apparatus 50 performs orthogonal transform on plural input signals. Although having a simple configuration, the orthogonal transform apparatus 50 also performs any of the orthogonal transforms among the three types of orthogonal transforms of the orthogonal transform in DCT, the orthogonal transform in H.264/AVC, and the orthogonal transform in VC-1. It should be noted that the orthogonal transform apparatus 50 performs calculation that utilizes Chen's method in the basic algorithm.
Specifically, the orthogonal transform apparatus 50 includes a first butterfly calculating unit 100, a second butterfly calculating unit 101, a third butterfly calculating unit 102, a fourth butterfly calculating unit 103, a fifth butterfly calculating unit 104, a third delaying unit 201, a second delaying unit 202, a first delaying unit 203, a third selecting unit 301, a second selecting unit 302, a first selecting unit 303, a fourth selecting unit 304, and a transform coefficient supplying unit 401.
It should be noted that the orthogonal transform apparatus 50 may be an image display apparatus such as a television which performs orthogonal transform to display moving pictures. It may be a moving picture recording apparatus such as a DVD recorder which performs orthogonal transform in order to record moving pictures. It may be a moving picture imaging apparatus such as a movie camera which performs orthogonal transform in order to record imaged moving pictures, and it may also be a moving picture coding apparatus, for example.
The first butterfly calculating unit 100 ((a) in
The third delaying unit 201 (
On the other hand, when the orthogonal transform apparatus 50 performs the orthogonal transform in VC-1, the third selecting unit 301 switches between selecting the odd-numbered input signals to the orthogonal transform apparatus 50 and selecting the input signals held by the first delaying unit 203.
The second butterfly calculating unit 101 ((b) in
Here, the four-input basic calculating unit is a basic calculating unit which is made to have four inputs as compared to the two-input basic calculating unit (two-input basic calculating device) shown in
The third butterfly calculating unit 102 ((c) in
The first delaying unit 203 (
The second delaying unit 202 (
The first selecting unit 303 (
The second selecting unit 302 (
The fourth butterfly calculating unit 103 ((d) in
The transform coefficient supplying unit 401 (
It should be noted that at least part of the first delaying unit 203, the second delaying unit 202, and the third delaying unit 201 may be configured of a buffer, a memory, or a register, for example.
Here, stated differently, the first selecting unit 303 selects either the results of the calculation by the first butterfly calculating unit 100 or the calculation results held by the first delaying unit 203. In the same manner, the second selecting unit 302 selects either the results of the calculation by the third butterfly calculating unit 102 or the calculation results held by the second delaying unit 202. Furthermore, the third selecting unit 301 selects either the remaining input signals among the plural input signals to the orthogonal transform apparatus 50 or the input signals held by the first delaying unit 203.
The four calculating units of the first butterfly calculating unit 100 to the fourth butterfly calculating unit 103 taken altogether configure a 4-stage pipeline calculating circuit 51 (
The 4-stage pipeline calculating circuit 51 is configured of the totality of the first butterfly calculating unit 100, the second butterfly calculating unit 101, the third butterfly calculating unit 102, and the fourth butterfly calculating unit 103. It should be noted that illustration of the 4-stage pipeline calculating circuit 51 has been omitted in
Hereinafter, the first butterfly calculating unit 100 to the fourth butterfly calculating unit 103 are described in more detail through their relationship with Chen's 4-stage pipeline calculating circuit. The first butterfly calculating unit 100 is the same circuit as the circuit in the area which processes even-numbered input signals, among the first to third stages of Chen's 4-stage pipeline calculating circuit. The second butterfly calculating unit 101 is the same circuit as the part which processes the odd-numbered input signals, out of the first stage of Chen's 4-stage pipeline calculating circuit. The third butterfly calculating unit 102 is the same as the part which processes odd-numbered input signals, among the parts of the second to third stages of Chen's 4-stage pipeline calculating circuit. The fourth butterfly calculating unit 103 is the same as the part of the fourth stage of Chen's 4-stage pipeline calculating circuit.
As described above, the orthogonal transform apparatus 50 is configured by dividing a high-speed algorithm orthogonal transform apparatus performing orthogonal transform processing on input signals that have been processed in some way, into the four butterfly calculating units 100 to 103 which are configured of two-input basic calculating units and four-input calculating units performing product-sum calculation. In addition, the orthogonal transform apparatus 50 includes: in the inputs of the butterfly calculating units 101 and 103, delaying units 203, 202, and 201 which delay the input signals, and selecting units 301, 302, and 303 which select the inputs to the butterfly calculating units 101 to 103 by selecting between the outputs of the delaying units and the input signals or the calculation result from the butterfly calculating unit; and a transform coefficient supplying unit 401 which supplies transform coefficients for orthogonal transform to the respective butterfly calculating units.
Next, the operation of the orthogonal transform apparatus 50 having such a configuration shall be described. First, the operation in the performance of orthogonal transform by the orthogonal transform apparatus 50 shall be described.
The second butterfly calculating unit 101 changes form to the A-type second butterfly calculating unit 101A in (b) in
The A-type second butterfly calculating unit 101A is a calculating circuit which is a combination of two two-input basic calculating units. Specifically, one two-input basic calculating unit out of the two two-input basic calculating units has the second input and the third input to the second butterfly calculating unit 101 as a first input and a second input, respectively, and has the second output and the third output of the second butterfly calculating unit 101 as a first output and a second output, respectively. Furthermore, the other two-input basic calculating unit has the first input, the fourth input, the first output, and the fourth output of the second butterfly calculating unit 101 as a first input, a second input, a first output, and a second output, respectively.
Here, the A-type second butterfly calculating unit 101A has the same configuration as the part corresponding to the second butterfly calculating unit 101 in Chen's 4-stage pipeline calculating circuit.
As such, by having the DCT transform coefficients supplied by the transform coefficient supplying unit 401 and by having the second butterfly calculating unit 101 change to the form of the A-type second butterfly calculating unit 101A described above with reference to (b) in
It should be noted that as a method for the form-changing of the second butterfly calculating unit 101 to the A-type second butterfly calculating unit 101A, for example, it is possible to perform a method of changing form that is based on a transform coefficient 0 supplied by the transform coefficient supplying unit 401, it is also possible to perform a method of changing form by selecting and outputting 0 instead of outputting a calculation result, and changing form may also be perform by other methods.
Here, in the case of changing form by receiving a transform coefficient 0, the second butterfly calculating unit 101 changes form by receiving, from the transform coefficient calculating unit 401, a value 0 for the transform coefficients of the multiplication shown by the broken lines included in the second butterfly calculating unit 101 on the left side of (b) in
Next, the operation for H.264/AVC shall be described.
The second butterfly calculating unit 101 changes form to the
B-type second butterfly calculating unit 101B in (c) in
The B-type second butterfly calculating unit 101B is the same circuit as a calculating circuit 501 which performs three-input cross-multiplication required in the orthogonal transform in H.264/AVC shown in above-described
The H.264/AVC orthogonal transform calculating configuration 500 includes a calculating circuit which performs the three-input cross multiplication shown in aforementioned
The 4-stage pipeline calculating circuit 51 in the present embodiment becomes equivalent to the H.264/AVC orthogonal transform calculating configuration shown in
As such, by having the H.264/AVC transform coefficients supplied by the transform coefficient supplying unit 401 and by having the second butterfly calculating unit 101 change to the form of the B-type second butterfly calculating unit 101B shown in (c) in
It should be noted that as a method for the form-changing of the second butterfly calculating unit 101 to the B-type second butterfly calculating unit 101B in (c) in
Next, the operation for the orthogonal transform in VC-1 shall be described.
The second butterfly calculating unit 101 performs the two rounds of calculations of a first round and a second round, when the orthogonal transform apparatus 50 performs the orthogonal transform in VC-1.
x1, x3, x5, and x7 shown in the left-most end of the top stage in
The top stage in
The first round of calculation performed by the second butterfly calculating unit 101 is as described below.
When the second butterfly calculating unit 101 performs the first round of calculation, the third selecting unit 301 selects, as the data on which the second butterfly calculating unit 101 performs calculating, the input signals to the orthogonal transform apparatus 50 instead of the input signals held by the first delaying unit 203. Specifically, in the first round of calculation, the third selecting unit 301 selects x1, x5, x3, x7 shown in the left end of the top stage in
In the first round of calculation, the third butterfly calculating unit 102 performs calculation on the calculation result of the above-described calculation by the second butterfly calculating unit 101, and specifically performs the calculations y1=(4×d1−16×d7)+(15×d5−9×d3) and y2=(9×d5−15×d3)+(16×d1−4×d7) shown in the center of
The third delaying unit 201 holds the aforementioned d1, d3, d5, d7, or stated differently, x1, x3, x5, and x7 (left end of the top stage in
Meanwhile, the second round of calculation performed by the second butterfly calculating unit 101 is as described below.
The third selecting unit 301 selects d1, d3, d5, d7 held by the third delaying unit 201 during the above-described calculations, when the second butterfly calculating unit 101 and the third butterfly calculating unit 102 perform the second round of calculations. It should be noted that x1_d, x5_d, x3_d, and x7_d shown on the left end of the bottom stage in
In the second round of calculation, the second butterfly calculating unit 101 performs the calculations 9×d1+15×d7, 4×d5−16×d3, −16×d5−4×d3, and 15×d1−9×d7, as shown in the bottom stage in
As the second round of calculation, the third butterfly calculating unit 102 performs the calculations y3=(9×d1+15×d7)+(4×d5−16×d3) and y4=(−16×d5−4×d3)+(15×d1−9×d7), based on the result of the calculation by the second butterfly calculating unit 101.
It should be noted that, the transform coefficient supplying unit 401 supplies the second butterfly calculating unit 101 with transform coefficients that are different to those supplied to the second butterfly calculating unit 101 in the first round of calculation. In the same manner, the transform coefficient supplying unit 401 supplies the third butterfly calculating unit 102 with transform coefficients that are mutually different for the first round of calculation and the second round of calculation.
The first delaying unit 203 (
The second delaying unit 202 holds the calculation result of the calculation performed by the second butterfly calculating unit 101 and the third butterfly calculating unit 102 in the first round of calculation, that is, the calculation result which is the output of the third butterfly calculating unit 102 in the first round of calculation. The second delaying unit 202 performs such holding until the second butterfly calculating unit 101 and the third butterfly calculating unit 102 finish the second round of calculation.
Since the transform apparatus 50 performs the orthogonal transform in VC-1 when the second butterfly calculating unit 101 performs the second round of calculation, the first selecting unit 303 selects the calculation result held by the first delaying unit 203.
The second selecting unit 302 selects, as the data to be used in the calculation by the fourth butterfly calculating unit 103, y3 and y4 shown in the bottom stage in
By using the data selected by the second selecting unit 302 in the aforementioned manner, the fourth butterfly calculating unit 103 uses, in the calculating, the four data of y1, y2, y3, and y4 out of the results of the calculations by the second butterfly calculating unit 101 and the third butterfly calculating unit 102.
As such, it is possible to implement the orthogonal transform (integer precision orthogonal transform) used in VC/1 by having the VC-1 transform coefficients supplied by the transform coefficient supplying unit 401, by having the second butterfly calculating unit 101 change to the form of the A-type second butterfly calculating unit 101A shown in
It should be noted that as a method for the form-changing of the second butterfly calculating unit 101 to the A-type second butterfly calculating unit 101A, it is possible to perform a method of changing from that is based on a transform coefficient 0 supplied by the transform coefficient supplying unit 401, it is also possible to perform a method of changing form by selecting and outputting 0 instead of outputting a calculation result, and changing form may also be perform by other methods.
It should be noted that, in this manner, the orthogonal transform apparatus 50 performs the calculation in the bottom stage (the odd-numbered part), not by butterfly processing but by direct matrix calculation, by using the second butterfly calculating unit 101 and the third delaying unit 201 and inputting the odd-numbered input signals to the second butterfly calculating unit 101 two times and sequentially replacing the transform coefficients each time.
Furthermore, the second butterfly calculating unit 101 switches the product-sum calculation performed by the four-input basic calculating unit of the second butterfly calculating unit 101, between the predetermined three-input calculation (calculation in (b) in
Next, a second embodiment shall be described hereafter.
The orthogonal transform apparatus 50a further includes a fifth butterfly calculating unit 104 and a fourth selecting unit 304, in addition to the configuration in the first embodiment.
The fifth butterfly calculating unit 104 has a four-input basic calculating unit which performs four-input product-sum calculation on the remaining input signals among the aforementioned plural input signals. The fifth butterfly calculating unit 104 is placed in parallel with the second butterfly calculating unit 101 described in the first embodiment, and has the same configuration as that of the second butterfly calculating unit 101 (see (b) in
The fourth selecting unit 304 selects data from the results of the calculations by the second butterfly calculating unit 101 and the fifth butterfly calculating unit 104. The transform coefficient supplying unit 401 supplies, to the fifth butterfly calculating unit 104, transform coefficients to be used in the product-sum calculation by the fifth butterfly calculating unit 104. The third butterfly calculating unit 102 performs product-sum calculation on the data selected by the fourth selecting unit 304.
The second butterfly calculating unit 101 performs the first round of calculation performed by the second butterfly calculating unit 101 in the previously described first embodiment.
The fifth butterfly calculating unit 104 performs the second round of calculation performed by the second butterfly calculating unit 101 in the first embodiment.
The fourth butterfly calculating unit 103 performs calculation based on both the calculation results in the middle stage and the bottom stage in
With the orthogonal transform apparatus 50a, the high-speed algorithm orthogonal transform apparatus includes: the five butterfly calculating units represented by 101, 104, 102, 103, and 100 which are configured of two-input basic calculating units and four-input basic calculating units performing product-sum calculation; the second delaying unit 202 and the first delaying unit 203 which are provided at the input of the fourth butterfly calculating unit 103 and which delay input signals; selecting units 302, 303, 304 which select the input to the butterfly calculating units 102 to 103 by selecting data from between the output from the delaying units and the output from the butterfly calculating units; and the transform coefficient supplying unit 401 which supplies transform coefficients to the respective butterfly calculating units. Here, the fifth butterfly calculating unit 104 is identical to the second butterfly calculating unit 101. In addition, instead of the two-time delaying and inputting of input signals in the first embodiment, the orthogonal transform in VC-1 can be implemented by simultaneously supplying the input signals to the two butterfly calculating units, namely, the second butterfly calculating unit 101 and the fifth butterfly calculating unit 104 which are identical units, and also simultaneously supplying the two butterfly calculating units with different coefficients from the transform coefficient supplying unit 401, and performing the calculations. With this, the processing by the fifth butterfly calculating unit 104 in the second round of calculation is performed simultaneously and in parallel with the processing of the second butterfly calculating unit 101 in the first round, and thus the results of the calculation by the fourth butterfly calculating unit 103 using both the calculation results of the calculations for both the first round and the second round can be outputted swiftly and the orthogonal transform in VC-1 can be performed at high speed.
Next, a third embodiment for the case of performing 4×4 transform matrix orthogonal transform (see previously described
The first butterfly calculating unit 100 performs four-input high-speed orthogonal transform. When the orthogonal transform apparatus 50 performs the orthogonal transform in VC-1, the first butterfly calculating unit 100 performs the calculation of the four-input high-speed orthogonal transform which reduces the error in VC-1, by performing the calculation for the transform coefficients in (c) in
It should be noted that the first butterfly calculating unit 100 also performs the calculation for the four-input high-speed orthogonal transform for reducing the error in H.264/AVC, which is based on the 4×4 transform matrix for H.264/AVC shown in
According to the third embodiment, the first butterfly calculating unit 100 is able to implement the 4×4 orthogonal transform shown in
According to the orthogonal transform apparatuses 50 and 50a in the above-described first through third embodiments, it is possible to provide an orthogonal transform apparatus which can perform the orthogonal processing of new coding standards such as H.264/AVC or VC-1, and can also implement the processing for existing DCT orthogonal transforms such as in MPEG-2 by merely changing transform coefficients, and thus perform a high-speed orthogonal transform algorithm that is common to plural processes, without having to change the basic calculating unit and calculating device connection relationships as in the conventional configuration, since the calculations performed by the four-input basic calculating unit included in the second butterfly unit 101 can be switched.
In addition, with this, it is possible to implement plural orthogonal transforms using one common high-speed orthogonal transform algorithm calculating unit or circuit configuration (4-stage pipeline calculating circuit 51), and it is possible to achieve program standardization, reduction of dimensions of the entire semiconductor integrated circuit, lowering of power consumption, facilitation of the implementation of plural moving picture coding processes, and inhibition of error occurrence in the management of programs.
It should be noted that the orthogonal transform apparatus 50 (
Meanwhile, the orthogonal transform apparatus 50a (
This configuration implements an orthogonal transform unit for processing MPEG-1, MPEG-2, and MPEG-4 by supplying, from the transform coefficient supplying unit 401, the transform coefficients for DCT and transform coefficients of 0 for making the four-input basic calculating unit equivalent to a two-input basic calculating unit. Furthermore, this configuration implements an orthogonal transform unit for processing H.264/AVC by supplying transform coefficients of 0 for making the four-input basic calculating unit equivalent to a three-input calculating unit (see
With this, the orthogonal transform apparatuses 50 and 50a can implement, using a common orthogonal transform unit, the processing for plural orthogonal transforms, particularly for orthogonal transforms having different basal properties.
It should be noted that the present invention is not limited to the previously described embodiments.
For example, the present invention may be implemented as a single-chip semiconductor circuit in the following manner.
The integrated circuit 50c is an integrated circuit which performs orthogonal transform on plural input signals.
It should be noted that the integrated circuit 50c is an example of the “integrated circuit” described in the Claims, and is also an example of the “orthogonal transform apparatus” in the Claims.
The integrated circuit 50c includes an orthogonal transform circuit 601 and a control unit 602.
The orthogonal transform circuit 601 includes the respective parts of the orthogonal transform apparatus 50 in the first embodiment (
It should be noted that, although these respective units are implemented through the wiring implemented in the integrated circuit 50c in the fourth embodiment, the respective units may also be function units implemented through software, or function units implemented through hardware, or they may be implemented through other methods.
By interchanging the inputs and outputs of the integrated circuit 50c, the control unit 602 selectively causes the orthogonal transform apparatus 601 included in the integrated circuit 50c to perform normal orthogonal transform and inverse orthogonal transform.
Furthermore, in the respective embodiments described previously, when the transform coefficients to be used in the product-sum calculations are a power-of-two, each of the first butterfly calculating unit 100 to the fourth butterfly calculating unit 103 (the first butterfly calculating unit 100 to the fifth butterfly calculating unit 104) may also operate as a bit shifter. In this manner, it is possible to make the configuration of each butterfly calculating unit simple and calculation can be executed at high speed, regardless of the performance of various transfer coefficient multiplication.
Furthermore, in the respective embodiments described previously, when the input signal on which product-sum calculation is to be performed or the transform coefficient is 0, each of the first butterfly calculating unit 100 to the fourth butterfly calculating unit 103 (the first butterfly calculating unit 100 to the fifth butterfly calculating unit 104) may output a selected 0 as the output result instead of multiplying the input signal with the transform coefficient. In this manner, unnecessary multiplication is not performed, and it is possible to reduce power consumption, simplify the configuration of the apparatus, and increase the speed of calculation.
Furthermore, in the respective embodiments described previously, when the input signal on which product-sum calculation is to be performed or the transform coefficient is 0, each of the first butterfly calculating unit 100 to the fourth butterfly calculating unit 103 (the first butterfly calculating unit 100 to the fifth butterfly calculating unit 104) may selectively perform multiplying the input signal with the transform coefficient and outputting the selected 0 as the output result instead of multiplying.
Furthermore, in the respective embodiments described previously, the second butterfly calculating unit 101 may function as a two-input basic calculating unit by performing multiplication with a transform coefficient 0, on two input signals among the four input signals, or by selecting 0 as the calculation result instead of multiplying. By adopting such configuration for example, the second butterfly calculating unit 101 changes form to the A-type second butterfly calculating unit 101A shown in (b) in
The orthogonal transform apparatus and integrated circuit according to the present invention are useful in the field of image coding such as in moving picture coding since orthogonal transform processing in the MPEG-1, MPEG-2, MPEG-4, H.264/AVC, and VC-1 moving picture coding standards are possible using one high-speed algorithm orthogonal transform unit.
Number | Date | Country | Kind |
---|---|---|---|
2008-016769 | Jan 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/001959 | 7/23/2008 | WO | 00 | 9/21/2009 |