The present invention relates generally to wave transmission lines and networks, and more particularly to such that include a hybrid-type network.
A waveguide orthomode transducer (OMT) is a radio frequency (RF) device often used to combine or separate orthogonally polarized signals, thus providing polarization-discrimination. OMTs also have important utility as polarization diplexers.
Unfortunately, most OMTs today are not fully satisfactory. For example, they may not be effective in preventing the generation of undesirable higher order modes, or they may not provide sufficiently high isolation between ports, or they may be difficult to manufacture and thus relatively expensive, or they may be unduly bulky and too thick for many important applications.
There are various types of OMTs, and one type based on a turnstile waveguide junction is of interest here because it can overcome some of the just noted shortcomings. Turnstile junction-based OMTs provide port isolation and suppress undesirable higher order modes, particularly across a broad bandwidth. OMTs of this type are therefore particularly used today to provide broadband continuous-wave (CW) duplexing of radio frequency (RF) energy, to generate elliptical polarizations, to transmit linear and receive cross-linear polarizations, to transmit and receive linear polarizations, and to transmit and receive circular polarizations. Such OMTs also may be used to measure the degree of ellipticity of circularly polarized waves, as main mode transducers in single or dual channel rotary joints, and as variable power dividers.
a-b (prior art) are depictions of a typical turnstile junction 10, as might be used in an OMT.
From
The structure depicted in
Continuing now with
Since the turnstile junction 10 is a reciprocal electromagnetic device, driving any two opposite waveguide ports 14 out-of-phase and with e-fields 22a and 22b of equal power will result in transferring essentially their total power to the main waveguide 16 as one of the fundamental modes 20a-b, and substantially no power will enter the other, opposite waveguide ports 14.
To make an operable OMT the four waveguide ports 14 of a turnstile junction 10 need to be connected to some other device or apparatus to provide the just discussed conditions between the respective sets of opposite waveguide ports 14. One traditional approach is to attach each set of two opposite waveguide ports 14 to an E-plane T-junction or a hybrid tee junction serving as an E-plane power divider or combiner to employ the desired equally powered but out-of-phase RF signals.
a-b (prior art) are depictions of a typical hybrid tee 30 (also widely termed a “hybrid junction,” “hybrid T,” and “magic T” in the art). Similar to what is done in
a shows the hybrid tee 30 used as an E-plane power divider/combiner 36 to combine two opposed-polarity e-fields 22a and 22b into one higher power e-field 22c (or to split one high power e-field 22c into out of phase e-fields 22a and 22b having half the power each). In the E-plane power divider/combiner 36 e-fields travel via the two opposed side-ports 33, and via the E-port 34. Conversely,
a-c (prior art) show three different exemplary OMTs that employ turnstile junctions.
In summary turnstile junction-based OMTs generally remain bulky and thick, or else require accepting undesirable performance compromises. And accordingly, what is still needed is an OMT design that provides the advantages of the turnstile junction yet permits the resulting OMT to be small and thin, yet to have high power handling capability, provides low VSWR, to provide high mode purity over a broad bandwidth, to exhibit high isolation between ports, and that is easy to manufacture.
Accordingly, it is an object of the present invention to provide an improved waveguide orthomode transducer.
Briefly, one preferred embodiment of the present invention is a waveguide orthomode transducer. A turnstile junction and four hybrid tees are provided in a first layer. The turnstile junction has a main waveguide and four waveguide ports, and the hybrid tees each respectively have an e-port, two opposed side-ports, and an h-port. The hybrid tees are ring-arranged around said turnstile junction so that the waveguide ports each communicate with an h-port of one of the hybrid tees, so that adjacent of the hybrid tees communicate with each other via their respective side-ports, and so that the e-ports of the hybrid tees form two sets of opposed e-ports. Two h-plane power dividers/combiners are provided in a second layer. The h-plane power dividers/combiners each respectively have an axial-port and two opposed side-ports. The h-plane power dividers/combiners are each arranged so their respective side-ports communicate with different ones of the two sets of opposed e-ports and so the axial-ports of the h-plane power dividers/combiners are polarization ports. This permits a single radio frequency signal including two fundamental orthogonally polarized modes to enter the transducer at the main waveguide and exit the transducer separated at the polarization ports, or it permits two radio frequency signals each including a different fundamental orthogonally polarized mode to enter the transducer at a respective polarization port and exit the transducer combined at the main waveguide.
An advantage of the present invention is that it provides an inherently compact and thin waveguide orthomode transducer (OMT).
Another advantage of the invention is that the OMT may be embodied to have high power handling capability, or may be embodied to trade power handling capability for additional compactness and thickness reduction.
Another advantage of the invention is that the resulting OMT has high mode purity over a broad bandwidth, provides low VSWR, and exhibits high isolation between ports.
And another advantage of the invention is that the OMT is easy to manufacture.
These and other objects and advantages of the present invention will become clear to those skilled in the art in view of the description of the best presently known mode of carrying out the invention and the industrial applicability of the preferred embodiment as described herein and as illustrated in the figures of the drawings.
The purposes and advantages of the present invention will be apparent from the following detailed description in conjunction with the appended figures of drawings in which:
a-b (prior art) depict a typical turnstile junction, as might be used in an OMT, wherein
a-b (prior art) are depictions of a typical hybrid tee, wherein
a-c (prior art) show three different exemplary OMTs that employ turnstile junctions.
a-c are top plan views of an OMT in accord with the present invention, wherein
And
In the various figures of the drawings, like references are used to denote like or similar elements or steps.
A preferred embodiment of the present invention is a waveguide orthomode transducer (OMT). As illustrated in the various drawings herein, and particularly in the view of
Briefly, the inventive OMT combines connecting waveguides as needed, a turnstile junction, and four hybrid tees functioning as both H-plane and E-plane power dividers/combiners on a first layer, and connecting waveguides as needed and two H-plane T-junctions or hybrid tees with terminated E-ports functioning as H-plane power dividers/combiners on a second layer. A waveguide port is provided on the first layer and two polarization ports are provided on and oriented coplanar with the second layer, thus making the OMT notably compact. Furthermore, since there is no interference issue for the elements to avoid, they can be optimally dimensioned, and thus allow the OMT to achieve close to theoretical maximum performance. From a symmetry point of view, only the opposing sets of hybrid tees in the first layer need to be similar. There is no need for all four of the hybrid-tees in the first layer to be similar. Also, the two H-plane power dividers/combiners in the second layer can be different and, if implemented as hybrid tees, they need not be similar to those in the first layer.
a is a top plan view of an OMT 100 in accord with the present invention that shows how the elements in two layers interoperate.
Turning now just to
Turning now just to
And turning to
When a signal with two fundamental orthogonally polarized modes is fed into the main waveguide, the modes (“a” and “b” for the sake of this example) are distributed by the turnstile junction as polarized electric fields (+a, −a, +b, and −b) to the respective waveguide ports.
The respective hybrid tees 30 then function here first as H-plane power dividers, each separating a polarized electric field into left and right portions (defined from the perspective of one looking from the turnstile junction 10 outward). Thus, for instance, the rightmost hybrid tee 30 is used as an H-plane power divider/combiner 38 to split one electric field (+a) into both a left portion (+aL) and a right portion (+aR) as shown.
The hybrid tees 30 next function here as E-plane power combiners, to deliver combined sets of the portions to the second layer 104. So again considering the rightmost hybrid tee 30, it now is used as an E-plane power divider/combiner 36 to combine a positive left portion of a field (+bL) and a negative right portion of a field (−bR) into a pirst part of the b-mode (b1) as shown.
In the second layer 104, the H-plane power dividers/combiners 38 there receive these sets (a1, a2, b1, b2) and, functioning here as combiners, combine them as shown. For instance, the leftmost H-plane power divider/combiner 38 outputs a signal that has all of the parts (a1 & a2; i.e., all of the portions +aL & −aL & +aR & −aR) for the a-mode.
Stated alternately, an initial signal (ab) including an a-mode and a b-mode is separated into a first signal (a) including the a-mode and a second signal (b) including the b-mode. In pseudo code, the goal is ab==>a & b, and it is achieved by:
Of course, the inventive OMT 100 can instead be used to combine a first signal (a) including an a-mode and a second signal (b) including a b-mode into one signal (ab). In pseudo code, the goal here is a & b==>ab, and it is achieved by:
From
Turning now to a SATCOM Ku-band application-based example, using properly designed devices such as the turnstile junction and the hybrid tees, a total thickness of about 16 mm can be achieved for the combined layers. This is notably less than the 20 mm thickness achieved by prior art devices (without making serious performance compromises). And for low power applications, which permit using waveguides with reduced height, the total thickness of embodiments of the present inventive OMT 100 can be further reduced, e.g., down to about 10 mm for the same Ku-band application.
In an application where combined lesser thickness and reduced planar extension (i.e., footprint) is sought, a 3-layer embodiment of the inventive OMT 100 may be employed. For instance, one where one of the power dividers/combiners, particularly the bigger one, is implemented on the 3rd layer can be used to make it as small as the other one. Thus, the transmission lines (e.g., the connecting waveguides 106 in the figures herein) in all of the layers can be optimally dimensioned without any concern about their crossing. It follows that the inventive OMT 100 can be embodied in various shapes and to utilize different types of turnstile junctions, hybrid tees and power dividers/combiners, intermediate waveguides/transmission lines, bends, etc. Even other intermediate connecting devices, like waveguide tapers, can be used in place of the connecting waveguides 106.
While the invention has been described in conjunction with specific embodiments thereof, many alternatives, modifications and variations will be apparent to those of ordinary skill in the art in light of the foregoing description. Accordingly, the invention is intended to embrace all such alternatives, modifications and variations as fall within the broad scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2686901 | Dicke | Aug 1954 | A |
3375472 | Walker | Mar 1968 | A |
3568190 | Wong | Mar 1971 | A |
3670268 | Connerney | Jun 1972 | A |
4047128 | Morz | Sep 1977 | A |
4074265 | True | Feb 1978 | A |
4174507 | Young | Nov 1979 | A |
4413242 | Reeves et al. | Nov 1983 | A |
4504805 | Ekelman et al. | Mar 1985 | A |
5574412 | Nilsson | Nov 1996 | A |
6046702 | Curtis et al. | Apr 2000 | A |
6496084 | Monte et al. | Dec 2002 | B1 |
6504514 | Toland et al. | Jan 2003 | B1 |
6600387 | Cook et al. | Jul 2003 | B2 |
6636127 | Van Meter | Oct 2003 | B2 |
6870512 | Yoneda et al. | Mar 2005 | B2 |
7019603 | Yoneda et al. | Mar 2006 | B2 |
7019706 | Yoneda et al. | Mar 2006 | B2 |
20040135657 | Aramaki et al. | Jul 2004 | A1 |
20050200430 | Aramaki et al. | Sep 2005 | A1 |
20060017641 | Yoneda et al. | Jan 2006 | A1 |
20060097940 | Shimawaki et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060226931 A1 | Oct 2006 | US |