Orthopaedic implant

Information

  • Patent Grant
  • 9358056
  • Patent Number
    9,358,056
  • Date Filed
    Friday, August 28, 2009
    15 years ago
  • Date Issued
    Tuesday, June 7, 2016
    8 years ago
Abstract
An orthopaedic implant system includes an orthopaedic implant implantable at a selected location within a corporeal body. The implant includes a first structural material and a second structural material. The first structural material is non-resorbable relative to the corporeal body and is different relative to the second structural material. The implant is an internal fixation device.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to implants, and, more particularly, to orthopaedic implants.


2. Description of the Related Art


A number of solid metal and resorbable polymer (e.g. PLLA, PGA) screws are known. These screws are generally meant to provide short term (9 months or less) attachment of the soft tissue to the bone until healing and integration can occur.


There are a number of problems associated with the known metal and resorbable screws. Due to the density of the metals that are used in the solid metal screws, it is difficult to examine bone or soft tissue that is near the screw via x-ray, CT, or MRI scan. The screw causes a significant ‘white-out’ in the region of the screw. Tissue healing and integration around the screw is critical to the success of the surgery, thus the ability to evaluate the tissue near the screw is valuable. In addition, the solid metal screws have issues with poor initial fixation and later pull-out of the soft tissue (e.g. pull out of an ACL from the bone) does occur. These are painful and can require follow-up surgery. Certainly any improvements to reduce the rate of pull-out and additional surgery would be desirable.


With respect to the known resorbable screws, issues with poor initial fixation and pull-out also exist. The rate of resorbtion of the polymer can be difficult to control and can occur too quickly for a given patient, increasing the risk of soft tissue pull-out. Further, resorbable materials have been shown to induce fibrous tissue formation between the resorbable implant and the bone, increasing the risk of soft tissue pull-out. This may be due to the local chemistry created as the polymer dissolves.


Further, one individual may need to undergo multiple surgeries on a given joint. However, the more material and/or hard material that remains relative to an orthopaedic implant, the greater the difficulty that material can cause in future surgeries.


What is needed in the art is an orthopaedic screw that allows for more effective fixation of the tissue and visualization with known imaging devices of the tissue near and surrounding the screw. Further, what is needed in the art is an orthopaedic internal fixation device which includes at least two different structural materials, one such structural material being non-resorbable relative to a corporeal body.


SUMMARY OF THE INVENTION

The present invention provides porous screws and screws that can deliver therapeutic agents. Further, the present invention provides a porous screw for attaching various soft tissues to bone, and/or for attaching bone to bone, and/or for delivering therapeutic agents (for example biologics or drugs) to soft tissue and/or bone. Potential uses include, but are not limited to, ACL and PCL reconstruction, medial collateral ligament repair, lateral collateral ligament repair, posterior oblique ligament repair, iliotibial band tenodesis reconstruction, patellar ligament and tendon repair, pedicle screws for spine repair, bone fracture fixation screw, and drug eluting implant (non-load bearing) for delivery of therapeutics.


Further, the present invention provides an orthopaedic internal fixation device which includes at least two different structural materials, one such structural material being non-resorbable relative to a corporeal body.


An embodiment of the present invention provides an orthopaedic screw having a plurality of regions, at least one of which may be porous. The orthopaedic screw includes a head, a tip and at least one thread. The porosity of the screw of the present invention can vary within the part or region, including changes in pore shape, size and density. These characteristics can vary along the length of the screw axis and/or radially (from the outer diameter to the axis).


The orthopaedic screw of the present invention may further include at least one solid region formed of any implantable polymer, reinforced polymer or metal. The solid region of material may be, for example, at the outer portion of the threads and the leading tip of the screw due to the high stresses present during insertion. The solid region may further include the head of the orthopaedic screw of the present invention.


The materials to create the orthopaedic screw of the present invention can be any implantable polymer, metal or ceramic, or any combination thereof. Possible polymers include polyetheretherketone (PEEK), polyetherketone (PEK), polyaryletherketone (PAEK), polyethylene, and resorbable polymers such as polylactic acid (PLA) and polyglycolic acid (PGA).


The thread of the orthopaedic screw of the present invention may be continuous or discontinuous and be a single or multiple lead thread. The inventive screw may further be cannulated or non-cannulated.


The orthopaedic screw of the present invention may further be used to locally deliver therapeutic agents that promote positive tissue response (e.g. increased growth rate, decreased inflammatory response). Such therapeutic agents include, but are not limited to, hydroxyapatite, drugs and biologics.


Another embodiment of the orthopaedic screw of the present invention provides for immediate delivery of a therapeutic agent through channels and/or holes and reservoirs for long-term delivery of a therapeutic agent. Access to the delivery channels, holes and/or reservoirs may be gained by provision of a self-sealing polymer diaphragm which can allow for direct interface with a needle at the time of surgery of post-surgery. Alternatively, a removable cap made of PEEK or other implantable material may provide access to and seal the medicine delivery features of the inventive screw.


Another embodiment of the inventive orthopaedic screw composed of radiolucent material includes a radiopaque marker to indicate position and orientation of the implant on an x-ray, fluoroscope, or similar diagnostic tool. The markers can be made of any number of more dense implantable materials. Options include, but are not limited to implantable metals (stainless steel, titanium, or titanium alloys for example), barium sulfate filled PEEK, carbon filled PEEK, and other polymers with radiopaque material (such as barium sulfate or zirconium dioxide). Examples of the marker structure include one or more of the following: a pin filling some or all of the cannula of a cannulated screw, one of material layers of the inventive screw if manufactured by layering, all or some of the threads, a cross pin, or the head or tip of the screw. The opacity and/or amount of radiopaque material can be controlled so that the marker does not prevent evaluation of the tissue near the screw by x-ray or other diagnostic methods.


The invention in another form is directed to an orthopaedic implant system, including an orthopaedic implant implantable at a selected location within a corporeal body. The implant includes a first structural material and a second structural material. The first structural material is non-resorbable relative to the corporeal body and is different relative to the second structural material. The implant is an internal fixation device.


The invention in another form is directed to a method of using an orthopaedic implant system, the method including the steps of: providing an orthopaedic implant including a first structural material and a second structural material, the first structural material being non-resorbable relative to a corporeal body and being different relative to the second structural material, the implant being an internal fixation device; and implanting the orthopaedic implant at a selected location within the corporeal body.


An advantage of the present invention is that the porous nature of the inventive orthopaedic screw and the ability to deliver therapeutic agents to the surrounding tissue promotes successful tissue integration. Such local delivery of therapeutic agents can aid in such issues as improving the attachment strength of soft tissue to bone in reconstructive surgeries, improving the attachment strength of bone to screw, and strengthen bone in osteoarthritic or osteoporotic patients.


Another advantage is that the orthopedic screw of the present invention can effectively be utilized for long term or short term delivery of therapeutic agents. Another advantage is that the therapeutic agent can be pre-loaded into the device at the factory or loaded by the surgeon before, during or after surgery.


Yet another advantage is that it provides orthopaedic screws and other implants with multiple materials and/or therapeutic delivery capability.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a section view of a porous screw with solid outer threads and tip according to the present invention;



FIG. 2A is a side view of a screw having a continuous thread;



FIG. 2B is a side view of a screw having a discontinuous thread;



FIG. 3 illustrates an implant according to the present invention for immediate delivery of a therapeutic agent;



FIG. 4 illustrates an implant according to the present invention for immediate or sustained delivery of a therapeutic agent;



FIG. 5 illustrates a therapeutic agent delivery implant according to the present invention with sealing cap;



FIG. 6A illustrates an implant according to the present invention with port attachment features;



FIG. 6B illustrates an implant according to the present invention with port attachment features;



FIG. 7A illustrates an implant according to the present invention including a radiopaque marker;



FIG. 7B illustrates an implant according to the present invention including a radiopaque marker;



FIG. 7C illustrates an implant according to the present invention including a radiopaque marker;



FIG. 8 is a schematic representation of a perspective view of a porous sheet to be rolled into a screw according to the present invention;



FIG. 9 is a schematic representation of an end view of the sheet of FIG. 8 during the rolling process;



FIG. 10 is a schematic representation of a sectioned end view of the sheet of FIG. 8 after the rolling process;



FIG. 11 is a schematic representation of the sheet of FIG. 8 after the rolling process;



FIG. 12 is a schematic representation of a perspective view of a spiraled band of material;



FIG. 13 is a schematic representation of a perspective view of screw layers exploded from one another according to the present invention;



FIG. 14 is a schematic representation of a side view of a screw according to the present invention;



FIG. 15 is a schematic representation of a side view of a screw according to the present invention;



FIG. 16 is a schematic representation of a screw blank according to the present invention;



FIG. 17 is a schematic representation of a sheet showing raised threads formed prior to rolling;



FIG. 18 is a schematic representation of a sheet showing threads formed by material removal prior to rolling;



FIG. 19 is a schematic representation of a plan view of a sheet showing threads formed prior to stacking;



FIG. 20 is a schematic representation of a perspective view of a thread prior to assembly to a screw blank; and



FIG. 21 is a schematic representation of an end view of a screw according to the present invention.



FIG. 22 is a schematic representation of a sectional view of a screw according to the present invention;



FIG. 23 is a schematic representation of a sectional view of a screw according to the present invention;



FIG. 24 is a schematic representation of a view of a wedge implant according to the present invention implanted in a corporeal body;



FIG. 25 is a schematic representation of a view of the wedge implant of FIG. 24; and



FIG. 26 is a schematic representation of a sectional view of a screw according to the present invention.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a device which can have a porous nature and can have the ability to deliver therapeutic agents. The porous nature of the device of the present invention and the ability of the device of the present invention to deliver therapeutic agents therethrough addresses existing deficiencies in the known art by promoting successful tissue integration.


The present invention provides a screw that is porous and/or can deliver therapeutic agents to the surrounding tissue. The materials to create this screw can be any implantable polymer, metal or ceramic or combinations of these. Possible polymers include PEEK (Poly(etheretherketone)), PEK (Poly(etherketone)), PAEK (poly(aryletherketone)), polyethylene, and resorbable polymers such as PLA (Poly(lactic acid)) and PGA (poly(glycolic acid)). Likely first candidates are PEEK, reinforced PEEK (reinforcing materials include but are not limited to carbon fiber/particles/nanotubes, barium sulfate, zirconia) and titanium/titanium alloys. The screw of the present invention can include, but does not need to include, the ability to deliver therapeutic agents (such as drugs or biologics) to the surrounding tissue. The therapeutic agent can be selected by the surgeon before the surgery, at the time of surgery, or at any point in time thereafter. In addition, the therapeutic agent can be pre-loaded into the device at the factory through currently acceptable practices or loaded by the surgeon before, during, or after surgery (as a follow-up procedure).


The screw of the present invention can be porous but does not need to be porous.


Screw 10 of the present invention can be fully porous or have select regions of solid material. For example, screw 10 may include porous region 12 and a solid region of material at the outer portion of threads 14 and leading tip 16 of screw 10. The solid region of material at the outer portion of threads 14 and leading tip 16 of screw 10 may be desired due to the high stresses these regions can see during screw insertion (see FIG. 1). In addition, a very rough porous structure on the outer portion of the threads can cause insertion of the screw to be difficult due to its potential to grab versus slide past or cut through bone/soft tissue. The head 15 of screw 10 may be solid. This solid material can be formed of any implantable polymer, reinforced polymer, or metal.


Thread 14 can be continuous (see FIG. 2A) or discontinuous (see FIG. 2B) and be a single or multiple lead thread.


The porosity of the screw can vary within the region(s), including changes in pore shape, size, and density. These characteristics can vary along the length of the screw axis and/or radially (from the outer diameter to the axis).


Another way of improving integration of the surrounding tissue is to deliver therapeutic agents that promote positive tissue response (e.g. increased growth rate, decreased inflammatory response). The orthopaedic screw of the present invention can be used to locally deliver such therapeutic agents to the tissue surrounding the device. Such local delivery of therapeutic agents can aid in such issues as improving the attachment strength of soft tissue to bone in reconstructive surgeries, improving the attachment strength of bone to the screw, and strengthen bone in osteoarthritic or osteoporotic patients. Therapeutic agents include, but are not limited to, hydroxyapatite, drugs, and biologics.


Screws allowing for localized delivery of therapeutic agents, according to the present invention, can be, but need not be, porous. Porous screws according to the present invention can, but need not, allow for localized delivery of therapeutic agents.


Screw 10 can contain reservoirs 18 for the long-term delivery of the therapeutic agents, as illustrated in FIG. 4 and/or channels/holes 20, as illustrated in FIG. 3, for immediate, local delivery of therapeutic agents. Screw 10 can further include a plurality of interconnected pores 22 allowing for local delivery of a therapeutic agent to the surrounding tissue, as shown in FIG. 4. These options are described as follows:

    • 1. Long term delivery.
      • a. Reservoirs. One or more reservoirs 18 can allow for the long term (hours to weeks) delivery of the therapeutic agents. Access to delivery channels 20, reservoir 18, etc. of screw 10 is gained by several ways including:
        • i. Self-sealing polymer diaphragm 24 can allow for direct interface with a needle at the time of surgery or post-surgery (see FIG. 4).
        • ii. A removable cap 26 made of PEEK or another implantable material can also provide access to the therapeutic agent delivery features and seal these features after delivery of the therapeutic agent (FIG. 5). A tool that facilitates insertion of the screw could also aide in assembling cap 26 to the screw.
      • b. Connect to another device. Access to the therapeutic agent delivery features of the screw can be provided by interfacing screw 10 with a device designed to deliver therapeutic agents from subcutaneous to elsewhere in the body (e.g. a port that is frequently used to deliver therapeutic agents from sub-skin to a vein deeper in the chest cavity). The last option can include attachment feature 28 on screw 10 that directly interfaces with port 30, interfaces with catheter 32 (which interfaces with the port 30) or interfaces with an additional component, which can be attached to screw 10 to interface with port 30 or catheter 32—See FIGS. 6A and 6B). FIG. 6B shows an alternative attachment feature 28. Port 30 can have a septum (the center circle of port 30) for receiving an injection of a therapeutic agent.
    • 2. Immediate delivery. No reservoir is required for this approach. The access means of the reservoir design above (self-healing polymer diaphragm 24 and removable cap 26) can also be used to access delivery channels 20 in this design. This design can also include a simple interface with a delivery tool. An example of this is a simple slip fit between a delivery needle and the screw's cannula.
    • A given screw can contain any or all of these options.


Cannulation


The screws can be cannulated or non-cannulated.


Radiopaque Markers—Polymer Implants


If the implant according to the present invention is made of a radiolucent material (for example polymers such as PEEK), radiopaque markers can be included to indicate position and orientation of the implant on an x-ray, fluoroscope, or similar diagnostic tool. Markers can be made of any number of more dense implantable materials. Options include, but are not limited to, implantable metals (stainless steel, titanium, or titanium alloys for example), barium sulfate filled PEEK, carbon filled PEEK, or other polymers with radiopaque material (such as barium sulfate or zirconium dioxide). Examples of the marker design include one or more of the following: pin 36 filling some or all of cannula 38 of a cannulated screw, one of the material layers if the manufacturing method involves material layering (discussed below), all or some of threads 14, cross pin 40, or head 42 or tip 16 of the screw (see FIGS. 7A-C). The opacity and/or amount of radiopaque material can be controlled so that the marker does not prevent evaluation of the tissue near the screw by x-ray or other diagnostic ways (as occurs with current solid metal screws).


Sections (A) through (E) are discussed immediately below. These sections are as follows: (A) manufacturing options for making the porous screw according to the present invention; (B) how to bond parts containing polymer(s); (C) how to bond metal/metal alloy parts; (D) manufacturing options for making screw threads of a screw according to the present invention; and (E) and manufacturing options for cannulation according to the present invention. Sections (A) through (E) are discussed in reference to forming a screw according to the present invention. It is understood, however, that the discussion can be applied or adapted as necessary to other internal fixation devices.


A. Porous Structure—Manufacturing Options According to the Present Invention


The porous structure of the present invention can be manufactured using a variety of methods. These manufacturing options according to the present invention include seven options as follows:

    • 1. Rolled. A porous sheet can be, for example, rolled into a screw. This is essentially the reverse of making a radial, spiral cut that is parallel to the axis of the screw. Layers of different materials can be combined in this process. This process involves the following:
      • a. Make a porous sheet with holes in a pattern so that they line up when rolled.
      • b. Roll sheet (see FIGS. 8-11. FIG. 8 shows a porous sheet 10 according to the present invention to be rolled into a screw 10. FIG. 9 shows an end view of sheet 10 during the rolling process. FIG. 10 shows a sectioned end view of the final product, formed as a screw 10. FIG. 11 shows the sheet 10 with a center 11 formed as a cannula 11 (an open hole through the screw axis), or a porous rod 11, or a solid rod 11). This step can be performed with or without the aid of a center mandrel or rod.
        • 1. The sheet can be rolled without the aid of any center mandrels. This can create a cannulated screw. A biocompatible pin/rod can be inserted in any center hole and bonded to the screw to create a non-cannulated screw.
        • 2. The sheet can be rolled around a removable mandrel. This can create a cannulated screw. A biocompatible pin/rod can be inserted in any center hole and bonded to the screw to create a non-cannulated screw.
        • 3. Alternately the sheet can be rolled around and bonded to a biocompatible rod, creating a non-cannulated screw.
      • c. Bond the rolled material.
    • 2. Spiraled layers. This method is similar to the rolled approach, but this method involves bands of material that are wrapped around one another. The main difference between this method and that of rolling is that in this method, the bands of material translate along the axis while they are wrapped (see FIG. 12. FIG. 12 shows an example of a spiraled band of material 10, the material not having pores). Bands of several materials can be combined and intertwined. All bands can have the same direction and pitch of winding or different directions and pitches. These bands can be wrapped around a mandrel 11 that is later removed to aid in bonding and to create a cannula. They can also be wrapped around a pin 11 which they are then bonded to, creating a non-cannulated screw. An alternate option for creating a non-cannulated screw is to create the screw with or without the aid of a mandrel, then insert and bond a pin within the center hole of the screw.
    • 3. Layered/stacked. Make a number of layers that are stacked and bonded to create the screw. These layers can be parallel to one another. The faces of the layers are perpendicular to the axis of the screw, parallel to it, or any other angle of orientation. To reduce secondary operations, alignment of one layer to another may be desirable. Alignment of layer to layer can be achieved by such ways as alignment fixtures that line up the center cannula (if the screw is cannulated) of each layer to one another (by way of a pin for example), fixtures or implant components/features that align pore or thread features to one another, or fixtures or implant components/features that align features on the outer diameter of each layer to one another. Features can also be created within a given layer to aid in alignment and/or assembly (such as grooves and mating protrusions). FIGS. 13-15 show the stacked manufacturing method. FIG. 13 shows layers 17 of the screw 10 exploded from one another and stacking in the direction of the arrows. FIG. 14 shows a side view of screw 10 with stacked layers 17 perpendicular to the longitudinal axis of screw 10. FIG. 15 shows a side view of screw 10 with stacked layers 17 parallel to the longitudinal axis of screw 10.


      Note: The holes in FIGS. 13-15 can be created by, for example, laser cutting, punching, etching, electrical discharge machining, plasma etching, electroforming, electron beam machining, water jet cutting, stamping, or machining. For polymer based materials, they can be created as the sheets are created by, for example, extruding, injection molding, or hot stamping.
    • 4. Dissolvable material.
      • a. One method involves creating a mixture of powdered implantable material (e.g. PEEK) and a powder (e.g. salt) that is soluble in something in which the implantable material is not soluble (such as water, isopropyl alcohol for the PEEK example). The mixture is then heated to bond the implantable particles together. Pressure can also be applied to aid in the bonding of particle to particle. Heat can be created by convection or other ways (such as coating the powder with a material that absorbs a given range of energy waves—such as laser waves—and causes heating. (e.g. Clearweld coating by Gentex® Corporation)). Finally, dissolve away the filler to create the porous implantable material. This method can create net shape parts or raw material shapes from which individual parts can be created.
      • b. Another method involves mixing an implantable polymer with a dissolvable material such as described above. The mixture is then pelletized and then injection molded to an intermediary or the final part shape. The filler is dissolved away to create the porous implantable polymer.
    • 5. Stereolithography.
    • 6. Laser or electron beam sintering of powdered material.
    • 7. A combination of the above methods: for example, using the dissolvable method to create microporous sheets of PEEK, then stamping larger pores and stacking to create a screw.


B. How to Bond Parts Containing Polymer(S)


Options for Bonding Processes

    • 1. Heat. Heat can be generated in several ways:
      • a. Ultrasonic welding—use ultrasonic waves to create heat at the interface of layers.
      • b. Heat staking—use a heated tool to cause melting between the layers.
      • c. Vibratory welding.
      • d. Laser welding.
      • e. Convection—use an oven to create heat to cause bonding.
      • f. Intermediary layer—for example, use a material that can absorb energy waves that pass through the polymer (for example PEEK) without causing damage. The absorbed energy will cause localized heating. An example of such a coating is Clearweld by Gentex® Corporation. The laser waves that Clearweld absorbs pass through the PEEK without causing damage, allowing the layers to be melted together without large scale damage to the PEEK.
    • 2. Chemical.
      • a. Adhesives—a secondary material (such as adhesive) can be used to bond the material.
      • b. Solvent bonding—a material in which the polymer or reinforced polymer is soluble can be applied to the sheet surfaces allowing multiple surfaces to be bonded to one another.
      • c. Overmolding—overmolding of the polymer or reinforced polymer can provide a chemical bonding
    • 3. Mechanical.
      • a. Overmolding—overmolding of a polymer or reinforced polymer can create a mechanical lock between components on a micro or macro scale (microscale—the molded material locks with surface asperities of the existing material. Macroscale—features such as tongue-groove connections or undercuts). The overmolded material can be a separate component from the layers or one layer can be overmolded onto another layer.
      • b. Features are provided within the layers or by a separate component which provides a mechanical lock—e.g. a pin, snap lock connection, dove-tail, tongue-groove, rivet, melting tabs to create a mechanical lock, etc.
      • c. Some adhesives provide a mechanical bond in addition to or instead of a chemical bond.
    • 4. Combinations of any/all of the above methods.


Order of Processes

    • 1. Bond all layers together at once—especially attractive for methods utilizing energy waves to trigger bonding (e.g. Clearweld coating by Gentex® Corporation or ultraviolet light curable adhesives).
    • 2. Simultaneously bond and roll/stack layers at once—again, may be especially attractive for methods utilizing energy waves to trigger bonding (e.g. if light cannot penetrate all layers of a rolled design in order to activate an adhesive, the rolling operation could take place in a light box allowing for a continuous rolling and adhesive curing operation.
    • 3. Roll/stack layers and bond in increments. This could add a single layer at a time or multiple layers.


C. How to Bond Metal/Metal Alloy Parts


Options for Bonding Processes

    • 1. Heat.
      • a. Laser welding—layers can be laser welded in a number of locations. Two or more layers or wraps of material can be welded together at once depending on the size of the part and alignment of the pores (the laser can access several layers to be bonded through the porosity).
      • b. Spot welding—traditional spot welding can be used to bond two or more layers/wraps of material.
      • c. Diffusion bonding/sintering.
      • d. Vibratory welding.
      • e. Ultrasonic welding.
    • 2. Adhesives.
    • 3. Mechanical ways. Features are provided within the layers or by a separate component which provides a mechanical lock—e.g. a pin, snap lock connection, dove-tail, tongue-groove, rivet, melting tabs to create a mechanical lock etc.
    • 4. Overmolding with an implantable polymer. Overmolding of PEEK or another implantable polymer can create a mechanical lock between components on a micro or macro scale (microscale—the molded material locks with surface asperities of the existing material. Macroscale—features such as tongue-groove connections or undercuts). The overmolded material can be a separate component from the layers or one layer can be overmolded onto another layer.


Order of Processes


As with the polymer materials discussed above, two or more layers of metal can be bonded during increments or as a continuous stacking/bonding process.


D. Making Threads—Manufacturing Options According to the Present Invention

    • 1. Form the threads after the layers have been bonded to create a screw blank (see FIG. 16. FIG. 16 shows the screw blank 10 of the stacked type.)
      • a. Machine the threads
      • b. Hot form the threads with a mold
    • 2. Form threads in the sheets prior to bonding.
      • a. Rolling method: The material will not actually create the complete thread shape until the sheets are formed into the final shape. Continuous or discontinuous threads can be created. Design options for this method include creating raised material that forms the threads (see FIG. 17) or removing material to leave the thread material (see FIG. 18). The raised material in the first method can be created by way of machining, laser ablation, hot stamping, hot or cold forming, chemical etching, electro-discharge machining and similar methods. The material of the second method can be removed by way of machining, laser cutting, stamping, etching, punching, electro-discharge machining, water jet cutting, electron beam machining or other means. FIG. 17 shows a sheet 10 according to the present invention having raised threads 14 formed prior to rolling. FIG. 17 shows raised material to form threads 14. The bottom portion of FIG. 17 (below the broken lines) shows a top view of the sheet 10 prior to rolling. The top portion of FIG. 17 (above the broken lines) shows a side view (more precisely, an edge view) of the sheet 10 prior to rolling. The threads of the bottom portion and top portion of FIG. 17 align with one another per the broken lines, which show the correspondence between the bottom and top portions of FIG. 17. FIG. 18 shows a sheet 10 showing threads 14 formed by material removal prior to rolling. In FIG. 18, D is screw major diameter, t is sheet thickness, and p is screw pitch. FIG. 18 shows a vertical tab T and a horizontal tab T (as oriented on the drawing page), one or both of which may be removable. Porous region is labeled as 12, the circles showing pores. An open area (no material) is labeled as A. The area labeled as B shows a thread region which may be solid or porous or may gradually change from solid to porous starting at the tab and moving inward to the porous region 12. The sheet 10 may be rolled and bonded to make screw 10.
      • b. Stacking method: Continuous or discontinuous threads can also be created by this method. The ‘ears’ of material in each layer 17 form the threads 14 when the layers are stacked (see FIG. 19). These can be created by way of machining, hot stamping, hot or cold forming, dies/punches, chemical etching, electro-discharge machining and similar methods. FIG. 19 shows preformed threads 14 in one layer 17 of a stacked part. Stated another way, FIG. 19 shows a sheet showing threads 14 formed prior to stacking.
    • 3. Add separate threads—Threads can be formed separately and attached to the screw blank. Separate threads can look like 14 in FIG. 20. The material for these threads can include: biocompatible polymers, reinforced biocompatible polymers and/or biocompatible metals. The attachment ways for these threads include:
      • a. Mechanical attachment—press/interference fit, tabs.
      • b. Overmolding—mold the solid, porous, or reinforced polymer screw inside of the solid threads or mold the porous, solid or reinforced polymer threads onto the already formed screw.
      • c. Adhesive or solvent bonding.


E. Cannulation—Manufacturing Options According to the Present Invention


With any of the manufacturing methods, screws can be created with or without a cannula.






    • 1. Cannulated.
      • a. Rolling method. In this method, it can be desirable to wind the material around a mandrel that is at the center of the screw, running along its axis. This mandrel can be removed to leave an open cannula (see FIG. 21). FIG. 21 shows a screw 10 with an open cannula after the mandrel is removed during the rolling method.
      • b. Layered method. A center hole at the axis of each layer is created to form the cannula when they are stacked together.

    • 2. Non-cannulated.
      • a. Rolled method.
        • i. The sheet can also be bonded to the mandrel, with the mandrel forming a portion of the implant. This mandrel can be solid or porous and of any implantable material such as PEEK or titanium.
        • ii. In addition, the material can be formed around a removable mandrel, creating a cannula. This cannula can be then be filled with a biocompatible material that is attached/bonded to the screw.
      • b. Layered method. The layers that are stacked to create the screw can have solid material in place of the holes that would create the cannula. Alternately, they can have cut-outs creating the cannula and this cannula can be filled with a biocompatible material that is attached/bonded to the screw.





Referring now to FIG. 22, there is shown an orthopaedic implant system 50 which includes an orthopaedic implant 52 implantable at a selected location within a corporeal body 54. Implant 52 includes a first structural material 56 and a second structural material 58. First structural material 56 is non-resorbable relative to corporeal body 54 and is different relative to second structural material 58. Stated another way, implant 52 is made of dissimilar materials, first and second structural materials 56 and 58 being dissimilar relative to one another. Implant 52 can be made of additional structural materials as well. Implant 52 is an internal fixation device.


“Structural material” refers to material forming part of the structure of the device. In other words, a therapeutic agent would not be a structural material as used herein. A corporeal body herein means the physical body of a human being or of an animal (i.e., a veterinary patient). Thus, a corporeal body is one of flesh and bones. The corporeal body can be alive or dead. The corporeal body can also be referred to as a patient body herein, which includes both human and veterinary “patients”, alive or dead. “Therapeutic agent” is a general term and includes, but is not limited to, pharmaceuticals and biologics (i.e., biological matter). Therapeutic agents can be variously referred to herein, without limitation, as drugs, pharmaceuticals, medicinal agents, or biologics. Therapeutic agents can be formed, for example, as a liquid, a solid, a capsule, or a bead.


An internal fixation device is a device which attaches something to the skeleton (one or more bones) of the corporeal body. An internal fixation device according to the present invention includes, but is not limited to, a bone screw, a bone anchor, a bone tack, a bone graft, or a bone plug. A bone screw, for example, can be used to fix soft tissue (i.e., muscles, ligaments) to bone, or to fix bone to bone. An internal fixation device can be implanted within the corporeal body. Such internal fixation devices may include threads for affixation; alternatively, such internal fixation devices may include barbs (rather than threads) to provide the affixation, may have a smooth shaft with blades at the end of the shaft (the barbs providing the affixation), or may form a press fit with, for example, bone. These examples of the device and the usages of the device are provided by way of example and not by way of limitation.



FIG. 22 shows an orthopaedic bone screw 52 according to the present invention. Screw 52 includes a body 60 made of first structural material 56. Body 60 defines a plurality of pores 62 such that screw 52 is a porous screw. Second structural material 58 fills pores 62. Second structural material 58 can be resorbable relative to corporeal body 54. Alternatively, second structural material 58 can melt away in corporeal body 54. Second structural material 58 can encapsulate or otherwise carry at least one therapeutic agent 64. After implant is implanted in corporeal body 54, second structural material 58, after a predetermined period of time, is configured for melting away in corporeal body 54 and/or resorbing relative to corporeal body 54. Second structural material 58 is configured for releasing said at least one therapeutic agent 64 into corporeal body 54 as said second structural material 58 melts and/or resorbs relative to corporeal body 54. Body 60 is configured for receiving bone and/or soft tissue ingrowth (shown by arrow 66) therein as second structural material 58 melts and/or resorbs relative to corporeal body 54. Thus, in use, screw 52 is implanted in bone 55 of corporeal body 54. After a predetermined period of time, second structural material 58 melts away in corporeal body 54 and/or is resorbed relative to corporeal body 54. First structural material 56 remains implanted in body 54, since material 56 is not resorbable relative to corporeal body 54. Therapeutic agent(s) 64 can thereby be released into corporeal body 54. If second structural material 58 is meltable in corporeal body 54, second structural material 58 has a lower melting point than first structural material 56. Further, glycerine can be used as second structural material 58; glycerine would not resorb relative to corporeal body 54. Glycerine can be injection molded (or a similar process can be used) to form, in part, screw 52.



FIG. 23 shows an orthopaedic bone screw 152 according to the present invention. Structural features in FIG. 23 corresponding to similar features in FIG. 22 have reference characters raised by multiples of 100. FIG. 23 shows screw 152 implanted in bone 155 of corporeal body 154. Screw 152 includes a core 168, a head 170 attached to core 168, and a plurality of threads 172 about core 168 that are affixed to core 168. Core 168 is made of second structural material 158. Head 170 is made of first structural material 156. Threads 172 (or at least the tips of threads) include first structural material 156 or another structural material which is non-resorbable relative to corporeal body 154. Second structural material 158 (1) has a lower melting point than first structural material 156, (2) is softer than first structural material 156 but not resorbable or meltable in corporeal body 154, and/or (3) is resorbable relative to corporeal body 154.


Second structural material 156 may have a lower melting point than first structural material 156 but not be meltable within corporeal body 154. In this case, having a second structural material 158 which has a lower melting point than first structural material 156 is helpful during the manufacturing process relative to screw 152. Such a second structural material 158 can be injection molded (or a similar process can be used) into and/or relative to the higher melting temperature first structural material 156 to create the final product (i.e., screw 152). This permits the making of unique internal fixation devices, such as unique bone screws. Further, as indicated above, second structural material 156 may indeed be such that it can melt away in corporeal body 154. In use, if core 168 is designed to melt away or resorb relative to corporeal body 154, then only threads 172 and head 170 remain after such melting or resorbing.


Further, when second structural material 158 is softer than first structural material 156 but not resorbable or meltable relative to corporeal body 154, second structural material 158 is configured for facilitating selectively cutting through orthopaedic implant 152 after orthopaedic implant 152 has been implanted in corporeal body 154.



FIGS. 24 and 25 show an orthopaedic augmentation device, such as a bone wedge 252, according to the present invention. Structural features in FIGS. 24-25 corresponding to similar features in FIGS. 22 and/or 23 have reference characters raised by multiples of 100. FIG. 24 shows a knee joint with the femur 257 and the tibia 259 and wedge 252 implanted in the tibia 259. FIG. 24 shows wedge 252 without pores 262 for simplicity and to avoid confusion; it is understood that wedge 252 in FIG. 24 indeed includes pores 262, as shown in FIG. 25. FIG. 25 shows wedge implant 252 with pores 262. After the surgeon performs a tibial osteotomy, wedge 252 can be implanted in the open space in the tibia 259. Wedge 252 includes a body 260 made of first structural material 256. Body 260 defines a plurality of pores 262 such that wedge 252 is a porous wedge. Second structural material 258 fills pores 262. Second structural material 258 can be resorbable relative to corporeal body 254. Alternatively, second structural material 258 can melt away in corporeal body 254. Second structural material 258 can encapsulate or otherwise carry at least one therapeutic agent 264. After implant 252 is implanted in corporeal body 254, second structural material 258, after a predetermined period of time, is configured for melting away in corporeal body 254 and/or resorbing relative to corporeal body 254. Second structural material 258 is configured for releasing at least one therapeutic agent 264 into corporeal body 254 as said second structural material 258 melts and/or resorbs relative to corporeal body 254. Body 260 is configured for receiving bone and/or soft tissue ingrowth 266 therein as second structural material 258 melts and/or resorbs relative to corporeal body 254. Thus, in use, wedge 252 is implanted in tibia 259 of corporeal body 254. After a predetermined period of time, second structural material 258 melts away in corporeal body 254 and/or is resorbed relative to corporeal body 254. First structural material 256 remains implanted in body 260, since material is not resorbable relative to corporeal body 254. Therapeutic agent(s) 264 can thereby be released into corporeal body 254.



FIG. 26 shows an orthopaedic bone screw 352 according to the present invention. Structural features in FIG. 26 corresponding to similar features in FIGS. 22, 23, 24, and/or 25 have reference characters raised by multiples of 100. FIG. 26 shows screw 352 implanted in bone 355 of corporeal body 354. Screw 352 includes a core 368 and a plurality of threads 372 about core 368. Core 368 is made of second structural material 358. Threads 372 are made of first structural material 356. Threads 372 (or at least the tips of the threads 372) include a plurality of pores 362 which are configured for receiving bone and/or soft tissue ingrowth 366 therein. Stated another way, the porous thread tips of threads 372 serve to encourage rapid bone and/or tissue ingrowth and thereby provide a more stable construct when implanted in corporeal body 354. Second structural material 358 (1) has a lower melting point than first structural material 356, (2) is softer than first structural material 356 but not resorbable or meltable in corporeal body 354, and/or (3) is resorbable relative to corporeal body 356. The purpose and behavior of second structural material 358 with regard to these three alternatives are described above and apply to screw 352 as well.


With regard to the internal fixation device of the present invention, the first structural material can include stainless steel, titanium, a titanium alloy, a cobalt chrome alloy, polyetheretherketone, and/or polyethylene. These examples of the first structural material are provided by way of example and not by way of limitation.


In one embodiment of the internal fixation device of the present invention, the first structural material can be polyetheretherketone, the second structural material being softer than the first structural material. The second structural material can be polyethylene. These examples of the first and second structural materials are provided by way of example and not by way of limitation.


In another embodiment of the internal fixation device of the present invention, the first structural material can be titanium, the second structural material being softer than the first structural material. The second structural material can be polyetheretherketone. These examples of the first and second structural materials are provided by way of example and not by way of limitation.


In another embodiment of the internal fixation device of the present invention, the first structural material can be titanium, the second structural material having a lower melting point than the first structural material. The second structural material can be polyetheretherketone or polyethylene. These examples of the first and second structural materials are provided by way of example and not by way of limitation.


In another embodiment of the internal fixation device of the present invention, the first structural material can be polyetheretherketone, the second structural material having a lower melting point than the first structural material. The second structural material can be polyethylene. These examples of the first and second structural materials are provided by way of example and not by way of limitation.


The present invention thus provides orthopaedic screws and other implants with multiple materials and/or therapeutic delivery capability. More specifically, the present invention provides the following:

    • 1) The combination of a porous or hollow screw or other medical implant with other dissimilar material (this combination hereinafter referred to as “the device of Item (1)”).
      • a. The device noted in Item (1) with the ability to deliver therapeutic agents (hereinafter “the device of Item (1a)”).
      • b. The device of Item (1) with the ability to allow the body's building blocks (stem cells, etc.) to flow into the device to promote tissue healing and in-growth.
      • c. The device of Item (1) and/or the device of Item (1a) with the ability to allow the in-growth of tissue into non-resorbable portions of the screw (hereinafter “the device of Item (1c)”).
      • d. The device of Item (1) and/or the device of Item (1c) with the ability to allow the in-growth of tissue into the space occupied by the resorbable material (hereinafter “the device of Item (1d)”).
      • e. The device of Item (1) and/or the device of Item (I d) with the ability to reduce the amount of residual (over a period of time the resorbable material will dissolve) material in the body while structural/strengthening member remains behind.
    • 2) Porous screw (hereinafter “the device of Item (2)”).
      • a. The device of Item (2) with the ability to deliver therapeutic agents (hereinafter “the device of Item (2a)”).
      • b. The device of Item (2) with the ability to allow the body's building blocks (stem cells, etc.) to flow into the device to promote tissue healing and in-growth.
      • c. The device of Item (2) and/or the device of Item (2a) with the ability to allow the in-growth of tissue into the screw.
    • 3) Specific Design Combinations, such as:
      • a. PEEK (polyetheretherketone) with Resorbable material
      • b. Titanium with Resorbable material
      • c. Any other combinations of metals and plastics and/or resorbables.
    • 4) Other implants having combinations of materials. Examples of these implants include, but are not limited to, the following: bone augment or wedge, tacks, bone plug, and fusion devices.
    • 5) The manufacturing method can include manufacturing steps disclosed above. The present invention thus includes these manufacturing steps along with the added step of molding a second structural material within the screw, the second structural material having a lower melting point than the first structural material, being softer than the first structural material (but not resorbable or meltable in the corporeal body), and/or being resorbable in the corporeal body.


Unless specifically indicated otherwise, the meaning of “tissue”, as used herein, refers to bone and/or soft tissues.


The present invention thus generally provides implants including multiple materials. Examples of such implants include, but are not limited to, the following: screws, bone augmentations or wedges, tacks, anchors, bone plugs, and fusion devices. These devices, according to the present invention, include a plurality of materials, with at least one material being non-resorbable. The devices of the present invention are configured for attaching various soft tissues to bone, and/or for attaching bone to bone, and/or for delivering therapeutic agents (for example biologics or drugs) to soft tissue and/or bone, and/or for promoting the fusion of one or more bone pieces or bones.


As discussed above, the devices include at least one non-resorbable material (material A—that is, the first structural material as described above). Examples of non-resorbable, implantable materials include, but are not limited to, stainless steel, titanium, titanium alloy, cobalt chrome alloys, PEEK (Poly(etheretherketone)), and polyethylene. This material can be in any form such as solid, porous, or laminate. The device includes at least one additional material (material B—that is, the second structural material as described above). Material B can be a non-resorbable material (for example any of those listed above), can be a material which resorbs in the corporeal body, can have a lower melting point than the Material A, and/or can be softer than the Material A (but not resorbable or meltable in the corporeal body). Examples of resorbable, implantable materials include, but are not limited to, PLA (Poly(lactic acid)), PGA (poly(glycolic acid)), and PLLA (Poly-L-Lactic-acid). The device can include additional resorbable and non-resorbable materials.


The devices of the present invention provide the following:

    • Minimize the amount of material and/or hard material (such as metal) that remains in the body in the long term (beyond the time typical resorbable materials resorb).
    • Provide an option to deliver therapeutics to surrounding tissue.
    • Provide regions for tissue ingrowth.


The following discusses each of these three in more detail.

    • 1. Minimize long-term material and/or hard material (such as metal). Because one individual may need to undergo multiple surgeries on a given joint, it is desirable to minimize the amount of material and/or hard material remaining in the body long-term. The more material and/or hard material that remains, the greater the difficulty it can cause in future surgeries. For example, if a solid metal or PEEK screw is left in a femoral condyle and a subsequent total knee replacement (TKR) is required, that screw may interfere with the placement of the TKR implants. If the screw does interfere, it can be removed or cut through. Minimizing the long term material and/or hard material that remains can allow the surgeon to more easily cut through the screw and place the subsequent implant.
      • a. An implant with one or more resorbable and/or meltable portions and one or more non-resorbable portions provides a way of minimizing the long-term material. One example of this type of implant is a screw including a porous scaffold made from non-resorbable material with resorbable and/or meltable material filling some or all pores (see FIG. 22). For instance, a porous PEEK screw can be filled with PLLA. Another example provides a screw including non-resorbable thread tips and screw head, while the remainder of the screw includes a soft polymer material such as polyethylene (see FIG. 23). A third example is that of a porous tibial bone replacement wedge (see FIGS. 24 and 25). Resorbable material can be used to fill the pores in a non-resorbable porous material to provide increased strength while the surrounding bone is healing in addition to the benefits discussed in (2) and (3) below.
        • One role of the resorbable and/or meltable material (the second structural material), as well as the soft material, is to provide additional strength and support (beyond that of the non-resorbable material(s) alone) during insertion and in first weeks after surgery, as the tissue heals. For example, in ACL reattachment, the screw that attaches the ACL to the bone must carry less and less load as the ACL heals and reattaches to the bone. Thus, as time passes lower strength and stiffness is required than during implantation and immediately after the surgery. The resorbable and/or meltable material can be designed to resorb and/or melt at a rate such that sufficient material properties are maintained through the time required for tissue healing.
        • One role of the non-resorbable material (the first structural material) is to provide additional strength and support (beyond that of the resorbable and/or meltable materials(s) alone) during insertion. For example, in ACL reattachment, the screw that attaches the ACL to the bone can fracture during insertion causing surgical delays. Addition of the non-resorbable material can prevent insertion failure by increasing the overall strength of the device.
    • 2. Delivery of therapeutic agents. The resorbable and/or meltable material (the second structural material) can also be used to carry therapeutic agents to the tissue surrounding the implant. Examples of the goal of these agents include, but are not limited to, encouraging tissue healing and ingrowth, preventing and/or treating infection, preventing and/or treating osteoarthritis, and/or reducing pain. Some types of agents that can be delivered are, but are not limited to, drugs and/or biologic agents (cells, proteins, growth factors). The resorbtion and/or meltable rate of the resorbable and/or meltable material and release rate of the therapeutic agents can be customized to a given application.
    • 3. Porous to allow for tissue ingrowth. Porous regions can allow for tissue ingrowth, providing a potentially more stable device than without the regions of ingrowth. The entire device or specific regions (such as the thread tips—see FIG. 26) can be porous. The device in FIG. 26 can be manufactured by creating the porous threads (some specific ways of doing so are disclosed above) and then insert molding the resorbable and/or meltable core. The concept of a porous screw is disclosed above.


The present invention thus provides for a porous screw with resorbable, meltable, and/or soft materials to provide increased strength, allow for design options that would leave less residual and/or hard material, provide another vehicle for the delivery of therapeutic agents, and provide a way to manufacture internal fixation devices having one material that has a lower melting point than the other material.


The present invention further provides a method for using an orthopaedic implant system 50, the method including the steps of: providing an orthopaedic implant 52 including a first structural material 56 and a second structural material 58, the first structural material 56 being non-resorbable relative to a corporeal body 54 and being different relative to the second structural material 58, the implant 52 being an internal fixation device; and implanting the orthopaedic implant 52 at a selected location within the corporeal body 54. The internal fixation device is a bone screw 52, a bone anchor, or a bone tack.


The second structural material 158, 358 can be softer than the first structural material 156, 356. The method further includes the second structural material 158, 358 facilitating selectively cutting through the orthopaedic implant 152, 352 after the orthopaedic implant 152, 352 has been implanted in the corporeal body 154, 354.


The method further includes melting the second structural material 58, 158, 258, 358, the second structural material 58, 158, 258, 358 having a lower melting point than said first structural material 56, 156, 256, 356.


The method further includes carrying at least one therapeutic agent 64, 264 by the second structural material 58, 258, and releasing the at least one therapeutic agent 64, 264 by the second structural material 58, 258 into the corporeal body 54, 254 as the second structural material 58, 258 melts.


The implant includes a body 60, 160, 260, 360 made of the first structural material 56, 156, 256, 356, the body 60, 160, 260, 360 receiving at least one of bone and soft tissue ingrowth 66, 166, 266, 366 therein as the second structural material 58, 158, 258, 358 melts.


The orthopaedic implant is a bone screw 152 which includes a core 168, a head 170 attached to the core 168, and a plurality of threads 172 about the core 168, the core 168 being made of the second structural material 158, the head 170 being made of the first structural material 156, the plurality of threads 172 including the first structural material 156 or another structural material which is non-resorbable relative to the corporeal body 154, the second structural material 158 (1) melting, the second structural material 158 having a lower melting point than the first structural material 156, and/or (2) being softer than the first structural material 156.


The orthopaedic implant is a bone screw 352 which includes a core 368 and a plurality of threads 372 about the core 368, the core 368 being made of the second structural material 358, the plurality of threads 372 being made of the first structural material 356, the plurality of threads 372 including a plurality of pores 362 which receive bone and/or soft tissue ingrowth 366 therein, the second structural material 358 (1) melting, the second structural material 358 having a lower melting point than the first structural material 356, and/or (2) being softer than the first structural material 356.


While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. An orthopaedic implant system, comprising: an orthopaedic implant implantable at a selected location within a corporeal body, said implant including a first structural material and a second structural material, said first structural material being non-resorbable relative to said corporeal body and being different relative to said second structural material, said second structural material being resorbable relative to said corporeal body, said orthopaedic implant being an internal fixation device, said orthopaedic implant including a core and a plurality of threads about said core, said core being made of said second structural material, said plurality of threads being made of said first structural material, said orthopaedic implant having no other threads than said plurality of threads, said plurality of threads including a first longitudinal end and an opposing second longitudinal end, said core extending from said first longitudinal end to said second longitudinal end, said plurality of threads being directly affixed to said second structural material of said core, wherein said first structural material is polyetheretherketone and said second structural material at least one of has a lower melting point than said first structural material and is softer than said first structural material.
  • 2. The orthopaedic implant system of claim 1, wherein said internal fixation device is one of a bone screw and a bone anchor.
  • 3. The orthopaedic implant system of claim 2, wherein said second structural material is softer than said first structural material.
  • 4. The orthopaedic implant system of claim 3, wherein said second structural material is configured for facilitating cutting through at least a portion of said orthopaedic implant after said orthopaedic implant has been implanted in said corporeal body.
  • 5. The orthopaedic implant system of claim 2, wherein said second structural material has a lower melting point than said first structural material.
  • 6. The orthopaedic implant system of claim 2, further including at least one therapeutic agent carried by said second structural material, said second structural material being configured for releasing said at least one therapeutic agent into said corporeal body as said second structural material melts.
  • 7. The orthopaedic implant system of claim 2, wherein said implant includes a body made of said first structural material, said body being configured for receiving at least one of bone and soft tissue ingrowth therein as said second structural material melts.
  • 8. The orthopaedic implant system of claim 2, wherein said orthopaedic implant is a bone screw which includes a head attached to said core, said head being made of said first structural material.
  • 9. The orthopaedic implant system of claim 2, wherein said orthopaedic implant is a bone screw, said plurality of threads including a plurality of pores which are configured for receiving at least one of bone and soft tissue ingrowth therein.
  • 10. The orthopaedic implant system of claim 1, wherein said second structural material is a polymer.
  • 11. A method of using an orthopaedic implant system, said method comprising the steps of: providing an orthopaedic implant including a first structural material and a second structural material, said first structural material being non-resorbable relative to a corporeal body and being different relative to said second structural material, said second structural material being resorbable relative to said corporeal body, said orthopaedic implant being an internal fixation device, said orthopaedic implant including a core and a plurality of threads about said core, said core being made of said second structural material, said plurality of threads being made of said first structural material, said orthopaedic implant having no other threads than said plurality of threads, said plurality of threads including a first longitudinal end and an opposing second longitudinal end, said core extending from said first longitudinal end to said second longitudinal end, said plurality of threads being directly affixed to said second structural material of said core, wherein said first structural material is polyetheretherketone and said second structural material at least one of has a lower melting point than said first structural material and is softer than said first structural material; andimplanting said orthopaedic implant at a selected location within said corporeal body.
  • 12. The method of claim 11, wherein said internal fixation device is one of a bone screw and a bone anchor.
  • 13. The method of claim 12, wherein said second structural material is softer than said first structural material.
  • 14. The method of claim 13, further including said second structural material facilitating cutting through at least a portion of said orthopaedic implant after said orthopaedic implant has been implanted in said corporeal body.
  • 15. The method of claim 12, further including melting said second structural material, said second structural material having a lower melting point than said first structural material.
  • 16. The method of claim 12, further including carrying at least one therapeutic agent by said second structural material, and releasing said at least one therapeutic agent by said second structural material into said corporeal body as said second structural material melts.
  • 17. The method of claim 12, wherein said implant includes a body made of said first structural material, said body receiving at least one of bone and soft tissue ingrowth therein as said second structural material melts.
  • 18. The method of claim 12, wherein said orthopaedic implant is a bone screw which includes a head attached to said core, said head being made of said first structural material.
  • 19. The method of claim 12, wherein said orthopaedic implant is a bone screw, said plurality of threads including a plurality of pores which receive at least one of bone and soft tissue ingrowth therein.
  • 20. The method of claim 12, wherein said second structural material is a polymer.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a non-provisional application based upon U.S. provisional patent application Ser. No. 61/092,890, entitled “ORTHOPAEDIC IMPLANT”, filed Aug. 29, 2008, which is incorporated herein by reference. Further, this is a continuation-in-part of U.S. patent application Ser. No. 12/540,760, now U.S. Pat. No. 8,475,505, entitled “ORTHOPAEDIC SCREWS”, filed Aug. 13, 2009, which is incorporated herein by reference. U.S. patent application Ser. No. 12/540,760 is a non-provisional application based upon U.S. provisional patent application Ser. No. 61/088,383, entitled “ORTHOPAEDIC SCREWS”, filed Aug. 13, 2008, which is incorporated herein by reference.

US Referenced Citations (402)
Number Name Date Kind
3662405 Bortz et al. May 1972 A
3683421 Martinie Aug 1972 A
3855638 Pilliar Dec 1974 A
3867728 Stubstad et al. Feb 1975 A
4011602 Rybicki et al. Mar 1977 A
4060081 Yannas et al. Nov 1977 A
4156943 Collier Jun 1979 A
4222128 Tomonaga et al. Sep 1980 A
4450150 Sidman May 1984 A
4453537 Spitzer Jun 1984 A
4485097 Bell Nov 1984 A
4520821 Schmidt et al. Jun 1985 A
4608052 Van Kampen et al. Aug 1986 A
4609551 Caplan et al. Sep 1986 A
4620327 Caplan et al. Nov 1986 A
4644627 Palazzo Feb 1987 A
4660755 Farling et al. Apr 1987 A
4737411 Graves, Jr. et al. Apr 1988 A
4769041 Morscher Sep 1988 A
4846834 Von Recum et al. Jul 1989 A
4858603 Clemow et al. Aug 1989 A
4936859 Morscher et al. Jun 1990 A
4976738 Frey et al. Dec 1990 A
5030233 Ducheyne Jul 1991 A
5041107 Heil, Jr. Aug 1991 A
5084051 Tormala et al. Jan 1992 A
5092898 Bekki et al. Mar 1992 A
5100392 Orth et al. Mar 1992 A
5104410 Chowdhary Apr 1992 A
5190550 Miller et al. Mar 1993 A
5197985 Caplan et al. Mar 1993 A
5204055 Sachs et al. Apr 1993 A
5219363 Crowninshield et al. Jun 1993 A
5226914 Caplan et al. Jul 1993 A
5281210 Burke et al. Jan 1994 A
5282861 Kaplan Feb 1994 A
5306309 Wagner et al. Apr 1994 A
5328765 Anderson et al. Jul 1994 A
5370690 Barrett Dec 1994 A
5380328 Morgan Jan 1995 A
5443471 Swajger Aug 1995 A
5458643 Oka et al. Oct 1995 A
5462362 Yuhta et al. Oct 1995 A
5490962 Cima et al. Feb 1996 A
5496372 Hamamoto et al. Mar 1996 A
5514182 Shea May 1996 A
5518680 Cima et al. May 1996 A
5531750 Even-Esh Jul 1996 A
5534028 Bao et al. Jul 1996 A
5537851 Sheu et al. Jul 1996 A
5549700 Graham et al. Aug 1996 A
5571187 Devanathan Nov 1996 A
5593443 Carter et al. Jan 1997 A
5637175 Feygin et al. Jun 1997 A
5641323 Caldarise Jun 1997 A
5702449 McKay Dec 1997 A
5730817 Feygin et al. Mar 1998 A
5732469 Hamamoto et al. Mar 1998 A
5750103 Cherksey May 1998 A
5769897 Harle Jun 1998 A
5776199 Michelson Jul 1998 A
5800828 Dionne et al. Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5848989 Villani Dec 1998 A
5849015 Haywood et al. Dec 1998 A
5869170 Cima et al. Feb 1999 A
5871484 Spievack et al. Feb 1999 A
5876550 Feygin et al. Mar 1999 A
5879406 Lilley Mar 1999 A
5916269 Serbousek et al. Jun 1999 A
5971985 Carchidi et al. Oct 1999 A
5989250 Wagner et al. Nov 1999 A
6010336 Shimotoso et al. Jan 2000 A
6045581 Burkinshaw Apr 2000 A
6110179 Flivik et al. Aug 2000 A
6136029 Johnson et al. Oct 2000 A
6136031 Middleton Oct 2000 A
6139574 Vacanti et al. Oct 2000 A
6143035 McDowell Nov 2000 A
6159247 Klawitter et al. Dec 2000 A
6176874 Vacanti et al. Jan 2001 B1
6238435 Meulink et al. May 2001 B1
6283997 Garg et al. Sep 2001 B1
6290726 Pope et al. Sep 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6315797 Middleton Nov 2001 B1
6322564 Surma Nov 2001 B1
6328765 Hardwick et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6337198 Levene et al. Jan 2002 B1
6365149 Vyakarnam et al. Apr 2002 B2
6379391 Masini Apr 2002 B1
6395011 Johanson et al. May 2002 B1
6409764 White et al. Jun 2002 B1
6419704 Ferree Jul 2002 B1
6423095 Van Hoeck et al. Jul 2002 B1
6423252 Chun et al. Jul 2002 B1
6425921 Grundei et al. Jul 2002 B1
6440734 Pykett et al. Aug 2002 B1
6454811 Sherwood et al. Sep 2002 B1
6461385 Gayer et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6471993 Shastri et al. Oct 2002 B1
6475137 Elist Nov 2002 B1
6494916 Babalola et al. Dec 2002 B1
6514514 Atkinson et al. Feb 2003 B1
6520993 James et al. Feb 2003 B2
6526984 Nilsson et al. Mar 2003 B1
6527810 Johnson et al. Mar 2003 B2
6530958 Cima et al. Mar 2003 B1
6533818 Weber et al. Mar 2003 B1
6534084 Vyakarnam et al. Mar 2003 B1
6544472 Compton et al. Apr 2003 B1
6547824 Price Apr 2003 B1
6551290 Elsberry et al. Apr 2003 B1
6554857 Zilla et al. Apr 2003 B1
6565572 Chappius May 2003 B2
6571130 Ljungstrom et al. May 2003 B1
6599322 Amrich et al. Jul 2003 B1
6610095 Pope et al. Aug 2003 B1
6626950 Brown et al. Sep 2003 B2
6635049 Robinson et al. Oct 2003 B1
6645251 Salehi et al. Nov 2003 B2
6656489 Mahmood et al. Dec 2003 B1
6660040 Chan et al. Dec 2003 B2
6673108 Zilla et al. Jan 2004 B2
6682567 Schroeder Jan 2004 B1
6692528 Ward et al. Feb 2004 B2
6709463 Pope et al. Mar 2004 B1
6709464 Scott et al. Mar 2004 B2
6712850 Vyakarnam et al. Mar 2004 B2
6723120 Yan Apr 2004 B2
6736850 Davis May 2004 B2
6749636 Michelson Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6783546 Zucherman et al. Aug 2004 B2
6818620 Bhatnagar Nov 2004 B2
6852272 Artz et al. Feb 2005 B2
6863899 Koblish et al. Mar 2005 B2
6866685 Chan et al. Mar 2005 B2
6881413 Bartholeyns Apr 2005 B1
6893465 Huang May 2005 B2
6913623 Zhu Jul 2005 B1
6916321 TenHuisen et al. Jul 2005 B2
6958078 Goel et al. Oct 2005 B2
6969383 Hildebrand Nov 2005 B2
6979353 Bresina Dec 2005 B2
6989033 Schmidt Jan 2006 B1
6993406 Cesarano, III et al. Jan 2006 B1
7018416 Hanson et al. Mar 2006 B2
7018418 Amrich et al. Mar 2006 B2
7052710 Giordano et al. May 2006 B2
7077867 Pope et al. Jul 2006 B1
7087086 Li et al. Aug 2006 B2
7087200 Taboas et al. Aug 2006 B2
7090668 U et al. Aug 2006 B1
7094371 Lo Aug 2006 B2
7108828 Lefebvre et al. Sep 2006 B2
7112223 Davis Sep 2006 B2
7128762 Middleton Oct 2006 B2
7174282 Hollister et al. Feb 2007 B2
7189409 Pirhonen et al. Mar 2007 B2
7192440 Andreas et al. Mar 2007 B2
7208222 Rolfe et al. Apr 2007 B2
7226612 Sohier et al. Jun 2007 B2
7238186 Zdeblick et al. Jul 2007 B2
7238363 Mansouri et al. Jul 2007 B2
7250055 Vanderwalle Jul 2007 B1
7250060 Trieu Jul 2007 B2
7255713 Malek Aug 2007 B2
7300439 May Nov 2007 B2
7354452 Foley Apr 2008 B2
7537617 Bindsell et al. May 2009 B2
7537664 O'Neill et al. May 2009 B2
7575572 Sweeney Aug 2009 B2
7632228 Brauker et al. Dec 2009 B2
7632338 Cipollini Dec 2009 B2
7666230 Orban et al. Feb 2010 B2
7674426 Grohowski, Jr. Mar 2010 B2
7674477 Schmid et al. Mar 2010 B1
7717956 Lang May 2010 B2
7875080 Puno et al. Jan 2011 B2
8328555 Engman Dec 2012 B2
20010038848 Donda et al. Nov 2001 A1
20010039455 Simon et al. Nov 2001 A1
20020022884 Mansmann Feb 2002 A1
20020029083 Zucherman et al. Mar 2002 A1
20020035400 Bryan et al. Mar 2002 A1
20020062154 Ayers May 2002 A1
20020072798 Riesle et al. Jun 2002 A1
20020091447 Shimp et al. Jul 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020143402 Steinberg Oct 2002 A1
20020161447 Salehi et al. Oct 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020183850 Felt et al. Dec 2002 A1
20020197178 Yan Dec 2002 A1
20030003127 Brown et al. Jan 2003 A1
20030004578 Brown et al. Jan 2003 A1
20030006534 Taboas et al. Jan 2003 A1
20030012805 Chen et al. Jan 2003 A1
20030023311 Trieu Jan 2003 A1
20030055506 Stoy et al. Mar 2003 A1
20030060886 Van Hoeck et al. Mar 2003 A1
20030060891 Shah Mar 2003 A1
20030069465 Benkowski et al. Apr 2003 A1
20030097182 Buchman et al. May 2003 A1
20030105527 Bresina Jun 2003 A1
20030114934 Steinberg Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20030118649 Gao et al. Jun 2003 A1
20030120344 Michelson Jun 2003 A1
20030130743 Scott et al. Jul 2003 A1
20030139809 Worst et al. Jul 2003 A1
20030171738 Konieczynski et al. Sep 2003 A1
20030171820 Wilshaw et al. Sep 2003 A1
20030180171 Artz et al. Sep 2003 A1
20030187513 Durniak Oct 2003 A1
20030203002 Murphy et al. Oct 2003 A1
20030206928 Tormala et al. Nov 2003 A1
20030208274 Davis Nov 2003 A1
20040024400 Michelson Feb 2004 A1
20040024470 Giordano et al. Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040034427 Goel et al. Feb 2004 A1
20040063206 Rowley et al. Apr 2004 A1
20040073197 Kim Apr 2004 A1
20040115172 Bianchi et al. Jun 2004 A1
20040126405 Sahatjian et al. Jul 2004 A1
20040147905 Krumme Jul 2004 A1
20040153165 Li et al. Aug 2004 A1
20040158328 Eisermann Aug 2004 A1
20040180072 Tunc et al. Sep 2004 A1
20040191106 O'Neill et al. Sep 2004 A1
20040191292 Chou Sep 2004 A1
20040193273 Huang Sep 2004 A1
20040199260 Pope et al. Oct 2004 A1
20040210274 Bauhahn et al. Oct 2004 A1
20040210316 King et al. Oct 2004 A1
20040215173 Kunst Oct 2004 A1
20040225360 Malone Nov 2004 A1
20040249463 Bindseil et al. Dec 2004 A1
20040265350 Sambrook et al. Dec 2004 A1
20040267263 May Dec 2004 A1
20050015059 Sweeney Jan 2005 A1
20050015150 Lee Jan 2005 A1
20050021084 Lu et al. Jan 2005 A1
20050049715 Ito et al. Mar 2005 A1
20050049716 Wagener et al. Mar 2005 A1
20050055099 Ku Mar 2005 A1
20050058684 Shanley et al. Mar 2005 A1
20050059972 Biscup Mar 2005 A1
20050085888 Andreas et al. Apr 2005 A1
20050100470 Lefebvre et al. May 2005 A1
20050100578 Schmid et al. May 2005 A1
20050112397 Rolfe et al. May 2005 A1
20050119753 McGahan et al. Jun 2005 A1
20050125073 Orban et al. Jun 2005 A1
20050136764 Sherman et al. Jun 2005 A1
20050137707 Malek Jun 2005 A1
20050143822 Paul Jun 2005 A1
20050149022 Shaolian et al. Jul 2005 A1
20050159819 McCormack et al. Jul 2005 A1
20050171611 Stoy et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050177238 Khandkar et al. Aug 2005 A1
20050177247 Canham et al. Aug 2005 A1
20050182494 Schmid Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050192669 Zdeblick et al. Sep 2005 A1
20050197654 Edman et al. Sep 2005 A1
20050202371 McGuire Sep 2005 A1
20050220837 Disegi et al. Oct 2005 A1
20050222688 Zilla et al. Oct 2005 A1
20050228503 Gundolf Oct 2005 A1
20050246032 Bokros et al. Nov 2005 A1
20050271694 Mansouri et al. Dec 2005 A1
20050272153 Xuenong et al. Dec 2005 A1
20050273082 Olsen Dec 2005 A1
20050273178 Boyan et al. Dec 2005 A1
20060002810 Grohowski, Jr. Jan 2006 A1
20060015186 Isaac Jan 2006 A1
20060047341 Trieu Mar 2006 A1
20060057737 Santini, Jr. et al. Mar 2006 A1
20060064170 Smith et al. Mar 2006 A1
20060064172 Trieu Mar 2006 A1
20060083730 Kusanagi et al. Apr 2006 A1
20060093646 Cima et al. May 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060100716 Lerf May 2006 A1
20060105015 Perla et al. May 2006 A1
20060111782 Petersen May 2006 A1
20060111785 O'Neil May 2006 A1
20060121609 Yannas et al. Jun 2006 A1
20060129242 Bergeron et al. Jun 2006 A1
20060141012 Gingras Jun 2006 A1
20060149220 Ullestad et al. Jul 2006 A1
20060149386 Clarke et al. Jul 2006 A1
20060173542 Shikinami Aug 2006 A1
20060178744 de Villiers et al. Aug 2006 A1
20060193885 Leonard Neethling et al. Aug 2006 A1
20060195188 O'Driscoll et al. Aug 2006 A1
20060204581 Gower et al. Sep 2006 A1
20060229715 Istephanous et al. Oct 2006 A1
20060235534 Gertzman et al. Oct 2006 A1
20060241593 Sherman et al. Oct 2006 A1
20060264950 Nelson et al. Nov 2006 A1
20060271022 Steinbach et al. Nov 2006 A1
20060271201 Kumar et al. Nov 2006 A1
20060276900 Carpenter Dec 2006 A1
20060282166 Molz et al. Dec 2006 A1
20060287689 Debruyne et al. Dec 2006 A1
20060289388 Yang et al. Dec 2006 A1
20060293757 McKay et al. Dec 2006 A1
20070015110 Zhang et al. Jan 2007 A1
20070016163 Santini, Jr. et al. Jan 2007 A1
20070026069 Shastri et al. Feb 2007 A1
20070038299 Stone et al. Feb 2007 A1
20070041952 Guilak et al. Feb 2007 A1
20070043446 Murray Feb 2007 A1
20070077267 Molz, IV et al. Apr 2007 A1
20070105222 Wolfinbarger et al. May 2007 A1
20070116734 Akash May 2007 A1
20070123843 Gill May 2007 A1
20070138042 Wood Jun 2007 A1
20070141105 Stein et al. Jun 2007 A1
20070141533 Ford et al. Jun 2007 A1
20070150063 Ruberte et al. Jun 2007 A1
20070150064 Ruberte et al. Jun 2007 A1
20070150068 Dong et al. Jun 2007 A1
20070160681 Park et al. Jul 2007 A1
20070161986 Levy Jul 2007 A1
20070162110 Dave Jul 2007 A1
20070166348 Van Dyke Jul 2007 A1
20070168021 Holmes, Jr. et al. Jul 2007 A1
20070185580 Posel Aug 2007 A1
20070185585 Bracy et al. Aug 2007 A1
20070190880 Dubrow et al. Aug 2007 A1
20070191963 Winterbottom et al. Aug 2007 A1
20070196419 Teller et al. Aug 2007 A1
20070202145 Ghabrial et al. Aug 2007 A1
20070203584 Bandyopadhyay et al. Aug 2007 A1
20070208420 Ameer et al. Sep 2007 A1
20070233071 Dewey et al. Oct 2007 A1
20070243225 McKay Oct 2007 A1
20070250169 Lang Oct 2007 A1
20070255262 Haase Nov 2007 A1
20070255416 Melkent et al. Nov 2007 A1
20070260250 Wisnewski et al. Nov 2007 A1
20070260320 Peterman et al. Nov 2007 A1
20070270859 Companioni et al. Nov 2007 A1
20070270974 Aeschlimann et al. Nov 2007 A1
20070293948 Bagga et al. Dec 2007 A1
20080004704 Katz Jan 2008 A1
20080015578 Erickson et al. Jan 2008 A1
20080046082 Lee Feb 2008 A1
20080065218 O'Neil Mar 2008 A1
20080077247 Murillo et al. Mar 2008 A1
20080109083 Van Hoeck et al. May 2008 A1
20080119945 Frigg May 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080154314 McDevitt Jun 2008 A1
20080188940 Cohen et al. Aug 2008 A1
20080195096 Frei Aug 2008 A1
20080200985 Robie Aug 2008 A1
20080262622 Butler Oct 2008 A1
20080288074 O'Neil et al. Nov 2008 A1
20080306609 Lee et al. Dec 2008 A1
20090005872 Moumene et al. Jan 2009 A1
20090005874 Fleischmann et al. Jan 2009 A1
20090024224 Chen et al. Jan 2009 A1
20090030399 Raiszadeh Jan 2009 A1
20090132051 Moskowitz et al. May 2009 A1
20090222098 Trieu et al. Sep 2009 A1
20090228109 Pointillant et al. Sep 2009 A1
20090248162 Peckham Oct 2009 A1
20090254182 Kovarik et al. Oct 2009 A1
20090270986 Christensen Oct 2009 A1
20090270988 Snell et al. Oct 2009 A1
20090270991 Michelson Oct 2009 A1
20090270992 Gerber et al. Oct 2009 A1
20090276049 Weiland Nov 2009 A1
20090281517 Lambrecht et al. Nov 2009 A1
20090281625 Enayati Nov 2009 A1
20090292363 Goldfarb et al. Nov 2009 A1
20090326657 Grinberg et al. Dec 2009 A1
20100003639 Salvi et al. Jan 2010 A1
20100016970 Kapitan et al. Jan 2010 A1
20100042167 Nebosky et al. Feb 2010 A1
20100042213 Nebosky et al. Feb 2010 A1
20100042214 Nebosky et al. Feb 2010 A1
20100042215 Stalcup et al. Feb 2010 A1
20100042218 Nebosky et al. Feb 2010 A1
20100042226 Nebosky et al. Feb 2010 A1
20100076559 Bagga et al. Mar 2010 A1
20100174369 Wang et al. Jul 2010 A1
20100190254 Chian et al. Jul 2010 A1
20100234966 Lo Sep 2010 A1
20100291286 O'Neill et al. Nov 2010 A1
20110064784 Mullens et al. Mar 2011 A1
20110153028 Albertorio Jun 2011 A1
Foreign Referenced Citations (28)
Number Date Country
4211345 Nov 1993 DE
4423020 Jan 1996 DE
693 28 047 Mar 2000 DE
19904436 Aug 2000 DE
10051438 May 2002 DE
695 28 346 Sep 2002 DE
10120330 Nov 2002 DE
10157315 Aug 2003 DE
0617931 Oct 1994 EP
0827726 Mar 1998 EP
1 273 312 Jan 2003 EP
1 287 851 Mar 2003 EP
1475057 Nov 2004 EP
1806112 Jul 2007 EP
2697155 Apr 1994 FR
6007388 Jan 1994 JP
7116184 May 1995 JP
8173463 Jul 1996 JP
2587625 Dec 1996 JP
2002325781 Nov 2002 JP
2005329179 Dec 2005 JP
03026714 Apr 2003 WO
03084602 Oct 2003 WO
03101504 Dec 2003 WO
2005047467 May 2005 WO
2006088480 Aug 2006 WO
2006135727 Dec 2006 WO
2007135444 Nov 2007 WO
Non-Patent Literature Citations (77)
Entry
Office Action dated Jan. 5, 2010 in U.S. Appl. No. 11/060,377 (10 pages).
Office Action dated Sep. 24, 2010 in U.S. Appl. No. 11/060,377 (7 pages).
A. Cameron, entitled “Basic Lubrication Theory”, Ellis Horwood Limited, pp. 134-137, 1976.
A. Cameron, entitled “The Principles of Lubrication”, John Wiley and Sons Inc., pp. 542-559, 1966.
Office Action dated May 12, 2010 in U.S. Appl. No. 10/980,425 (22 pages).
Philip E. Mitchell, Handbook Editor, “Tool and Manufacturing Engineers Handbook”, 4th Edition, vol. VIII Plastic Part Manufacturing, Society of Manufacturing Engineers, Dearborn, Michigan, pp. 2-17 and 2-18, 1996 (4 pages).
Provisional U.S. Appl. No. 60/149,027, filed Aug. 16, 1999 with U.S. Patent & Trademark Office (44 pages).
U.S. Appl. No. 08/200,636, filed Feb. 23, 1994 with U.S. Patent & Trademark Office (40 pages).
Office Action dated Apr. 17, 1995 in U.S. Appl. No. 08/200,636 (4 pages).
Supplemental Information Disclosure Statement dated Sep. 11, 1995 in U.S. Appl. No. 08/200,636 (7 pages).
U.S. Appl. No. 08/437,781, filed May 9, 1995 with U.S. Patent & Trademark Office (84 pages).
Office Action dated Nov. 1, 1996 in U.S. Appl. No. 08/437,781 (2 pages).
U.S. Appl. No. 09/639,612, filed Aug. 15, 2000 with U.S. Patent & Trademark Office (67 pages).
International Search Report, International Serial No. PCT/US2009/055397, dated Oct. 13, 2009.
International Search Report dated Sep. 28, 2009 of International Searching Authority for Application No. PCT/US2009/053724 (2 pages).
International Search Report dated Sep. 28, 2009 of International Searching Authority for Application No. PCT/US2009/053735 (2 pages).
International Search Report dated Sep. 23, 2009 of International Searching Authority for Application No. PCT/US2009/053762 (2 pages).
International Search Report dated Oct. 14, 2009 of International Searching Authority for Application No. PCT/US2009/053751 (2 pages).
International Search Report dated Apr. 13, 2010 of International Searching Authority for Application No. PCT/US2009/055380 (2 pages).
International Search Report dated Oct. 13, 2009 of International Searching Authority for Application No. PCT/US2009/055397 (2 pages).
Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/980,425 (16 pages).
Office Action dated Apr. 7, 2008 in U.S. Appl. No. 10/980,425 (20 pages).
Office Action dated Jul. 17, 2008 in U.S. Appl. No. 10/980,425 (3 pages).
Office Action dated Oct. 29, 2008 in U.S. Appl. No. 11/325,530 (11 pages).
Office Action dated Jun. 26, 2009 in U.S. Appl. No. 11/325,530 (13 pages).
Office Action dated Oct. 19, 2009 in U.S. Appl. No. 11/325,530 (6 pages).
Dr. Nicole Rotter, J. Aigner, A. Naumann, H. Planck, C. Hammer, G. Burmester, M. Sittinger; abstract of article entitled “Cartilage Reconstruction in Head and Neck Surgery: Comparison of Resorbable Polymer Scaffolds for Tissue Engineering of Human Septal Cartilage”, in Journal of Biomedical Materials Research, vol. 42, Issue 3, pp. 347-356, Dec. 5, 1998; presumably published by John Wiley & Sons, Inc.; Abstract only is attached hereto; Abstract was downloaded from Internet at site for Wiley Online Library on Oct. 25, 2010 at http://onlinelibrary.wiley.com.
Robert J. Klebe; article entitled “Cytoscribing: A Method for Micropositioning Cells and the Construction of Two-and Three-Dimensional Synthetic Tissues”, Experimental Cell Research 179 (1988) 362-373, published by Academic Press, Inc.
Emanuel Sachs, Michael Cima, James Bredt, Alain Curodeau, Tailin Fan, and David Brancazio; article entitled “Cad-Casting: Direct Fabrication of Ceramic Shells and Cores by Three Dimensional Printing”, Manufacturing Review vol. 5, No. 2, pp. 117-126, Jun. 1992, published by American Society of Mechanical Engineers.
Joseph P. Vacanti, Martin A. Morse, W. Mark Saltzman, Abraham J. Domb, Antonio Perez-Atayde, and Robert Langer; article entitled “Selective Cell Transplantation Using Bioabsorbable Artificial Polymers as Matrices”, Journal of Pediatric Surgery, vol. 23, No. 1, pp. 3-9, Jan. 1988, published by Grune & Stratton, Inc.
N.R. Boeree, J. Dove, J.J. Cooper, J. Knowles, and G.W. Hastings, article entitled “Development of a Degradable Composite for Orthopaedic Use: Mechanical Evaluation of an Hydroxyapatite-Polyhydroxybutyrate Composite Material”, Biomaterials, vol. 14, No. 10, pp. 793-796, 1993, published by Butterworth-Heinemann Ltd.
R.B. Martin, M.W. Chapman, N.A. Sharkey, S.L. Zissimos, B. Bay, and E.C. Shors, article entitled “Bone Ingrowth and Mechanical Properties of Coralline Hydroxyapatite 1 Yr After Implantation”, Biomaterials, vol. 14, No. 5, pp. 341-348, 1993, published by Butterworth-Heinemann Ltd.
Article entitled “Fractal” (nine pages), published on the Internet by the online encyclopedia Wikipedia; downloaded from the internet on Dec. 14, 2006 in the United States from the following address: http://en.wikipedia.org/wiki/Fractals.
Editor in Chief Sybil P. Parker, p. 799 (showing entries from “fp” to “fracture test”) of McGraw-Hill Dictionary of Scientific and Technical Terms, Fifth Edition, published by McGraw-Hill, Inc., 1994, New York.
Office Action dated Oct. 31, 2008 in U.S. Appl. No. 10/980,425 (20 pages).
Office Action dated Oct. 20, 2006 in U.S. Appl. No. 11/060,377 (10 pages).
Written Opinion dated Sep. 28, 2009 of International Searching Authority for Application No. PCT/US2009/053724 (8 pages).
Written Opinion dated Sep. 28, 2009 of International Searching Authority for Application No. PCT/US2009/053735 (7 pages).
Written Opinion dated Sep. 23, 2009 of International Searching Authority for Application No. PCT/US2009/053762 (4 pages).
Written Opinion dated Oct. 14, 2009 of International Searching Authority for Application No. PCT/US2009/053751 (6 pages).
Article entitled “Rolled Threads.” (3 pages), published on the Internet by the online encyclopedia Wikipedia; downloaded from the internet on Aug. 24, 2009 in the United States from the following address: http://en.wikipedia.org/wiki/File:American—Machinists—Handbook--2e--p23--v001.png.
Written Opinion dated Apr. 13, 2010 of International Searching Authority for Application No. PCT/US2009/055380 (8 pages).
Written Opinion dated Oct. 13, 2009 of International Searching Authority for Application No. PCT/US2009/055397 (9 pages).
Unknown Author, article entitled “MacroPore Resorbable Technology: An Overview”, Scientific Data Series in Resorbable Fixation, MKT004 Rev. 6/01, pp. 1-8; distributed by Medtronic Sofamor Danek, 1800 Pyramid Place, Memphis TN 38132, (Jun. 2001).
Ralph E. Holmes, M.D., Stefan M. Lemperle, M.D., and Christopher J. Calhoun, M.B.A., article entitled “Protected Bone Regeneration”, Scientific Data Series in Resorbable Fixation, MKT003 Rev. 6/01, pp. 1-10; distributed by Medtronic Sofamor Danek, 1800 Pyramid Place, Memphis TN 38132, (Jun. 2001).
D.R. Sumner, T.M. Turner, R.M. Urban, R.M. Leven, M. Hawkins, E.H. Nichols, J.M. McPherson, J.O. Galante, article entitled “Locally Delivered rhTGF-B2 Enhances Bone Ingrowth and Bone Regeneration at Local and Remote Sites of Skeletal Injury”, Journal of Orthopaedic Research 19 (2001) pp. 85-94, published by Elsevier Science Ltd.
International Search Report dated May 18, 2005 of International Searching Authority for Application No. PCT/US2004/036997 (3 pages).
U.S. Appl. No. 08/048,408, filed Apr. 15, 1993 with U.S. Patent & Trademark Office (108 pages).
Preliminary Amendment dated Jul. 8, 1993 and filed in U.S. Appl. No. 08/048,408 with U.S. Patent & Trademark Office (12 pages).
Machine English translation of JP 2587625 (10 pages), Oct. 28, 2010.
International Preliminary Report on Patentability dated May 8, 2006 of International Searching Authority for Application No. PCT/US2004/036997 (6 pages).
Written Opinion dated May 18, 2005 of International Searching Authority for Application No. PCT/US2004/036997 (5 pages).
Communication and supplementary European search report dated Nov. 14, 2008 from European Patent Office in application No. 04818642 (3 pages).
Office Action dated Jun. 25, 2010 from European Patent Office in application No. 04818642 (5 pages).
International Search Report dated Mar. 12, 2007 of International Searching Authority for PCT/US2005/019045 (3 pages).
International Preliminary Report on Patentability dated Aug. 21, 2007 of International Searching Authority for Application No. PCT/US2005/019045 (7 pages).
Written Opinion dated Mar. 12, 2007 of International Searching Authority for Application No. PCT/US2005/019045 (6 pages).
Office Action dated May 7, 2007 in U.S. Appl. No. 11/060,377 (13 pages).
Office Action dated Aug. 20, 2007 in U.S. Appl. No. 11/060,377 (3 pages).
Office Action dated Feb. 20, 2008 in U.S. Appl. No. 11/060,377 (5 pages).
Office Action dated Sep. 2, 2008 in U.S. Appl. No. 11/060,377 (7 pages).
Office Action dated Dec. 15, 2008 in U.S. Appl. No. 11/060,377 (8 pages).
Interview Summary dated Mar. 5, 2009 in U.S. Appl. No. 11/060,377 (2 pages).
Office Action dated May 27, 2009 in U.S. Appl. No. 11/060,377 (7 pages).
Communication dated Apr. 11, 2013 from Canadian Intellectual Property Office for Canadian patent application No. 2,735,236 (3 pages).
Communication dated May 22, 2013 from European Patent Office for European Patent Application No. 09807307.5-1506 (1 page).
Communication dated May 2, 2013 from European Patent Office for European Patent Application No. 09807307.5-1506, including Supplementary European Search Report and opinion (7 pages).
Translation of Japanese Office Action issued for Japanese Patent Application No. 2011-525242 (2 pages).
Communication from Canadian Intellectual Property Office dated Jan. 11, 2013 for Canadian patent application No. 2,735,235 (2 pages).
International Preliminary Report on Patentability dated Feb. 15, 2011 for PCT/US2009/053724 (9 pages).
International Preliminary Report on Patentability dated Feb. 15, 2011 for PCT/US2009/053735 (8 pages).
International Preliminary Report on Patentability dated Feb. 15, 2011 for PCT/US2009/053751 (7 pages).
International Preliminary Report on Patentability dated Feb. 15, 2011 for PCT/US2009/053762 (5 pages).
International Preliminary Report on Patentability dated Mar. 1, 2011 for PCT/US2009/055380 (9 pages).
International Preliminary Report on Patentability dated Mar. 1, 2011 for PCT/US2009/055397 (10 pages).
Machine English translation of JP 2587625 (10 pages); downloaded from the Internet on Oct. 28, 2010 and Nov. 11, 2010 (as indicated on the bottom of the pages of the document).
Photos 309 and 310 show a poster of which Applicant is aware. By disclosing these photos, Applicant is making no statement as to whether or not these photos are material or are prior art relative to the present application.
Related Publications (1)
Number Date Country
20100042215 A1 Feb 2010 US
Provisional Applications (2)
Number Date Country
61092890 Aug 2008 US
61088383 Aug 2008 US
Continuation in Parts (1)
Number Date Country
Parent 12540760 Aug 2009 US
Child 12549996 US