This invention relates to surgical inserters for aiding in installing orthopedic prostheses, and, more particularly, to easily sterilizable inserters for installing acetabular implants in the acetabular socket.
Complicated mechanical devices have crevices and recesses that are difficult, if not almost impossible to clean with ease. Devices that are not properly cleaned and sterilized run the risk of disease transfer from patient to patient following the emergence of certain “prions” that are not killed by normal hospital sterilization and need to be physically removed by washing/rinsing.
Further, in surgical procedures in which access to the treatment site is limited, it is difficult to use current solutions without subjecting the patient to repeated abrasion and tissue trauma when inserting and extracting surgical instruments.
Further, the insertion of the implant is often problematic, and the orientation of the implant, particularly any fixing holes that might be pre-drilled in the implant is often critical to minimize recovery time of the patient. Still further, once the appropriate position of the implant is selected, it is often difficult to ensure that the position does not change upon insertion of the assembly through the incision.
What is needed therefore is an inserter that is easy to adjust, disassemble, and clean. Further, what is needed is an inserter that enables the surgeon to better maneuver, position and install an implant in a particular angular orientation.
An acetabular inserter aids a surgeon in controlling the installation of an acetabular cup prosthesis generally having a central, female aperture. The inserter has a housing which encloses a drive train having, at a far end, a prosthesis engaging interface, and at the opposite end, a handle which facilitates turning of the drive train by the operator. The inserter enables easy orientation of a prosthesis attached to its end, which is important because the prosthesis often has pre-drilled holes and thus, these must be properly positioned prior to fastening through these holes.
An objective of the invention is to be “easily cleaned” by quick and modular disassembly which enables access to all surfaces that they can be cleaned, the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Another object of the invention is to provide an inserter which enables the implant to be locked in an angular orientation prior to installation of the implant.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimize the number of pieces and the risk that parts could be lost.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
The interface 16 is cut on a boss 22 on a cylindrical piston 24 which slides in an axial hole 26 in the housing 12. The interface 16 is preferably threaded. The piston 24 is connected by way of a first U-joint 30 to a lever 32 which slides in a pivoting sleeve 34 fixed to the housing 12 via a pivot 36. The lever 32 is connected via a second U-joint 40 to a second pivoting lever 42 which is fixed to pivot in a catch 44 on a pivot pin 46. The catch 44 is essentially a divot or a seat cut into the housing 12, against which the pivot pin 46 of the lever 42 is captured when a slide 50 is slide over the pin when engaged against the seat.
A slideable sleeve 52 slides over the lever 42 and has a trunnion 54 to which a rod 56 is pivotally attached. The rod 56 passes through a one-way catch 60 in the housing 12. The one-way catch 60 can be a captured split wedge sleeve 62 having an inner diameter that just matches the outer diameter of the rod 56 and which is captured in a recess having a matching conical surface that surrounds the sleeve so as to allow the rod 56 to slide into the housing 12, but to prevent the rod from sliding out of the housing unless an unlock lever (not shown) is activated, such lever merely lifting the sleeve 62 out of engagement with the conical surface so as not to lock and to permit the rod to back out of the housing. Any number of alternative one-way lock devices may be used, however, the selection of which being within the skill of a person of ordinary skill in this field.
Referring now to
A polymeric impactor head 64 is molded over the end of the housing 12, to absorb the impact stresses incurred during use as an impactor. The head 64 is selected so as to have good frictional characteristics as well. Nevertheless, a metal, non-molded head may also be used with satisfactory results.
Referring now to
The “easily cleaned” objective of the invention enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Referring to
It is important to place the bends in the housing at critical locations to pass through the miniature incision without impinging on the skin 30 at 37 while still maintaining the same surgical protocol. The reason why the drive end 104 and the holding mechanism 120 need to be in line or on parallel axis is so that the applied force 130 results in an axial motion 140. This allows the surgeon to maintain the existing technique since inherently the prior art inserter 15 in
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cup.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
Referring now to
Referring now to
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cup.
Referring now to
When the drive train 14′ is drawn inwardly by squeezing the lever 42 towards the housing 12′, the prosthesis-engaging expandable collet device 120 locks the prosthesis 11 against the collet mechanism 120. This mechanism enables the surgeon to pre-set and lock the position of the prosthesis 11 prior to the installation thereof. Such selective locking of the prosthesis 11 is important because the prosthesis 11 often has pre-drilled holes 4 and thus, these must be properly positioned prior to fastening through these holes. It should be noted, however, that the expandable collet mechanism 120 is not limited to prosthesis 11 with pre-drilled holes 4, such an embodiment with the expandable collet 120 could also be used with what are referred to as double mobility prosthetic implants which do not have pre-drilled holes 4. The expandable collet device 120 eliminates the need of threading the acetabular prosthesis 11 onto the end of the inserter 10′ as the prosthesis can simply be placed over the expandable collet 126′ (
In operation, the prosthesis 11 first is placed over or threaded onto the expandable collet mechanism 120 via a threaded or undercut hole (not shown). In a second step, the prosthesis 11 is oriented with respect to the form of the inserter 10′, in order to minimally impact soft tissue. In a third step, the handle 160 of the inserter 10′ is gripped and the prosthesis 11 placed through the incision 35. In a fourth step, the inserter 10′ is used to impact the prosthesis 11 in place by impacting a rear portion of the inserter with a mallet, for example. In a fifth step, the knob 20′ is turned in an opposite direction in order to release the prosthesis 11. In a final step, the inserter 10′ is removed from the incision 35.
Optionally, with the current design, it is envisioned that the prosthesis 11 can be inserted into the incision 35 as a first step. This optional procedure is used to take advantage of being able to more freely maneuver the prosthesis 11 into the incision and roughly position it prior to inserting the expandable collet device 120 of the inserter 10′ into a mating hole. The lever 46 may then be pressed towards the housing 12, thereby drawing the plunger 146′a (
The “easily cleaned” objective of the invention 10, 10′, 10″ enables access to all surfaces as that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Jaws 925 extend out through the face 1200 of cup attachment 920 and are held in place by a retaining ring 1202, a washer 1205, and a spring 1215 (spring 1215 is a Belleville washer in one embodiment). An O-ring 1220 urges jaws 925 against actuator 1000 (FIG. 10 of the '443 publication) so that jaws 925 close as actuator 1000 is withdrawn. Spring 1215 forces jaws 925 out through face 1200 of cup attachment 920. A gap 1210 between jaws 925 and washer 1205 prevents jaws 925 from taking the force of hammer blows by allowing jaws 925 to recede into cup attachment 920 until face 1200 engages the interior surface of cup 200. Face 1200, and not the more fragile jaws 925 and associated drive mechanism, thus absorbs the impact. A second O-ring 1220 prevents blood and debris from entering cup attachment 920 between attachment 920 and conduit 905. Though not shown here, attachment 920 includes female threads on an inside surface 1250 that mate with threads 1100 on the outside of conduit 905 (FIG. 11 of the '443 publication). Further, in the prior art device shown, a plunger 146′ moves outwardly, into a position between the opposing jaws 925a and 925b, to urge the jaws against opposing surfaces of the implant 11. As with the embodiment already described, this prior art version grips essentially at two opposing points on the internal threaded surface of the implant 11. Further, unlike the embodiment just described, the action of the plunger 146′ (
Referring now to
A plunger 146′a is placed longitudinally inside the collet mechanism 120′. The proximal end of the plunger 146′a is connected to the drive rod 144. An enlarged head 146′b is formed at or threaded 147 to the distal end of the plunger 146a′. A tapered surface 146e extends radially and outwardly from the distal end of the plunger 146′a, and gradually transitions into the enlarged head 146′b. The shaft of the plunger 146′a is placed through a central opening of the Bellville spring 145 which abuts the proximal end of the collet 126′. The collet 126′ has a longitudinal bore 126C that receives the distal portion of the plunger 146′a and envelopes the enlarged head 146′b. The distal end of the enlarged head 146′b, contacts the interior surface 127′ of the fingers 127 of the collet 126′. The collet 126′ is comprised of at least three fingers 127. The collet fingers 127 are provided with external, elongate tubular structures, which are contactable with the interior surface of a prosthesis cup.
The plunger 146′a is connected to the drive train 14 via the drive rod 144 so as to be drawn into the housing 12 when the lever 42 is depressed towards the housing. The initial drawing of the plunger 146′a into the housing 12 first causes the tapered surface 146e of the enlarged head 146b′ to contact the internal collet surface 148 as the tab 126a of the collet 126′ interfaces with a recess (not shown) in the housing 12. Since the proximal motion of the collet 126′ is impeded by the resistance of the Bellville spring 145, the ramming motion of the enlarged head 146′b against the smaller diameter internal collet surface opening 148, forces the surrounding internal collet region 149 to expand.
Further proximal motion of the tapered surface 146e of the enlarged head 146b′ ramming against internal collet surface 148 further causes the internal collet region 149 and annular collet lips 128 to expand outwardly. The outward motion of the collet 126′ forces the finger distal ends 124′ and the collet annular lips 128 to press against the internal surfaces of the prosthetic cup 11′.
The proximal motion of the plunger 146′a causes the bulbous fingers 127 of the collet to first move away from each other, expanding the distal diameter of the collet 126′ and increasing the surface area of the distal end of the collet 126′ and contacting the internal surface of the prosthetic cup 11′. The collet 126′ and bulbous fingers 127 are made from pliable polymeric materials which permit their expansion.
When plunger 146′a is drawn proximally by the drive rod 144, the tapered surface 146e of the enlarged head 146′b rams against the internal collet surface 148. The ramming motion expands the internal collet region 149 outwardly which in turn separates and expands bulbous fingers 127. As collet 126′ expands, the annular collet lips 128 seat into annular prosthetic cup groove 128. In a similar fashion, the annular prosthetic cup rim 132 mates with annular collet groove 129 as it expands and meets the prosthetic cup rim 132. These two mating engagements occur at about the same time.
The expanding bulbous fingers 127 create an additional interference fit between the distal collet surface 124′ and the internal surface of the prosthetic cup 11′. As a result of the multiple engagements between the collet 126′ and prosthetic cup 11′, a substantially frictionally tight engagement is created therebetween. These engagements, as previously mentioned, include the mating of the bulbous fingers 127 to the interior surface of the prosthetic cup 11′ and, in particular, the mating of the corresponding annular collet lip 128 to the prosthetic cup annular groove or recess 131, and the mating of the prosthetic cup annular rim or ledge 132 to that of the annular collet groove or recess 129. Once the prosthetic cup 11′ becomes firmly locked to the collet mechanism 120′, the cup 11′ is ready for insertion in the acetabulum. This enables the surgeon to accurately and securely manipulate the prosthesis 11′ into final position.
In an advantage, the multiple fingers 127 of the collet 126′ of
Referring now to
The inner recess has a ratchet pawl (not shown) that locks against one way ratchet teeth 67. This allows the rod 56 to slide into the housing 12, but prevents the rod from sliding out of the housing unless an unlock lever 68 is activated, such lever merely rotating the teeth 60a′ of the pawl away from the teeth 67′ of the rod (as shown in
In another advantage, the locking action in which the plunger 146a′ is drawn into the housing 12, concurrently pulls the prosthesis 11 into engagement against the face 141a of the inserter head 141, thus further securing the prosthesis 11 and providing significantly better handling thereof.
Referring now to
In an advantage, the inserter 10′ is simple and easy to use, without complex and possibly confusing locks activated with the thumb.
In another advantage, it is simple to select a desired orientation of the prosthesis 11.
In another advantage, due to the drawing of the prosthesis 11 against the impaction head 40, the connection between the prosthesis 11 is robust as the connection is made without any play or gaps therebetween, ensuring good support during impaction.
An objective is to provide an inserter 10, 10′, 10″ that is easy to disassemble and for which the disassembly is easy to learn.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimize the number of pieces and the risk that parts could be lost.
The object of the invention is to provide an inserter 10, 10′, 10″ which enables the implant to be locked in an annular orientation prior to installation of the implant.
The attached drawings represent, by way of example, different embodiments of the subject of the invention. Multiple variations and modifications are possible in the embodiments of the invention described here. Although certain illustrative embodiments of the invention have been shown and described here, a wide range of modifications, changes, and substitutions is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the foregoing description be construed broadly and understood as being given by way of illustration and example only, the spirit and scope of the invention being limited only by the appended claims.
This application is a continuation in part of U.S. application Ser. No. 11/201,270, filed on Aug. 10, 2005, now U.S. Pat. No. 7,682,363 to Burgi et al., which claims priority to U.S. Provisional Application Ser. No. 60/634,467, filed Dec. 9, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1942422 | Hanna | Jan 1934 | A |
4305394 | Bertuch | Dec 1981 | A |
D272648 | Bolesky et al. | Feb 1984 | S |
D273806 | Bolesky et al. | May 1984 | S |
4475549 | Oh | Oct 1984 | A |
4520511 | Gianezio et al. | Jun 1985 | A |
4528980 | Kenna | Jul 1985 | A |
4587964 | Walker et al. | May 1986 | A |
4632111 | Roche | Dec 1986 | A |
4716894 | Lazzeri et al. | Jan 1988 | A |
4765328 | Keller et al. | Aug 1988 | A |
4904267 | Bruce et al. | Feb 1990 | A |
4919679 | Averill et al. | Apr 1990 | A |
4921493 | Webb, Jr. et al. | May 1990 | A |
5019105 | Wiley | May 1991 | A |
5037424 | Aboczsky | Aug 1991 | A |
5061270 | Aboczky | Oct 1991 | A |
5062854 | Noble et al. | Nov 1991 | A |
5089003 | Fallin et al. | Feb 1992 | A |
5116339 | Glock | May 1992 | A |
5124106 | Morr et al. | Jun 1992 | A |
5133766 | Halpern | Jul 1992 | A |
5169399 | Ryland et al. | Dec 1992 | A |
5190549 | Miller et al. | Mar 1993 | A |
5201779 | Shiao | Apr 1993 | A |
5234432 | Brown | Aug 1993 | A |
5261915 | Durlacher et al. | Nov 1993 | A |
5324293 | Rehman | Jun 1994 | A |
5342362 | Kenyon et al. | Aug 1994 | A |
5364403 | Petersen et al. | Nov 1994 | A |
5417696 | Kashuba et al. | May 1995 | A |
5443471 | Swaiger | Aug 1995 | A |
5485887 | Mandanis | Jan 1996 | A |
5540697 | Rehmann et al. | Jul 1996 | A |
5584837 | Petersen et al. | Dec 1996 | A |
5649931 | Bryant et al. | Jul 1997 | A |
5658294 | Sederholm | Aug 1997 | A |
5665091 | Nobel et al. | Sep 1997 | A |
5683399 | Jones | Nov 1997 | A |
5707374 | Schmidt | Jan 1998 | A |
5720750 | Koller et al. | Feb 1998 | A |
5863295 | Averill et al. | Jan 1999 | A |
5913860 | Scholl | Jun 1999 | A |
5976148 | Charpenet et al. | Nov 1999 | A |
5993455 | Noble | Nov 1999 | A |
6063124 | Amstutz | May 2000 | A |
6120508 | Grunig et al. | Sep 2000 | A |
6197065 | Martin et al. | Mar 2001 | B1 |
6432141 | Stocks et al. | Aug 2002 | B1 |
6451058 | Tuke et al. | Sep 2002 | B2 |
6626913 | McKinnon et al. | Sep 2003 | B1 |
6663636 | Lin | Dec 2003 | B1 |
6811569 | Afriat et al. | Nov 2004 | B1 |
7192449 | McQueen et al. | Mar 2007 | B1 |
7335207 | Smith | Feb 2008 | B1 |
7341593 | Auxepaules et al. | Mar 2008 | B2 |
7396357 | Tornier et al. | Jul 2008 | B2 |
7585301 | Santarella et al. | Sep 2009 | B2 |
7591821 | Kelman | Sep 2009 | B2 |
7604667 | DeSmet et al. | Oct 2009 | B2 |
7621921 | Parker | Nov 2009 | B2 |
7922726 | White | Apr 2011 | B2 |
20010051830 | Tuke et al. | Dec 2001 | A1 |
20020004660 | Henniges et al. | Jan 2002 | A1 |
20020116007 | Lewis | Aug 2002 | A1 |
20020177854 | Tuke et al. | Nov 2002 | A1 |
20020193797 | Johnson et al. | Dec 2002 | A1 |
20030009234 | Treacy et al. | Jan 2003 | A1 |
20030050645 | Parker et al. | Mar 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030088316 | Ganjianpour | May 2003 | A1 |
20030187512 | Frederick et al. | Oct 2003 | A1 |
20030220698 | Mears et al. | Nov 2003 | A1 |
20030229356 | Dye | Dec 2003 | A1 |
20040034367 | Malinowski | Feb 2004 | A1 |
20040215198 | Marnay et al. | Oct 2004 | A1 |
20040215200 | Tornier et al. | Oct 2004 | A1 |
20050038443 | Hedley et al. | Feb 2005 | A1 |
20050075736 | Collazo | Apr 2005 | A1 |
20050137603 | Belew et al. | Jun 2005 | A1 |
20050171548 | Kelman | Aug 2005 | A1 |
20050187562 | Grimm et al. | Aug 2005 | A1 |
20050222572 | Chana | Oct 2005 | A1 |
20050228395 | Auxepaules et al. | Oct 2005 | A1 |
20050234462 | Hershberger | Oct 2005 | A1 |
20050246031 | Frederick et al. | Nov 2005 | A1 |
20060052780 | Errico et al. | Mar 2006 | A1 |
20060149285 | Burgi et al. | Jul 2006 | A1 |
20070156155 | Parker | Jul 2007 | A1 |
20070167952 | Burgi et al. | Jul 2007 | A1 |
20070173856 | Parker | Jul 2007 | A1 |
20070225725 | Heavener et al. | Sep 2007 | A1 |
20070270783 | Zumsteg et al. | Nov 2007 | A1 |
20070288096 | Surma | Dec 2007 | A1 |
20070293869 | Conte et al. | Dec 2007 | A1 |
20080004628 | White | Jan 2008 | A1 |
20080021481 | Burgi | Jan 2008 | A1 |
20080033444 | Bastian et al. | Feb 2008 | A1 |
20080077249 | Gradel | Mar 2008 | A1 |
20080146969 | Kurtz | Jun 2008 | A1 |
20080154261 | Burgi | Jun 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080255565 | Fletcher | Oct 2008 | A1 |
20080255568 | Tornier et al. | Oct 2008 | A1 |
20080262503 | Muller | Oct 2008 | A1 |
20080275450 | Myers et al. | Nov 2008 | A1 |
20090112214 | Philippon et al. | Apr 2009 | A1 |
20090182334 | Brehm | Jul 2009 | A1 |
20090192515 | Lechot et al. | Jul 2009 | A1 |
20090240256 | Smith | Sep 2009 | A1 |
20090281545 | Stubbs | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0453694 | Oct 1991 | EP |
0470912 | Feb 1992 | EP |
0535973 | Apr 1993 | EP |
357302 | Jul 1994 | EP |
638299 | Feb 1995 | EP |
1308140 | May 2003 | EP |
1190687 | Jul 2004 | EP |
1438936 | Jul 2004 | EP |
1447058 | Aug 2004 | EP |
9511641 | May 1995 | WO |
0012832 | Mar 2000 | WO |
0106964 | Feb 2001 | WO |
2005044153 | May 2005 | WO |
2006061708 | Jun 2006 | WO |
2007098549 | Sep 2007 | WO |
2008128282 | Oct 2008 | WO |
2009136284 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
60634467 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11201270 | Aug 2005 | US |
Child | 12724505 | US |