The invention relates to an orthopedic aid with two parts which are movable relative to one another and with a locking device for locking the two parts in a predetermined relative position and for unlocking the parts in order to permit movement of the parts with respect to one another.
Orthopedic aids of this kind are used in many applications intended to provide compensation for temporary or permanent weaknesses of the human body and to enable functions that it would otherwise not be possible to perform. This is achieved by the orthopedic aid providing a supporting function in which, in a defined position of the parts of the aid, these parts are locked with respect to one another, and the locked position of the two parts with respect to one another corresponds to a position of use in which the patient concerned requires the supporting function afforded by the orthopedic aid. A preferred application of an orthopedic aid of this kind is in its design as an orthotic joint, where, for example, the parts of the orthotic joint connected to one another by a hinge can be locked in an extended position, for example in order to permit the function of a limb in the extended and locked position of the orthotic joint. To get to a rest position, the locking device has to be unlocked. In known orthotic knee joints, this is done, for example, by means of a Bowden cable with which the locking device can be unlocked, so that the knee joint can be flexed, for example in order to allow the patient to get to the seated position. Even if the Bowden cable is sited in a position in which it is easy to grasp, its actuation is nevertheless awkward and, for example in the case of an orthotic leg device, requires gripping the leg beneath or through the clothing, which many patients consider inconvenient.
The object of the present invention is therefore to design an orthopedic aid of the type mentioned at the outset in such a way that correct unlocking can be achieved in a simple manner.
To achieve this object, an orthopedic aid of the type mentioned at the outset is distinguished, according to the invention, by the fact that the locking device can be actuated electromechanically from a control module, and an actuating signal can be sent by wireless transmission from an actuating unit to the control module.
The orthopedic aid according to the invention thus provides for unlocking of the locking device by an electromechanical actuation triggered by a control module. The control module is provided with a signal receiver through which the control module can receive an actuating signal sent to it by wireless transmission and can convert this actuating signal into a switching signal for actuating the locking device.
In this way, an actuating unit for unlocking the orthopedic aid can be arranged at a convenient position and can, for example, be carried as a separate device in the clothing.
However, it is preferable to integrate the actuating unit into a walking aid. The actuating unit can in this case preferably be accommodated in a handgrip of the walking aid. It is expedient to arrange an actuating button on a free end face of the handgrip of the walking aid, so that the actuating button can be preferably actuated by the thumb of the hand holding the handgrip, without having to release the grasp on the handgrip of the walking aid.
The actuating unit can also be formed by a manual transmitter which can be carried separately and actuated. The manual transmitter is preferably designed in such a way that it can be fitted into a walking aid at the aforementioned positions and can be actuated when the walking aid is in use, the manual transmitter in this case preferably being accommodated in the handgrip of the walking aid and preferably being actuated by the thumb of the hand holding the handgrip.
In a further embodiment of the invention, an acknowledgement signal or warning signal can be transmitted from the control module to the actuating unit. In a preferred embodiment of the invention, the acknowledgement signal can indicate that, after an unlocking of the orthopedic aid, the latter has returned to the correctly locked position. This is important in particular for orthotic leg devices whose function it is to be used for walking in an extended position of the knee joint. The transmitted acknowledgement signal or warning signal can be used to trigger signaling arrangements of the actuating unit, for example visual and/or acoustic signal display arrangements and/or a vibrator.
For the actuating unit integrated in the handgrip of the walking aid, the arrangement of the vibrator in the handgrip of the walking aid is particularly expedient.
The invention is explained in greater detail below with reference to an illustrative embodiment shown in the drawing, in which:
The orthotic leg device 1 shown in
Flat stiffening rods (not shown in
The hinge 6 can be locked in the extended position shown in
The structure of the hinge 6 is shown in greater detail in
The part 15 is designed as the lower part of the hinge, with a downwardly open receiving compartment 18 for a flat stiffening rod, which is connected to the below-knee shell 3. Correspondingly, the part 16 has an upwardly open receiving compartment 19 for receiving a stiffening rod for the thigh shell 2.
The lower part 15 of the hinge is provided with a guide pin 20 which can be moved in a guide groove 21 forming approximately a quarter of a circle and thus forms abutments for the extended position according to FIG. 3 and for a flexed position of the hinge 6 according to
In the area of the pivot 17, the lower part 15 and upper part 16 of the hinge both form circular, eye-shaped end portions 22, 23 which are fitted in one another to form the pivot 17. The end portion 22 of the lower part 15 of the hinge is provided with a radial recess 24 into which a locking pin 25 engages with a lower end 26 shaped to match the recess 24, in order to lock the lower part 15 and upper part 16 of the hinge together in the extended position shown in
The control module 8 illustrated in
The block diagram in
The battery 37 is connected via the main switch 35 to the charge socket 38 and to the key 9 for unlocking the hinge 6. When the key 9 is actuated, the sound generator 41 is triggered and emits a warning sound for unlocking. With the main switch 35 switched on, the state of charging of the battery 37 is indicated by the control light 44; for example, the control light 44 does not light if the state of charging of the battery 37 is sufficient. By actuating the key 9, a current is conveyed via the connection cable 7 into the coil 28 in the hinge 6, as a result of which the hinge is unlocked.
If the sensor 30 of the hinge 6 detects that the locking pin 25 has dropped back into the locked position, this output signal of the sensor 30 is transmitted via the connection cable 7 to the control module 8 and there, via the short-time control 39, emits acknowledgement signals, namely by the control light 36 lighting up via the short-time control 39, actuation of the vibrator 42, and actuation of the sound generator 40, unless the latter has been switched off via the switch 43.
In the embodiment shown in
Otherwise, the control module 8′ is identical to the control module 8.
Number | Date | Country | Kind |
---|---|---|---|
103 11 187 | Mar 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5052375 | Stark et al. | Oct 1991 | A |
5103807 | Makaran | Apr 1992 | A |
6436058 | Krahner et al. | Aug 2002 | B1 |
20040225242 | Lidolt et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
2 314 510 | Oct 1975 | DE |
200 05 559 | Jul 2001 | DE |
201 19 621 | Mar 2002 | DE |
0 141 640 | May 1985 | EP |
0 380 060 | Aug 1990 | EP |
1 386 942 | Mar 1973 | GB |
2 280 609 | Feb 1995 | GB |
WO 0079263 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050039762 A1 | Feb 2005 | US |