The present invention relates to an orthopedic device for redistribution of pressure exerted on a limb of a patient.
Orthopedic and podiatric devices are common and have been used for many years to treat patients with poor foot mechanics, insensitive foot, and foot pain. Foot specialists, such as podiatric and orthopedic surgeons, have treated such patients by prescribing shoe inserts and foot arch supports to alleviate pressure exerted on various areas of a foot of a patient. For example, shoe inserts and foot arch supports have been used to help patients undergoing podiatric therapy for plantar fasciitis. In many situations, a polyurethane foam shoe insert for cushion or support may alleviate a patient's foot discomfort.
However, in many other situations, a patient's discomfort may be more serious. For example, pressure or tension on a patient's foot may be directed on a pressure point or particular concentrated areas, including a metatarsal head, a metatarsal base, and a calcaneal tubercle of a foot of a patient. These concentrated areas may be referred to as high pressure points due to exerted pressure from weight or high stress activities. High pressure points may cause substantial discomfort to patients, risk of ulceration of the leg or foot and accelerated degeneration of fat pad of the foot.
Treatment for customized pressure relief on limbs, e.g. feet or prosthesis liners, is relatively time consuming and expensive. Typically, a customized shoe insert, orthotic or foot arch support is created by a foot specialist, orthotist or biomechanical lab. The process of creating a customized shoe insert typically involves a plaster cast of the foot or leg. The foot is generally casted in a “neutral position” or a relaxed position of the forefoot, mid-foot, and rear foot. From these casts, plaster is poured therein to produce a positive mold or impression of the patient's foot. The shoe insert is then constructed from the positive mold.
Although adequate, current ways of treating for the pressure relief of joints of the foot and distal leg pressure may be improved. Present methods correct static pressure of the foot or leg, but not dynamic pressure thereof.
Thus, there is a need for a more efficient, time saving device for treating patients with foot pain due to poor foot mechanics, insensitive foot and those with a decreased fat pad of the foot or leg.
The present invention provides for an efficient, time saving device for treating patients having foot discomforts, insensitive foot, and decreased fat pad.
The present invention also provides for treating diabetic patients and those with an insensitive foot or leg. Disease processes render the foot and leg susceptible to additional complications due to altered neurological, orthopedic, and vascular complications. The present invention provides for a dynamic molding to relieve pressure points to allow for additional comfort and decrease the risk of ulcerations.
In one aspect, the present invention provides an orthopedic device for redistributing pressure exerted on a limb of a patient. In this embodiment, the device comprises a pressure absorbing member and a breakable container disposed in the pressure absorbing member. The pressure absorbing member is contoured to cooperate with the shape of the limb. The pressure absorbing member has a pressure receiving cavity formed therein. The breakable container is disposed in the pressure receiving cavity and includes a reactant molding material. The breakable container has a predetermined elastic threshold to allow the breakable container to break at a high pressure area and to allow the reactant molding material to disperse from the high pressure area upon pressure exertion thereon by the limb.
In another aspect, the present invention provides a method of redistributing pressure on a limb of a patient for orthopedic therapy. The method comprises providing a pressure absorbing member having a pressure receiving cavity formed therein and a breakable container disposed in the pressure receiving cavity. In this embodiment, the breakable container has a reactant molding material and a predetermined elastic threshold. The method further includes receiving pressure on the breakable container at the predetermined elastic threshold to define a high pressure area and dispersing the reactant molding material from the high pressure area. After curing, the reactant molding material forms a positive mold or impression of the patient's foot to redistribute the pressure on the limb.
Further objects, features and advantages of the invention will become apparent from consideration of the following description and the appended claims when taken in connection with the accompanying drawings.
The present invention generally provides a customized orthopedic device for redistributing pressure exerted on a limb of a patient. In one embodiment, the orthopedic device hypogenically takes on the contours of the plantar side of a patient's limb, when placed in contact therewith and when pressure is exerted thereon. While avoiding a patient's potential allergic reaction to a molding material, the orthopedic device forms to the shape and contour of the patient's limb in a timely manner.
The contact layer 14 may be comprised of Plastazote™, Poron™, Neoprene™, or any other suitable material. The base layer 16 may be injection molded or stamped with a cupped heal, arch pad, or metatarsal pad and may be made of any suitable material such as polyurethane. Plastazote™ is a high quality, light weight, closed cell polyethylene foam that is non-allergenic and may be used in direct contact with the skin. Plastazote™ is a heat moldable, grindable and washable material. Neoprene™ polychloroprene is a synthetic rubber. Poron™ is a micropourous polyurethane foam. The base layer and the contact layer may be adhered together by gluing or sonic welding or by any other suitable means.
The pressure absorbing member 13 is contoured to cooperate with the limb of a patient. The contact layer 14 is configured to engage the limb of a patient. As shown in
Device 10 further includes a breakable container 23 disposed in each pressure receiving cavity 20. Each breakable container 23 contains a reactant molding material, e.g., liquid latex or natural rubber and has a predetermined elastic threshold to allow the breakable container 23 to open or break at a high pressure area 30. The breaking of the breakable container 23 allows the reactant molding material 26 to be dispersed from the high pressure area 30 upon stress on the breakable container 23.
As the breakable container opens, the reactant molding material is dispersed to an area of lower pressure within the stress portion, thereby forming to the contour of the limb to form a positive mold or impression of the patient's foot. The reactant molding material is then allowed to cure and solidify to take on the contours of the limb. The reactant molding material provides greater surface area contact between the limb and the contact layer 14 at the high pressure area 30. As a result, the reactant molding material provides added support to the limb and redistributes pressure exerted thereon.
In this embodiment, each breakable container 23 has an elastic threshold to rupture or break the breakable container, thereby allowing the reactant molding material to be dispersed within the pressure receiving cavities. In this embodiment, the elastic threshold is defined by a rupture tension of about 15 pounds per square inch (psi). In another embodiment, the elastic threshold may be defined by a 10% stretch threshold of the material of the breakable container 23.
The predetermined elastic threshold may be determined by any suitable means to define a threshold at which the breakable container ruptures thereby allowing the reactant molding material to be dispersed within the respective pressure receiving cavities. For example, rupture tension (RT) may be provided as follows:
RT=force per unit length,
wherein tension (T), pressure (P), and radius (r) are related by
T=P×r.
Using Young Modules of polyethylene as 1 megapascal and a thickness of sheet (d) of 0.5 millimeters (mm), T and strain are related by
T=modulus (e)×thickness of sheet×0.1 strain.
Thus,
to provide
In this embodiment, the fore-foot portion 32, the mid-foot portion 33, and the rear foot portion 34 are formed along a separate stress portion and pressure receiving cavity of the pressure absorbing member. However, it is to be understood that each stress portion may be formed in any other suitable manner. For example, as shown in another embodiment depicted as reference numeral 116 in
The breakable container may be configured to rupture at any suitable location thereon to allow the reactant molding material to be dispersed within the respective pressure receiving cavity of the device. The breakable container may be made of a low density polymer, e.g., low density polyethylene or low density polypropylene
More specifically, as shown in
In use, the orthopedic device redistributes pressure on a limb of a patient for orthopedic therapy. The breakable container receives pressure from the limb of the patient. At the predetermined elastic threshold of the breakable container, the reactant molding material is dispersed from the high pressure area to the pressure receiving cavities. After curing, the reactant molding material defines a positive mold or impression of the patient's foot to alleviate pain and discomfort.
However, when placed in a heat source, e.g., an oven, at or above the predetermined temperature, heat sensitive breakable container 323 will selectively rupture at the pressure points at which the one-way valves are disposed, thereby allowing the reactant molding material to exit therefrom. Pressure applied from the patient's foot then will cause the reactant molding material to disperse or flow to stress portions 318 and 321 of the pressure absorbing member 313 while avoiding backflow back to stress portion 319.
As mentioned, the heat sensitive breakable container 323 is comprised of material configured to rupture or degrade at a predetermined temperature. The predetermined temperature may be preferably greater than 100° F., more preferably greater than 120° F., and most preferably greater than 140° F. The material may be a polymeric material such as low density polyethylene, linear-low density polyethylene, polypropylene, or any other suitable material.
The one-way valves may be constructed by any suitable means onto the breakable containers such that the reactant molding material may be dispersed to the pressure receiving cavities.
In use, the orthopedic device depicted in
While the present invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made to those skilled in the art, particularly in light of the foregoing teachings.
Number | Name | Date | Kind |
---|---|---|---|
3705646 | Jankowski et al. | Dec 1972 | A |
3737027 | Ball | Jun 1973 | A |
4211019 | McCafferty | Jul 1980 | A |
4338734 | Schwartz | Jul 1982 | A |
4346525 | Larsen et al. | Aug 1982 | A |
4385024 | Tansill | May 1983 | A |
4423735 | Comparetto | Jan 1984 | A |
4441499 | Comparetto et al. | Apr 1984 | A |
4470782 | Zimmerman, Jr. et al. | Sep 1984 | A |
4686993 | Grumbine | Aug 1987 | A |
4739765 | Sydor et al. | Apr 1988 | A |
4744157 | Dubner | May 1988 | A |
4962762 | Beekil | Oct 1990 | A |
5027801 | Grim | Jul 1991 | A |
5042100 | Bar et al. | Aug 1991 | A |
5067257 | Coomer | Nov 1991 | A |
5083910 | Abshire et al. | Jan 1992 | A |
5095570 | Bar et al. | Mar 1992 | A |
5163237 | Rosen | Nov 1992 | A |
5203793 | Lyden | Apr 1993 | A |
5275775 | Riecken | Jan 1994 | A |
5311680 | Comparetto | May 1994 | A |
5316545 | Cherubini | May 1994 | A |
5463824 | Barna | Nov 1995 | A |
5540982 | Scholz et al. | Jul 1996 | A |
5611153 | Fisher et al. | Mar 1997 | A |
5728169 | Norvell | Mar 1998 | A |
5746952 | Marshall | May 1998 | A |
5768803 | Levy | Jun 1998 | A |
5843483 | Theriault et al. | Dec 1998 | A |
5888216 | Haberman | Mar 1999 | A |
5896677 | Barsorian | Apr 1999 | A |
5958546 | Mardix et al. | Sep 1999 | A |
6012726 | Grande et al. | Jan 2000 | A |
6030355 | Callinan et al. | Feb 2000 | A |
6038793 | Kendall | Mar 2000 | A |
6086551 | Allen | Jul 2000 | A |
6092314 | Rothbart | Jul 2000 | A |
6098315 | Hoffmann, III | Aug 2000 | A |
6110134 | Clark, Jr. et al. | Aug 2000 | A |
6170177 | Frappier et al. | Jan 2001 | B1 |
6173511 | Perrault | Jan 2001 | B1 |
6205685 | Kellerman | Mar 2001 | B1 |
6212723 | Rothbart | Apr 2001 | B1 |
6327795 | Russell | Dec 2001 | B1 |
6379393 | Mavroidis et al. | Apr 2002 | B1 |
6460275 | Bennett et al. | Oct 2002 | B1 |
6499485 | Pepera | Dec 2002 | B1 |
6510626 | Greenawalt | Jan 2003 | B1 |
6513264 | Sinaie | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
WO 9107152 | May 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20050150133 A1 | Jul 2005 | US |