The present invention relates generally to orthopedics. More specifically, the present invention relates to implants for supporting and allowing the repair and regeneration of skeletal members in need thereof.
It is known in the art to implant a bone plate atop a bone surface and across a fracture site or other skeletal defect in need of repair. It is also known in the art to secure (e.g., anchor) the bone plate to the underlying bone with bone screws. Bone plates however are prone to repulsion, due to the stresses imparted onto the bone plates and bone screws. Such implant failures in orthopedics is undesirable. That is, one of the most common occurrences of implant failure in orthopedics occurs when the bone screws back-out from the bone plates, a complication that may lead to serious consequences in a patient. Due to the general cylindrical shape of bone screws and the variety of forces acting thereon, during and after the healing of a bone, once a bone screw begins to dislodge from the bone or otherwise lose purchase, there is little to prevent a loosened bone screw from continuing to back out from the bone and the bone plate, potentially puncturing surrounding tissue, such as, has been the case in cervical anterior plate failures in which patients reportedly swallow or even cough up expulsed anterior cervical plate screws that puncture the esophageal lining. The bone plate from which such a bone screw has become dislodged becomes even less securely implanted and the chances of additional screws backing out and complete implant failure increases dramatically.
Implants, such as bone plates and bone screws, are less likely to fail due to screw back-out or implant repulsion when such implants are designed with irregular, i.e., non-rounded, shapes. In addition, implants, such as bone plates implanted partially or entirely under the surface of the bone are much less likely to fail due to repulsion. However, bone resurfacing technology, up until now, has not enabled implants such as bone plates to be inserted under the surface of the bone in part due to the difficulty with conventional mechanical bone resurfacing instrumentation, such as millers, rasps, and drills, in forming sharp edges or precisely resurfaced areas. Moreover, handling such instrumentation in the confined surgical areas is difficult and invasive for surgeons. Other difficulties include the possibility of breaching the vascularized bone underlying the cortical shell during the use of such instrumentation to mill or otherwise resurface a topical bone area, the risk of the resurfacing instrument slipping off of the slippery bone surface and causing damage to surrounding tissue or vessels, and the risk of greatly reducing the strength or integrity of the bone tissue immediately surrounding the machined bone surface. For example, it has conventionally been extremely difficult to form slots or grooves in a patient's bone using mechanical instruments, such as saws, due to the tendency for the saw to damage and/or destroy adjacent soft tissue in the process. These problems are further exacerbated when attempting to form a slot, groove or implant-receiving bed in the skull bone due to the relative thinness of the skull bone as well as the delicate tissue structure underlying the skull bone.
Recently, with the advent of improved bone resurfacing technologies, such as, for example, lasers, radio frequency RF and other electromagnetic bone resurfacing instruments, piezo-activated resurfacing instruments, piezoelectric cutting knives, water jets, and other precision bone milling instrumentation, etc. comes the opportunity to insert implants, such as bone plates, into partially and/or wholly implant-receiving slots, grooves, or beds formed in the surface of the bone in need of repair. Pulsed lasers, for example, have been developed that are capable of sending sensing signals between energy pulses that enable the laser to cut, for example, through the outer shell of a hard-boiled egg yet not damage the delicate membrane underlying the shell.
Such implantation would have reduced probability of implant repulsion. Additional advantages of improved bone resurfacing technologies include providing implants having non-rounded edges and/or non-threaded bone anchors for use with such implants that are characterized as having noncircular cross-sectional anchor shafts.
A need exists to take advantage of improved bone resurfacing technology to provide orthopedic implants having reduced profiles and enhanced repulsion-resistance characteristics.
Reduced height and zero-profile implants, such as bone plates, are provided. The implants are adapted for placement across a skeletal defect, such as a fracture, in need of repair. Further, the implants are provided in forms that provide increased implant-repulsion resistance.
In one embodiment, the implant may be in the form of a biocompatible wire. In a preferred embodiment, the wire is inserted into a curvilinear groove formed using a bone milling or resurfacing instrumentation such as, for example, a laser, radio frequency RF resurfacing instrument, other electromagnetic or mechanical resurfacing instrument. The curvilinear groove into which the wire is implanted preferably crosses the fracture site, such that upon implantation of the wire into the groove, the wire acts to secure the two bone fragments.
In accordance with one aspect of the invention, the wire may have a trapezoidal transverse cross section, where the distally implanted surface of the wire has a width that is larger than the proximally implanted surface, and may be implanted into a groove that has a substantially similar cross-sectional shape. In this manner, expulsion of the wire is less likely. Additionally, the wire may be formed with a material that is expandable once introduced into the patient's body.
In accordance with another aspect of the invention, the implanted wire and/or the surgically-formed groove may be covered with a biocompatible adhesive to anchor the implant with respect to the surrounding bone tissue. The adhesives may be inserted into the groove and/or around or on top of the wire implant either prior to, during, or subsequent to the implantation of the implant wire. Alternatively, the wire may be affixed to the bone with bone anchors.
In a preferred embodiment, the wire may have a diameter that is about one millimeter, and the groove into which the wire is implanted may have a similar depth of one millimeter, such that the proximal surface of the wire lies substantially flush (e.g. even) with or below the top surface of the bone and the depth of the groove does not extend below the cortical bone.
In another embodiment, the wire implant may also include extensions, such as, for example, barbs, filaments, or clips along the shaft of the wire. The extensions may be integrally formed with the wire implant. Alternatively, the extensions may be formed independently of the wire and attached thereto. Additionally, the wire implant may be configured with arrowheads at opposite ends of its length. In this manner, the arrowheads may assist in compressing the two bone fragments across the fracture site while securing the wire implant in place within the groove. Accordingly, the machining and/or lasering of the implant-accommodating groove may include surface cutting of one or more areas adjacent to the curvilinear groove to facilitate insertion of the implant wire and to accommodate the additional securing means.
In another embodiment, the implant may be in the form of a bone plate. In a preferred embodiment, the bone plate assumes a form having two enlarged end portions with an intermediary connecting or bridge portion located therebetween, wherein each enlarged end portion may include an optional bore hole for optional screw fixation. In use, the bone plate may be applied across a fracture site or other bone region in need of repair.
In accordance with another aspect of the invention, a plate-receiving recess is formed in the bone using a bone milling or resurfacing instrumentation. The bone plate is preferably inserted at least partially or wholly into the machined plate-receiving recess. The bone plate serves to hold the bone pieces across the fracture site securely with respect to one another to assist in fusion. Preferably, the thickness of the bone plate substantially corresponds to the depth of the machined plate-receiving recess or otherwise resurfaced area of bone such that, once implanted, the top surface of the bone plate lies substantially flush with or below the top surface of the bone, thus a zero-height implant is provided.
In accordance with one aspect of the invention, the plate may have a trapezoidal transverse cross section, where the distally implanted surface of the wire has a width that is larger than the proximally implanted surface, and may be implanted into a recess that has a substantially similar cross-sectional shape. In this manner, expulsion of the plate is less likely. Additionally, the plate may be formed with a material that is expandable once introduced into the patient's body.
In accordance with another aspect of the invention, the implanted plate and/or the recess may be covered with a biocompatible adhesive to anchor the implant with respect to the surrounding bone tissue. The adhesives may be inserted into the recess and/or around or on top of the plate either prior to, during, or subsequent to the implantation of the implant wire. Alternatively, the plate may be affixed to the bone using bone anchors.
The system is explained in even greater detail in the following exemplary drawings. The drawings are merely exemplary to illustrate the structure of preferred devices and certain features that may be used singularly or in combination with other features. The invention should not be limited to the embodiments shown.
Certain exemplary embodiments of the invention will now be described with reference to the drawings. In general, such embodiments relate to a skeleton fixation system 10 for securing bones across a fracture site. As generally understood by one of ordinary skill in the art, it should be understood that while the skeleton fixation system 10 may be described in connection with cranio or maxillofacial fixation, those skilled in the art will appreciate that the system as well as the components thereof may be used for fixation in other parts of the body such as, for example, in the long bones or bones in the hand, face, feet, etc.
As shown in
The wire 20 may have any cross-sectional shape and/or area known in the art including but not limited to cylindrical, rectilinear, trapezoidal, polygonal, etc. Where the wire 20 has a trapezoidal shape, the distally implanted surface of the wire 20 may have a width that is larger than the proximally implanted surface, and may be implanted into a groove 200 that has a substantially similar cross-sectional shape and/or dimensions. In this manner, expulsion of the wire 20 is less likely. The wire 20 may be implanted by, for example, lacing the wire 20 through one end, inserting the implant down from above with some force, snapping the implant into the receiving bed, distracting the bone segments so that the groove 200 is slightly enlarged as may be practical in the case where there is a complete fracture, etc.
In addition, by selecting the appropriate choice of material, the wire 20 may further be expandable once introduced into the patient's body or bone tissue. Alternatively and/or in addition, the wire 20 maybe drug-eluting and/or coated with a tissue-ingrowth-enhancing material, such as, for example, BGH or hydroxyapatite.
Alternatively and/or in addition, the implanted wire 20 and/or the surgically-formed groove 200 may be covered with a biocompatible adhesive such as, for example, bone putty, cyanoacrylates, polyurethanes, epoxies, acrylics, calcium phosphate cement, etc. to provide a more secure anchoring of the implant with respect to the surrounding bone tissue. It is envisioned that the adhesives may be inserted into the groove 200 and/or around or on top of the wire 20 implant either prior to, during, or subsequent to the implantation of the implant wire 20.
The wire 20 may be formed of any biocompatible material known in the art meeting the strength and flexibility requirements of the particular applications including but not limited to stainless steel, titanium, Ni—Ti (nitinol), Elgiloy, other shape memory alloys, polymers such as PEEK, bioresorbable materials, etc.
In a preferred embodiment, the wire 20 may have a diameter that is about one millimeter, and the groove 200 into which the wire 20 is implanted may have a similar depth of one millimeter, such that the proximal surface 120 of the wire 20 lies substantially flush (e.g. even) with or below the top surface of the bone and the depth of the groove 200 does not extend below the cortical bone.
As shown in
As shown in
As shown, the machining and/or lasering of the implant-accommodating groove 200 may include surface-cutting of one or more areas 210 adjacent to the curvilinear groove 200 to facilitate insertion of the implant wire 20 to accommodate the variously depicted additional securing means.
Alternatively and/or in addition, as previously stated, the implanted wire 20 and/or the surgically-formed groove 200 may be covered with a biocompatible adhesive such as, for example, bone putty, cyanoacrylates, polyurethanes, epoxies, acrylics, calcium phosphate cement, etc. to provide a more secure anchoring of the implant with respect to the surrounding bone tissue. It is envisioned that the adhesives may be inserted into the groove 200 and/or around or on top of the wire 20 implant either prior to, during, or subsequent to the implantation of the implant wire 20.
Alternatively and/or in addition, as shown in
As shown, the eyelets 26 and corresponding bone pegs 224 may assume a circular form. Alternatively, the eyelets 26 and corresponding bone pegs 224 may assume a non-circular form such as, for example, a square or polygonal shape, which due to their sharp edges provided additional resistant to repulsion as compared to circular forms. Alternatively and/or in addition, the bone pegs 224 may assume a noncircular form, such as, for example, a square or polygonal shape for mating with a circular ring having a corresponding square or polygonal eyelet hole 26. Alternatively, the bone pegs 224 may assume a cylindrical form while the ring member may have a square or polygonal exterior surface with a circular eyelet hole 26.
As will be appreciated by one of ordinary skill in the art the machined areas and corresponding eyelets 26 may be formed anywhere along the length of the wire 20 and/or groove 200.
As shown in
That is, as shown, the cranio- or maxillofacial bone plate 30 preferably assumes a form having two enlarged end portions 36 with an intermediary connecting or bridge portion 34 located therebetween, wherein each enlarged end portion 36 may include an optional bore hole 32 for optional screw fixation. As such, the cranio or maxillofacial bone plate 30 may assume the general form of a barbell that includes two enlarged rounded lobes 36 at either end connected by an intermediate linking portion 34 having a dimension smaller in width than either of the lobes 36. Each of the lobes 36 may include a bore hole 32 for optional screw fixation. The bore holes 32 may further be configured to fit over bone pegs similar to those discussed above with reference to
In use, as shown in
Moreover, as previously stated, the bone plate 30 implant may be expandable once introduced into the patient's body or bone tissue with the appropriate choice of material. The bone plate implant may also be drug-eluting and/or coated with a tissue-ingrowth-enhancing material, such as, for example, BGH or hydroxyapatite. The surface of the bone plate implant may also include texturing to assist with bone in-growth. Alternatively and/or in addition, the implanted bone plate 30 and/or the machined plate-receiving area 300 may be covered with a biocompatible adhesive. The bone plate 30 and/or the bone screws may further be bioresorbable.
As shown in
As shown in
If a circular cross section pin, nail, screw or anchor 600 is used, it is preferred that a minimum of two such pins, nails or anchors 600 are used to avoid rotation of the bone fragment around a single pin, nail, or anchor 600.
Preferably both the bone plate 30 and the heads of the bone anchoring pins, nails, and anchors 600, are sized and configured to lie substantially flush with the top bone surface after implantation. Alternatively, the bone plate 30 may lie atop a non-machined bone surface. In a preferred embodiment, the heads of the noncircular bone pins, nails, anchors, etc. 600 are housed within the proximal portions of the boreholes through the plate 30 such that the top surfaces of the noncircular bone pins 600 lie substantially flush with the top surface of the bone plate as well as the top surface of the bone. Alternatively, the top surfaces of the noncircular bone pins, nails, anchors, etc. 600 may lie above or below the top surface of the bone plate 30. In one embodiment, the distal cross-sectional area of the noncircular bone pin, nail, anchor, etc. 600 is larger than the proximal cross-sectional area of the noncircular bone pin, nail, anchor, etc. 600 thereby providing a slight taper along the length of the shaft of the bone pin, nail, anchor, etc. 600 such that the bone pin, nail, anchor, etc. 600 may be snapped into the bone and thereby provide additional securement of the bone pin, nail, anchor, etc. 600 and bone plate 30.
As shown in
In use, one of the elongated members 42 of the spring clip may be inserted into a machined or laser formed bone slot 400 and then, immediately upon penetration into the bone, the elongated member 42 is permitted to rotate (springs) approximately 90 degrees. That is, in use, for example, the spring biased fixation clip 40, which is particularly well suited for cranio or maxillofacial applications such as, for example, cranial flap fusion or fracture reduction to lock translation of the bone pieces, may be applied across two skull bone pieces in need of fusion or reduction by resurfacing the bone(s), such as by forming a groove 400 across both bone fragments in the vicinity of the fracture site. Preferably, the groove 400 is formed all the way or completely through the bone. The spring biased fixation clip 40 may then be introduced into the groove 400 in its parallel state, such as by using a grasping instrument or inserter, such that the distal elongated member 42 is introduced below the bottom surface of the bone, while the proximal elongated member 42 is positioned above the top surface of the bone, with the connecting member 44 spanning the depth of the bone. The instrument is then released from the implant and the fixation clip automatically reverts back to its natural state in which the two elongated members 42 assume a cruciform or X shape. In returning to its cruciform state, the two elongated members 42 position themselves with respect to the machined groove 400 such that implant repulsion is prohibited. In this manner, the spring biased fixation clip 40 serves a similar function as a conventional flap-fix, the goal being to keep the bone flap on the same level as the surrounding bone.
In addition, the elongated members 42 and/or the connecting member 44 of the spring biased fixation clip 40 may include barbs or spikes or other surface texturing that assist in bone purchase and/or bone in-growth. The spring clip 40 may be loaded into a groove 400 that is one millimeter deep and five millimeters in length. The spring clip may be formed of a bioresorbable material or non-resorbable material such as stainless steel, titanium, nitinol, or PEEK.
As shown in
The wave blade implant 50 may be formed of any biocompatible material known in the art including but not limited to cold-worked titanium, cold-worked steel, or any other flexible biocompatible material. The grasping insertion instrument may be in the form of a pliers-type instrument having a straight slot into which the wave-blade implant 50 is pre-loaded. The wave-blade implant 50 may then be pushed out of the slot of the pliers-type instrument and simultaneously inserted into the bone slot 500.
As shown in
Alternatively and/or in addition, as shown in
As previously stated and as best shown in
It is understood that the implants provided by the present invention and methods associated therewith may utilize additional securement means, such as taking advantage of biocompatible adhesives such as cyanoacrylates, polyurethanes, epoxies, and acrylics with or without ultrasonic energy application, or may take advantage of bone-welding technology.
While the foregoing description and drawings represent the preferred embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope of the present invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. In addition, features described herein may be used singularly or in combination with other features. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and not limited to the foregoing description.
The present application claims priority to U.S. provisional application 60/947,254, filed Jun. 29, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/68606 | 6/27/2008 | WO | 00 | 11/11/2010 |
Number | Date | Country | |
---|---|---|---|
60947254 | Jun 2007 | US |